Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMBUSTION INITIATOR
Document Type and Number:
WIPO Patent Application WO/2009/008971
Kind Code:
A2
Abstract:
The combustion initiatorof this invention preferably includes at least two separate combustible chemical constituents including a fuel cell and an ignition pellet. An igniter has a third combustible material thereon which can be manually caused to move and bring the combustible material into contact with the ignition pellet. The combustible material and ignition pelletare highly reactivewith one another so that such contact therebetweencauses the ignition pellet to commence combustion. The ignition pellet is adjacent the fuel cell and combusts with sufficient temperature to cause the fuel cell to commence combustion. The fuel cell and ignition pelletare preferably contained within an enclosure which protects the igniter from being manipulated unless the enclosure is first opened. The fuel cell material burns hot enough and long enough to cause combustion of surrounding fuels, such as wood.

Inventors:
BALCH DUANE C (US)
LOVEJOY THOMAS A (US)
NIEMEYER DENIS R (US)
Application Number:
PCT/US2008/008145
Publication Date:
January 15, 2009
Filing Date:
June 30, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BALCH DUANE C (US)
LOVEJOY THOMAS A (US)
NIEMEYER DENIS R (US)
International Classes:
F23B60/00; F23B90/00; F23Q7/02
Foreign References:
US20060156621A1
JP2001070126A
JP2000325237A
US4896653A
Attorney, Agent or Firm:
HEISLER, Bradley, P. (3017 Douglas Blvd. Suite 30, Roseville CA, US)
Download PDF:
Claims:

CLAIMS

What is claimed is:

Claim 1: A device for initiating combustion, comprising in combination: an at least partial enclosure; a fuel cell located within said enclosure; said fuel cell formed of a combustible material; an ignition pellet located within said enclosure; said ignition pellet adjacent said fuel cell; said ignition pellet formed of a combustible material; an igniter adapted to be moved from a first position spaced from said ignition pellet to a second position in contact with said ignition pellet; and said igniter adapted to commence combustion of said ignition pellet upon such contact between said igniter and said ignition pellet.

Claim 2: The device of Claim 1 wherein said ignition pellet is surrounded on a majority of a surface of said ignition pellet by said fuel cell, said ignition pellet formed of a material which combusts at a temperature greater than a temperature of ignition of said combustible material forming said fuel cell, such that said fuel cell begins a combustion reaction only after said ignition pellet commences combustion.

Claim 3: The device of Claim 2 wherein said fuel cell includes a recess in a top surface thereof, said ignition pellet located within said recess, said ignition pellet sized and shaped to fill a majority of said recess.

Claim 4: The device of Claim 3 wherein said ignition pellet has a bore passing therethrough, wherein said igniter is larger than said bore, said igniter coupled to a flexible line passing through said bore with said igniter located below said bore, such that pulling on said flexible line draws said igniter into said bore and into position contacting portions of said ignition pellet adjacentsaid bore; and wherein said fuel cell includes a central chamber extending down from said recess and aligned with said bore in said ignition pellet,said central chamber having said flexible line passing therethrough, said flexible line coupled to a pull ring at an end of said flexible line above said ignition pellet,said igniter residing within a sleeve separating said igniter from said fuel cell when said igniter is located below said bore of said ignition pellet.

Claim 5: The device of Claim 1 wherein said enclosure includes a lid, said lid adapted to seal said enclosure and said lid adapted to be removed from said enclosure.

Claim 6: The device of Claim 1 wherein said igniter includes a striker patch formed of a material adapted to initiate combustion of said ignition pellet when brought into contact with said ignition pellet, said striker patch attached to said lid.

Claim 7: The deviceof Claim 6 wherein said enclosure is formed of a material taken from the group of materials including metallic materials and fibrous materials and includes a substantially planar floor with side walls extending substantially perpendicularly up from said floor.

Claim 8: The device of Claim 6 wherein insulation is provided adjacent at least a portion of interior surfaces forming said enclosure, said insulation material resistant to heat transfer.

Claim 9: The device of Claim 1 wherein said fuel cell includes a recess in a top surface thereof and with a central chamber extending down from said recess, said central chamber having a diameter less than a diameter of said recess.

Claim 10: The device of Claim 9 wherein said ignition pellet is located within said recess, said ignition pellet including a central bore aligned with said central chamber of said fuel cell, said igniter oriented below at least a portion of said central chamber and below said ignition pellet, said igniter including a flexible line extending up through at least portions of said central chamber and said bore, said flexible line adapted to be grasped by a user from above said fuel cell and said ignition pellet.

