Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COAXIAL CABLE CONNECTOR WITH INTEGRAL RFI PROTECTION
Document Type and Number:
WIPO Patent Application WO/2014/062499
Kind Code:
A1
Abstract:
A coaxial cable connector for coupling an end of a coaxial cable to a terminal is disclosed. The connector has a coupler adapted to couple the connector to a terminal, a body assembled with the coupler and a post assembled with the coupler and the body. The post is adapted to receive an end of a coaxial cable. The post has an integral contacting portion that is monolithic with at least a portion of the post. When assembled the coupler and post provide at least one circuitous path resulting in RF shielding such that RF signals external to the coaxial cable connector are attenuated, such that the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the terminal.

More Like This:
Inventors:
BURRIS DONALD ANDREW (US)
LUTZ WILLIAM BERNARD (US)
Application Number:
PCT/US2013/064512
Publication Date:
April 24, 2014
Filing Date:
October 11, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CORNING GILBERT INC (US)
BURRIS DONALD ANDREW (US)
LUTZ WILLIAM BERNARD (US)
International Classes:
H01R9/05; H01R13/622; H01R13/6581; H01R24/40
Foreign References:
US20100255719A12010-10-07
US3781762A1973-12-25
US20100279548A12010-11-04
US5761053A1998-06-02
Attorney, Agent or Firm:
VYNALEK, John, H. (Intellectual Property DepartmentSP-TI-03-, Corning NY, US)
Download PDF:
Claims:
What is claimed is:

1. A coaxial cable connector for coupling an end of a coaxial cable to a terminal, the coaxial cable comprising an inner conductor, a dielectric surrounding the inner conductor, an outer conductor surrounding the dielectric, and a jacket surrounding the outer conductor, the connector comprising:

a coupler adapted to couple the connector to the terminal;

a body assembled with the coupler, and

a post assembled with the coupler and the body, wherein the post is adapted to receive an end of a coaxial cable, and

wherein the coupler and post establish a first circuitous path and provide RF shielding such that RF signals external to the coaxial cable connector are attenuated such that the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the terminal.

2. The coaxial cable connector of claim 1, wherein RF signals are attenuated by at least about 50dB in a range up to about 1000MHz.

3. The coaxial cable connector of any of claims 1 and 2, wherein a transfer impedance measured from the outer conductor of the coaxial cable to the terminal through the connector averages less than about 0.24 ohms.

4. The coaxial cable connector of any of claims 1-3, wherein the RF signals external to the connector comprise RF signals that ingress into the connector.

5. The coaxial cable connector of any of claims 1-4, wherein the RF signals external to the connector comprise RF signals that egress out from the connector.

6. The coaxial cable connector of any of claims 1-5, wherein the coupler comprises,

a step, and a lip,

and wherein the post comprises,

a flange,

a contacting portion

and a shoulder.

7. The coaxial cable connector of claim 6, wherein the first circuitous path is established by at least one of the step, the lip, the flange, the contacting portion and the shoulder, and wherein the first circuitous path attenuates of RF signals external to the connector.

8. The coaxial cable connector of any of claims 6 and 7, wherein the contacting portion is integral and monolithic with at least a portion of the post.

9. The coaxial cable connector of any of claims 1-8, wherein the coupler comprises a threaded portion adapted to connect with a threaded portion of the equipment connection port, and wherein at least one thread on the coupler has a pitch angle different than a pitch angle of at least one thread of the equipment connection port.

10. The coaxial cable connector of claim 9, wherein the pitch angle of the thread of the coupler is about 2 degrees different than the pitch angle of the thread of the equipment connection port.

11. The coaxial cable connector of any of claims 9 and 10, wherein the pitch angle of the thread of the coupler is about 62 degrees, and the pitch angle of the thread of the equipment connection port is about 60 degrees.

12. The coaxial cable connector of any of claims 9-11, wherein the threaded portion of the coupler is configured to , establish a second circuitous path with the threaded portion of the equipment connection port, and wherein the second circuitous path attenuates RF signals external to the connector.

13. A coaxial cable connector for coupling an end of a coaxial cable to an equipment connection port, the coaxial cable comprising an inner conductor, a dielectric surrounding the inner conductor, an outer conductor surrounding the dielectric, and a jacket surrounding the outer conductor, the connector comprising:

a coupler adapted to couple the connector to the equipment connection port;

a body assembled with the coupler, and

a post assembled with the coupler and the body, wherein the post is adapted to receive an end of a coaxial cable, and wherein the post comprises an integral contacting portion, and wherein the contacting portion is monolithic with at least a portion of the post, and

wherein when assembled the coupler and post are configured to provide at least one circuitous path resulting in RF shielding such that RF signals external to the coaxial cable connector are attenuated, such that the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the terminal.

14. The coaxial cable connector of claim 13, wherein RF signals external to the coaxial connector comprise at least one of RF signals that ingress into the connector and RF signals that egress out from the connector.

15. The coaxial cable connector of any of claims 13 and 14, wherein RF signals are attenuated by at least about 50dB in a range up to about 1000MHz.

16. The coaxial cable connector of any of claims 13-15, wherein a transfer impedance averages about 0.24 ohms.

17. The coaxial cable connector of any of claims 13-16, wherein the at least one circuitous path comprises a first circuitous path and a second circuitous path.

18. The coaxial cable connector of any of claims 17, wherein the coupler comprises a lip and a step, and the post comprises a flange and a shoulder, and wherein the first circuitous path is established by at least one of the step, the lip, the flange, the contacting portion and the shoulder.

19. The coaxial cable connector of any of claims 17 and 18, wherein the coupler comprises a threaded portion adapted to connect with a threaded portion of an equipment connection port, and wherein the threaded portion of the coupler is configured to establish a second circuitous path with the threaded portion of the equipment connection port.

20. The coaxial cable connector of claim 19, wherein at least one thread on the coupler has a pitch angle different than a pitch angle of at least one thread of the equipment connection port.

21. A coaxial cable connector for coupling an end of a coaxial cable to an equipment connection port, the coaxial cable comprising an inner conductor, a dielectric surrounding the inner conductor, an outer conductor surrounding the dielectric, and a jacket surrounding the outer conductor, the connector comprising:

a coupler adapted to couple the connector to the equipment connection port, wherein the coupler has a step, and wherein the coupler comprises a threaded portion adapted to connect with a threaded portion of the equipment connection port, and wherein at least one thread on the coupler has a pitch angle different than a pitch angle of at least one thread of the equipment connection port;

a body assembled with the coupler;

a post assembled with the coupler and the body, wherein the post comprises a flange, a contacting portion and a shoulder, and wherein the post is adapted to receive an end of a coaxial cable, and wherein the contacting portion is integral and monolithic with at least a portion of the post, and

wherein the step, the flange, the contacting portion and the shoulder are configured to establish a first circuitous path, and wherein the threaded portion of the coupler is configured to establish a second circuitous path with the threaded portion of the equipment connection port, and wherein the first circuitous path and the second circuitous path provide for RF shielding of the assembled coaxial cable connector such that RF signals external to the coaxial cable connector are attenuated by at least about 50dB in a range up to about 1000MHz, and wherein a transfer impedance averages about 0.24 ohms, and wherein the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the equipment connection port.

22. The coaxial cable connector of claim 21, wherein the pitch angle of the thread of the coupler is about 2 degrees different than the pitch angle of the thread of the equipment connection port.

