Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMMUNICATION CONNECTOR
Document Type and Number:
WIPO Patent Application WO/2017/066224
Kind Code:
A1
Abstract:
A communication connector including elongated contacts, and an optional flexible compensation circuit. The elongated contacts include a plurality of contact pairs. Each pair includes first and second contacts configured to transmit a differential signal. The elongated contacts may each have first and second portions with first and second heights, respectively. The first height is greater than the second height. The first portion of the first contact is positioned alongside the first portion of the second contact to capacitively couple the first and second contacts together. The optional flexible compensation circuit includes compensation circuity configured to at least partially reduce crosstalk between the elongated contacts.

Inventors:
RILEY JON CLARK (US)
TAYLOR BRET (US)
BRAGG CHARLES (US)
ZIELKE DARRELL W (US)
SAUTER TOM (US)
WANG HUA (US)
Application Number:
PCT/US2016/056499
Publication Date:
April 20, 2017
Filing Date:
October 12, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LEVITON MANUFACTURING CO (US)
International Classes:
H01R13/646; H01R13/66; H01R24/00
Foreign References:
US20120202389A12012-08-09
US20050245125A12005-11-03
US5547405A1996-08-20
US20090104821A12009-04-23
GB2343558A2000-05-10
US20080311797A12008-12-18
Other References:
See also references of EP 3363083A4
Attorney, Agent or Firm:
ULRICH, Richard J. et al. (US)
Download PDF:
Claims:
CLAIMS

The invention claimed is: 1 . A communication connector comprising:

a plurality of elongated contacts each having a first portion with a first height, and at least one second portion with a second height, the first height being greater than the second height, the plurality of elongated contacts comprising a plurality of contact pairs, each pair being configured to transmit a differential signal and comprising a first contact and a second contact, the first portion of the first contact being positioned alongside the first portion of the second contact to capacitively couple the first and second contacts together;

a plurality of wire contacts comprising a different wire contact corresponding to each of the plurality of elongated contacts; and

a substrate comprising a plurality of electrical conductors that comprise a different electrical conductor corresponding to each of the plurality of elongated contacts that connects the elongated contact to the corresponding wire contact.

2. The communication connector of claim 1 , wherein each of the plurality of elongated contacts has a third portion configured to contact an electrical contact of a different communication connector, and

the first portion of the each of the plurality of elongated contacts is positioned between the substrate and the third portion.

3. The communication connector of claim 2, further comprising:

a compensation circuit connected to each of a portion of the plurality of elongated contacts at a position located between the first and third portions.

4. The communication connector of claim 1 , wherein each of the plurality of elongated contacts has a first end portion connected to the electrical conductor corresponding to the elongated contact,

each of the plurality of elongated contacts has a second end portion opposite the first end portion,

each of the plurality of elongated contacts has an intermediate portion positioned between the first and second end portions that is configured to contact an electrical contact of a different communication connector, and

the communication connector further comprises a compensation circuit connected to each of a portion of the plurality of elongated contacts at a position located between the intermediate portion and the second end portion.

5. The communication connector of claim 4, wherein the first contact of a first one of the plurality of contact pairs crosses over the second contact of the first contact pair at a crossover location,

the portion of the plurality of elongated contacts connected to the compensation circuit comprise the first contact pair, and

the compensation circuit is connected to the first contact of the first contact pair at a location approximately midway between the cross over location and the second end portion of the first contact of the first contact pair.

6. The communication connector of claim 1 , wherein each of the plurality of elongated contacts has a first end portion connected to the electrical conductor corresponding to the elongated contact,

each of the plurality of elongated contacts has a second end portion opposite the first end portion,

each of the plurality of elongated contacts has an intermediate portion positioned between the first and second end portions that is configured to contact an electrical contact of a different communication connector, and

the communication connector further comprises: a first compensation circuit connected to each of a first portion of the plurality of elongated contacts at a position located between the intermediate portion and the first end portion, and

a second compensation circuit connected to the second end portion of each of a second portion of the plurality of elongated contacts.

7. The communication connector of claim 1 , wherein the each of the plurality of elongated contacts is formed from a conductive sheet material, and the portion with the first height is formed by bending a portion of the conductive sheet material.

8. The communication connector of claim 1 , wherein the first portion of each of the plurality of elongated contacts has an L-shaped cross-sectional shape. 9. The communication connector of claim 1 , further comprising:

a dielectric comb comprising a dielectric member that extends between the first portion of the first contact of a first one of the plurality of contact pairs, and the first portion of the second contact of the first contact pair. 10. The communication connector of claim 9, wherein the dielectric member also extends between the first portion of the first contact of a second one of the plurality of contact pairs, and the first portion of the second contact of the second contact pair. 1 1 . The communication connector of claim 10, wherein the dielectric member is a first dielectric member, and the dielectric comb further comprises:

a second dielectric member that extends between the first portion of the first contact of a third one of the plurality of contact pairs, and the first portion of the second contact of the third contact pair, and a third dielectric member that extends between the first portion of the first contact of a fourth one of the plurality of contact pairs, and the first portion of the second contact of the fourth contact pair. 12. The communication connector of claim 9, wherein the dielectric member is a first dielectric member,

the dielectric comb further comprises a second dielectric member that extends between the first portion of the first contact of a second one of the plurality of contact pairs, and the first portion of the first contact of a third one of the plurality of contact pairs, and

the second dielectric member also extends between the first portion of the second contact of the second contact pair, and the first portion of the second contact of the third contact pair.

13. The communication connector of claim 12, wherein the dielectric comb further comprises a third dielectric member that extends between the first portion of the first contact of a fourth one of the plurality of contact pairs, and the first portion of the second contact of the fourth contact pair. 14. The communication connector of claim 13, wherein the first portions of a second of the plurality of contact pairs are spaced at least 3 millimeters away from the first portions of a third of the plurality of contact pairs,

the first portions of a fourth of the plurality of contact pairs are spaced at least 3 millimeters away from the first portions of the third contact pair, and

the third contact pair is positioned between the second contact pair and the fourth contact pair.

15. The communication connector of claim 14, wherein the first portions of a first of the plurality of contact pairs are spaced vertically from the first portions of the third contact pair.

16. A method of constructing a plurality of elongated contacts for use in a communication connector, the method comprising:

forming first and second lead frames from a sheet material, the first lead frame comprising a first portion of the plurality of elongated contacts, and the second lead frame comprising a second portion of the plurality of elongated contacts;

bending a fin portion of each of the elongated contacts in the first and second portions of the plurality of elongated contacts to thereby form a fin in each of the elongated contacts;

bending the first lead frame to position a first pair of elongated contacts in the first portion of the plurality of elongated contacts closer to one another; and bending the second lead frame to position a second pair of elongated contacts in the second portion of the plurality of elongated contacts closer to one another. 17. The method of claim 16, further comprising:

bending each of the elongated contacts in the first and second portions of the plurality of elongated contacts to thereby form contours in each of the elongated contacts. 18. The method of claim 16, further comprising:

plating each of the elongated contacts in the first and second portions of the plurality of elongated contacts.

19. The method of claim 16, further comprising:

forming a knuckle portion in each of the elongated contacts in the first and second portions of the plurality of elongated contacts.

20. The method of claim 16, further comprising:

stapling the first and second lead frames together after the first lead frame has been bent to move the first pair of elongated contacts closer to one another and the second lead frame has been bent to move the second pair of elongated contacts closer to one another.

21 . A circuit assembly for use with a plurality of outlet contacts, a sixth of the plurality of outlet contacts inducing crosstalk in a fifth of the plurality of outlet contacts, the sixth outlet contact and a third of the plurality of outlet contacts conducting a differential signal, the assembly comprising:

a flexible substrate having a first side opposite a second side;

a plurality of contacts positioned on the second side of the substrate, each of the plurality of contacts being configured to be physically connected to a different one of the plurality of outlet contacts; and

a plurality of electrically conductive traces formed on at least one of the first and second sides of the substrate, a third of the plurality of electrically conductive traces being connected to the third outlet contact, a fifth of the plurality of electrically conductive traces being connected to the fifth outlet contact, end portions of the third and fifth traces being positioned alongside one another such that the end portion of the third trace irradiates a crosstalk canceling signal to the end portion of the fifth trace. 22. The circuit assembly of claim 21 , where a capacitive coupling is distributed along the third and fifth traces that applies the crosstalk canceling signal to the fifth trace.