Claim 11: The device of Claim 10 wherein said flexible line includes a pull ring coupled thereto,said pull ring adapted to be oriented substantially horizontally adjacenta top surface of said fuel cell which is substantially horizontal, said pull ring biased toward a non-horizontal orientation and flexed down to a horizontal orientation by a lid coupled to said enclosure, such that when said lid is removed, said pull ring is at least partially elevated above said fuel cell for ease in grasping said pull ring.

Claim 12: The device of Claim 10 wherein said igniter is oriented within a sleeve, said sleeve separating said igniterfrom said fuel cell, said sleeve havinga fixed position withinsaid enclosure such that said igniter is pulled out of said sleeve when said flexible line is pulled, said igniter formed of a material which commences combustion along with said combustible material forming said ignition pellet when said igniter contacts said ignition pellet.

Claim 13: The deviceof Claim 12 wherein said ignition pelletcentral bore has a step at a lower end end thereof, said step having a greater width than a width of said igniter, said bore in said ignition pellet above said step having a lesser diameter than said igniter, such that said igniter contacts said ignition pellet adjacent said step of said central bore of said ignition pellet.

Claim 14: A combustion initiator, comprising in combination: a fuel cell formed of combustible material, said fuel cell including a chamber passing at least partially therethrough; an ignition pellet, said ignition pellet abutting said fuel cell, said ignition pellet adjacentsaid chamber of said fuel cell; and an igniter having a first position spaced from said ignition pellet and a second position in contact with said ignition pellet, said igniter adapted to commence combustion of said ignition pellet when contacting said ignition pellet.

Claim 15: The combustion initiator of Claim 14 wherein said igniter is further coupled to a flexible line passing through said chamber in said fuel cell and at least partially through said bore in said ignition pellet, such that pulling of said flexible line causes said igniter to pass at least partially through said chamber in said fuel cell and at least partially through said bore in said ignition pellet; said bore in said ignition pellet having a cross-sectional size smaller than a cross-sectional size of said igniter, such that said igniter impacts portions of said ignition pelletwhen said flexible line is pulled and said igniter is drawn into said bore of said ignition pellet; and wherein said chamber in said fuel cell is centrally oriented within said fuel cell, said fuel cell including a recess in a top surface thereof, said ignition pellet sized and shaped to reside within said recess, said bore in said ignition pellet aligned with said central chamber of said fuel cell.

Claim 16: The combustion initiatorof Claim 15 wherein said igniter is attached to said Hd in the form of a striker patch, said striker patch adapted to cause said ignition pelletto combust when said striker patch is struck against said ignition pellet.

Claim 17: The combustion initiatorof Claim 16 wherein said fuel cell, said ignition pellet and said igniter are each contained within an enclosure having a floor and a side wall, said enclosure including a removable isolation sheet between said striker patch and said ignition pellet.

Claim 18: A method for initiating combustion of a fuel, the method including the steps of: providing a fuel to be combusted; providing a combustion initiator, the combustion initiator including a fuel cell formed of combustible material, an ignition pellet, the ignition pellet abutting the fuel cell, the ignition pellet

adjacent the chamber of the fuel cell; an igniter having a first position spaced from the ignition pellet and a second position in contact with the ignition pellet, the igniter adapted to commence combustion of the ignition pellet when contacting the ignition pellet; impacting the ignition pellet with the igniter to cause the ignition pellet to commence combustion; allowing heat from combustion of the ignition pellet to commence combustion of the fuel cell; and allowing heat from combustion of the fuel cell to commence combustion of the fuel.

Claim 19: The method of Claim 18 including the further steps of providing the combustion initiator within an enclosure having a floor, side walls and a lid sealing said enclosure closed; and removing the lid.

Claim 20: The method of Claim 19 wherein said igniter is located upon the lid in the form of a striker patch; bringing the striker patch into contact with the ignition pellet; and rubbing the striker patch against the ignition pellet to cause the ignition pellet to begin combusting.

Description:

COMBUSTION INITIATOR

Technical Field

The following invention relates to devicesfor initiating combustion of fuels. More particularly, this inventionrelates to combustion initiators which utilize multiplechemicalfuels which exhibitan exothermic combustion reaction of sufficiently long duration and with sufficient heat to initiate combustion of other fuels, such as wood or other cellulosic materials, even when wet. More particularly, this invention relates to combustion initiators which include at least two separate combustible components, a first of which is more easily caused to commence combustion than the other, and a second of which requires a high degree of heat to commence combustion and which combusts over a longer period of time than the first component.

