Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COATED ABRASIVE PRODUCTS
Document Type and Number:
WIPO Patent Application WO/1998/032566
Kind Code:
A1
Abstract:
In a coated abrasive product which comprises a backing with abrasive granules supported thereby and adhered thereto, a make coat of a resinous binder and a size coat of a resinous binder, at least one coat of the coated abrasive product is an ionizing irradiation curable formulation which comprises at least one epoxy resin and at least a cationic onium salt initiator.

Inventors:
WILLIAMSON SUE ELLEN (US)
KEMMERER RICHARD (US)
Application Number:
PCT/EP1998/000322
Publication Date:
July 30, 1998
Filing Date:
January 22, 1998
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UCB SA (BE)
WILLIAMSON SUE ELLEN (US)
KEMMERER RICHARD (US)
International Classes:
B24D3/28; B24D3/34; (IPC1-7): B24D3/28; B24D11/00; B24D3/34
Domestic Patent References:
WO1994004318A11994-03-03
Foreign References:
EP0284064A21988-09-28
EP0500369A21992-08-26
EP0747170A21996-12-11
EP0257757A21988-03-02
Attorney, Agent or Firm:
Dubost, Thierry (Intellectual Property Dept. Rue d'Anderlecht 33, Brogenbos, BE)
Download PDF:
Claims:
CLAIMS
1. A coated abrasive product which comprises a backing with abrasive granules supported thereby and adhered thereto, a make coat of a resinous binder and a size coat of a resinous binder and, optionally, having a saturant coat or a presize coat or a backsize coat or a combination of said optional coats, wherein at least one coat of the coated abrasive product is an ionizing irradiation curable formulation which comprises at least one epoxy resin and at least a cationic onium salt initiator.
2. A coated abrasive product according to claim 1 wherein the ionizing irradiation is selected from the group consisting of electron beam, gamma ray and Xray.
3. A coated abrasive product according to claim 1 or claim 2 wherein the formulation comprises the epoxy resin in an amount of 1 to 99. 5% by weight of the total formulation and the cationic onium salt initiator in an amount of 0. 1 to 10% by weight of the total formulation.
4. A coated abrasive product according to any of claims 1 to 3 wherein at least the make coat is formed from the said epoxy resin formulation.
5. A coated abrasive product according to any of claims 1 to 4 wherein the size coat is formed from the said epoxy resin formulation.
6. A coated abrasive product according to claim 4 wherein the size coat is formed from an ultravioletradiation curable epoxy resin formulation.
7. A coated abrasive product according to claim 6 wherein the size coat is formed from a formulation comprising 3', 4'epoxycyclohexylmethyl 3, 4epoxycyclohexane carboxylate.
8. A coated abrasive product according to claim 4 wherein the epoxy resin of the make coat comprises diglycidyl ether of bisphenol A.
9. A coated abrasive product according to claim 8 wherein the epoxy resin formulation of the make coat further comprises hydroxy terminated polybutadiene.
10. A coated abrasive product according to claim 4 wherein the epoxy resin of the make coat comprises diglycidyl ether of bisphenol F or an epoxy phenol novolac resin.
11. A coated abrasive product according to claim 1 wherein the ionizing irradiation curable epoxy resin formulation additionally contains, in an amount of up to 40% by weight of the formulation, a reactive diluent selected from low viscosity epoxides and diepoxides, alcohols, polyols and/or phenols, vinyl ethers, vinyl monomers, cyclic ethers, carbonates and esters and (meth) acrylates.
12. A coated abrasive product according to claim 1 wherein the ionizing irradiation curable epoxy resin formulation additionally contains, in an amount of up to 30% by weight of the formulation, a reactive toughening agent having functionality which will react under acid catalyzed conditions or a nonreactive toughening agent selected from polybutadienes, polyethersulfones and polyetherimides.
13. A coated abrasive product according to any of claim 1 to 12 wherein the cationic onium salt initiator is a diaryiiodonium salt of the formula wherein R1 and R2 are H, methyl, ethyl, npropyl, isopropyl, nbutyl, tertbutyl, Cl, Br, CnH2n+1, °CnH2n+lX OcH2cH (cH3) GnH2n+l OCH2CH (C2H5) CnH2n+1, OCH2CH (OH) CnH2n+l, OCH2C02CnH2n+1, OCH (CH3) C02CnH2n+l, OCH (C2H5) CO2CnH2n+1, and mixtures thereof where n is an integer between 0 and 18, and Anis an anion selected from the group consisting of AsF6, SbF6, PF6, BF4, CF3SO3, B [C6Fs] 4 and B [C6H3 (CF3) 2] 4.
14. A coated abrasive product according to claim 13 wherein the initiator is (4 octyloxyphenyl)phenyliodonium hexafluoroantimonate.
15. A coated abrasive product according to any of claims 1 to 14 wherein the ionizing irradiation curable epoxy resin formulation additionaly contains, in an amount of up to 70% by weight of the formulation, an least one filler selected from calcium carbonate, aluminium oxide, silica, sodium aluminium silicate, clay, etc.
16. A coated abrasive product according to any of claims 1 to 15 wherein the ionizing irradiation curable epoxy resin formulation additionnally contains, in an amount of up to 50% by weight of the formulation, of abrasive grit.
17. A coated abrasive product according to claim 4 wherein the epoxy resin of the make coat comprises (3, 4epoxycyclohexyl) methyl acrylate or (3, 4epoxycyclohexyl) methyl methacrylate.
18. A coated abrasive product according to claim 5, wherein the epoxy resin of the size coat comprises (3, 4epoxycyclohexyl) methyl acrylate or (3, 4epoxycyclohexyl) methyl methacrylate.
19. A coated abrasive product according to any of claims 1 to 18 wherein the ionizing irradiation curable epoxy resin formulation additionally contains, in an amount of up to 10% by weight of the formulation, at least a pigment or dye.
20. A coated abrasive product wherein the formulation according to any of claims 1 to 19 has been cured by ionizing irradiation.
Description:
COATED ABRASIVE PRODUCTS The present invention resides in the field of coated abrasive products and provides for the use of ionizing irradiation cured epoxy resins as binders in such products.