23. The circuit assembly of claim 22, where an inductance is distributed along the third and fifth traces that acts with the distributed capacitive coupling to resonate and reduce crosstalk.

24. The circuit assembly of claim 21 for use with the sixth outlet contact inducing crosstalk in a seventh of the plurality of outlet contacts, wherein a seventh of the plurality of electrically conductive traces being connected to the seventh outlet contact, an end portion of the seventh trace being positioned alongside at least a selected portion of the end portion of the third trace such that the end portion of the third trace irradiates a crosstalk canceling signal to the end portion of the seventh trace. 25. The circuit assembly of claim 24, where the selected portion of the end portion of the third trace is positioned between the end portions of the fifth and seventh traces.

26. The circuit assembly of claim 21 for use with the third outlet contact inducing crosstalk in a fourth of the plurality of outlet contacts, wherein a fourth of the plurality of electrically conductive traces is connected to the fourth outlet contact, end portions of the sixth and fourth traces being positioned alongside one another such that the end portion of the sixth trace irradiates a crosstalk canceling signal to the end portion of the fourth trace.

27. The circuit assembly of claim 26 for use with the third outlet contact inducing crosstalk in a second of the plurality of outlet contacts, wherein a second of the plurality of electrically conductive traces being connected to the second outlet contact, an end portion of the second trace being positioned alongside at least a selected portion of the end portion of the sixth trace such that the end portion of the sixth trace irradiates a crosstalk canceling signal to the end portion of the second trace.

28. A circuit assembly for use with a plurality of outlet contacts, a sixth of the plurality of outlet contacts inducing crosstalk in a fifth of the plurality of outlet contacts, a third of the plurality of outlet contacts inducing crosstalk in a fourth of the plurality of outlet contacts, and the sixth and third outlet contacts conducting a differential signal, the assembly comprising:

a flexible substrate having a first side opposite a second side; a plurality of contacts positioned on the second side of the substrate, each of the plurality of contacts being configured to be physically connected to a different one of the plurality of outlet contacts;

first, second, third, and fourth spaced apart capacitor plates each positioned on the first side of the flexible substrate;

a first trace connecting a sixth of the plurality of contacts with the first capacitor plate, the sixth contact being connected to the sixth outlet contact;

a second trace connecting the sixth contact with the fourth capacitor plate, the second trace being longer than the first trace such that a first signal received from the sixth contact is delayed and a phase of the first signal is shifted to produce a first crosstalk canceling signal configured to at least partially cancel crosstalk irradiated from the sixth outlet contact;

a third trace connecting a third of the plurality of contacts with the second capacitor plate, the third contact being connected to the third outlet contact;

a fourth trace connecting the third contact with the first capacitor plate, the fourth trace being longer than the third trace such that a second signal received from the third contact is delayed and a phase of the second signal is shifted to produce a second crosstalk canceling signal configured to at least partially cancel crosstalk irradiated from the third outlet contact;

seventh and eighth spaced apart capacitor plates each positioned on the second side of the flexible substrate, the seventh capacitor plate being

positioned opposite both the second and fourth capacitor plates and configured to capacitively couple therewith, the eighth capacitor plate being positioned opposite both the first and second capacitor plates and configured to capacitively couple therewith;

a seventh trace connecting a fifth of the plurality of contacts with the seventh capacitor plate, the fifth contact being connected to the fifth outlet contact; and

an eighth trace connecting a fourth of the plurality of contacts with the eighth capacitor plate, the fourth contact being connected to the fourth outlet contact.

29. The circuit assembly of claim 28 for use with the sixth outlet contact inducing crosstalk in a seventh of the plurality of outlet contacts, and the third outlet contact inducing crosstalk in a second of the plurality of outlet contacts, the circuit assembly further comprising:

fifth and sixth spaced apart capacitor plates each positioned on the second side of the flexible substrate, the fifth and sixth capacitor plates each being spaced apart from each of the seventh and eighth capacitor plates, the fifth capacitor plate being positioned opposite the second capacitor plate and configured to capacitively couple therewith, the eighth capacitor plate being positioned opposite the first capacitor plate and configured to capacitively couple therewith;

a fifth trace connecting a seventh of the plurality of contacts with the fifth capacitor plate, the seventh contact being connected to the seventh outlet contact; and

a sixth trace connecting a second of the plurality of contacts with the sixth capacitor plate, the second contact being connected to the second outlet contact.

Description:
COMMUNICATION CONNECTOR

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention is directed generally to communication outlets and methods for reducing crosstalk therein. Description of the Related Art

Figures 1A-1 C depict a conventional high-speed compensation circuit 12 formed on a flexible printed circuit board (PCB) 14 (see Figures 1 A and 1 C). The flexible PCB 14 has been omitted in Figure 1 B to provide a better view of the components of the compensation circuit 12. The compensation circuit 12 was developed for speeds above those specified for the Category 6a standard.

Referring to Figures 1A and 1 C, the flexible PCB 14 has a first side 15 (see Figure 1A) opposite a second side 16 (see Figure 1 C). Referring to Figures 1 B and 1 C, the compensation circuit 12 includes six electrically conductive pads P2-P7 configured to contact corresponding tines (or contacts) within a conventional communication outlet or jack constructed in accordance with the RJ-45 standard. The tines are conventionally numbered 1 -8 and arranged in four pairs. The first pair includes tines 4 and 5, the second pair includes tines 1 and 2, the third pair includes tines 3 and 6, and the fourth pair includes tines 7 and 8. Each pair conveys a differential signal. The pads P2-P7 are typically soldered to the tines 2-7,

respectively.

Referring to Figures 1A and 1 B, the compensation circuit 12 includes capacitor plates CP3 and CP6 formed on the first side 15 of the flexible PCB 14. The capacitor plates CP3 and CP6 are electrically connected to the pads P3 and P6, respectively. Referring to Figures 1 B and 1 C, the compensation circuit 12 includes capacitor plates CP2, CP4, CP5, and CP7 formed on the second side 16 of the flexible PCB 14. The capacitor plates CP2, CP4, CP5, and CP7 are electrically connected to the pads P2, P4, P5, and P7, respectively.

Referring to Figure 1 B, the capacitor plate CP3 is juxtaposed across the flexible PCB 14 (see Figures 1A and 1 C) with both the capacitor plates CP5 and CP7. The capacitor plate CP6 is juxtaposed across the flexible PCB 14 (see Figures

1A and 1 C) with both the capacitor plates CP2 and CP4.

The differential signal carried by the third (split) pair of tines (i.e., the tines 3 and 6) can be thought of as a sine wave that travels along and between the tines. In reality, the signal is much more complex, but mathematically, the signal can be broken down into a superimposed set of sine waves. Thus, wherever the potential is high on one of the tines of the split pair, the potential is low at a corresponding point on the other tine, and vice versa.

As the tines 3 and 6 of the third (split) pair carry the signal down their lengths, they also radiate a signal to neighboring tines. The radiated signal is noise (referred to as crosstalk) that obscures the signals that are propagating along the first pair of tines (tines 4 and 5), the second pair of tines (tines 1 and 2), and the fourth pair of tines (tines 7 and 8).

The compensation circuit 12 counteracts crosstalk, especially the crosstalk radiating from the third split pair. The tine 6 radiates its signal particularly strongly to neighboring tines 5 and 7. Inside the compensation circuit 12, some of the signal received by the pad P3 (which was received from the tine 3 and is opposite the signal conducted by the tine 6) is conducted to the capacitor plate CP3 juxtaposed with the capacitor plates CP5 and CP7, which are connected to the pads

P5 and P7 (and therefore, the tines 5 and 7), respectively. The electrical field of an electrical potential applied to the capacitor plate CP3 radiates across a gap between the capacitor plate CP3 and the capacitor plate CP5 and across a gap between the capacitor plate CP3 and the capacitor plate CP7. In this manner, cross talk from the tine 6 is counterbalanced or canceled by anti-crosstalk from the tine 3.