Background Art

Most commonly, when wood or other cellulosic material is to be combusted an individual must carefully select wood of appropriate size and shape, as well as dryness characteristics to begin a fire combusting this fuel. The user then utilizes matches and perhaps a starter material such as paper. As an alternative,a compactfire starting source such as a cigarette lighter or similar device can be utilized. Such standard procedure has multiple drawbacks. First, the wood fuel must be very dry for a good fire to be started. Second, even with sufficiently dry wood, the shape and size of the wood is important during the initial fire starting process. Generally, small "kindling" pieces of wood are first ignited, generating a small region of high temperature combustion ("fire"). Initial smaller amounts of fire must progressively increase in size before larger pieces of wood can be placed on the fire. Preparation of such "kindling" can be time consuming and difficult if the proper tools are not available. Furthermore, the fire is susceptible to being blown out or otherwise failing early in the process if environmental conditions such as high wind or rain are present.

Accordingly, a need exists for a combustion initiator which can effectively guarantee the immediate combustion of relativelylarge pieces of wood even if wet. Such a combustion initiator would minimize or eliminate the need for preparation of kindling and the identification and collection of sufficiently dry wood to build a fire, and would also be particularly advantageous in emergency situations.

Disclosure of Invention

With this inventions combustion initiator is provided which is small and lightweightand which can be easily started, while providing sufficient heat to commence rapid and high temperature combustion of even very wet wood or other fuels. In particular,the invention includes a fuel cell material which is preferably provided withinan enclosure comprised of a container and a lid. The fuel cell is formed of a material which may not be particularly easy to cause to commence combustion; but which, once burning, burns at a very high temperaturefor approximately one and a half minutes, to relativelyrapidly both dry wetwood or other difficult to ignite fuels adjacent to the combustion initiator, and cause combustion of such fuels.

The combustion initiator also includes an ignition pellet adjacentto the fuel cell. This ignition pellet is formed of a material which can be relatively easily caused to commence combustion, provided that the right triggering chemicalsare brought into contact with the ignition pellet or other triggering element is activated. The ignition pellet's purpose is to cause the fuel cell material to commencecombustion. The ignition pellet is thus relativelysmall and is oriented adjacentthe fuel cell material.

An igniter is also provided in the preferred embodiment, which is formed of a chemical composition which readily reacts with the material forming the ignition pellet to commence combustion of the ignition pellet when the igniter is brought into contact and preferably impacts with some force against the ignition pellet. The igniter is preferably initially contained within a sleeve or other enclosure which isolates the igniter from both the ignition pellet and the fuel cell. The igniter can also be in the form of a striker patch of red phosphorus and ground glass encapsulated in nitrocellulose and attached to the lid or otherwise located inside the container. When such a striker patch is scratched with some force against the ignition pellet, the ignition pellet commences combustion.

The igniter can also be coupled to a flexible line or other structure which can pull the igniter line out of the sleeve and impact the igniter line against the ignition pellet. Most preferably, this structure is a flexible line routed through a bore in the ignition pellet. The bore is sized slightly smallerthan the igniter line so that the igniter line is drawn into the bore and then impacts sides of the bore within the ignition pellet, causing sufficient force upon impact that the igniter line causes the ignition pellet to combust.

In turn, the ignition pellet's heat of combustion causes fuel cell combustion initiation. The fuel cell can then cause sufficient heat to be released that adjacentfuels, such as wet wood, are caused to be combusted at sufficient heat that a raging fire is started to which additional wet fuel can be added and combustion maintained.

Brief Description of Drawings

Figure 1 is a perspective view of the combustion initiator according to a preferred embodiment of this invention contained entirely within an enclosure formed of a container and lid, and before opening of the enclosure.

Figure 2 is a perspective view similar to that which is shown in Figure 1 , but after the lid has begun to be removed.

Figure 3 is a perspective view similar to that which is shown in Figure 1 , but after complete removal of the lid. Figure 4 is a perspective view similar to that which is shown in Figure 1 , but after removal of the lid and after pulling of an igniter train to cause initiationof combustion of an ignition pellet within the enclosure of the combustion initiator.

Figure 5 is a perspective view similar to that which is shown in Figure 1 but after complete removal of the igniter train and after the ignition pellet has caused a fuel cell within the enclosure to also commence combustion.

Figure 6 is a full sectional view of the combustion initiator taken along lines 6-6 of Figure 1. Figure 7 is a detail of a portion of that which is shown in Figure 6 taken along lines 7-7 of Figure 6.

Figure 8 is an exploded parts view of that which is shown in Figure 1 showing the separate portions of the combustion initiator separate from each other.

Figure 9 is an exploded parts viewof a portion of the igniter train of Figure 8, and taken along lines 9-9 of Figure 8.