23. The coaxial cable connector of claim 22, wherein the pitch angle of the thread of the coupler is about 62 degrees, and the pitch angle of the thread of the equipment connection port is about 60 degrees.

Description:
COAXIAL CABLE CONNECTOR WITH INTEGRAL RFI PROTECTION

PRIORITY CLAIM

[0001] This application claims the benefit of priority under 35 U.S.C. § 120 of U.S. Application Serial No. 13/653,095 filed on October 16, 2012, the content of which is relied upon and incorporated herein by reference in its entirety.

RELATED APPLICATIONS

[0002] This application is related to U.S. Application No. 13/198,765, filed August 5, 2011, entitled "Coaxial Cable Connector with Radio Frequency Interference and Grounding Shield", which is incorporated herein by reference in its entirety.

[0003] This application is related to U.S. Application No. 13/652,969, filed October 16, 2012, entitled "Coaxial Cable Connector with Integral Continuity Contacting Portion", which is incorporated herein by reference in its entirety.

BACKGROUND

Field of the Disclosure

[0004] The technology of the disclosure relates to coaxial cable connectors and, in particular, to a coaxial cable connector that provides integral radio frequency interference (RFI) shielding.

Technical Background

[0005] Coaxial cable connectors, such as type F connectors, are used to attach coaxial cable to another object or appliance, e.g., a television set, DVD player, modem or other electronic communication device having a terminal adapted to engage the connector. The terminal of the appliance includes an inner conductor and a surrounding outer conductor.

[0006] Coaxial cable includes a center conductor for transmitting a signal. The center conductor is surrounded by a dielectric material, and the dielectric material is surrounded by an outer conductor; this outer conductor may be in the form of a conductive foil and/or braided sheath. The outer conductor is typically maintained at ground potential to shield the signal transmitted by the center conductor from stray noise, and to maintain continuous desired impedance over the signal path. The outer conductor is usually surrounded by a plastic cable jacket that electrically insulates, and mechanically protects, the outer conductor. Prior to installing a coaxial connector onto an end of the coaxial cable, the end of the coaxial cable is typically prepared by stripping off the end portion of the jacket to expose the end portion of the outer conductor. Similarly, it is common to strip off a portion of the dielectric to expose the end portion of the center conductor.

[0007] Coaxial cable connectors of the type known in the trade as "F connectors" often include a tubular post designed to slide over the dielectric material, and under the outer conductor of the coaxial cable, at the prepared end of the coaxial cable. If the outer conductor of the cable includes a braided sheath, then the exposed braided sheath is usually folded back over the cable jacket. The cable jacket and folded-back outer conductor extend generally around the outside of the tubular post and are typically received in an outer body of the connector; this outer body of the connector is often fixedly secured to the tubular post. A coupler is typically rotatably secured around the tubular post and includes an internally- threaded region for engaging external threads formed on the outer conductor of the appliance terminal.

[0008] When connecting the end of a coaxial cable to a terminal of a television set, equipment box, modem, computer or other appliance, it is important to achieve a reliable electrical connection between the outer conductor of the coaxial cable and the outer conductor of the appliance terminal. Typically, this goal is usually achieved by ensuring that the coupler of the connector is fully tightened over the connection port of the appliance. When fully tightened, the head of the tubular post of the connector directly engages the edge of the outer conductor of the appliance port, thereby making a direct electrical ground connection between the outer conductor of the appliance port and the tubular post; in turn, the tubular post is engaged with the outer conductor of the coaxial cable.

[0009] With the increased use of self-install kits provided to home owners by some CATV system operators has come a rise in customer complaints due to poor picture quality in video systems and/or poor data performance in computer/internet systems. Additionally, CATV system operators have found upstream data problems induced by entrance of unwanted radio frequency ("RF") signals into their systems. Complaints of this nature result in CATV system operators having to send a technician to address the issue. Often times it is reported by the technician that the cause of the problem is due to a loose F connector fitting, sometimes as a result of inadequate installation of the self-install kit by the homeowner. An improperly installed or loose connector may result in poor signal transfer because there are discontinuities along the electrical path between the devices, resulting in ingress of undesired RF signals where RF energy from an external source or sources may enter the connector/cable arrangement causing a signal to noise ratio problem resulting in an unacceptable picture or data performance. In particular, RF signals may enter CATV systems from wireless devices, such as cell phones, computers and the like, especially in the 700 - 800 MHz transmitting range.

[0010] Many of the current state of the art F connectors rely on intimate contact between the F male connector interface and the F female connector interface. If, for some reason, the connector interfaces are allowed to pull apart from each other, such as in the case of a loose F male coupler, an interface "gap" may result. If not otherwise protected this gap can be a point of RF ingress as previously described.

[0011] A shield that completely surrounds or encloses a structure or device to protect it against RFI is typically referred to as a "Faraday cage." However, providing such RFI shielding within given structures is complicated when the structure or device comprises moving parts, such as seen in a coaxial connector. Accordingly, creating a connector to act in a manner similar to a Faraday cage to prevent ingress and egress of RF signals can be especially challenging due to the necessary relative movement between connector components required to couple the connector to a related port. Relative movement of components due to mechanical clearances between the components can result in an ingress or egress path for unwanted RF signals and, further, can disrupt the electrical and mechanical communication between components necessary to provide a reliable ground path. The effort to shield and electrically ground a coaxial connector is further complicated when the connector is required to perform when improperly installed, i.e. not tightened to a corresponding port.

[0012] U.S. Patent No. 5,761,053 to, teaches that "[electromagnetic interference (EMI) has been defined as undesired conducted or radiated electrical disturbances from an electrical or electronic apparatus, including transients, which can interfere with the operation of other electrical or electronic apparatus. Such disturbances can occur anywhere in the electromagnetic spectrum. Radio frequency interference (RFI) is often used interchangeably with electromagnetic interference, although it is more properly restricted to the radio frequency portion of the electromagnetic spectrum, usually defined as between 24 kilohertz (kHz) and 240 gigahertz (GHz). A shield is defined as a metallic or otherwise electrically conductive configuration inserted between a source of EMI/RFI and a desired area of protection. Such a shield may be provided to prevent electromagnetic energy from radiating from a source. Additionally, such a shield may prevent external electromagnetic energy from entering the shielded system. As a practical matter, such shields normally take the form of an electrically conductive housing which is electrically grounded. The energy of the EMI/RFI is thereby dissipated harmlessly to ground. Because EMI/RFI disrupts the operation of electronic components, such as integrated circuit (IC) chips, IC packages, hybrid components, and multi-chip modules, various methods have been used to contain EMI/RFI from electronic components. The most common method is to electrically ground a "can", that will cover the electronic components, to a substrate such as a printed wiring board. As is well known, a can is a shield that may be in the form of a conductive housing, a metallized cover, a small metal box, a perforated conductive case wherein spaces are arranged to minimize radiation over a given frequency band, or any other form of a conductive surface that surrounds electronic components. When the can is mounted on a substrate such that it completely surrounds and encloses the electronic components, it is often referred to as a Faraday Cage. Presently, there are two predominant methods to form a Faraday cage around electronic components for shielding use. A first method is to solder a can to a ground strip that surrounds electronic components on a printed wiring board (PWB). Although soldering a can provides excellent electrical properties, this method is often labor intensive. Also, a soldered can is difficult to remove if an electronic component needs to be re-worked. A second method is to mechanically secure a can, or other enclosure, with a suitable mechanical fastener, such as a plurality of screws or a clamp, for example. Typically, a conductive gasket material is usually attached to the bottom surface of a can to ensure good electrical contact with the ground strip on the PWB. Mechanically securing a can facilitates the re -work of electronic components, however, mechanical fasteners are bulky and occupy "valuable" space on a PWB."