Coated abrasive products generally comprise a backing and abrasive granules supported thereby and adhered thereto. The backing may be paper, cloth, polymeric film, vulcanized fiber, polyester, cellulose, polylactic acid etc. or a combination of two or more of these materials. The abrasive granules may be formed of flint, garnet, aluminium oxide, alumina-zirconia, diamond, silicon carbide, etc.. Binders for the purpose of adhering the granules to the backing conventionally include phenolic resins, hide glue, varnish, epoxy resins, alkyd resins or urea-formaldehyde resins, and polyurethane resins.

The coated abrasive may employ a"make"coat of resinous binder material which is utilized to secure the ends of the abrasive granules onto the backing as the granules are oriented and a"size"coat of resinous binder material over the make coat which provides for firm adherent bonding of the abrasive granules. The size coat resin may be of the same material as the make coat resin or it may be of a different resinous material.

In the manufacture of conventional coated abrasives, the make coat resinous binder is first applied to the backing, the abrasive granules are then applied, the make coat is partially cured, the size coat resinous binder is then applied, and finally, the construction is fully cured. Generally, thermally curable binders provide coated abrasives having excellent properties, e. g., heat resistance. Thermally curable binders include phenolic resins, epoxy resins, and alkyd resins. With backings formed of polyester or cellulose, however, curing temperatures are limited to a maximum of about 130°C. At this temperature, cure times are sufficiently long to necessitate the use of festoon curing areas.

Festoon curing areas are disadvantageous in that they result in formation of defects at the suspension rods, inconsistent cure due to temperature variations in the large festoon ovens, sagging of the binder, and shifting of abrasive granules. Furthermore, festoon curing areas require large amounts of space and large amounts of energy. Accordingly, it would be desirable to use as a make coat or as a size coat a resinous binder that does not require a great deal of heat to effect cure.

Radiation curable resins are known in the art. DE-A-1, 956, 810 discloses the use of radiation for the curing of unsaturated polyester resins, especially in mixtures with styrene as binder for abrasives. US-A-4, 047, 903 discloses a radiation curable binder comprising a resin prepared by at least partial reaction of (a) epoxy resins having at least 2 epoxy groups, e. g., from diphenylolpropane and epichlorohydrin, with (b) unsaturated monocarboxylic acids, and (c) optionally polycarboxylic acid anhydride. US-A-4, 457, 766 discloses the use of acrylated epoxy resins, which are designated therein"epoxy acrylates",

such as the diacrylate esters of bisphenol A epoxy resins, as a radiation curable binder for coated abrasives.

The coated abrasives described in the foregoing patents exhibit the shortcoming of poor adhesion of abrasive granules to the backing because the binder does not cure in areas where the granules screen out radiation, unless high dosages of ionizing radiation are employed. High dosages of radiation can adversely affect the backing. The poor adhesion of the abrasive granules results in a large loss of abrasive granules, i. e., "shelling", from the backing upon flexing and grinding. Attempts to improve the adhesion of the abrasive granules by curing by ionizing radiation, through the backside of the backing often leads to degradation of the backing according to US-A-4, 751, 138.

There are a few disclosures of electron beam curing of abrasive binders, although however in all cases via a free radical mechanism, for example in US-A-4, 457, 766. Two patents also list the use of iodonium salts in the cure of an abrasive binder system (US-A- 4, 828, 583 and 4, 735, 632), however only as part of a ternary photoinitiator system for (meth) acrylate monomers (not as a cationic initiator), and it is said to be ineffective for electron-beam curing. Also, US-A-5578, 343 and 5, 571, 297 discloses a make coat comprising a binder polymer comprising at least one-radiation-curable functionality and at least one second functionability that is curable by a different mechanism, preferably by the application of heat. Finally, US-A-4, 751, 138 discloses an abrasive product wherein at least one of the make coat and size coat is formed from a radiation-curable composition comprising ethylenically unsaturated groups, 1-2 epoxide groups and a photo-initiator.

While resole phenolic materials commonly used as binders have excellent physical properties after cure, the cure process requires heating at elevated temperatures for many hours, requiring a large energy input. The ovens required are very large, thus requiring huge capital outlay for increasing capacity. In addition, resole phenolics release phenol and formaldehyde vapors on cure. Since long cure times are required, sizable inventories of finished and intermediate abrasive product must be maintained by the abrasive products manufacturers.

The present invention will allow rapid cure of coated abrasive articles.

The invention will offer the following advantages versus conventional processes using thermally cured phenolics : reduced cure times will allow production flexibility for abrasive materials, reducing the amount of finished coated abrasive inventory required to be on hand.

Energy costs for production of abrasives will be reduced.

Additional capacity can be added at much less expense than for new ovens.

Toxic off-gases (phenol and formaldehyde) produced during cure will be eliminated.

The invention offers the following advantages over ultraviolet radiation-curing processes of the prior art : Ultraviolet radiation-curing is limited to systems transparent to the wave lengths absorbed by the initiating species.

Most commercially available cationic initiators do not absorb light above 350 nm, sometimes above 300 nm, preventing their use in pigmented systems and limiting the depth of cure available.

Ionizing irradiation penetrates substrates regardless of color, allowing the cure of heavily coated and/or pigmented systems.

Ionizing irradiation can penetrate particulate material, such as abrasive grit and fillers.