Similarly, the tine 3 radiates its signal particularly strongly to

neighboring tines 2 and 4. Inside the compensation circuit 12, some of the signal received by the pad P6 (which was received from the tine 6 and is opposite the signal conducted by the tine 3) is conducted to the capacitor plate CP6 juxtaposed with the capacitor plates CP2 and CP4, which are connected to the pads P2 and P4 (and therefore, the tines 2 and 4), respectively. The electrical field of an electrical potential applied to the capacitor plate CP6 radiates across a gap between the capacitor plate CP6 and the capacitor plate CP2 and across a gap between the capacitor plate CP6 and the capacitor plate CP4. In this manner, cross talk from the tine 3 is counterbalanced or canceled by anti-crosstalk from the tine 6.

Unfortunately, a capacitive structure like that of the compensation circuit 12 may look or function like a low impedance circuit to a high frequency signal. The impedance drops as the size of the capacitive plates CP2-CP7 increase, which increases insertion loss. Therefore, a need exists for communication outlets configured to conduct high speed signals that provide adequate crosstalk

compensation. Communication outlets with acceptable insertion loss are particularly desirable. The present application provides these and other advantages as will be apparent from the following detailed description and accompanying figures.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

Figure 1 A is a perspective view of a first side of a prior art high-speed compensation circuit formed on a flexible substrate.

Figure 1 B is a perspective view of the first side of the prior art highspeed compensation circuit omitting the flexible substrate.

Figure 1 C is a perspective view of a second side of the prior art highspeed compensation circuit of Figure 1A.

Figure 2 is a perspective view of a connection that includes a

communication outlet mated with a conventional RJ-45 type plug.

Figure 3 is an enlarged perspective view of a wire of a cable connected to the outlet of Figure 2.

Figure 4 is a perspective view of the front of the conventional RJ-45 type plug of Figure 2.

Figure 5 is a partially exploded perspective view of the outlet of Figure

2. Figure 6 is an exploded perspective view of a first embodiment of a subassembly of the outlet of Figure 2.

Figure 7 is a perspective view of an alternate embodiment of a communication outlet mated with the conventional RJ-45 type plug of Figure 4.

Figure 8 is a first perspective view of a second embodiment of a subassembly for use with an outlet.

Figure 9 is a second perspective view of the second embodiment of the subassembly.

Figure 10 is a first exploded perspective view of the second embodiment of the subassembly.

Figure 1 1 is a second exploded perspective view of the second embodiment of the subassembly.

Figure 12 is a perspective view of a plurality of outlet contacts of the second embodiment of the subassembly.

Figure 13 is a top view of a first portion of the outlet contacts of

Figure 12.

Figure 14 is a top view of a second portion of the outlet contacts of

Figure 12.

Figure 15 is a first perspective view of the outlet contacts and a dielectric comb of the second embodiment of the subassembly.

Figure 16 is a second perspective view of the outlet contacts and the dielectric comb of the second embodiment of the subassembly.

Figure 17A is a first exemplary alternate cross-sectional shape that may be used to construct taller or thicker portions of the outlet contacts of the second embodiment of the subassembly.

Figure 17B is a second exemplary alternate cross-sectional shape that may be used to construct taller or thicker portions of the outlet contacts of the second embodiment of the subassembly.

Figure 17C is a third exemplary alternate cross-sectional shape that may be used to construct taller or thicker portions of the outlet contacts of the second embodiment of the subassembly. Figure 17D is a fourth exemplary alternate cross-sectional shape that may be used to construct taller or thicker portions of the outlet contacts of the second embodiment of the subassembly.

Figure 17E is a fifth exemplary alternate cross-sectional shape that may be used to construct taller or thicker portions of the outlet contacts of the second embodiment of the subassembly.

Figure 17F is a sixth exemplary alternate cross-sectional shape that may be used to construct taller or thicker portions of the outlet contacts of the second embodiment of the subassembly.

Figure 18 is a first perspective view of a compensation circuit of the second embodiment of the subassembly showing first conductors.

Figure 19 is a second perspective view of the compensation circuit of the second embodiment of the subassembly showing second conductors.

Figure 20 is a perspective view of a substrate of the second embodiment of the subassembly.

Figure 21 is a first perspective view of a third embodiment of a subassembly for use with an outlet.

Figure 22 is a second perspective view of the third embodiment of the subassembly.

Figure 23 is a first exploded perspective view of the third embodiment of the subassembly.

Figure 24 is a second exploded perspective view of the third embodiment of the subassembly.

Figure 25 is an exploded perspective view of a plurality of outlet contacts, and a compensation circuit of the third embodiment of the subassembly.

Figure 26 is a top view of a first portion of the outlet contacts of

Figure 25.

Figure 27 is a top view of a second portion of the outlet contacts of

Figure 25.

Figure 28 is a flow diagram of a method of constructing the outlet contacts of Figure 25. Figure 29 is a top view of first and second lead frames used to construct the outlet contacts of Figure 25.

Figure 30 is a top view of the first and second lead frames of Figure 29 after an optional stamping or coining operation has been performed to define knuckle portions.

Figure 31 is a top view of the first and second lead frames of Figure 30 after a bending operation has been performed to define a plurality of fins.

Figure 32 is a top view of the first and second lead frames of Figure 31 after a bending operation has been performed on the first and second lead frames to move third and fifth outlet contacts of the first lead frame closer together, and to move fourth and sixth outlet contacts of the second lead frame closer together.

Figure 33 is a perspective view of the first and second lead frames of Figure 32 after one or more bending operations have been performed on the outlet contacts to define contours therein.

Figure 34 is a perspective view of the first and second lead frames of

Figure 33 stapled together.

Figure 35 is a perspective view of the outlet contacts and a dielectric comb of the third embodiment of the subassembly.

Figure 36 is a perspective view of the compensation circuit, the outlet contacts, and a dielectric comb of the third embodiment of the subassembly.

Figure 37 is a perspective view of a substrate of the third embodiment of the subassembly.

Figure 38 is a perspective view of a fourth embodiment of a subassembly for use with an outlet.

Figure 39 is an exploded perspective view of the fourth embodiment of the subassembly of Figure 38.

Figure 40 is a perspective view of a compensation circuit and outlet contacts of the fourth embodiment of the subassembly.

Figure 41 is a side view of the spring assembly, the compensation circuit, and the outlet contacts of the third embodiment of the subassembly. Figure 42 is a perspective view of a first side of a flexible substrate of the compensation circuit of Figure 40 including a first embodiment of compensation circuitry.

Figure 43 is the perspective view of Figure 42 omitting the flexible substrate.

Figure 44 is a perspective view of a second side of the flexible substrate of the compensation circuit of Figure 40 including the first embodiment of compensation circuitry.

Figure 45 is a perspective view of the first side of the flexible substrate of the compensation circuit of Figure 40 including a second embodiment of compensation circuitry.

Figure 46 is the perspective view of Figure 45 omitting the flexible substrate.

Figure 47 is a perspective view of the second side of the flexible substrate of the compensation circuit of Figure 40 including the second embodiment of compensation circuitry.

Figure 48 is a perspective view of the first side of the flexible substrate of the compensation circuit of Figure 40 including a third embodiment of

compensation circuitry.

Figure 49 is the perspective view of Figure 48 omitting the flexible substrate.

Figure 50 is a perspective view of the second side of the flexible substrate of the compensation circuit of Figure 40 including the third embodiment of compensation circuitry.

Figure 51 is a perspective view of the compensation circuit of Figure 40 attached to the outlet contacts of the first embodiment of the subassembly illustrated in Figure 6.