[0013] Coaxial cable connectors have attempted to address the above problems by incorporating a continuity member into the coaxial cable connector as a separate component. In this regard, Figure 1 illustrates a connector 1000 having a coupler 2000, a separate post 3000, a separate continuity member 4000, and a body 5000. In connector 1000 the separate continuity member 4000 is captured between post 3000 and body 5000 and contacts at least a portion of coupler 2000. Coupler 2000 is preferably made of metal such as brass and plated with a conductive material such as nickel. Post 3000 is preferably made of metal such as brass and plated with a conductive material such as tin. Separate conductive member 4000 is preferably made of metal such as phosphor bronze and plated with a conductive material such as tin. Body 5000 is preferably made of metal such as brass and plated with a conductive material such as nickel.

SUMMARY OF THE DETAILED DESCRIPTION

[0014] Embodiments disclosed herein include a coaxial cable connector having an inner conductor, a dielectric surrounding the inner conductor, an outer conductor surrounding the dielectric, and a jacket surrounding the outer conductor and used for coupling an end of a coaxial cable to an equipment connection port. The coaxial cable comprises a coupler, a body and a post. The coupler is adapted to couple the connector to the equipment connection port. The coupler and post provide RF shielding provides RF shielding of the assembled coaxial cable connector such that RF signals external to the coaxial cable connector are attenuated by at least about 50dB in a range up to about 1000MHz. A transfer impedance measured averages about 0.24 ohms. The integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the equipment connection port.

[0015] The RF signals external to the connector may be understood to mean RF signals that ingress into the connector. The RF signals external to the connector may also be understood to mean RF signals that egress out from the connector. The coupler may have a step and the post may have a flange, a contacting portion and a shoulder. A first circuitous path may be established by the step, the flange, the contacting portion and the shoulder. The first circuitous path attenuates RF signals external to the connector.

[0016] The coupler may have a threaded portion adapted to connect with a threaded portion of the equipment connection port. At least one thread on the coupler may have a pitch angle different than a pitch angle of at least one thread of the equipment connection port. The pitch angle of the thread of the coupler may be about 2 degrees different than the pitch angle of the thread of the equipment connection port. The threaded portion of the coupler and the threaded portion of the equipment connection port may establish a second circuitous path, and the second circuitous path may attenuate RF signals external to the connector. [0017] In yet another aspect, embodiments disclosed herein include a coaxial cable connector having an inner conductor, a dielectric surrounding the inner conductor, an outer conductor surrounding the dielectric, and a jacket surrounding the outer conductor and used for coupling an end of a coaxial cable to an equipment connection port. The coaxial cable comprises a coupler, a body and a post. The post comprises an integral contacting portion. The contacting portion is monolithic with at least a portion of the post. When assembled the coupler and post provide at least one circuitous path resulting in RF shielding such that RF signals external to the coaxial cable connector are attenuated, such that the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the terminal.

[0018] RF signals external to the coaxial connector comprise at least one of RF signals that ingress into the connector and RF signals that egress out from the connector. RF signals are attenuated by at least about 50dB in a range up to about 1000MHz and a transfer impedance averages about 0.24 ohms. The at least one circuitous path comprises a first circuitous path and a second circuitous path. The coupler comprises a lip and a step, and the post comprises a flange and a shoulder. The first circuitous path is established by at least one of the step, the lip, the flange, the contacting portion and the shoulder. The terminal comprises an

equipment connection port, and the coupler comprises a threaded portion adapted to connect with a threaded portion of the equipment connection port, and the threaded portion of the coupler and the threaded portion of the equipment connection port establish a second

circuitous path. At least one thread on the coupler has a pitch angle different than a pitch angle of at least one thread of the equipment connection port.

[0019] In yet another aspect, embodiments disclosed herein include a coaxial cable connector having an inner conductor, a dielectric surrounding the inner conductor, an outer conductor surrounding the dielectric, and a jacket surrounding the outer conductor and used for coupling an end of a coaxial cable to an equipment connection port. The coaxial cable comprises a coupler, a body and a post. The coupler is adapted to couple the connector to the equipment connection port. The coupler has a step and a threaded portion adapted to connect with a threaded portion of the equipment connection port. At least one thread on the coupler has a pitch angle different than a pitch angle of at least one thread of the equipment connection port. The body is assembled with the coupler. The post is assembled with the coupler and the body and is adapted to receive an end of a coaxial cable. The post comprises a flange, a contacting portion and a shoulder.

[0020] A first circuitous path is established by the step, the flange, the contacting portion and the shoulder. A second circuitous path is established by the threaded portion of the coupler and the threaded portion of the equipment connection port. The first circuitous path and the second circuitous path provide for RF shielding of the assembled coaxial cable connector wherein RF signals external to the coaxial cable connector are attenuated by at least about 50dB in a range up to about 1000MHz, and the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the equipment connection port. A transfer impedance averages about 0.24 ohms. Additionally, the pitch angle of the thread of the coupler may be about 2 degrees different than the pitch angle of the thread of the equipment connection port. As a non-limiting example, the pitch angle of the thread of the coupler may be about 62 degrees, and the pitch angle of the thread of the equipment connection port is about 60 degrees.

[0021] Additional features and advantages are set out in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description, the claims, as well as the appended drawings.

[0022] It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] Figure 1 is a side cross sectional view of a coaxial cable connector;

[0024] Figure 2 is a side, cross sectional view of an exemplary embodiment of a coaxial connector comprising a post with a contacting portion providing an integral RFI and grounding shield; [0025] Figure 3A is side, cross-sectional view of the coaxial cable connector of Figure 2 in a state of partial assembly;

[0026] Figure 3B is a partial, cross-sectional detail view of the post of the coaxial cable connector of Figure 2 in a state of further assembly than as illustrated in Figure 3A, and illustrating the contacting portion of the post beginning to form to a contour of the coupler;

[0027] Figure 3C is a partial, cross-sectional detail view of the post of the coaxial cable connector of Figure 2 in a state of further assembly than as illustrated in Figures 3A and 3B, and illustrating the contacting portion of the post continuing to form to a contour of the coupler;

[0028] Figure 3D is a partial, cross-sectional detail view of the post of the coaxial cable connector of Figure 2 in a state of further assembly than as illustrated in Figures 3A, 3B and 3C and illustrating the contacting portion of the post forming to a contour of the coupler;

[0029] Figure 4A is a partial, cross-sectional view of the post of the coaxial cable connector of Figure 2 in which the post is partially inserted into a forming tool;

[0030] Figure 4B is a partial, cross-sectional detail view of the post of the coaxial cable connector of Figure 2 in which the post is inserted into the forming tool further than as illustrated in Figure 4A using a forming tool and illustrating the contacting portion of the post beginning to form to a contour of the forming tool;

[0031] Figure 4C is a partial cross-sectional detail view of the post of the coaxial cable connector of Figure 2 in in which the post is inserted into the forming tool further than as illustrated in Figures 4A and 4B illustrating the contacting portion of the post continuing to form to the contour of the forming tool;