Figure 10 is a perspective view of an alternativeembodiment of the combustion initiator and featuring a striker patch as an alternative form of igniter for the combustion initiator. Figures 11-13 are perspective views similar to Figure 10 but following the sequence of use of the combustion initiator according to this alternative embodiment.

Figure 14 is a full sectional view of that which is shown in Figure 10 revealing interior details of the alternative embodiment combustion initiator.

Figure 15 is an exploded parts viewof the entire alternativeembodimentcombustion initiator of Figure 10.

Best Modes for Carrying Out the Invention

Referring to the drawings, wherein like reference numerals represent like parts throughout the various drawing figures, reference numeral 10 is directed to a combustion initiator (Figures 1-6) according to a preferred embodiment of this invention. The combustion initiator 10 can be utilized to easily initiate combustion of difficult to burn fuels, such as wet wood, placed adjacent to the

combustion initiator 10 before activationof the combustion initiator 10. Such activation involves removinga lid 30 from an enclosure 20 containing the combustion initiator 10 and pulling of a pull ring 80 on an igniter train 70 of the combustion initiator 10 until fire F results (Figures 4 and 5).

In essence, and with particular reference to Figures 1-6, basic details of the combustion initiator 10 of this inventionare described according to the preferred embodiment. The combustion initiator 10 preferably is contained within an enclosure 20 formed of a container 22 and a lid 30 which seals the enclosure 20. Within the enclosure 20 a fuel cell 40 provides a primary fuel for the combustion initiator 10. This fuel cell 40 is formed of a materialfor which it is relativelydifficultto commence combustion. The fuel cell 40 includes a recess 45 preferably in an upper surface 42 thereof. A central chamber 50 preferably extends down from the recess 45 to a bottom of the fuel cell 40.

An ignition pelletβO preferably resides within the recess 45. This ignition pellet 60 includes a central bore 68 passing therethrough. An igniter train 70 is provided which extends up through the central bore 68 of the ignition pellet60 and the central chamber 50 of the fuel cell 40 to a pull ring 80 located above the fuel cell 40 and manually graspable by a user. The igniter train 70 includes a head 90 thereon which cannot pass through the central bore 68 of the ignition pellet 60 without abutting material forming the ignition pellet 60.

The ignition pellet 60 is formed of a material which undergoes a highly exothermic combustion reaction when brought into contact with material forming the head of the igniter train 70. Once burning, the ignition pellet 60 releases sufficient heat to cause the fuel cell 40 to commence combustion. The combustible material 100 forming the head 90 is contained within a sleeve 1 10 before being pulled out of the sleeve 110 and brought into impactingcontactwith the ignition pellet 60. The sleeve 1 10 is formed of a material which protects the combustible material 100 on the head 90 from coming into contact with other portions of the combustion initiator 10 which might otherwise initiate an undesired combustion reaction, such that the combustion initiator 10 only commences combustion when desired.

More specifically, and with particular reference to Figures 1 , 2, 6 and 8, particular details of the enclosure 20 for housing the combustion initiator 10 are described. While the enclosure 20 is not strictly necessary for the combustion initiator 10, the enclosure 20 preferably provides a container in which the combustion initiator 10 can be safely stored and handled without concern for inadvertentlypulling the pull ring 80 or otherwise bringing the combustible material 100 on the head 90 of the igniter train 70 into contact with the ignition pellet 60 for inadvertent combustion initiation. The enclosure 20 also provides a support for the combustion initiator 10 while the combustion initiator 10 is releasing heat, and allows the combustion initiator 10 to be briefly held or repositioned by a user before the combustion initiator 10 becomes too hot. This enclosure 20 preferably includes two portions including a container 22 and a lid 30. The container 22 is preferably a generally cylindrical short "can" similar to a can of chewing tobacco or tuna, which would generally have a height which is half or less in size than a diameter for stability and exposed upper surface size increase. The container 22 could in fact have a variety of

different shapes and sizes, with such a cylindrical shape being only one size which is acceptable. In this embodiment, the container 22 has a generally flat floor 24 with a cylindrical side wall 26 extending up from the floor 24 to a rim 28.

Insulation 25 is preferably provided adjacent the side wall 26 and on an inner side thereof. Such insulation 25 could also be adjacent the floor 24 and could as an alternativebe outside of the side wall 26 and floor 24 rather than on an inside thereof. The insulation 25 is formed of a material which decomposes gradually when experiencing heat such as that generated by combustion of the fuel cell 40. The insulation 25 is also formed of a material which has a sufficiently low rate of heat transfer that a material forming the container 22 (i.e. tin, steel, aluminum or the like) does not have its melting temperature reached until well into the combustion sequence, if at all. The container could also be formed of pressed paper or other fibrous material,or plastic, and combusted toward the end of the combustion sequence.