The present invention provides coated abrasive products comprising a backing with abrasive granules supported thereby and adhered thereto, a make coat of a resinous binder and a size coat of a resinous binder and, optionally, having a saturant coat or a presize coat or a backsize coat or a combination of said optional coats, wherein at least one coat of the coated abrasive product is a formulation comprising at least one epoxy resin and a cationic onium salt initiator which is curable and/or cured (crosslinked) by ionizing irradiation, e. g., electron beam, gamma ray or X-ray irradiation. The abrasive binder formulation constituting such a coat preferably comprises an epoxy resin or mixture of epoxy resins in an amount of about 1 to about 99. 5% by weight of the total binder formulation and at least one onium salt initiator in an amount of about 0. 1 to about 10% by weight of the total binder formulation.

The epoxy resin to be employed in the binder formulation can be selected from any of a large variety of commercially available materials in particular, from any of the following glycidyl ethers : 1. Diglycidyl ethers of Bisphenol A of the formula where n = 0 to 10.

These resins are available from a number of manufacturers such as Shell Chemical Company DOW Chemical Company, and Ciba-Geigy Corporation in a variety of molecular weights and viscosities. Examples include : D. E. R. 332, D. E. R. 330, D. E. R. 331, D. E. R. 383, Tactix 123, Tactix 138, and Tactix 177 (DOW trademarks) ; Epon 825, Epon 826, and Epon 828 (Shell trademarks) ; and, Araldite GY 6008, Araldite GY 6010, and Araldite GY 2600 (Ciba-Geigy trademarks).

2. a) Diglycidyl ethers of Bisphenol F and Epoxy Phenol Novolacs of the formula :

wherein n=0 (Diglycidyl ethers of Bisphenol F), or n>0 (Epoxy Phenol Novolacs). They are available from a number of different manufacturers in a variety of molecular weights and viscosities. Examples include : Epon 155, Epon 160, Epon 861 and Epon 862 (Shell trademarks), DEN 431, DEN 436, DEN 438, DEN 439, DEN 444, and Tactix 785 (Dow trademarks), Araldite PY 306, Araldite EPN 1138, Araldite EPN 1139, Araldite EPN 1179, Araldite EPN 1180, Araldite EPN 9880, Araldite GY 281, Araldite GY 282, Araldite GY 285, Araldite GY 308, Araldite LY 9703, Araldite PY 307, and Araldite XD 4995 (Ciba Geigy trademarks), and Epalloy 8230, Epalloy 8240, Epalloy 8250, Epalloy 8330, and Epalloy 8350 (CVC Specialty Chemicals trademarks).

2. b) Epoxy Cresol Novolacs of the formula where n > 0. They are available from a number of different manufacturers in a variety of molecular weights and viscosities. Examples include : Epon 164 and Epon RSS- 2350 (Shell trademarks), and Araldite ECN 1235, Araldite ECN 1273, Araldite ECN 1280, Araldite ECN 1282, Araldite ECN 1299, Araldite ECN 1400, Araldite ECN 1871, Araldite ECN 1873, Araldite ECN 9511 and Araldite ECN 9699 (Ciba Geigy trademarks).

2. c) Bisphenol A Epoxy Novolacs of the formula

where n = 0 to about 2 or more. They are commercially available in a variety of molecular weights and viscosities as the SU series from Shell Chemical.

3. Tetraglycidyl ether of tetrakis (4-hydroxyphenyl) ethane of the formula commercially available as Epon 1031 (Shell Chemical Trademark) and Araldite MT 0163 (Ciba-Geigy trademark).

4. Glycidyl ethers of the condensation product of dicyclopentadiene and phenol of the formula

Commercially available as Tactix 556 (DOW Chemical trademark) where n is approximately 0. 2.

5. Triglycidyl ether of tris (hydroxyphenyl) methane of the formula is available as Tactix 742 (DOW Chemical trademark).

These materials can be used alone or as mixtures of several of the materials.

The epoxy resin in the binder formulation can include those from any of the following cycloaliphatic epoxides of the indicated formulas, either as the main ingredient of the binder formulation or as a diluent : 3', 4'-epoxycyclohexylmethyl 3, 4-epoxycyclohexanecarboxylate [available as ERL- 4221, Cyracure UVR-6110 and UVR 6105 (Union Carbide Corporation trademarks), Araldite CY-179 (Ciba-Geigy trademark), Uvacure 1500 (UCB trademark) and as Celloxide 2021 (Daicel Chemical Industries Ltd. trademark)].

Diglycidyl ester of hexahydrophtalic anhydride (available as CY 184 (Ciba-Geigy trademark)), Cyclohexene oxide, Limonene diepoxide [available as Celloxide 3000 (Daicel Chemical Industries Ltd. trademark)].

Limonene monoxide Vinyl cyclohexene dioxide [available as ERL-4206 (Union Carbide Corporation trademark)].

Bis (3, 4-epoxycyclohexylmethyl) adipate (available as ERL-4299 (Union Carbide trademark)),

Vinyl cyclohexene oxide [available as Celloxide 2000 (Daicel Chemical Industries Ltd. trademark)], (3, 4-epoxy cyclohexene) methyl alcohol [available as ETHB (Daicel Chemical Industries Ltd. trademark)], 2- (3, 4-Epoxycyclohexyl 5, 5-spiro-3, 4-epoxy) cyclohexane-metadioxane [available as ERL-4234 (Union Carbide Corporation trademark)], where n > 1, 3, 4-Epoxycyclohexylmethyl-3', 4'epoxycyclohexanecarboxylate modified e- caprolactone [available in various molecular weights as Celloxide 2081, Celloxide 2083, and Celloxide 2085 (Daicel Chemical Industries Ltd. trademarks)], (3, 4-Epoxy cyclohexyl) methyl acrylate [available as Cyclomer A-200 (Daicel Chemical Industries Ltd. trademark)], and (3, 4-Epoxy cyclohexyl) methyl methacrylate [available as Cyclomer M-100 (Daicel Chemical Industries Ltd. trademark)].

These materials can also be used alone or as mixtures.

The epoxy resins can also include polymers with pendent epoxy or cycloaliphatic epoxide groups.