[0032] Figure 4D is a partial cross-sectional detail view of the post of the coaxial cable connector of Figure 2 in which the post is fully inserted into the forming tool and illustrating the contacting portion of the post forming to the contour of the forming tool;

[0033] Figures 5A through 5H are front and side schematic views of exemplary embodiments of the contacting portions of the post;

[0034] Figure 6 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector comprising an integral pin, in the state of assembly with body having a contacting portion forming to a contour of the coupler; [0035] Figure 6A is a cross-sectional view of the coaxial cable connector illustrated in Figure 6 in a partial state of assembly illustrating the contacting portion of the body and adapted to form to a contour of the coupler;

[0036] Figure 7 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector comprising an integral pin, wherein the coupler rotates about a body instead of a post and the contacting portion is part of a component press fit into the body and forming to a contour of the coupler;

[0037] Figure 8 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector in a partial state of assembly and comprising an integral pin, wherein the coupler rotates about a body instead of a post and the contacting portion is part of a component press position in the body and forming to a contour of the coupler;

[0038] Figure 8A is a front and side detail view of the component having the contacting portion of the coaxial cable connector of Figure 8;

[0039] Figure 9 is a cross sectional view of an exemplary embodiment of a coaxial cable connector comprising a post-less configuration, and a body having a contacting portion forming to a contour of the coupler;

[0040] Figure 10 is a cross sectional view of an exemplary embodiment of a coaxial cable connector comprising a hex crimp body and a post having a contacting portion forming to a contour of the coupler;

[0041] Figure 11 is an isometric, schematic view of the post of the coaxial cable connector of Figure 2 wherein the post has a contacting portion in a formed state;

[0042] Figure 12 is an isometric, cross-sectional view of the post and the coupler of the coaxial cable connector of Figure 2 illustrating the contacting portion of the post forming to a contour of the coupler;

[0043] Figure 13 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector having a coupler with a contacting portion forming to a contour of the post;

[0044] Figure 14 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector having a post with a contacting portion forming to a contour of the coupler;

[0045] Figure 15 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector having a post with a contacting portion forming to a contour behind a lip in the coupler toward the rear of the coaxial cable connector; [0046] Figure 16 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector having a post with a contacting portion forming to a contour behind a lip in the coupler toward the rear of the coaxial cable connector;

[0047] Figure 17 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector having a body with a contacting portion forming to a contour behind a lip in the coupler toward the rear of the coaxial cable connector;

[0048] Figure 18 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector having a post with a contacting portion forming to a contour of a coupler with an undercut;

[0049] Figure 18A is a partial, cross-sectional view of an exemplary embodiment of a coaxial cable connector having a post with a contacting portion forming to a contour of a coupler with an undercut having a prepared coaxial cable inserted in the coaxial cable connector;

[0050] Figure 19 is a partial, cross-sectional view of an exemplary embodiment of a coaxial cable connector having a moveable post with a contacting portion wherein the post is in a forward position;

[0051] Figure 20 is a partial cross sectional view of the coaxial cable connector of Figure 19 with the movable post in a rearward position and the contacting portion of the movable post forming to a contour of the coupler;

[0052] Figure 21 is a side, cross sectional view of an exemplary embodiment of an assembled coaxial cable connector providing for circuitous electrical paths at the coupler to form an integral Faraday cage for RF protection;

[0053] Figure 22 is a partial, cross-sectional detail view of the assembled coaxial cable connector of Figure 21 illustrating a circuitous path between the coupler, post and body another circuitous path between the coupler and the equipment connection port;

[0054] Figure 23 is a partial, cross sectional detail view of the coupler, the post and the body of Figure 22.

[0055] Figure 24 is a partial, cross-sectional detail view of the threads of an equipment connection port and the threads of the coupler of the assembled coaxial cable connector of Figure 22; and

[0056] Figure 25 is a graphic representation of the RF shielding of the coaxial cable connector in Figure 21 in which the RF shielding is measured in dB over a range of frequency in MHz. DETAILED DESCRIPTION

[0057] Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein. Rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.

[0058] Coaxial cable connectors are used to couple a prepared end of a coaxial cable to a threaded female equipment connection port of an appliance. The coaxial cable connector may have a post, a moveable post or be postless. In each case though, in addition to providing an electrical and mechanical connection between the conductor of the coaxial connector and the conductor of the female equipment connection port, the coaxial cable connector provides a ground path from an outer conductor of the coaxial cable to the equipment connection port. The outer conductor may be, as examples, a conductive foil or a braided sheath. Maintaining a stable ground path protects against the ingress of undesired radio frequency ("RF") signals which may degrade performance of the appliance. This is especially applicable when the coaxial cable connector is not fully tightened to the equipment connection port, either due to not being tightened upon initial installation or due to becoming loose after installation.

[0059] Embodiments disclosed herein include a coaxial cable connector having an inner conductor, a dielectric surrounding the inner conductor, an outer conductor surrounding the dielectric, and a jacket surrounding the outer conductor and used for coupling an end of a coaxial cable to an equipment connection port. The coaxial cable comprises a coupler, a body and a post. The coupler is adapted to couple the connector to the equipment connection port. The coupler has a step and a threaded portion adapted to connect with a threaded portion of the equipment connection port. At least one thread on the coupler has a pitch angle different than a pitch angle of at least one thread of the equipment connection port. The body is assembled with the coupler. The post is assembled with the coupler and the body and is adapted to receive an end of a coaxial cable. The post comprises a flange, a contacting portion and a shoulder. The contacting portion is integral and monolithic with at least a portion of the post. [0060] A first circuitous path is established by the step, the flange, the contacting portion and the shoulder. A second circuitous path is established by the threaded portion of the coupler and the threaded portion of the equipment connection port. The first circuitous path and the second circuitous path provide for RF shielding of the assembled coaxial cable connector wherein RF signals external to the coaxial cable connector are attenuated by at least about 50dB in a range up to about 1000MHz, and the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the equipment connection port. A transfer impedance averages about 0.24 ohms. Additionally, the pitch angle of the thread of the coupler may be about 2 degrees different than the pitch angle of the thread of the equipment connection port. As a non-limiting example, the pitch angle of the thread of the coupler may be about 62 degrees, and the pitch angle of the thread of the equipment connection port is about 60 degrees.

[0061] For purposes of this description, the term "forward" will be used to refer to a direction toward the portion of the coaxial cable connector that attaches to a terminal, such as an appliance equipment port. The term "rearward" will be used to refer to a direction that is toward the portion of the coaxial cable connector that receives the coaxial cable. The term "terminal" will be used to refer to any type of connection medium to which the coaxial cable connector may be coupled, as examples, an appliance equipment port, any other type of connection port, or an intermediate termination device. Additionally, for purposes herein, electrical continuity shall mean DC contact resistance from the outer conductor of the coaxial cable to the equipment port of less than about 3000 milliohms. Accordingly, a DC contact resistance of more than about 3000 milliohms shall be considered as indicating electrical discontinuity or an open in the path between the outer conductor of the coaxial cable and the equipment port.