DETAILED DESCRIPTION OF THE INVENTION

Figure 2 is a perspective view of an assembly or connection 10 that includes a conventional RJ-45 type plug 100 mated with a communication outlet 120. For ease of illustration, the plug receiving side of the outlet 120 will be referred to as the front of the outlet 120. Similarly, the portion of the plug 100 inserted into the outlet 120 will be referred to as the front of the plug 100. The outlet 120 terminates a communication cable C1 and the plug 100 terminates a communication cable C2. Thus, the connection 10 connects the cables C1 and C2 together.

CABLES

The cables C1 and C2 may be substantially identical to one another. For the sake of brevity, only the structure of the cable C1 will be described in detail. The cable C1 includes a drain wire JDW and a plurality of wires JW1 -JW8. The wires JW1 -JW8 are arranged in four twisted-wire pairs (also known as "twisted pairs"). The first twisted pair includes the wires JW4 and JW5. The second twisted pair includes the wires JW1 and JW2. The third twisted pair includes the wires JW3 and JW6. The fourth twisted pair includes the wires JW7 and JW8.

Optionally, each of the twisted pairs may be housed inside a pair shield. In the embodiment illustrated, the first twisted pair (wires JW4 and JW5) is housed inside a first pair shield JPS1 , the second twisted pair (wires JW1 and JW2) is housed inside a second pair shield JPS2, the third twisted pair (wires JW3 and JW6) is housed inside a third pair shield JPS3, the fourth twisted pair (wires JW7 and JW8) is housed inside a fourth pair shield JPS4. For ease of illustration, the optional pair shields JPS1 -JPS4 have been omitted from the other figures.

The drain wire JDW, the wires JW1 -JW8, and the optional pair shields JPS1 -JPS4 are housed inside a cable shield 140J. The drain wire JDW, the wires JW1 -JW8, and the optional pair shields JPS1 -JPS4 are each constructed from one or more electrically conductive materials.

The drain wire JDW, the wires JW1 -JW8, the optional pair shields JPS1 -JPS4, and the cable shield 140J are housed inside a protective outer cable sheath or jacket 180J typically constructed from an electrically insulating material.

Optionally, the cable C1 may lack a shield altogether or include additional conventional cable components (not shown) such as additional shielding, dividers, and the like. Turning to Figure 3, each of the wires JW1 -JW8 (see Figure 2) is substantially identical to one another. For the sake of brevity, only the structure of the wire JW1 will be described. As is appreciated by those of ordinary skill in the art, the wire JW1 as well as the wires JW2-JW8 each includes an electrical

conductor 142 (e.g., a conventional copper wire) surrounded by an outer layer of insulation 144 (e.g., a conventional insulating flexible plastic jacket).

Returning to Figure 2, each of the twisted pairs serves as a conductor of a differential signaling pair wherein signals are transmitted thereupon and expressed as voltage and/or current differences between the wires of the twisted pair. A twisted pair can be susceptible to electromagnetic sources including another nearby cable of similar construction. Signals received by the twisted pair from such electromagnetic sources external to the cable's jacket (e.g., the jacket 180J) are referred to as alien crosstalk. The twisted pair can also receive signals from one or more wires of the three other twisted pairs within the cable's jacket, which is referred to as "local crosstalk" or "internal crosstalk."

As mentioned above, the cables C1 and C2 may be substantially identical to one another. In the embodiment illustrated, the cable C2 includes a drain wire PDW, wires PW1 -PW8, optional pair shields PPS1 -PPS4, a cable shield 140P, and a cable jacket 180P that are substantially identical to the drain wire JDW, the wires JW1 -JW8, the optional pair shields JPS1 -JPS4, the cable shield 140J, and the cable jacket 180J, respectively, of the cable C1 .

PLUG

Figure 4 is a perspective view of the plug 100 separated from the outlet 120 (see Figure 2). The plug 100 may be inserted into the outlet 120 to form the connection 10 depicted in Figure 2.

As mentioned above, the plug 100 is a conventional RJ-45 type plug. Thus, referring to Figure 4, the plug 100 includes a plug housing 150. The

housing 150 may be constructed of a conductive material (e.g., metal). In such embodiments, referring to Figure 2, the drain wire PDW, the cable shield 140P, and/or optional pair shields PPS1 -PPS4 may contact the housing 150 and form an electrical connection therewith.

Referring to Figure 4, the plug housing 150 is configured to house plug contacts P1 -P8. Each of the plug contacts P1 -P8 is constructed from an electrically conductive material. Referring to Figure 2, inside the plug 100, the plug contacts Pi pe (see Figure 4) are electrically connected to the wires PW1 -PW8, respectively, of the cable C2.

Referring to Figure 4, the housing 150 has a forward portion 152 configured to be received by the outlet 120 (see Figure 2), and the forward

portion 152 has a forward facing portion 154. Openings 171 -178 are formed in the forward portion 152 of the plug housing 150. The plug contacts P1 -P8 are

positioned adjacent the openings 171 -178, respectively. Referring to Figure 2, when the plug 100 is received by the outlet 120 to form the connection 10, outlet contacts J1 -J8 (see Figure 6) in the outlet 120 extend into the openings 171 -178 (see Figure 4), respectively, and contact the plug contacts P1 -P8 (see Figure 4), respectively. In the connection 10, the contacts P1 -P8 (see Figure 4) form physical and electrical connections with the outlet contacts J1 -J8 (see Figure 6), respectively, of the outlet 120.

Referring to Figures 2, 4, and 7, a conventional latch arm 160 is attached to the housing 150. Referring to Figure 4, a portion 162 of the latch arm 160 extends onto the forward facing portion 154. The portion 162 extends forwardly from the forward facing portion 154 away from the housing 150.

OUTLET

Referring to Figure 2, in the embodiment illustrated, the outlet 120 is constructed to comply with the RJ-45 standard. The structures of the outlet 120 are described in detail in U.S. Patent Application No. 14/685,379, filed on 4/13/2015, which is incorporated here by reference in its entirety.

Figure 5 is exploded perspective view of the outlet 120 and is identical to Figure 8 of U.S. Patent Application No. 14/685,379. Referring to Figure 5, the outlet 120 includes a face plate 310, a locking shutter subassembly 320, a housing 330, one or more ground springs 340A and 340B, a plurality of resilient tines or outlet contacts 342 (e.g., the outlet contacts J1 -J8 depicted in Figure 6), an optional spring assembly 350, a contact positioning member 352, a substrate 354 (depicted as a printed circuit board), an optional clip or latch member 356, a plurality of wire contacts 360 (e.g., wire contacts 361 -368 illustrated in Figure 6), a guide sleeve 370, a wire manager 380, and housing doors 390 and 392. Together the outlet contacts 342, the optional spring assembly 350, the contact positioning member 352, the substrate 354, and the wire contacts 360, may be characterizing as forming a first embodiment of a subassembly 358 configured for use with the other components of the outlet 120.

Referring to Figure 6, depending upon the implementation details, the subassembly 358 may include an optional flexible printed circuit board ("PCB") 530 having crosstalk attenuating or cancelling circuits formed thereon configured to provide crosstalk compensation. The flexible PCB 530 may include contacts 533, 534, 535, and 536 configured to be connected (e.g., soldered) to the centermost outlet contacts J3, J4, J5, and J6, respectively.

While illustrated for use with the outlet 120, the subassembly 358 may be used with other outlets constructed to comply with the RJ-45 standard. For example, referring to Figure 7, the subassembly 358 may be incorporated into a conventional RJ-45 type outlet 170 that includes a carrier or terminal block 172 connected to a conventional outlet housing 174. Like the outlet 120, the outlet 170 may be used to terminate the communication cable C1 (see Figure 2) and form a communication connection (like the connection 10 depicted in Figure 2) with the plug 100. As shown in Figure 7, the outlet contacts 342 are positioned inside and accessible through an opening 176 in the outlet housing 174, and the wire

contacts 360 are positioned inside and accessible through the terminal block 172. As is apparent to those of ordinary skill in the art, the optional spring assembly 350 (see Figures 5 and 6) and the contact positioning member 352 (see Figures 5 and 6) are positioned inside the outlet housing 174 and the substrate 354 (see Figures 5 and 6) is positioned at or near the location where the terminal block 172 is connected to the outlet housing 174. The outlet 120 and the outlet 170 may each be implemented as a Category 8, RJ-45 style outlet, jack, or port. Further, the outlet 120 and the outlet 170 may each be implemented as a lower category outlet, such as a Category 6a outlet, a Category 6 outlet, a Category 5e outlet, and the like.