The epoxy resin in the binder formulation may also include the mono-and di- epoxides of the following structures :

wherein R is a monovalent or bivalent radical such as an alkyl of up to about 14 carbon atoms, e. g., butyl, heptyl, octyl, 2-ethyl hexyl and the like. R may also be phenyl or alkyl- phenyl such as, for example, cresyl, t-butyl phenyl and nonylphenyl. R may also be linear or branched alkylene such as, for example, allyl. R can further be bivalent linear or branched structures containing the groups (CH2CH20) n, (CH2CH2CH20) n, and the like, wherein n may be, for example, up to about 10. Among examples may be cited 1, 4- butanediol diglycidylether, diethyleneglycol diglycidether, 2, 3-bis (2, 3-epoxypropoxy)-1- propanol and 1, 3-bis (2, 3-epoxypropoxy)-2-propanol.

These materials are commonly used, commercially available epoxy reactive diluents and functional modifiers. Specific examples of which may be found in Handbook of Composites, Edited by George Lubin, Van Nostrand Reinhold Company, Inc., New York, NY (1982), pages 61 to 63, and Shell Chemical Company technical brochure SC-1928-95, HELOXY (8) Epoxy Functional Modifiers.

Certain of the epoxy materials are either high viscosity liquids or solids at room temperatures. Therefore, it is contemplated that the higher viscosity materials may be blended with lower viscosity epoxy materials or with reactive or non-reactive diluents as discussed below in order to achieve the desired viscosity for ease in processing. Heating may be required to achieve the desired flow properties of the uncured formulation but temperatures should not be sufficiently high to cause thermal curing of the epoxy group.

Specific blends have been found to have a good overall combination of low viscosity in the uncured state and high glass transition temperature, flexural strength and modulus when cured. One blend which can be mentioned is a high performance semi-solid epoxy such as Tactix 556 with lower viscosity bisphenol A or bisphenol F based glycidyl ether epoxies such as Tactix 123 or Epon 861, respectively. Another blend which can be mentioned is an alicyclic epoxy (meth) acrylate such as Cyclomer A-200 or Cyclomer M-100 used either alone or in admixture with a partially (meth) acrylated epoxy, a divinylether, a polyol or phenolic compound. Some of these blends are capable of achieving glass transition temperatures above about 200°C when cured. This observation is quite surprising when a

comparison is made with similar blends based on limonene dioxyde (instead of the above Cyclomer) which exhibit glass temperatures below about 170°C. Such low viscosity and high Tg blends will also be useful by spray application to obtain very thin films for coating applications, adhesive formulations, potting, etc.

The initiator, which is employed in the binder formulation in an amount of about 0. 1 to 10% by weight of the formulation, comprises an onium cation and an anion containing a complex anion of a metal or metalloid.

The onium cation may include : * Diaryl salts of group VIIa elements Triaryl salts of group VIa elements * Other onium salts of group VIa elements * Other onium salts which can be activated by ionizing irradiation * and combinations thereof.

The anion containing a complex anion of a metal or metalloid may be independently selected from the following : BF4-, PF6-, SbF6- B (C6F5) 4-, B (C4H2 (CF3) 3) 4- and other borate anions as described in U. S.

Patent No. 5, 468, 902 and combinations thereof.

The initiator for the present invention is a material which produces a positively charged species (cation) when subjected to ionizing radiation. This positively charged species must then be capable of initiating the cationic polymerization of the epoxy. Much research has been devoted to the development of cationic photoinitiators (J. V. Crivello, Advances in Polymer Science, Vol. 62, p. 1 (1984)). Cationic initiators react when subjected to visible or ultraviolet light of a particular wavelength to produce a cationic species, typically a Bronstead acid. It was previously determined that some of these initiators also react to generate cations when subjected to ionizing radiation. Diaryliodonium salts and triarylsulfonium salts of certain anions are particularly effective as initiators for the ionizing radiation induced cationic polymerization of epoxies.

Specific examples of diaryliodonium salts are given by the following formula, where R1 and R2 are radicals such as H, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, Cl, Br, CnH2n+l, OCnH2n+1, OCH2CH (CH3) CnH2n+1, OCH2CH (C2Hs) cnH2n+lX OCH2CH (OH) CnH2n+l, OCH2CO2CnH2n+l, OCH (CH3) CO2CnH2n+l, OCH (C2H5) CO2CnHon+1, and mixtures thereof where n is an integer between 0 and 18 :

An'denotes the anion which may be hexafluoroarsenate (AsF6), hexafluoroantimonate (SbF6), hexafluorophosphate (PF6), boron tetrafluoride (BF4), trifluoromethane sulfonate (CF3S03), tetrakis (pentafluorophenylborate), (B [C6F5] 4), or tetrakis [3, 5-bis (trifluoromethyl) phenyl] borate (B [C6H3 (CF3) 2] 4))). For example, OPPI used in the examples herein denotes (4-octyloxyphenyl)-phenyliodonium hexafluoroantimonate (R1 = H, R2 = OCgH17, An-= SbF6). This initiator can be obtained from General Electric Corporation as Aryl Fluoroantimonate Product 479-2092 and was found to be particularly effective with certain epoxy resins. However, initiators with other R1 and R2 substituents and other diaryl iodonium salts such as are described in U. S. Patent Nos. 5, 144, 051, 5, 079, 378 and 5, 073, 643 are expected to exhibit similar reactivities.

Specific examples of triarylsulfonium salts are given by the following formulas, where R3 is H, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, phenylsulfide (PhS), phenoxy (PhO) and An'denotes the anion, which may be the same as those of the diaryliodonium salts : Examples of commercially available triarylsulfonium salts are Cyracure UVI-6974 and Cyracure UVI-6990 which are available from Union Carbide Corporation. These are mixtures of the triarylsulfonium salts given by the formula where R3 is phenylsulfide and An-are the hexafluoroantimonate and hexafluorophosphate anions, respectively. Degussa Corporation Degacure Kl-85 and 3M Corporation FX-512 are both mixtures of triarylsulfonium hexafluorophosphate salts.