[0062] Referring now to Figure 2, there is illustrated an exemplary embodiment of a coaxial cable connector 100. The coaxial cable connector 100 has a front end 105, a back end 195, a coupler 200, a post 300, a body 500, a shell 600 and a gripping member 700. The coupler

200 at least partially comprises a front end 205, a back end 295, a central passage 210, a lip

215 with a forward facing surface 216 and a rearward facing surface 217, a through-bore 220 formed by the lip 215, and a bore 230. Coupler 200 is preferably made of metal such as brass and plated with a conductive material such as nickel. Alternately or additionally, selected surfaces of the coupler 200 may be coated with conductive or non-conductive coatings or lubricants, or a combination thereof. Post 300, may be tubular, at least partially comprises a front end 305, a back end 395, and a contacting portion 310. In Figure 2,

contacting portion 310 is shown as a protrusion integrally formed and monolithic with post

300. Contacting portion 310 may, but does not have to be, radially projecting. Post 300 may also comprise an enlarged shoulder 340, a collar portion 320, a through-bore 325, a rearward facing annular surface 330, and a barbed portion 335 proximate the back end 395. The post 300 is preferably made of metal such as brass and plated with a conductive material such as tin. Additionally, the material, in an exemplary embodiment, may have a suitable spring characteristic permitting contacting portion 310 to be flexible, as described below.

Alternately or additionally, selected surfaces of post 300 may be coated with conductive or non- conductive coatings or lubricants or a combination thereof. Contacting portion 310, as noted above, is monolithic with post 300 and provides for electrical continuity through the connector 100 to an equipment port (not shown in Figure 2) to which connector 100 may be coupled. In this manner, post 300 provides for a stable ground path through the connector

100, and, thereby, electromagnetic shielding to protect against the ingress and egress of RF signals. Body 500 at least partially comprises a front end 505, a back end 595, and a central passage 525. Body 500 is preferably made of metal such as brass and plated with a

conductive material such as nickel. Shell 600 at least partially comprises a front end 605, a back end 695, and a central passage 625. Shell 600 is preferably made of metal such as brass and plated with a conductive material such as nickel. Gripping member 700 at least partially comprises a front end 705, a back end 795, and a central passage 725. Gripping member 700 is preferably made of a suitable polymer material such as acetal or nylon. The resin can be selected from thermoplastics characterized by good fatigue life, low moisture sensitivity, high resistance to solvents and chemicals, and good electrical properties.

[0063] In Figure 2, coaxial cable connector 100 is shown in an unattached, uncompressed state, without a coaxial cable inserted therein. Coaxial cable connector 100 couples a prepared end of a coaxial cable to a terminal, such as a threaded female equipment appliance connection port (not shown in Figure 2). This will be discussed in more detail with reference to Figure 18A. Shell 600 slideably attaches to body 500 at back end 595 of body 500. Coupler 200 attaches to coaxial cable connector 100 at back end 295 of coupler 200. Coupler 200 may rotatably attach to front end 305 of post 300 while engaging body 500 by means of a press-fit. Front end 305 of post 300 positions in central passage 210 of coupler 200 and has a back end 395 which is adapted to extend into a coaxial cable. Proximate back end 395, post 300 has a barbed portion 335 extending radially outwardly from post 300. An enlarged shoulder 340 at front end 305 extends inside the coupler 200. Enlarged shoulder 340 comprises a collar portion 320 and a rearward facing annular surface 330. Collar portion 320 allows coupler 200 to rotate by means of a clearance fit with through-bore 220 of coupler 200. Rearward facing annular surface 330 limits forward axial movement of the coupler 200 by engaging forward facing surface 216 of lip 215. Coaxial cable connector 100 may also include a sealing ring 800 seated within coupler 200 to form a seal between coupler 200 and body 500.

[0064] Contacting portion 310 may be monolithic with or a unitized portion of post 300. As such, contacting portion 310 and post 300 or a portion of post 300 may be constructed from a single piece of material. The contacting portion 310 may contact coupler 200 at a position that is forward of forward facing surface 216 of lip 215. In this way, contacting portion 310 of post 300 provides an electrically conductive path between post 300, coupler 200 and body 500. This enables an electrically conductive path from coaxial cable through coaxial cable connector 100 to terminal providing an electrical ground and a shield against RF ingress and egress. Contacting portion 310 is formable such that as the coaxial cable connector 100 is assembled, contacting portion 310 may form to a contour of coupler 200. In other words, coupler 200 forms or shapes contacting portion 310 of post 300. The forming and shaping of the contacting portion 310 may have certain elastic/plastic properties based on the material of contacting portion 310. Contacting portion 310 deforms , upon assembly of the components of coaxial cable connector 100, or, alternatively contacting portion 310 of post 300 may be pre-formed, or partially preformed to electrically contactedly fit with coupler 200 as explained in greater detail with reference to Figure 4A through Figure 4D, below. In this manner, post 300 is secured within coaxial cable connector 100, and contacting portion 310 establishes an electrically conductive path between body 500 and coupler 200. Further, the electrically conductive path remains established regardless of the tightness of the coaxial cable connector 100 on the terminal due to the elastic/plastic properties of contacting portion 310. This is due to contacting portion 310 maintaining mechanical and electrical contact between components, in this case, post 300 and coupler 200, notwithstanding the size of any interstice between the components of the coaxial cable connector 100. In other words, contacting portion 310 is integral to and maintains the electrically conductive path established between post 300 and coupler 200 even when the coaxial cable connector 100 is loosened and/or partially disconnected from the terminal, provided there is some contact of coupler 200 with equipment port. Although coaxial connector 100 in Figure 2 is an axial-compression type coaxial connector having a post 300, contacting portion 310 may be integral to and monolithic with any type of coaxial cable connector and any other component of a coaxial cable connector, examples of which will be discussed herein with reference to the embodiments. However, in all such exemplary embodiments, contacting portion 310 provides for electrical continuity from an outer conductor of a coaxial cable received by coaxial cable connector 100 through coaxial cable connector 100 to a terminal, without the need for a separate component. Additionally, the contacting portion 310 provides for electrical continuity regardless of how tight or loose the coupler is to the terminal. In other words, contacting portion 310 provides for electrical continuity from the outer conductor of the coaxial cable to the terminal regardless and/or irrespective of the tightness or adequacy of the coupling of the coaxial cable connector 100 to the terminal. It is only necessary that the coupler 200 be in contact with the terminal.

[0065] Referring now to Figures 3A, 3B 3C and 3D, post 300 is illustrated in different states of assembly with coupler 200 and body 500. In Figure 3A, post 300 is illustrated partially assembled with coupler 200 and body 500 with contacting portion 310 of post 300, shown as a protrusion, outside and forward of coupler 200. Contacting portion 310 may, but does not have to be, radially projecting. In Figure 3B, contacting portion 310 has begun to advance into coupler 200 and contacting portion 310 is beginning to form to a contour of coupler 200. As illustrated in Figure 3B, contacting portion 310 is forming to an arcuate or, at least, a partially arcuate shape. As post 300 is further advanced into coupler 200 as shown in Figure 3C, contacting portion 310 continues to form to the contour of coupler 200. When assembled as shown in Figure 3D, contacting portion 310 is forming to the contour of coupler 200 and is contactedly engaged with bore 230 accommodating tolerance variations with bore 230. In Figure 3D coupler 200 has a face portion 202 that tapers. The face portion 202 guides the contacting portion 310 to its formed state during assembly in a manner that does not compromise its structural integrity, and, thereby, its elastic/plastic property. Face portion 202 may be or have other structural features, as a non-limiting example, a curved edge, to guide the contacting portion 310. The flexible or resilient nature of the contacting portion 310 in the formed state as described above permits coupler 200 to be easily rotated and yet maintain a reliable electrically conductive path. It should be understood, that contacting portion 310 is formable and, as such, may exist in an unformed and a formed state based on the elastic/plastic property of the material of contacting portion 310. As the coaxial cable connector 100 assembles contacting portion 310 transitions from an unformed state to a formed state.