ALTERNATE EMBODIMENT

Referring to Figures 8-1 1 , a subassembly 1002 may be used instead of and in place of the subassembly 358 to construct the outlet 120 (see Figures 2 and 5), the outlet 170, and/or other outlets that comply with the RJ-45 standard.

Referring to Figures 10 and 1 1 , the subassembly 1002 includes a dielectric comb 1004, a plurality of outlet contacts 1010, a compensation circuit 1020, the optional spring assembly 350, the contact positioning member 352, a

substrate 1030, and the wire contacts 360. OUTLET CONTACTS

Referring to Figure 12, in the embodiment illustrated, the outlet contacts 1010 include the eight individual outlet contacts 101 1 -1018 that correspond to the eight plug contacts P1 -P8 (see Figure 4), respectively. However, through application of ordinary skill in the art to the present teachings, embodiments including different numbers of outlet contacts (e.g., 4, 6, 10, 12, 16, etc.) may be constructed for use with plugs having different numbers of plug contacts.

Figure 13 is a top view of the outlet contacts 101 1 , 1012, 1014, 1015, 1017, and 1018. Figure 14 is a top view of the outlet contacts 101 1 , 1012, 1013, 1016, 1017, and 1018. Referring to Figure 12, each of the outlet contacts 101 1 -1018 has a first end portion 1040 configured to be connected to the substrate 1030 (see Figures 10 and 1 1 ), and a second free end portion 1042 opposite the first end portion 1040. The second free end portions 1042 are arranged to contact the plug contacts P1 -P8 (see Figure 4), respectively, of the plug 100 (see Figure 4).

Referring to Figure 12, each of the outlet contacts 101 1 -1018 has a knuckle portion 1044 between the first end portion 1040 and the second free end portion 1042. The spring assembly 350 (see Figures 10 and 1 1 ) presses on the knuckle portions 1044 of the outlet contacts 1010. The plug contacts P1 -P8 (see Figure 4) contact the outlet contacts 101 1 -1018, respectively, at or near their knuckle portions 1044. Thus, a portion of each of the outlet contacts 101 1 -1018 between the second free end portion 1042 and the knuckle portion 1044 may be characterized as being a non-current carrying portion. Similarly, a portion of each of the outlet contacts 101 1 -1018 between the knuckle portion 1044 and the first end portion 1040 may be characterized as being a current carrying portion.

To achieve a desired (e.g., 100-Ohm) impedance, outlet contacts (such as the outlet contacts 342 depicted in Figures 5-7) must either be quite close together or very tall. Unfortunately, outlet contacts become stiffer as they get thicker (or taller). The outlet contacts 1010 are configured to achieve both a desired (e.g., 100-Ohm) impedance and a desired amount of flexibility. Each of the outlet contacts 101 1 -1018 has at least one thicker (or taller) portion 1050 (referred to hereafter as a fin 1050). Thus, at locations other than the fins 1050, the outlet contacts 101 1 -1018 may be thinner and more flexible. This configuration achieves the necessary thickness while at the same time achieving the desired flexibility.

By way of a non-limiting example, the outlet contacts 1010 may be formed from a sheet material (e.g., sheet metal) having a uniform thickness of about 0.20 millimeters. The fins 1050 may be formed by bending a portion of the sheet material upwardly. Thus, the fins 1050 are taller than other portions of the outlet contacts 1010. In this example, at the fins 1050, the outlet contacts 1010 may each have a height of about 0.75 millimeters.

Like the wires JW1 -JW8 (see Figure 2), the outlet contacts 101 1 -1018 electrically connected to the wires JW1 -JW8, respectively, may be described as being organized into differential signaling (or transmission) pairs. Referring to Figure 13, a first outlet contact pair OCP-1 includes the outlet contacts 1014 and 1015. A second outlet contact pair OCP-2 includes the outlet contacts 101 1 and 1012.

Referring to Figure 14, a third (split) outlet contact pair OCP-3 includes the outlet contacts 1013 and 1016. Referring to Figures 13 and 14, a fourth outlet contact pair OCP-4 includes the outlet contacts 1017 and 1018. Each of the outlet contact pairs OCP-1 to OCP-4 may be transmission-optimized with carefully controlled impedance all the way from the outlet contacts 1010 to the wire contacts 360 (see Figures 10 and 1 1 ).

Referring to Figure 13, the outlet contacts 1014 and 1015 (of the first outlet contact pair OCP-1 ) are configured to position the fin 1050 of the outlet contact 1014 alongside the fin 1050 of the outlet contact 1015. The fin 1050 of the outlet contact 1014 is spaced apart from and does not touch the fin 1050 of the outlet contact 1015 to inductively and/or capacitively couple together the outlet

contacts 1014 and 1015 of the first outlet contact pair OCP-1 .

Referring to Figures 13 and 14, the outlet contacts 101 1 and 1012 (of the second outlet contact pair OCP-2) are configured to position the fin 1050 of the outlet contact 101 1 alongside the fin 1050 of the outlet contact 1012. The fin 1050 of the outlet contact 101 1 is spaced apart from and does not touch the fin 1050 of the outlet contact 1012 to inductively and/or capacitively couple together the outlet contacts 101 1 and 1012 of the second outlet contact pair OCP-2.

Referring to Figure 14, the outlet contacts 1013 and 1016 (of the third outlet contact pair OCP-3) are configured to position the fin 1050 of the outlet contact 1013 alongside the fin 1050 of the outlet contact 1016. The fin 1050 of the outlet contact 1013 is spaced apart from and does not touch the fin 1050 of the outlet contact 1016 to inductively and/or capacitively couple together the outlet

contacts 1013 and 1016 of the third outlet contact pair OCP-3.

Referring to Figures 13 and 14, the outlet contacts 1017 and 1018 (of the fourth outlet contact pair OCP-4) are configured to position the fin 1050 of the outlet contact 1017 alongside the fin 1050 of the outlet contact 1018. The fin 1050 of the outlet contact 1017 is spaced apart from and does not touch the fin 1050 of the outlet contact 1018 to inductively and/or capacitively couple together the outlet contacts 1017 and 1018 of the fourth outlet contact pair OCP-4.

In the embodiment illustrated in Figures 13-16, the fins 1050 of the first, second, third, and fourth outlet contact pairs OCP-1 to OCP-4 are aligned along the same vertical plane. Further, the fins 1050 of the outlet contacts of the first, second, and fourth outlet contact pairs OCP-1 , OCP-2, and OCP-4 are aligned along the same horizontal plane. However, as may be viewed in Figures 15 and 16, the fins 1050 of the outlet contacts 1013 and 1016 (of the third outlet contact pair OCP- 3) are position above the fins 1050 of the outlet contacts 1014 and 1015 (of the first outlet contact pair OCP-1 ), respectively.

The impedance of each of the outlet contact pairs OCP-1 to OCP-4 may be configured for high speed transmission (e.g., 40Gb/s, Category 8 Ethernet). By way of a non-limiting example, each of the outlet contact pairs OCP-1 to OCP-4 may transmit a wide-bandwidth signal (e.g., 2 GHz) carrying data encoded in amplitude. The reception of signals from other outlet contact pairs (crosstalk) would degrade that signal and make it harder to recover data encoded in the signal. The inductive and/or capacitive coupling between the outlet contacts of each of the outlet contact pairs OCP-1 to OCP-4 helps reduce such crosstalk within an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) that includes the outlet contacts 1010.