Thermally activated cationic initiators, such as benzyltetra-methylene sulfonium salts or benzyl (p-hydroxyphenyl) methyl-sulfonium salts may also be included as part of the binder formulation. When employed, these materials can be used in an amount of up to about 10% by weight of the total binder formulation.

Reactive diluents may optionally be employed in the formulation in an amount of up to about 40% by weight of the formulation. These include low viscosity epoxides and diepoxides, low viscosity alcohols, polyols and/or phenols, vinyl ethers, vinyl monomers, cyclic ethers such as tetrahydrofuran, cyclic carbonates and esters such as g-butyrolactone or propylene carbonate, acrylates and methacrylates, and compounds containing more than one reactive functionality in the same molecule.

Solvents may be added to the formulation to adjust the viscosity of the precured formulation to that desired for application. As a general proposition-but not always- solvents would be removed by evaporation (at room temperature, under vacuum or by heating) from the applied formulation film prior to ionizing radiation curing. Solvents can be employed in amounts ranging up to about 90% by weight of the formulation.

Alcohols (0 to about 20% by weight), polyols (0 to about 50% by weight) and phenolic compounds (0 to about 40% by weight) may be added to the formulation to modify the uncured rheology or to improve the cured properties of the binder formulation.

Reactive and non-reactive toughening agents may optionally be added in an amount of up to about 30% by weight of the formulation, in order to increase the impact resistance and modulus of the binder formulation. Reactive toughening agents include materials which have functionality which will react under acid catalyzed conditions such as epoxy and/or hydroxy terminated rubbers. Non-reactive toughening agents include materials which do not have functionality which will react under acid catalyzed conditions, or which will react poorly under such conditions, such as polybutadienes, polyethersulfones, polyetherimides, and the like.

Mineral fillers may be added in amounts of up to about 70% by weight of the formulation. Fillers include calcium carbonate (at some expense of cure speed), aluminium oxide, amorphous silica, fumed silica, sodium aluminium silicate, clay, etc.. Fillers may be surface treated to increase filling ability, to enhance adhesion to the epoxy resin or to other components of the abrasive binder, and/or to improve properties of the cured film.

The abrasive grit to be employed may be included in the formulation prior to application or may be applied to the make coat following its application and prior to curing.

When incorporated into the formulation prior to application, it is employed in an amount of up to about 50% by weight of the formulation. Abrasive grit may include fused alumina oxide, ceramic aluminium oxide, green silicon carbide, silicon carbide, chromia, alumina zirconia, diamond, iron oxide, ceria, cubic boron nitride, boron carbide, garnet and combinations thereof. Any other synthetic or natural abrasive known to the art may also

be used. The distribution of the abrasive grit on the backing sheet and their average particle size and size distribution can be conventional. They can be oriented or can be applied without orientation.

Pigments or dyes may also be added to the formulation to achieve a desired color or hue. Such materials may be those which are conventionally employed in the art and are used in amounts of up to about 10% by weight of the formulation.

The abrasive binder formulation may be used for any layer of the coated abrasive product. This includes the make coat, size coat, super-size coat, front fill, back fill or saturant coat. The formulation can be applied by bar, knife, reverse roll, knurled roll, curtain or spin coating, or by dipping, spraying, brushing or by any other method which is conventional in the art. The formulation can be applied as one which contains or does not contain a diluting solvent.

The thickness of the various coatings will vary depending upon which coating, e. g., make coat, size coat, etc., and upon the nature of the specific formulation employed. It is within the skill of the art to vary these thicknesses to achieve the desired properties of the coating.

The backing for the abrasive product can be any of those conventional in the art such as cloth, paper, polymeric film such as polylactic acid film, vulcanized rubber, polyester, cellulose or a combination of these. TyvekO, untreated Mylart and Dupont J- treated Mylar (X3 films may be particularly mentioned.

The ionizing irradiation cured binder formulation of the present invention may, as indicated above, be used as any layer of the coated abrasive product. It may also be used in combination with more conventional and previously employed layers. For example, an abrasive product of the invention may possess the binder formulation of the present invention which is cured by ionizing irradiation as the make coat and a more conventional size coat which is cured by ultraviolet radiation. Also a backing material which has previously been provided with face coat and back coat and cured by conventional means can be used and a make coat comprising the instant binder formulation can be applied thereto and cured by ionizing irradiation.

Cure (crosslinking) of the epoxide functionality in the subject abrasive binder formulation will be by exposure to ionizing irradiation. When the ionizing radiation source is an Electron Beam (EB) accelerator, the accelerator voltage can be from about 150 keV to about 10 million eV. The applied dose per pass can range from about 1 mrad to 20 mrad.

The accelerator may be pulsed or continuous.

The subject abrasive binder formulation may be cured either after each binder layer is applied or after two or more layers are applied. Layer (s) may be undercured to"set"prior to the application of subsequent layers, with the final cure achieved by irradiation of the subsequent layer (s). Radiation may be applied either from the top or through the base of

the abrasive (through the backing), although it is anticipated that cure through the back of the coated abrasive article may result in some degradation of the backing material.

Optional thermal post-cure of the irradiated layer may be accomplished in one or several steps by conventional methods.

Layers not exposed to ionizing radiation may be cured thermally or by ultraviolet or visible radiation, i. e. non-particulate radiation having a wavelength within the range of about 200 to about 700 nanometers.

From the foregoing discussion, it will be seen that the present invention provides an improvement over prior art documents which fail to teach coated abrasive products in which at least one coat, including the make coat, the size coat, the super-size coat, the front fill, the back fill and the saturant coat, is an ionizing irradiation cured epoxy resin formulation as described herein.

The following examples are set forth to more specifically illustrate the invention and are not to be interpreted as being exhaustive of the invention. Percentage (%) values given are percent by weight.