[0066] Referring now to Figures 4A, 4B, 4C and 4D the post 300 is illustrated in different states of insertion into a forming tool 900. In Figure 4A, post 300 is illustrated partially inserted in forming tool 900 with contacting portion 310 of post 300 shown as a protrusion. Protrusion may, but does not have to be radially projecting. In Figure 4B, contacting portion 310 has begun to advance into forming tool 900. As contacting portion 310 is advanced into forming tool 900, contact portion 310 begins flexibly forming to a contour of the interior of forming tool 900. As illustrated in Figure 4B, contacting portion 310 is forming to an arcuate or, at least, a partially arcuate shape. As post 300 is further advanced into forming tool 900 as shown in Figure 4C, contacting portion 310 continues forming to the contour of the interior of forming tool 900. At a final stage of insertion as shown in Figure 4C contacting portion 310 is fully formed to the contour of forming tool 900, and has experienced deformation in the forming process but retains spring or resilient characteristics based on the elastic/plastic property of the material of contacting portion 310. Upon completion or partial completion of the forming of contacting portion 310, post 300 is removed from forming tool 900 and may be subsequently installed in the connector 100 or other types of coaxial cable connectors. This manner of forming or shaping contacting portion 310 to the contour of forming tool 900 may be useful to aid in handling of post 300 in subsequent manufacturing processes, such as plating for example. Additionally, use of this method makes it possible to achieve various configurations of contacting portion 310 formation as illustrated in Figures 5A through 5H.Figure 5A is a side schematic view of an exemplary embodiment of post 300 where contacting portion 310 is a radially projecting protrusion that completely circumscribes post 300. In this view, contacting portion 310 is formable but has not yet been formed to reflect a contour of coaxial cable connector or forming tool. Figure 5B is a front schematic view of the post 300 of Figure 5. Figure 5C is a side schematic view of an exemplary embodiment of post 300 where contacting portion 310 has a multi-cornered configuration. Contacting portion 310 may be a protrusion and may, but does not have to be, radially projecting. Although in Figure 5C contacting portion 310 is shown as tri- cornered, contacting portion 310 can have any number of corner configurations, as non-limiting examples, two, three, four, or more. In Figure 5C, contacting portion 310 may be formable but has not yet been formed to reflect a contour of coaxial cable connector or forming tool. Figure 5D is a front schematic view of post 300 of Figure 5C. Figure 5E is a side schematic view of post 300 where contacting portion 310 has a tri-cornered configuration. In this view, contacting portion 310 is shown as being formed to a shape in which contacting portion 310 cants or slants toward the front end 305 of post 300. Figure 5F is a front schematic view of post 300 of Figure 5E. Figure 5G is a side schematic view of an exemplary embodiment of post 300 where contacting portion 310 has a tri-cornered configuration. In this view contacting portion 310 is formed in a manner differing from Figure 5E in that indentations 311 in contacting portion 310 result in a segmented or reduced arcuate shape 313. Figure 5H is a front schematic view of post 300 of Figure 5G.

[0067] It will be apparent to those skilled in the art that contacting portion 310 as illustrated in Figures 2-5H may be integral to and monolithic with post 300. Additionally, contacting portion 310 may have or be any shape, including shapes that may be flush or aligned with other portions of post 300, or may have any number of configurations, as non- limiting examples, configurations ranging from completely circular to multi- cornered geometries, and still perform its function of providing electrical continuity. Further, contacting portion 310 may be formable and formed to any shape or in any direction.

[0068] Figure 6 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector 110 comprising an integral pin 805, wherein coupler 200 rotates about body 500 instead of post 300 and contacting portion 510 is a protrusion from, integral to and monolithic with body 500 instead of post 300. In this regard, contacting portion 510 may be a unitized portion of body 500. As such, contacting portion 510 may be constructed with body 500 or a portion of body 500 from a single piece of material. Coaxial cable connector 110 is configured to accept a coaxial cable. Contacting portion 510 may be formed to a contour of coupler 200 as coupler 200 is assembled with body 500 as illustrated in Figure 6A. Figure 6A is a cross- sectional view of an exemplary embodiment of a coaxial cable connector 110 in a state of partial assembly. Contacting portion 510 has not been formed to a contour of the coupler 200. Assembling the coupler 200 with the body 500 forms the contacting portion 510 in a rearward facing manner as opposed to a forward facing manner as is illustrated with the contacting portion 310. However, as with contacting portion 310, the material of contacting portion 510 has certain elastic/plastic property which, as contacting portion 510 is formed provides that contacting portion 510 will press against the contour of the coupler 200 and maintain mechanical and electrical contact with coupler 200. Contacting portion 510 provides for electrical continuity from the outer conductor of the coaxial cable to the terminal regardless of the tightness or adequacy of the coupling of the coaxial cable connector 100 to the terminal, and regardless of the tightness of the coaxial cable connector 100 on the terminal in the same way as previously described with respect to contacting portion 310. Additionally or alternatively, contacting portion 310 may be cantilevered or attached at only one end of a segment.

[0069] Figure 7 is a cross-sectional view of an exemplary embodiment of a coaxial cable connector 111 comprising an integral pin 805, and a conductive component 400. Coupler 200 rotates about body 500 instead of about a post, which is not present in coaxial cable connector 111. Contacting portion 410 is shown as a protrusion and may be integral to, monolithic ally with and radially projecting from a conductive component 400 which is press fit into body 500. Contacting portion 410 may be a unitized portion of conductive component 400. As such, the contacting portion 410 may be constructed from a single piece of material with conductive component 400 or a portion of conductive component 400. As with contacting portion 310, the material of contacting portion 410 has certain elastic/plastic property which, as contacting portion 410 is formed provides that contacting portion 410 will press against the contour of the coupler 200 and maintain mechanical and electrical contact with coupler 200 as conductive component 400 inserts in coupler 200 when assembling body 500 with coupler 200 as previously described.

[0070] Figure 8 is a cross-sectional view of another exemplary embodiment of the coaxial cable connector 111 comprising an integral pin 805, and a retaining ring 402. The coupler 200 rotates about body 500 instead of a post. Contacting portion 410 may be integral with and radially projecting from a retaining ring 402 which fits into a groove formed in body 500. The contacting portion 410 may be a unitized portion of the retaining ring 402. As such, the contacting portion 410 may be constructed from a single piece of material with the retaining ring 402 or a portion of the retaining ring 402. In this regard, Figure 8A illustrates front and side views of the retaining ring 402. In Figure 8A, contacting portion 410 is shown as three protrusions integral with and radially projecting from retaining ring 402. As discussed above, the material of contacting portion 410 has certain elastic/plastic property which, as contacting portion 410 is formed provides that contacting portion 410 will press against the contour of the coupler 200 and maintain mechanical and electrical contact with coupler 200 as retaining ring 402 inserts in coupler 200 when assembling body 500 with coupler 200 as previously described.

[0071] It will be apparent to those skilled in the art that the contacting portion 410 as illustrated in Figures 6-8A may be integral to the body 500 or may be attached to or be part of another component 400, 402. Additionally, the contacting portion 410 may have or be any shape, including shapes that may be flush or aligned with other portions of the body 500 and/or another component 400, 402, or may have any number of configurations, as non-limiting examples, configurations ranging from completely circular to multi-cornered geometries.