The lid 30 is preferably planar and entirely closes the container 22 to form the enclosure 20. The lid 30 has an edge 32 adjacent the rim 28. Preferably, this edge 32 is formed along with the rim 28 with a score line merely provided to allow for the lid 30 to be separated from the container 22 at the rim 28 when a peeling force is applied upward on the lid 30. A pull tab 34 is provided on an upper surface of the Hd 30 for the purpose of initiating separation of the lid 30 from the rim 28 of the container 22 and to allow verticalupward forces to be applied to the lid 30 for such removal of the lid 30 from the container 22. Operation of the pull tab 34 would generally be by moving of the pull tab 34 along arrow A of Figure 1. The entire lid 30 would then be removed by further pulling of the lid 30 through the pull tab 34, along arrow B of Figure 2.

Preferably, the lid 30 would not be removed until the combustion initiator 10 is ready for use. The lid 30 protects the igniter train 70 so that it remains stationary and protected. In particular, with the lid 30 on the container22 so that the enclosure 20 is closed, it is not possible for the pull ring 80 or other portions of the igniter train 70 to somehow be snagged and cause movementof the igniter train 70 to bring the combustible material 100 out of the sleeve 1 10 and into contact with either the material forming the ignition pellet 60 or the fuel cell 40. Once the lid 30 has been removed, the combustion initiator 10 could then be utilized for combustion of a fuel.

With particular reference to Figures 3-6 and 8, particular details of the fuel cell 40 are described. The fuel cell 40 is preferably formed of a material which exhibits an exothermic combustion reaction, typically along with oxygen as an oxidizer. As an alternativejthe fuel cell 40 could be of a type which supplies its own oxidizer, such that it can even burn underwater or in other non-oxygen containing environments, but which requires a relatively high threshold temperature before combustion is initiated for the fuel cell material 40. Acceptable materials from which the fuel cell could be made include commercial metals such as aluminum, magnesium, iron oxides, antimony, charcoal, wood flower, sulfur, gilsonite, organic fuels, dextrin, resins, oxidizers, perchlorate, nitrite, chlorates and polyester binders, just to name a few.

The fuel cell 40 preferably has a shape which matches that of the enclosure 20. In particular, the fuel cell 40 preferably has a cylindrical form extending up from the floor 24 of the enclosure 20 to an upper surface 42 which is generally substantially flat and inboard of the rim 28 of the container 22. The upper surface 42 of the fuel cell 40 preferably includes a groove 44 formed in the upper surface 42. This groove 44 provides a recess into which the pull ring 80 can reside (Figure 4).

The fuel cell 40 also preferably includes a recess 45 (Figure 6) extending down into the upper surface 42. This recess 45 is also preferably cylindrical and has a diameter of approximately half or less of a diameterof the fuel cell 40. The recess 45 is preferably centered along a centerline of the fuel cell 40 and extends to a depth which is less than a depth of the fuel cell 40. This recess 45 provides a location for the ignition pellet 60 to reside and come into close contact with portions of the fuel cell 40.

The fuel cell 40 also has a side surface 46 which abuts the insulation 25 adjacentthe side wall 26 of the enclosure 20. A lower surface 48 of the fuel cell 40 abuts the floor 24 of the enclosure 20. Most preferably, a tunnel 49 is provided in the lower surface 48 which extends substantially horizontally through a portion of the lower surface 48 of the fuel cell 40. This tunnel 49 provides a location for the sleeve 1 10 and for the head 90 of the igniter 70 to reside before utilization of the combustion initiator 10. This tunnel 49 provides a safe location for this combustion material 100 and for protection by the sleeve 1 10 until the combustion initiator 10 is to be utilized. The fuel cell 40 preferably includes a central chamber 50 extending from the lower surface 48 up to the recess 45. This central chamber 50 is preferably centrally located and preferably has a tapering side wall with a greater diameter adjacent the lower surface 48 and a lesser diameter adjacentthe recess 45. The central chamber 50 is defined by a lower edge 52 adjacentthe lower surface 48 and an upper edge 54 adjacentthe recess 45. A conical surface 56 preferably defines portions of the central chamber 50 between the lower edge 52 and the upper edge 54.