Knoop hardness numbers for various EB cured epoxy resins were measured. An important factor of cured resole phenolic previously employed in coated abrasive products is their high Knoop hardness (40 to 50 for unfilled resin) and high glass transition temperatures (Tg) The subject EB cured cationic resins exhibit excellent Knoop hardness numbers and excellent thermal properties (including high Tg's) on EB or y-irradiation cure as shown in TABLES A and B below.

The Knoop hardness values were measured on a Wilson Tukon Model 300 Microhardness Tester. Samples for hardness testing were produced by coating the uncured formulations on Mylar sheets with Meyer rods and EB curing at the indicated dose.

For the materials employed in the tests reported in TABLE A and B and the Working Examples, the following information is provided :

Abbreviation Source Composition Tactix 556 Dow Chemical Company Glycidyl ether of condensation product of dicyclopentadiene and phenol THF Aldrich Tetrahvdrofuran OPPI GE Silicones Experimental product 479-2992C (4-octyloxyphenyl)-phenyl-iodonium hexafluoroantimonate Tactix 742 Dow Chemical Company Triglycidyl ether of tris (hvdroxvphenvl) methane EPON 862 Shell Chemical Company Diglycidyl ether of Bisphenol F GY 6010 Ciba Polvmers Dizlycidvl ether of Bisphenol A DVE-3 International Specialty Triethyleneglycol divinyl ether Products PY307-1 Ciba Polymers Epoxy phenol novolac CYC M100 Daicel Chemical Industries (3, 4-epoxycyclohexyl) methyl methacrylate SYLOIDO 74x4500 W. R. Grace and Co. micron-sized silica gel GY 285 Ciba Polymers Diglycidvl ether of Bisphenol F Polv BD 605 Elf Atochem North America Polybutadiene, hvdroxv terminated TCD-Alcohol dicvclopentadiene diol DEN 431 Dow Chemical Company Epoxy phenol novolac Tactix 123 Dow Chemical Companv Diglvcidyl ether of Bisphenol A DER 383 Dow Chemical Company Diglycidyl ether of Bisphenol A ERL 4205 Union Carbide Chemical Co. bis (2, 3-epoxvcvclopentyl) ether CY 179 Ciba Polymers 3', 4'-epoxycyclohexylmethyl-3, 4- epoxvcvclohexane carboxvlate DEN 438 Dow Chemical Company Epoxy phenol novolac Uvacure 1500 UCB Chemicals Corp. 3', 4'-epoxycyclohexyl methyl 3, 4- epoxvcvclo-hexane carboxylate Cyracure UVI 6974 Union Carbide Chemicals Mixed Triaryl sulfonium salts, and Plastics SbF6-counterion, in 50% propylene carbonate Atochem 99-042 Elf Atochem North America Experimental olefin with cycloaliphatic epoxide functionalitv

TABLE A Formulation Voltage/Applied Dose Example # Knoop Hardness Tactix 556 (96 %) 195 keV/10 mrad A-1 40 THF (2. 2 %) (2 pass, top and bottom) OPPI (2. 1 %) Tactix 742 (96 %) 195 keV/10 mrad A-2 28 THF (2. 0 %) (2 pass, top and bottom) OPPI (2. 0 %) Epon 862 (96 %) 195 keV/10 mrad A-3 25 THF (2. 0 %) (2 pass, top and bottom) OPPI (2. 0 %) GY 6010/OPPI/DVE-3 195 keV, 10 mrad A-4 37 (96/1. 9/1. 9) PY307-1/OPPI/DVE-3 195 keV, 10 mrad A-5 42 (96/1. 9/1. 9) GY6010/CYC M100/OPPI/DVE-3 195 keV, 10 mrad A-6 44 (76. 9/19. 2/1. 9/1. 9) DEN431/CYC M100/OPPI/DVE-3 195 keV, 6 mrad A-7 43 (76. 9/19. 2/1. 9/1. 9) GY6010/Syloid 74x4500/OPPI/DVE-3 175 keV, 8 mrad A-8 40 (74/14. 8/1. 9/1. 9) GY285/Syloid 74x4500/OPPI/DVE-3 175 keV, 8 mrad A-9 47 (74/14. 8/1. 9/1. 9) GY6010/Poly BD 605/OPPI/DVE-3 175 keV, 8 mrad A-10 40 (80/16. 3/1. 9/1. 91 GY6010/TCD-Alcohol OPPI/DVE-3 175 keV, 8 mrad A-11 34 (80/16/1. 9/1. 9) GY285/OPPI/DVE-3 175 keV, 8 mrad A-12 40 (96/1. 9/1. 9) DEN431/OPPI/DVE-3 175 keV, 8 mrad A-13 41 (96/1. 9/1. 9)

TABLE B Thermal Properties Formulation Tg (°C) Service Modulus Temperature (°C) (E") Gpa Tactix 556 (60)/Tactix 123 (40)/206 182 2. 29 OPPI 2phr Tactix 556/OPPI 3phr 216 187 2. 25 Tactix 742/OPPI 2phr--226 1. 51 Tactix 742 (75)/DER 383 (25)/242 203 1. 41 OPPI 2phr DER 383/OPPI 2phr 183 143 1. 29 ERL 4205/OPPI 2phr 148 133 1. 46 ERL 4205 (50)/Diglycidyl ether of 192 147 1. 30 Bisphenol A (50) OPPI 3phr Epon 862/OPPI 2phr 161 128 1. 38 CY179/OPPI 1PHR 223 161 1. 30 DEN 438/OPPI 3PHR 208 159 1. 29 * Temperature at which the modulus falls to 1/2 its value at 25°C.

WORKING EXAMPLES Samples of Coated Abrasive products were made using EB Cured Epoxy Resins : Epoxy formulations used for"make coat"were coated onto (a) Untreated Mylar film and (b) Dupont J-treated Mylar film (grade 500J101).