[0072] Figure 9 is a cross-sectional view of an embodiment of a coaxial cable connector 112 that is a compression type of connector with no post. In other words, having a post-less configuration. The coupler 200 rotates about body 500 instead of a post. The body 500 comprises contacting portion 510. The contacting portion 510 is integral with the body 500. As such, the contacting portion 510 may be constructed from a single piece of material with the body 500 or a portion of the body 500. The contacting portion 510 forms to a contour of the coupler 200 when the coupler 200 is assembled with the body 500.

[0073] Figure 10 is a cross-sectional view of an embodiment of a coaxial cable connector 113 that is a hex-crimp type connector. The coaxial cable connector 113 comprises a coupler 200, a post 300 with a contacting portion 310 and a body 500. The contacting portion 310 is integral to and monolithic with post 300. Contacting portion 310 may be unitized with post 300. As such, contacting portion 310 may be constructed from a single piece of material with post 300 or a portion of post 300. Contacting portion 310 forms to a contour of coupler 200 when coupler 200 is assembled with body 500 and post 300. The coaxial cable connector 113 attaches to a coaxial cable by means radially compressing body 500 with a tool or tools known in the industry.

[0074] Figure 11 is an isometric schematic view of post 300 of coaxial cable connector 100 in Figure 2 with the contacting portion 310 formed to a position of a contour of a coupler (not shown).

[0075] Figure 12 is an isometric cross sectional view of post 300 and coupler 200 of connector 100 in Figure 2 illustrated assembled with the post 300. The contacting portion 310 is formed to a contour of the coupler 200. [0076] Figure 13 is a cross-sectional view of an embodiment of a coaxial cable connector 114 comprising a post 300 and a coupler 200 having a contacting portion 210. Contacting portion 210 is shown as an inwardly directed protrusion. Contacting portion 210 is integral to and monolithic with coupler 200 and forms to a contour of post 300 when post 300 assembles with coupler 200. Contacting portion 210 may be unitized with coupler 200. As such, contacting portion 210 may be constructed from a single piece of material with coupler 200 or a portion of coupler 200. Contacting portion 210 provides for electrical continuity from the outer conductor of the coaxial cable to the terminal regardless of the tightness or adequacy of the coupling of the coaxial cable connector 114 to the terminal, and regardless of the tightness of coaxial cable connector 114 on the terminal.

Contacting portion 210 may have or be any shape, including shapes that may be flush or aligned with other portions of coupler 200, or may have and/or be formed to any number of configurations, as non-limiting examples, configurations ranging from completely circular to multi-cornered geometries.

[0077] Figures 14, 15 and 16 are cross-sectional views of embodiments of coaxial cable connectors 115 with a post similar to post 300 comprising a contacting portion 310 as described above such that the contacting portion 310 is shown as outwardly radially projecting, which forms to a contour of the coupler 200 at different locations of the coupler 200. Additionally, the contacting portion 310 may contact the coupler 200 rearward of the lip 215, for example as shown in Figures 15 and 16, , which may be at the rearward facing surface 217 of the lip 215, for example as shown in Figure 15.

[0078] Figure 17 is a cross-sectional view of an embodiment of a coaxial cable connector 116 with a body 500 comprising a contacting portion 310, wherein the contacting portion 310 is shown as an outwardly directed protrusion from body 500 that forms to the coupler 200.

[0079] Figure 18 is a cross-sectional view of an embodiment of a coaxial cable connector 117 having a post 300 with an integral contacting portion 310 and a coupler 200 with an undercut 231. The contacting portion 310 is shown as a protrusion that forms to the contours of coupler 200 at the position of undercut 231. Figure 18A is a cross-sectional view of the coaxial cable connector 117 as shown in Figure 18 having a prepared coaxial cable inserted in the coaxial cable connector 117. The body 500 and the post 300 receive the coaxial cable (Figure 18A). The post 300 at the back end 395 is inserted between an outer conductor and a dielectric layer of the coaxial cable.

[0080] Figure 19 is a partial, cross- sectional view of an embodiment of a coaxial cable connector 118 having a post 301 comprising an integral contacting portion 310. The movable post 301 is shown in a forward position with the contacting portion 310 not formed by a contour of the coupler 200. Figure 20 is a partial, cross-sectional view of the coaxial cable connector 118 shown in Figure 19 with the post 301 in a rearward position and the contacting portion 310 forming to a contour of the coupler 200.

[0081] RFI shielding within given structures may be complicated when the structure or device comprises moving parts, such as a coaxial cable connector. Providing a coaxial cable connector that acts as a Faraday cage to prevent ingress and egress of RF signals can be especially challenging due to the necessary relative movement between connector components required to couple the connector to an equipment port. Relative movement of components due to mechanical clearances between the components can result in an ingress or egress path for unwanted RF signal and, further, can disrupt the electrical and mechanical communication between components necessary to provide a reliable ground path. To overcome this situation the coaxial cable connector may incorporate one or more circuitous paths that allow necessary relative movement between connector components and still inhibit ingress or egress of RF signal. This path combined with an integral grounding flange of a component that moveably contacts a coupler acts as a rotatable or moveable Faraday cage within the limited space of a RF coaxial connector creating a connector that both shields against RFI and provides electrical ground even when improperly installed.

[0082] In this regard, Figure 21 illustrates a coaxial cable connector 119 having front end 105, back end 195, coupler 200, post 300, body 500, compression ring 600 and gripping member 700. Coupler 200 is adapted to couple the coaxial cable connector 119 to a terminal, which includes an equipment connection port. Body 500 is assembled with the coupler 200 and post 300. The post 300 is adapted to receive an end of a coaxial cable. Coupler 200 at least partially comprises front end 205, back end 295 central passage 210, lip 215, through- bore 220, bore 230 and bore 235. Coupler 200 is preferably made of metal such as brass and plated with a conductive material such as nickel. Post 300 at least partially comprises front end 305, back end 395, contacting portion 310, enlarged shoulder 340, collar portion 320, through-bore 325, rearward facing annular surface 330, shoulder 345 and barbed portion 335 proximate back end 395. Post 300 is preferably made of metal such as brass and plated with a conductive material such as tin. Contacting portion 310 is integral and monolithic with post 300. Contacting portion 310 provides a stable ground path and protects against the ingress and egress of RF signals. Body 500 at least partially comprises front end 505, back end 595, and central passage 525. Body 500 is preferably made of metal such as brass and plated with a conductive material such as nickel. Shell 600 at least partially comprises front end 605, back end 695, and central passage 625. Shell 600 is preferably made of metal such as brass and plated with a conductive material such as nickel. Gripping member 700 at least partially comprises front end 705, back end 795, and central passage 725. Gripping member 700 is preferably made of a polymer material such as acetal.