Further, as may be seen in Figures 13-16, the outlet contact pairs

OCP-1 to OCP-4 are spaced farther apart from one another than in a conventional RJ-45 type connector. The spacing of the outlet contact pairs OCP-1 to OCP-4 within an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) that includes the outlet contacts 1010 concentrates electronic fields (Έ- fields") between the pairs to reduce E-field coupling between different pairs.

Crosstalk between the outlet contact pairs OCP-1 to OCP-4 falls off rapidly as they are moved farther apart. By way of a non-limiting example, at the location of the fins 1050, the outlet contact pair OCP-2 may be spaced a minimum distance of about 2.0 millimeters away from the outlet contact pair OCP-1 . Similarly, at the location of the fins 1050, the outlet contact pair OCP-1 may be spaced a minimum distance of about 2.0 millimeters away from the outlet contact pair OCP-4. Continuing this example, at the location of the fins 1050, the outlet contact pairs OCP-2 and OPC-4 may each be spaced a minimum distance of about 3.0 millimeters away from the outlet contact pair OCP-3. Further, at the location of the fins 1050, the outlet contact pair OCP-1 may be spaced a minimum vertical distance of about 1 .0 millimeters away from the outlet contact pair OCP-3.

In contrast to existing high speed connector technology (e.g. ARJ connectors and conventional RJ-45 type connectors), connectors that include the outlet contacts 1010, spacing (or distance) between the outlet contact pairs OCP-1 to OCP-4 reduces and/or eliminates pair-to-pair crosstalk of the type that occurs in prior art high speed connectors. Thus, an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets

constructed to comply with the RJ-45 standard) that includes the outlet

contacts 1010 does not need complex shielding. Instead, each of the outlet contact pairs OCP-1 to OCP-4 is spaced farther away from every other pair.

In embodiments in which the outlet contacts 1010 are formed from a sheet material, such as a sheet metal, the fins 1050 may be formed by bending a portion of each of the outlet contacts 1010 substantially orthogonally to a plane along which the plug contacts P1 -P8 (see Figure 4) are aligned.

At their fins 1050, each of the outlet contacts 101 1 -1018 has a generally L-shaped cross-sectional shape. However, at their thicker (or taller) portions 1050, the outlet contacts 1010 may have other shapes. For example, Figures 17A-17F depict alternate cross-sectional shapes that may be used to construct the taller or thicker portions 1050 of the outlet contacts 1010. For example, referring to Figures 17A and 17B, at their thicker (or taller) portions 1050, the outlet contacts 1010 may each have a generally square or rectangular cross-sectional shape. By way of other non-limiting examples, as shown in Figures 17C-17F, at their thicker (or taller) portions 1050, the outlet contacts 1010 may each have a generally U-shaped or V-shaped cross-sectional shape.

DIELECTRIC COMB

Referring to Figures 15 and 16, the dielectric comb 1004 is configured to enhance electrical interaction, and allow the spacing between the outlet contact pairs OCP-1 to OCP-4 to be larger than it would otherwise need to be to achieve the same electrical characteristics. The dielectric comb 1004 may also help control the spacing between the outlet contacts of each of the outlet contact pairs OCP-1 to OCP-4. For example, the dielectric comb 1004 may be configured such that the outlet contacts of each of the outlet contact pairs OCP-1 to OCP-4 may be only about 0.5 millimeters or less apart. The dielectric comb 1004 may help increase impedance without requiring that the outlet contacts 101 1 -1018 be overly tall. In addition, the dielectric comb 1004 may help resist high potential ("Hi-Pot") over- voltage arcing.

Referring to Figure 15, the dielectric comb 1004 has a body portion 1060 from which dielectric members 1062, 1064, and 1066 extend outwardly toward the outlet contacts 1010. The dielectric member 1062 extends between the fins 1050 of the outlet contacts 101 1 and 1012 of the second outlet contact pair OCP-2. In the embodiment illustrated, the dielectric member 1062 extends from a first location at or near the substrate 1030 to a second location nearer the knuckle portions 1044 of the outlet contacts 101 1 and 1012. Thus, the dielectric member 1062 extends along at least a portion of the current carrying portions of the outlet contacts 101 1 and 1012. In the embodiment illustrated, the dielectric member 1062 extends along about one quarter of the length of the outlet contacts 101 1 and 1012.

The dielectric member 1066 extends between the fins 1050 of the outlet contacts 1017 and 1018 of the fourth outlet contact pair OCP-4. In the embodiment illustrated, the dielectric member 1066 extends from a first location at or near the substrate 1030 to a second location nearer the knuckle portions 1044 of the outlet contacts 1017 and 1018. Thus, the dielectric member 1066 extends along at least a portion of the current carrying portions of the outlet contacts 1017 and 1018. In the embodiment illustrated, the dielectric member 1066 extends along about one quarter of the length of the outlet contacts 1017 and 1018.

The dielectric member 1064 extends between the fins 1050 of the outlet contacts 1013 and 1016 of the third outlet contact pair OCP-3. The dielectric member 1064 also extends between the fins 1050 of the outlet contacts 1014 and 1015 of the first outlet contact pair OCP-1 . In the embodiment illustrated, the dielectric member 1064 extends from a first location at or near the substrate 1030 to a second location nearer the knuckle portions 1044 of the outlet contacts 1013-1016. Thus, the dielectric member 1064 extends along at least a portion of the current carrying portions of the outlet contacts 1013-1016. In the embodiment illustrated, the dielectric member 1064 extends along about one quarter of the length of the outlet contacts 1013-1016. The dielectric members 1062 and 1066 may extend further along the outlet contacts 1010 than the dielectric member 1064. However, this is not a requirement.

The dielectric comb 1004 may help achieve the desired impedance, without increasing unwanted crosstalk. As explained above, the outlet contacts 1010 and the dielectric members 1062, 1064, and 1066 of the dielectric comb 1004 are interleaved such that dielectric material is positioned between the outlet contacts of each of the outlet contact pairs OCP-1 to OCP-4. This enhances the inductive and/or capacitive coupling between the outlet contacts of the outlet contact pairs OCP-1 to OCP-4 where such coupling is desired, but does not enhance coupling between different outlet contact pairs. For example, the dielectric members 1062, 1064, and 1066 may increase the dielectric constant between the outlet contacts of each of the outlet contact pairs OCP-1 to OCP-4. This may provide improved high voltage protection.

As explained above, the dielectric members 1062, 1064, and 1066 help determine a minimum spacing between the outlet contacts of the outlet contact pairs OCP-1 to OCP-4. By way of a non-limiting example, the dielectric members 1062, 1064, and 1066 may have a thickness of about 0.5 millimeters or less.

In the embodiment illustrated, each of the dielectric members 1062, 1064, and 1066 is generally planar. Each of the dielectric members 1062, 1064, and 1066 has a distal free end portion 1068 with a lower edge 1069. Referring to Figure 9, the lower edge 1069 extends toward the substrate 1030 alongside the outlet contacts 1010 and may be tapered downwardly toward the substrate 1030.

Referring to Figure 1 1 , the dielectric member 1064 may have a tapered rear edge 1070 that tapers outwardly from the distal free end portion 1068 of the dielectric member 1064 toward the body portion 1060.

Referring to Figure 1 1 , one or more spacing portions 1072 may extend from the body portion 1060 toward the substrate 1030. Each of the spacing portions 1072 may be configured to abut the substrate 1030 to space the dielectric members 1062, 1064, and 1066 away from the substrate 1030.

In addition to helping to limit the required thickness of the outlet contacts 1010, the dielectric comb 1004 also serves to physically hold the outlet contacts 1010 in position horizontally with respect to one another. The outlet contacts 1010 may rub against the dielectric comb 1004. However, force from the plug 100 (see Figures 2, 4, and 7) positioned immediately in front of the dielectric comb 1004 and/or the optional spring assembly 350 will overcome any friction between the outlet contacts 1010 and the dielectric comb 1004 and push the outlet contacts 1010 back into their proper positions.