The central chamber 50 provides a path for travel of the head 90 and associated combustible material 100 on the igniter train 70 when the pull ring 80 is pulled. The central chamber 50 thus provides a pathway for this head 90 of the igniter train 70 as it travels toward the ignition pellet60. Most preferably, the fuel cell 40 is formed of a material which does not readily initiate combustion and is not particularly reacti veto the combustion material 100. In this way, both the sleeve 110 and the non-reactivity of the fuel cell 40 material with the combustible material 100 provides redundant protection against inadvertent commencement of combustion by the combustion initiator 10. Rather, only after the combustible material 100 on the head 90 comes into contact with the ignition pellet 60 above the central chamber 50, is combustion initiated. The geometry of the central chamber 50 facilitates rotation of the head 90 and associated combustible material 100 as it passes out of the horizontal tunnel 49 and rotates so that it can extend vertically up out of the central chamber 50 and through the central bore 68 of the ignition pellet60 (along arrow D of Figure 6). While this particulargeometry is preferred for the fuel cell

40, the fuel cell 40 could have a variety of different configurations. It is conceivablethat the fuel cell 40 could merely be placed alongside the ignition pellet 60 and the igniter train 70 could be routed so that it does not pass through the fuel cell 40 in any fashion, but rather is only brought into impact with the ignition pellet 60 to cause commencementof combustion of the ignition pellet 60 and then combustion of the fuel cell 40.

With particular reference to Figures 4, 6 and 8, particular details of the ignition pellet 60 are described. The ignition pellet 60 is preferably formed of a material which is highly reactive with the combustible material 100 and undergoes a highly exothermic high temperature combustion reaction once ignited by contact with the combustion material 100. The ignition pellet 60 preferably provides its own oxidizer and can sustain combustion, even when under water of in a non-oxygen containing environment,provided that it is first brought into close contact with the combustible material 100. Materials suitable for forming the ignition pellet 60 include potassium chlorate,animal glue, starch, sulfur, powdered glass, zinc oxide, red phosphorus, dextrin, antimony sulfide, iron oxide, manganese dioxide and calcium carbonate, just to name a few. The ignition pellet 60 has a geometry which allows it to reside within the recess 45 of the fuel cell 40, most preferably. In particular, the ignition pelletδO preferably includes a substantially flat circular bottom 62 opposite a substantially flat circular top 64. A cylindrical side 66 extends between the bottom 62 and the top 64 and preferably has a diameter similar to a diameter of the recess 45 so that the ignition pellet 60 is in close and intimatecontact with the fuel cell 40 at both the bottom 62 and the side 66 of the ignition pellet 60.

A central bore 68 preferably extends from the bottom 62 up to the top 64 of the ignition pellet 60. This central bore 68 is aligned with the central chamber 50 in the fuel cell 40. The central bore 68 has a diameterwhich is less than a diameterof the head 90 of the ignitertrain 70. In this way, the head 90 and associated combustible material 100 on the ignitertrain 70 cannot be pulled all the way through the central bore 68 withoutthe combustible material 100 on the head 90 impactingthe ignition pellet 60 along the central bore 68.

Most preferably, a lower end of the central bore 68 has a step 63 formed therein. This step 63 has a diameter greater than that of the head 90 below the step 63. Thus, the head 90 comes into the portion of the central bore 68 surrounded by the step 63 first, and then the head 90 abuts the materialforming the ignition pellet 60 at the step 63 because the size of the head 90 is greater than a size of the central bore 68. Further forcing of the igniter train 70 upward (along arrow D of Figure 4) causes the combustible material 100 on the head 90 to be forced intimately against material forming the ignition pellet 60 adjacent the step 63, until the exothermic reaction of the combustible material 100 with the ignition pellet 60 material causes combustion of the ignition pellet 60 with oxygen in the air or other oxidizer to commence.

Once such combustion commences within the ignition pellet 60, the ignition pellet 60 is preferably formed of a material which can sustain a very high temperatureexothermic combustion reaction. Flame F would typically be visible and shooting out of the central bore 68 during

combustion of the ignition pellet 60. As the ignition pellet 60 burns, the fuel cell 40 is caused to experience this high temperature, sufficient to cause the fuel cell 40 to itself commence combustion. As the ignition pellet 60 gets burned up, the fuel cell 40 now is burning at a sufficiently high temperatureto maintain complete combustion of the fuel cell 40 (Figure 5). The ignition pellet 60 is preferably configured so that it burns on the order of three seconds with the fuel cell 40 burning on the order of one and a half minutes in a typical embodiment. After the fuel cell 40 ceases burning, it still provides a red hot cinder cone for an additional period of time at least two times greater than flame duration. A slot 65 is preferably formed in a top surface of the ignition pellet60 which allows portions of the pull ring 80 to lay flat withinthe ignition pelletόO so that it can reside , below the lid 30 and the enclosure 20 can be as full as possible of the fuel cell 40 and ignition pellet 60.