[0083] Although, coaxial cable connector 119 in Figure 21 is an axial-compression type coaxial connector having post 300, contacting portion 310 may be incorporated in any type of coaxial cable connector. Coaxial cable connector 119 is shown in its unattached, uncompressed state, without a coaxial cable inserted therein. Coaxial cable connector 119 couples a prepared end of a coaxial cable to a threaded female equipment connection port (not shown in Figure 21). Coaxial cable connector 119 has a first end 105 and a second end 195. Shell 600 slideably attaches to the coaxial cable connector 119 at back end 595 of body 500. Coupler 200 attaches to coaxial cable connector 119 at back end 295. Coupler 200 may rotatably attach to front end 305 of post 300 while engaging body 300 by means of a press- fit. Contacting portion 310 is of monolithic construction with post 300, being formed or constructed in a unitary fashion from a single piece of material with post 300. Post 300 rotatably engages central passage 210 of coupler 200 lip 215. In this way, contacting portion 310 provides an electrically conductive path between post 300, coupler 200 and body 500. This enables an electrically conductive path from the coaxial cable through the coaxial cable connector 119 to the equipment connection port providing an electrical ground and a shield against RF ingress. Elimination of separate continuity member 4000 as illustrated in connector 1000 of Figure 1 improves DC contact resistance by eliminating mechanical and electrical interfaces between components and further improves DC contact resistance by removing a component made from a material having higher electrical resistance properties. [0084] An enlarged shoulder 340 at front end 305 extends inside coupler 200. Enlarged shoulder 340 comprises flange 312, contacting portion 310, collar portion 320, rearward facing annular surface 330 and shoulder 345. Collar portion 320 allows coupler 200 to rotate by means of a clearance fit with through bore 220 of coupler 200. Rearward facing annular surface 330 limits forward axial movement of coupler 200 by engaging lip 215. Contacting portion 310 contacts coupler 200 forward of lip 215. Contacting portion 310 may be formed to contactedly fit with the coupler 200 by utilizing coupler 200 to form contacting portion 310 upon assembly of coaxial cable connector 119 components. In this manner, contacting portion 310 is secured within coaxial cable connector 119, and establishes mechanical and electrical contact with coupler 200 and, thereby, an electrically conductive path between post 300 and coupler 200. Further, contacting portion 310 remains contactedly fit, in other words in mechanical and electrical contact, with coupler 200 regardless of the tightness of coaxial cable connector 119 on the appliance equipment connection port. In this manner, contacting portion 310 is integral to the electrically conductive path established between post 300 and coupler 200 even when the coaxial cable connector 119 is loosened and/or disconnected from the appliance equipment connection port. Post 300 has a front end 305 and a back end 395. Back end 395 is adapted to extend into a coaxial cable. Proximate back end 395, post 300 has a barbed portion 335 extending radially outwardly from the tubular post 300. With reference to Figure 22, there are shown two paths 900, 902, which depict potential RF leakage paths. Coaxial cable connector 119 includes structures to increase the attenuation of RF ingress or egress via paths 900, 902. RF leakage may occur via path 900 through coupler 200 back end 295 at the body 500 and between the lip 215 and post 300. However, as shown in Figure 23, step 235 and shoulder 345, along with contacting portion 310 and flange 312 form a circuitous path along path 900. The structure of the coupler 200 and post 300 closes off or substantially reduces a potential RF leakage path along path 900, thereby increasing the attenuation of RF ingress or egress signals. In this way, coupler 200 and post 500 provide RF shielding such that RF signals external to the coaxial cable connector 119 are attenuated such that the integrity of an electrical signal transmitted through coaxial cable connector 119 is maintained regardless of the tightness of the coupling of the connector to equipment connection port 904.

[0085] With reference again to Figure 22, RF leakage via path 902 may be possible along threaded portion of coupler 200 to equipment connection port 904. This is particularly true when the coaxial cable connector 119 is in a dynamic condition such as during vibration or other type of externally induced motion. Under these conditions electrical ground can be lost and an RF ingress path opened when the threads 204 of the coupler 200 and the threads 906 of the equipment connection port 904 become coaxially aligned reducing or eliminating physical contact between the coupler 200 and the equipment connection port 904. By modifying the form of the coupler 200 threads 204 the tendency of the coupler 200 to equipment connection port 904 to lose ground contact and open an RF ingress path via path 902 is mitigated, thereby increasing the attenuation of RF ingress or egress signals.

[0086] The structure of the threads 204 of the coupler 200 may involve aspects including, but are not limited to, pitch diameter of the thread, major diameter of the thread, minor diameter of the thread, thread pitch angle "Θ", thread pitch depth, and thread crest width and thread root radii. Typically, the pitch angle "Θ" of thread 204 of coupler 200 is designed to match, as much as possible, the pitch angle "φ" of thread 906 of equipment connection port 904. As shown in Figure 24, pitch angle "Θ" may be different than pitch angle "φ" to reduce interfacial gap between thread 204 of coupler 200 and thread 906 of equipment connection port 904. In this way, the threaded portion of the coupler 200 traverses a shorter distance before contacting the threaded portion of the equipment connection port 904 closing off or substantially reducing a potential RF leakage path along path 902. Typically, thread 906 angle "φ" of the equipment connection port 904 is set at 60 degrees. As a non- limiting example, instead of designing coupler 200 with threads 204 of angle "Θ", angle "Θ" may be set at about 62 degrees which may provide the reduced interfacial gap as discussed above. In this way, coupler 200 and post 500 provide RF shielding such that RF signals external to the coaxial cable connector 119 are attenuated such that the integrity of an electrical signal transmitted through coaxial cable connector 119 is maintained regardless of the tightness of the coupling of the connector to equipment connection port 904.

[0087] Typically, RF signal leakage is measured by the amount of signal loss expressed in decibel ("dB"). Therefore, "dB" relates to how effectively RF shielding is attenuating RF signals. In this manner, RF signal ingress into a coaxial cable connector 119 or egress out from a coaxial cable connector 119 may be determined, and, thereby, the ability of the RF shielding of a coaxial cable connector 119 to attenuate RF signals external to the coaxial cable connector 119. Accordingly, the lower the value of "dB" the more effective the attenuation. As an example, a measurement RF shielding of -20dB would indicate that the RF shield attenuates the RF signal by 20dB as compared at the transmission source. For purposes herein, RF signals external to the coaxial cable connector 119 include either or both of RF signal ingress into a coaxial cable connector 119 or egress out from a coaxial cable connector 119.

[0088] Referring now to Figure 25, comparative RF shielding effectiveness in "dB" of coaxial cable connector 119 over a range of 0-1000 megahertz ("MHz") is illustrated. The coupling 200 was finger tightened on the equipment connection port 904 and then loosened two full turns. As illustrated in Figure 25, the RF shielding in "dB" for coaxial cable connector 119 for all frequencies tested indicated that the RF signal was attenuated by more than 50dB.

[0089] Additionally, the effectiveness of RF signal shielding may be determined by measuring transfer impedance of the coaxial cable connector. Transfer impedance is the ratio of the longitudinal voltage developed on the secondary side of a RF shield to the current flowing in the RF shield. If the shielding effectiveness of a point leakage source is known, the equivalent transfer impedance value can be calculated using the following calculation:

[0090] Accordingly, using this calculation the average equivalent transfer impedance of the coaxial cable connector 119 is about 0.24 ohms. As discussed above, electrical continuity shall mean DC contact resistance from the outer conductor of the coaxial cable to the equipment port of less than about 3000 milliohms. In addition to increasing the attenuation of RF signals by closing off or reducing the RF leakage via paths 900, 902, the DC contact resistance may be substantially reduced. As a non-limiting example, the DC contact resistance may be less than about 100 milliohms, and preferably less than 50 milliohms, and more preferably less than 30 milliohms, and still more preferably less than 10 milliohms.

[0091] It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosed embodiments. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the embodiments may occur to persons skilled in the art, the disclosed embodiments should be construed to include everything within the scope of the appended claims and their equivalents.