0 The make coat was applied at room temperature with a BYK Gardner bar type applicator.

0 Make coats were applied in two sections to 21. 6 x 28 cm Mylar@ sheets to a wet thickness of 50 and 100 pm.

'Abrasive grit was applied to the wet (uncured) resin coated sheet by hand, and the excess abrasive grit shaken off.

'Abrasive grit was 220 (grit) untreated silicon carbide from the K. C. Abrasive Company, Kansas City.

# All abrasive sheets were EB cured at 175 keV, 8 mrad.

Although all sheets were tack-free in two minutes or less after one pass at 8 mrad, some were passed under the EB a second time at 8 mrad.

Some sheets were post cured at 93°C for 90 minutes.

After cure of the make coat, a size coat (top coat) was applied over the make coat layer holding the abrasive grit..

This was brush coated with a disposable paintbrush.

The size coat was cured by (a) UV (Fusion curing system, 2"H"bulbs), or (b) EB (175 keV, 8 mrad).

For UV cure of size coat, two basic size coat formulations were used : one contained Uvacure 1500 + sulfonium salt initiator, the other contained a GY 6010/Uvacure 1500 (2/1) mixture + sulfonium salt initiator.

For EB cure of size coat, three different size coat formulations were used : two contained Uvacure 1500 + initiator (iodonium salt or sulfonium salt), one contained a GY 6010/Uvacure 1500 (2/1) mixture + iodonium salt.

The UV cured size coats were initially applied in sections to compare the sanding ability of the coated abrasive ; one section was coated with the GY 6010/Uvacure 1500 formulation, one section was uncoated, one section was coated with the Uvacure 1500 formulation.

The EB cured size coats were applied in sections to compare the sanding ability of the coated abrasive : one section was coated with the Uvacure 1500 + sulfonium salt formulation, one section was uncoated and one section was coated with the Uvacure 1500 + iodonium salt formulation.

To verify that Bisphenol A type epoxies could be used for size coats as well, one coated abrasive article was size coated with the formulation containing GY 6010, Uvacure 1500 and iodinium salt initiator.

The resulting coated abrasive was tested on wood, polyethylene, aluminium and steel.

TABLE 1 Size Coat Designation Size Coat Composition () % by weight SC-1 GY6010 (64. 1)/Uvacure 1500 (32. 1)/Cyracure UVI 6974 (Triaryl sulfonium salt) (3. 8) SC-2 Uvacure 1500 (96. 2)/Cyracure UVI 6974 (Triaryl sulfonium salt) (3. 8) SC-3 Uvacure 1500 (98)/OPPI (Diaryl iodonium salt) (2) SC-4 GY6010 (65. 3)/Uvacure 1500 (31. 1)/OPPI (Diaryl iodonium salt) (1. 9)/DVE-3 (1. 6)

TABLE 2 EB Cured Coated Abrasives with UV Cured Size Coats UV cure was with two fusion H bulbs (118 watt/cm) at indicated beld speed. Dose with two H bulbs at 30 fpm is approximately 1000-1200 mJ/cm2.

Coated Abrasive # Passes for EB 90 min Thermal Cure Dose of Cure Dose of Designation Cure of Make post-cure of Section Size Section Coated Coat @ 175 keV, make coat @ Coated with with SC-2 8 mrad 93° C SC-1 UV-1 one yes 30 fpm, 2H bulb 30 fpm, 2H bulb UV-2 one yes 30 fpm, 2H bulb 30 fpm, 2H bulb UV-3 one yes 30 fpm, 2H bulb 30 fpm, 2H bulb UV-4 one yes 30 fpm, 2H bulb 30 fpm, 2H bulb UV-5 one no 30 fpm, 2H bulb 60 fpm, 2H bulb UV-6 one yes 30 fpm, 2H bulb 60 fpm, 2H bulb UV-7 one yes 30 fpm, 2H bulb 60 fpm, 2H bulb UV-8 one yes 30 fpm, 2H bulb 60 fpm, 2H bulb UV-9 two no sc-1 coat 2 passes not tested at 30 fpm 1H

TABLE 3 Make Coat Compositions for EB Cured Coated Abrasives with UV Cured Size Coats Coated Abrasive Make Coat Compositions () % by weight Make coat Composition Designation Designation UV-1 GY6010 (96)/OPPI (1. 9)/DVE-3 (1. 9) MC-1 UV-2 GY6010 (79. 9)/Poly BD605 (16. 3)/MC-2 OPPI (1. 9)/DVE-3 (1. 9) UV-3 GY6010 (87. 4)/TCD Alcohol (8. 7)/ MC-3 OPPIfl. 9)/DVE-3 fl. 9) UV-4 GY6010 (80. 1) (/Atochem 99-042 (16)/MC-4 OPPI (1. 9)/DVE-3 (1. 9) UV-5 GY6010 (79. 9)/Poly BD605 (16. 3)/ MC-5 OPPI(1.9)/DVE-3(1. 9) UV-6 GY6010 (74)/Syloid 74x4500 (14. 8)/ MC-6 CYC M100 (7. 4)/OPPI (1. 9)/ DVE-3 (1. 9) UV-7GY285 (96)/OPPK1. 9)/DVE-3 (1. 9) MC-7 UV-8 DEN 431 (96)/OPPI(1. 9)/DVE-3 (1. 9) MC-8 UV-9 GY285 (74)/Syloid 74x4500 (14. 8)/ MC-9 CYC M100 (7. 4)/OPPI (1. 9)/DVE-3 (1. 9) TABLE 4<BR> Results of Sanding Tests for EB Cured Coated Abrasives with UV Cured Size Coats Coated Abrasive Non-size coated SC-1 size coated section SC-2 size coated sectio@ Designation section Wood Wood Plastic Aluminium UV-1 A S S S S UV-2 A size coat too thick S+ S S UV-3 A size coat too thick S S S UV-4 A size coat too thick S S S UV-5 B size coat too thick S S S UV-6 B S S S S UV-7 A S S S S UV-8 B+ S S+ S S UV-9 A not done S+ S S The non-size coated sections of the samples did not sand the wood well (abrasive grit was removed faster than woo@<BR> A) Grit removed, no or minimal work removed (A- is worse than A).<BR> <P>B) Some grit removed but some work removed also (B+ is better than B).<BR> <P>S) Sands work without loss of grit (S+ is better than S).