With particular reference to Figures 3-9, details of the igniter train 70 are described. The igniter train 70 includes the pull ring 80 at an upper end and an elongate cord 72 extending to a head 90 and associated combustible material 100 at an end opposite the pull ring 80. The ignitertrain 70 is provided to draw the head 90 and associated combustible material 100 into impactand contact with the ignition pellet 60 to cause the combustion initiator 10 to commence combustion. In particular, the igniter train 70 includes the elongate cord 72 which is preferably a substantially inelastic but flexible strong line of material extending from a leading end 74 adjacent the pull ring 80 to a trailing end 76 adjacent the head 90. This ignition train 70 could be formed of a metal or hydrocarbon material which is preferably non-reactivewith any of the other materials forming the combustion initiator 10.

The pull ring 80 preferably provides a complete loop 82 which can be easily grasped by a finger of a user. An arm 84 is coupled to the loop 82 on one end of the arm 84 and to the leading end 74 of the elongate cord 72 of the igniter train 70 on an opposite end of the arm 84. The arm 84 is preferably formed to the loop 82 so that the two are biased against residing within a common plane, but rather with the loop 82 skewed into a plane extending somewhat vertically upward when the arm 84 is oriented horizontally. In this way, while the loop 82 and arm 84 can be forced into a

, common horizontal plane (Figure 2) once the lid 30 is removed, the loop 82 preferably springs upward (along arrow C of Figure 3) with the arm 84 remaining horizontal. The loop 82 is thus presented for easy grasping by a user. When a user loops a finger through the loop 82 and lifts upward (along arrow D of Figure 4), the ignitertrain 70 is caused to move upwards (along arrow D of Figure 6) until the head 90 and combustible material 100 impact material forming the ignition pellet 60 and combustion of the ignition pellet 60 commences.

The head 90 can have a variety of different configurations for supporting the combustible material 100 thereon and securing the combustible material 100 to the igniter train 70. Most preferably, the head 90 has a knob 92 and a top rib 94 which define a diameterof the head 90 and with intermediate ribs 96 having a slightly lesser diameter between the knob 92 and top rib 94. These intermediate ribs 96 help to hold the combustible material 100 to the head 90 with the knob

92 and top rib 94 encapsulating the combustible material 100 within the cylindrical sleeve 101 having a diameter similar to that of the knob 92 and top rib 94. The knob 92 and top rib 94 are somewhat deformable so that when they abut the ignition pellet 60 at the step 63 leading into the central bore 68, the top rib 94 and knob 92 deflect somewhat so that the combustible material 100 can be brought into direct contact with material forming the ignition pellet 60. Materials suitable for the combustible material 100 include animal glue, dextrin, red phosphorus, antimony sulfide, iron oxide, manganese, calcium carbonate, . powdered glass, nitrocellulose lacquer and other miscellaneous binders, just to name a few.

While this configuration for the head 90 and combustible material 100 is desirable when the combustible material 100 is somewhat brittle, if the combustible material is sufficiently flexible, it could conceivablybe formed directly onto the elongate cord 72 forming the igniter train 70, without requiring the knob 92 or top rib 94 or intermediate ribs 96. The knob 92 also provides the beneficial function of keeping the combustible material 100 from merely sloughing off of the elongate cord 92 when the elongate cord 92 is initially pulled, with the combustible material 100 remaining withinthe sleeve 101, or in any way having the combustible material 100 fall off of the igniter train 70 before the combustible material 100 is brought into impingementwith the ignition pellet 60.

The sleeve 101 surrounds the combustible material 100 and head 90 preferably within the tunnel 49 in the fuel cell 40 and acts as a preferred form of barrier to isolate the combustion material 100 from the fuel cell 40 or ignition pellet 60. This sleeve 101 is formed of a material which does not react with the combustible material 100 or the material forming the fuel cell 40, with the sleeve 101 preferably remaining stationary within the tunnel 49 of the fuel cell 40. Alternativelyjhe sleeve 101 could move with the combustible material 100 and head 90, with the sleeve 101 only stopping when it abuts the step 63 of the ignition pellet60 due to the diameter of the sleeve 101 being too great to allow it to pass into the central bore 68 of the ignition pellet 60.

With particular reference to Figures 10-15, details of an alternative embodiment combustion initiator 110 are described. This alternativecombustion initiator 110 is similar to the combustion initiator 10 of the preferred embodiment, except as particularly described herein. In particular, the alternativecombustion initiator 110 includes an enclosure with a corresponding lid 130. A fuel cell 140 resides withinthe enclosure witha central chamber 150 in the fuel cell 140. An ignition pellet 160 resides within the central chamber 150 of the fuel cell 140.