Referring to Figure 10, one or more projections or mounting pegs 1074A and 1074B extend outwardly from the body portion 1060 of the dielectric comb 1004 toward the substrate 1030. The body portion 1060 of the dielectric comb 1004 is positioned between the spring assembly 350 and the outlet

contacts 1010. Optionally, the body portion 1060 may abut the spring assembly 350. However, as may be viewed in Figure 15, the body portion 1060 is spaced from the outlet contacts 1010 so that they may move (or deflect) with respect to the body portion 1060. In the embodiment illustrated in Figure 16, the body portion 1060 has an optional upwardly projecting portion 1075 configured to abut the spring assembly 350. However, this is not a requirement.

All of the outlet contacts 1010 bend upwardly toward the body portion 1060 of the dielectric comb 1004 when the plug 100 (see Figures 2, 4, and 7) is inserted into an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) including the subassembly 1002 (see Figures 8-1 1 ). The outlet

contacts 1010 are somewhat springy, and push against the plug 100 for a reliable electrical connection. However, a RJ-1 1 type plug (not shown), commonly referred to as a telephone plug, has a slightly different size. If a RJ-1 1 type plug is plugged into an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) including the subassembly 1002 (see Figures 8-1 1 ), the outermost outlet contacts 101 1 and 1018 deflect upwardly more than twice the normal amount. The dielectric comb 1004 may be configured to allow the outermost outlet contacts 101 1 and 1018 to deflect in this manner without encountering a physical limitation or obstruction. For example, as shown in Figure 16, the outlet contacts 101 1 and 1018 are positioned outside the dielectric comb 1004 and can deflect upwardly without encountering the body portion 1060.

The dielectric comb 1004 may be constructed from plastic (e.g., Ultem, Polycarbonate, acrylonitrile butadiene styrene ("ABS") with a relative dielectric constant of about 2.0 to about 3.15. or the like) for ease of adding mounting features and minimizing friction. The dielectric comb 1004 may be constructed from high dielectric constant materials, such as alumina (with a relative dielectric constant of about 9.6 to about 10.0) to allow the outlet contacts 1010 to be shorter or further apart.

Referring to Figures 10 and 1 1 , the dielectric comb 1004 may be inserted and mounted to the substrate 1030 after the outlet contacts 1010 have been soldered to the substrate 1030. However, through application of ordinary skill in the art to the present teachings, other configurations of the dielectric comb 1004 may be constructed for use with other outlet architectures. For example, the dielectric comb 1004 may be interleaved with the outlet contacts 101 1 -1018 from below (as opposed to being interleaved from above as shown in Figures 9, 15, and 16). By way of another non-limiting example, dielectric members (not shown) of the dielectric comb 1004 could be inserted between adjacent ones of the outlet contact

pairs OCP-1 to OCP-4. In such embodiments, the dielectric members may be shorter and thinner than the dielectric members 1062, 1064, and 1066.

By way of yet another non-limiting example, the dielectric comb 1004 may be unattached from the substrate 1030. In such embodiments, the dielectric comb 1004 may be characterized as "floating." Floating embodiments of the dielectric comb 1004 may have shorter (and potentially thinner) dielectric members than non-floating embodiments. Because the floating dielectric comb floats, it follows the outlet contacts 1010 even when they are deflected greatly. In alternate embodiments, the dielectric comb 1004 and the spring assembly 350 (see Figures 8-1 1 ) may be combined into a single component (not shown). COMPENSATION CIRCUIT

Referring to Figure 9, the compensation circuit 1020 is substantially planar and positioned between the knuckle portions 1044 (see Figure 12) and the first end portions 1040 (see Figure 12) of the outlet contacts 1010. Thus, the compensation circuit 1020 is positioned along the current carrying portion of at least a portion of the outlet contacts 1010.

Referring to Figures 18 and 19, the compensation circuit 1020 includes a first contact pad 1081 electrically connected (e.g., soldered) to the outlet contact 1013 (see Figure 9) and a second contact pad 1082 electrically connected (e.g., soldered) to the outlet contact 1016 (see Figure 9). The compensation circuit 1020 is configured to provide crosstalk compensation for the third outlet contact pair OCP- 3 (see Figures 14-16). In the embodiment illustrated, the first and second contact pads 1081 and 1082 are connected to the outlet contacts 1013 and 1016 (see Figure 9), respectively, between their knuckle portions 1044 (see Figure 12) and their fins 1050 (see Figure 12).

Referring to Figure 18, the compensation circuit 1020 includes one or more first conductors 1083 (e.g., traces) connected to the first contact pad 1081 . The first conductors 1083 extend alongside the outlet contacts 1014 and 1015 of the first outlet contact pair OCP-1 (see Figures 14-16), and near the outlet contact 1017 of the fourth outlet contact pair OCP-4 (see Figures 13-16).

Referring to Figure 19, the compensation circuit 1020 includes one or more second conductors 1084 (e.g., traces) connected to the second contact pad 1082. The second conductors 1084 extend alongside the outlet contacts 1014 and 1015 of the first outlet contact pair OCP-1 (see Figures 13, 15, and 16), and near the outlet contact 1012 of the second outlet contact pair OCP-2 (see Figures 13-16). Referring to Figures 18 and 19, as is apparent to those of ordinary skill in the art, the first and second conductors 1083 and 1084 are physically disconnected from one another.

In the embodiments illustrated, the compensation circuit 1020 is patterned on a flexible substrate 1086 to form a "flex circuit." This flex circuit may be mechanically much simpler (and slightly smaller) than traditional outlet compensation circuits. As is apparent to those of ordinary skill in the art, the first and second conductors 1083 and 1084 may be positioned on different layers of the flexible substrate 1086.

Referring to Figure 9, the compensation circuit 1020 is configured to fit in between the dielectric members 1062 and 1066 of the dielectric comb 1004.

Referring to Figures 18 and 19, the flexible substrate 1086 includes a through-hole or slot 1088 configured to allow the dielectric member 1064 (see Figure 9) of the dielectric comb 1004 to pass therethrough. Thus, the compensation circuit 1020 may be configured to be self-aligning with respect to the outlet contacts 101 1 -1018.

The second free end portions 1042 (see Figure 12) of the outlet contacts 1010 experience the most deflection when the plug 100 (see Figures 2, 4, and 7) is inserted into an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) that includes the outlet contacts 1010. However, the plug contacts P1 -P8 (see Figure 4) press on the outlet contacts 1010 at a location near the knuckle portions 1044 (see Figures 12-14), which is where the spring assembly 350 presses on the outlet contacts 1010. The plug contacts P1 -P8 (see Figure 4) and the spring assembly 350 press on the outlet contacts 1010 in opposite directions. Thus, the spring assembly 350 helps provide contact force in that area. The flexible substrate 1086 is attached to the outlet contacts 1013 and 1016 at location behind where the plug contacts P1 -P8 (see Figure 4) contact the outlet contacts 1010 to improve and/or optimize compensation performance. The flexible substrate 1086 does not experience significant deflection because the flexible substrate 1086 is attached to the outlet contacts 1013 and 1016 at location near where the spring assembly 350 presses on the outlet contacts 1010 to limit deflection. SUBSTRATE

Referring to Figures 10 and 1 1 , the substrate 1030 has a first forwardly facing side 1 100 opposite a second rearwardly facing side 1 102. The

substrate 1030 includes apertures 1 104A and 1 104B substantially identical to the apertures 522A and 522B (see Figure 6), respectively, and apertures 1 106A and 1 106B substantially identical to the apertures 552A and 552B (see Figure 6), respectively. Referring to Figure 10, the substrate 1030 may include apertures 1 108A and 1 108B configured to receive the mounting pegs 1074A and 1074B, respectively, of the dielectric comb 1004. The apertures 1 104A, 1 104B, 1 106A, 1 106B, 1 108A, and 1 108B are formed in the forwardly facing side 1 100. In the embodiment illustrated, the apertures 1 104A, 1 104B, 1 106A, 1 106B, 1 108A, and 1 108B have been implemented as through-holes. However, this is not a

requirement.