EB Cured Size Coats (TABLE 5 below) : All EB cured size coats were cured by one pass at 175 keV, 8 mrad.

All EB cured size coated samples were tack-free 15 seconds or less after exposure.

Abrasive Behavior : All abrasives (but one) with EB cured size coat were divided into three parts. One part was size coated with SC-2, one part was size coated with SC-3, and the remaining 1/3 of the abrasive was not size coated. Abrasive sample EB-7 had two parts of the surface coated with SC-4 and the remaining part of the abrasive was not size coated.

TABLE 5<BR> Make Coat Composition of EB Cured Coated Abrasives with EB Cured Size Coats Coated Abrasive EB dose of Make Make coat Composition Make Coat Composition Designation Coat at 175 keV Designation (1 % by weight EB-1 8 mrad MC-1 GY6010(96)/OPPI (1.9)/ DVE-3(1.9) Unt@ EB-2 8 mrad MC-7 GY285(96)/OPPI(1.9)/ DVE-3(1.9) Unt@ EB-3 8 mrad MC-3 GY6010(87.4)/TCD Alcohol DM(8.7)/ Unt@ OPPI(1.9)/DVE-3(1.9) EB-4 8 mrad MC-6 GY6010(74)/Syloid 74x4500 (14.8)/ Unt@ CYCM100(7.4)/OPPI (1.9)/DVE-3(1.9) EB-5 8 mrad MC-4 GY6010(80.1)/Atochem 99-042(16)/ Unt@ OPPI(1.9)/DVE-3(1.9) EB-6 8 mrad MC-1 GY6010(96)/OPPI(1.9)/ DVE-3 (1.9) Unt@ EB-7 8 mrad MC-3 GY6010(87.4)/TCD Alcohol (8.7)/ Unt@ OPPI(1.9)/DVE-3(1.9) EB-8 2 passes at MC-2 GY6010(79.9)/Poly BD605 (16.3)/ DuP@ 8 mrad OPPI(1.9)/DVE-3 (1.9) surf@ EB-9 2 passes at MC-1 GY6010(96)/OPPI(1.9)/DVE-3(1.9) DuP@ 8 mrad surf@

TABLE 5 - Following Coated Abrasive EB dose of Make Make coat Composition Make Coat Composition Designation Coat at 175 keV Designation (1 % by weight EB-10 2 passes at MC-6 GY6010(74)/Sylold 74x4500 (14.8)/ DuP@ 8 mrad CYC M100(7.4)/OPPI (1.9)/DVE-3(1.9) surf@ EB-11 8 mrad MC-10 GY6010(96)/OPPI(1.9)/DVE-3(1.9) DuP@ surf@ EB-12 8 mrad MC-10 GY6010(96)/OPPI(1.9)/DVE-3(1.9) DuP@ surf@ EB-13 8 mrad MC-7 GY285(96)/OPPI(1.9)/DVE-3(1.9) DuP@ surf@ EB-14 8 mrad MC-7 GY285(96)/OPPI(1.9)/DVE-3(1.9) DuP@ surf@ EB-15 8 mrad MC-8 DEN431 (96)/OPPI(1.9)/DVE-3(1.9) DuP@ surf@ EB-16 8 mrad MC-6 GY6010(74)/Sylold 74x4500 (14.8)/ DuP@ CYC M100(7.4)/OPPI (1.9)/DVE-3(1.9) surf@

TABLE 6<BR> Results of Sanding Tests for EB Cured Coated Abrasives with EB Cured Size Coats Coated Abrasive SC-2 size coated section SC-3 size coated section Designation Wood Plastic Aluminium Steel Wood Plastic Aluminium Steel EB-1 S S S B S S S B EB-2 S S S B S S S B EB-3 S S S B S S S B EB-4 S S S B S S S B EB-5 S S S B S S S B EB-6 S S S B S S S B EB-8 S S S B S S S B EB-9 S S S B S S S B EB-10 S S S B S S S B EB-11 S S S B S S S B EB-12 S S S B+ S S S B+ EB-13 S S S B+ S S S B+ EB-14 S S S B S S B B EB-15 S S S B+ S S S B EB-16 B+ S S B B+ S B B B) Some grit removed but some work removed also. (B+ is better than B).<BR> <P>S) Sands work without loss of grit.<BR> <P>EB-7: Coated with SC-4, sanded wood, plastic and aluminium(s). Sanded steel with loss of grit (B). Un-size coated<BR> loss of grit (B).

TABLE 7 Wood Sanding Test Results for non-Size Coated Abrasive Coated Abrasive Coated Abrasive Coated Abrasive Designation Result Designation Result Designation Result <BR> EB-1 A EB-6 B EB-12 A<BR> EB-2 B EB-8 A EB-13 A<BR> EB-3 A EB-9 B EB-14 A- EB-4 B EB-10 B EB-15 B EB-5 A EB-11 B+ EB-16 A A) Grit removed, no or minimal work removed (A-is worse than A).

B) Some grit removed but some work removed also. (B+ is better than B).

All EB cured size coated samples were tack-free 15 seconds or less after exposure.

The non-size coated samples did not sand the wood well (abrasive grit was removed faster than wood in most cases).

Additionally it was demonstrated that calcium carbonate can be used as filler, as formulation EB-17, which contained 18. 6% calcium carbonate, 78% GY 6010 and 1. 9% OPPI, cured tack free when irradiated by 175 keV, 8 mrad.