Uniquely, a striker patch 135 is provided on an underside of the lid 130. This striker patch is preferably formed of a mixture of ground glass and red phosphorus encapsulated in nitrocellulose. As an alternative,the striker material 135 could be any material which causes combustion when coming in contact with the ignition pellet 160. In particular, the material of the striker patch 135 could be the same as that provided on the igniter train 70.

Additionally, the ignition pellet 160 preferably differs from the ignition pellet 60 of the preferred embodiment in that no central bore is provided on the ignition pellet 160. Rather, the

ignition pellet 160 preferably is entirely cylindrical in form, corresponding in size and shape to the central chamber 150, except perhaps slightly raised above the fuel cell 140. Additionally,the fuel cell 140 is preferably substantially cylindrical except for the central chamber 150. In this alternativeembodiment 110, no pull ring is provided, such that no recess is required for the pull ring.

Also, and as best shown in Figure 15, an isolation sheet 170 is preferably provided between the striker patch 135 on the lid 130 and the fuel cell 140 and ignition pellet 160. This isolation sheet 170 can be formed of paper, foil, plastic or other somewhat inert materials. The isolation sheet 170 keeps the striker patch 135 out of contact with the ignition pellet 160 and the fuel cell 140 when the lid 130 is closed upon the enclosure, keeping the ignition pellet 160 from prematurely igniting.

When the alternativeembodiment combustion initiator 110 is to be utilized, the lid 130 is first removed. Then, the Hd 130 can optionally be bent so that the striker patch 135 is in an orientation with maximum exposure. This striker patch 135 is then placed in impinging contact with the ignition pellet 160 and pressed down and slid to the slide (along arrow E of Figures 12 and 13) to cause the ignition pellet 160 to ignite. This action is generally analogous to that of starting a road flare or striking a match. The striker patch 135 and ignition pellet 160 can be configured of any chemical s w hi chare suitablefor causing the ignition pellet 160 to ignite when the striker patch 135 is brought into impinging contact and preferably rubbed and thrust lateral to the ignition pellet 160 while the striker patch 135 is in solid contact with the ignition pellet 160. While the alternativeembodimentcombustion initiator 110 can be provided as an alternativeto the combustion initiator 10, another alternativewould be to provide both the combustion initiator 10 with the ignition pellet 60 and the igniter train 70, and also provide a striker patch 135 on an underside of the lid 30. In such a configuration, the striker patch 135 would only be used as a backup should the igniter train 70 fail to ignite the ignition pellet 60. This disclosure is provided to reveal a preferred embodimentof the invention and a best mode for practicing the invention. Having thus described the invention in this way, it should be apparent that various different modifications can be made to the preferred embodiment without departing from the scope and spirit of this invention disclosure. For instance, while specific materials are identified,other suitable materials could be readily identified by any chemist trained in the chemical combustion arts, with performance of the inventionadjusted to fit the design parameters selected by the chemist. When structures are identified as a means to perform a function, the identification is intended to include all structures which can perform the function specified. When structures of this inventionare identifiedas being coupled together, such language should be interpreted broadly to include the structures being coupled directly together or coupled together through intervening structures. Such coupling could be permanent or temporary and either in a rigid fashion or in a fashion which allows pivoting, sliding or other relative motion while still providing some form of attachment, unless specifically restricted.

Industrial Applicability

This invention exhibits industrial applicability in that it provides a combustion initiatorwhich is easy to start. Another object of the present invention is to provide a combustion initiator which generates sufficient heat to cause combustion of wet wood or correspondingly difficult to burn fuels.

Another object of the present invention is to provide a combustion initiatorwhich is compact and lightweight, suitable for being carried in a small backpack or other carrier.

Another object of the present invention is to provide a combustion initiator which is safely maintained in an enclosure where accidental early combustion is precluded.

Another object of the present invention is to provide a method for ignition of a fuel that is difficult to combust, such as wet wood.

Another object of the present invention is to provide a combustion initiator which has a geometry which is effectivefor initiatingcombustion even when a variety of different chemicalsare utilized for the various different components of the combustion initiator system.

Another object of the present inventionis to provide an emergency combustion initiatorfor use in signaling or providing emergency heat, when used to initiate combustion of other fuels.

Other further objects of this invention, which demonstrate its industrial applicability, will become apparent from a careful reading of the included detailed description, from a review of the enclosed drawings and from review of the claims included herein.