As mentioned above, each of the outlet contact pairs OCP-1 to OCP-4 may be transmission-optimized from their second free end portions 1042 all the way back to the substrate 1030. Referring to Figure 20, the substrate 1030 includes at least one conductor (e.g., trace) connecting the outlet contacts 101 1 -1018 to the wire contacts 361 -368 (see Figure 10), respectively. In the example illustrated in Figure 20, traces 1 1 1 1 -1 1 18 connect the outlet contacts 101 1 -1018 (see Figures 12, 15, and 16), respectively, to the wire contacts 361 -368 (see Figure 10), respectively. Thus, in this embodiment, the traces 1 1 14 and 1 1 15 form a first trace pair, the traces 1 1 1 1 and 1 1 12 form a second trace pair, the traces 1 1 13 and 1 1 16 form a third trace pair, and the traces 1 1 17 and 1 1 18 form a fourth trace pair. Each of the trace pairs may be transmission-optimized with carefully controlled impedance all the way from the outlet contacts 1010 to the wire contacts 360. The traces 1 1 1 1 -1 1 18 may be formed on one or both of the first and second side 1 100 and 1 102 of the

substrate 1030.

The substrate 1030 includes apertures 1 121 -1 128 (e.g., plated through-holes) configured to receive the first end portions 1040 of the outlet contacts 101 1 -1018 (see Figures 12, 15, and 16), respectively, and electrically connect the outlet contacts 101 1 -1018 to the traces 1 1 1 1 -1 1 18, respectively. The apertures 1 121 -1 128 may be spaced apart from one another by substantially more than similar openings are spaced apart in a conventional RJ-type outlet. Such relatively wide spacing allows compensation circuitry to be placed in between at least some of the apertures 1 121 -1 128. For example, capacitive compensation circuitry may be placed between the apertures 1 123 and 1 125 and between the apertures 1 124-1 126.

The substrate 1030 also includes apertures 1 131 -1 138 (e.g., plated through-holes) configured to receive each of the wire contacts 361 -368 (see Figure 10), respectively, and electrically connect the wire contacts 361 -368 to the traces 1 1 1 1 -1 1 18, respectively.

In the embodiment illustrated, the first end portions 1040 of the outlet contacts 101 1 -1018 may be pressed into the apertures 1 121 -1 128, respectively, from the first forwardly facing side 1 100 of the substrate 1030 and the wire

contacts 361 -368 may be pressed into the apertures 1 131 -1 138, respectively, in the substrate 1030 from the second rearwardly facing side 1 102 of the substrate 1030. Thus, as shown in Figures 8 and 9, the outlet contacts 101 1 -1018 and the wire contacts 361 -368 extend away from the substrate 1030 in opposite directions. The outlet contacts 101 1 -1018 may be subsequently soldered into place, if desired.

SPRING ASSEMBLY

The optional spring assembly 350 helps position the outlet contacts 101 1 -1018 to contact the plug contacts P1 -P8 (see Figure 4), respectively, when the plug 100 (see Figure 4) is inserted into the outlet 120. While described as being an assembly, the spring assembly 350 may be implemented as a single unitary body. Exemplary suitable structures for implementing the optional spring assembly 350 are described in U.S. Patent Nos. 6,641 ,443, 6,786,776, 7,857,667, and 8,425,255. Further, Leviton Manufacturing Co., Inc. manufactures and sells communication outlets incorporating Retention Force Technology ("RFT") suitable for implementing the spring assembly 350. The spring assembly 350 biases the outlet contacts 101 1 -1018 against the contact positioning member 352. In the embodiment illustrated, the spring assembly 350 is configured to at least partially nest inside the contact positioning member 352. However, this is not a requirement. The spring assembly 350 may be constructed from a dielectric or non-conductive material (e.g., plastic).

The spring assembly 350 may be mounted to the substrate 1030 in a position adjacent the outlet contacts 101 1 -1018. In the embodiment illustrated, the spring assembly 350 has a pair of protrusions 520A and 520B configured to be inserted into apertures 1 104A and 1 104B, respectively, of the substrate 1030.

CONTACT POSITIONING MEMBER

Referring to Figures 10 and 1 1 , the contact positioning member 352 may be mounted to the substrate 1030 in a position adjacent the outlet

contacts 101 1 -1018 and the spring assembly 350. In the embodiment illustrated, the contact positioning member 352 has a pair of protrusions 550A and 550B configured to be inserted into the apertures 1 106A and 1 106B, respectively, respectively, in the substrate 1030.

Referring to Figure 6, in the embodiment illustrated, the contact positioning member 352 includes a front portion 580 with a transverse member 560. The transverse member 560 includes a plurality of upwardly extending dividers D1 - D7 configured to fit between adjacent ones of the outlet contacts 101 1 -1018 (see Figures 10 and 1 1 ) and help maintain the lateral positioning and/or spacing of the outlet contacts 101 1 -1018 and their electrical isolation from one another. Referring to Figures 10 and 1 1 , the spring assembly 350 biases the outlet contacts 101 1 -1018 against the transverse member 560 (see Figure 6) of the contact positioning member 352.

The contact positioning member 352 is constructed from a dielectric or non-conductive material (e.g., plastic). WIRE CONTACTS

As may be viewed in Figure 10, the wire contacts 360 may include the eight wire contacts 361 -368. As mentioned above, the wire contacts 361 -368 are connected to the outlet contacts 101 1 -1018 (see Figure 12), respectively, by the traces (not shown) formed on one or both of the first and second sides 1 100 and 1 102 of the substrate 1030. Thus, the wire contacts 361 -368 may be characterized as corresponding to the outlet contacts 101 1 -1018, respectively. Similarly, the wire contacts 361 -368 may be characterized as corresponding to the wires JW1 -JW8 (see Figure 2), respectively, of the cable C1 (see Figure 2). Each of the wire contacts 361 -368 may be implemented as an insulation displacement connector ("IDC"). However, this is not a requirement. In the embodiment illustrated, the wire contacts 361 -368 are positioned on the substrate 1030 in a generally circular or rhombus shaped arrangement. Thus, not all of the wire contacts 361 -368 are parallel with one another.

In the embodiment illustrated, the wire contacts 361 -368 are implemented as IDCs configured to cut through the insulation 144 (see Figure 3) of the wires JW1 -JW8 (see Figure 2), respectively, to form an electrical connection with the conductor 142 (see Figure 3) of the wires JW1 -JW8, respectively. As is apparent to those of ordinary skill in the art, the wires JW1 -JW8 must be properly aligned with the IDCs for the IDCs to cut through the insulation 144.

ALTERNATE EMBODIMENT

Referring to Figures 21 -24, in alternate embodiments, the outlet 120 (see Figures 2 and 5), the outlet 170 (see Figure 7), and/or other outlets constructed to comply with the RJ-45 standard may include a subassembly 1300 instead of and in place of the subassembly 1002 (see Figures 8-1 1 ) or the subassembly 358 (see Figures 5 and 6). For ease of illustration, like reference numerals have been used in the drawings to identify like components.

Referring to Figures 22-24, the subassembly 1300 includes a dielectric comb 1304, a plurality of outlet contacts 1310, a compensation circuit 1322, the optional spring assembly 350, the contact positioning member 352, a

substrate 1330, and the wire contacts 360.

OUTLET CONTACTS

Referring to Figure 25, one difference between the outlet contacts 1310 and the outlet contacts 1010 (see Figures 8-16) is that the outlet contacts 1310 are configured to provide crossover-type crosstalk compensation. In the embodiment illustrated, the outlet contacts 1310 include the eight individual outlet contacts 131 1 - 1318 that correspond to the eight plug contacts P1 -P8 (see Figure 4), respectively. However, through application of ordinary skill in the art to the present teachings, embodiments including different numbers of outlet contacts (e.g., 4, 6, 10, 12, 16, etc.) may be constructed for use with plugs having different numbers of plug contacts.

Each of the outlet contacts 131 1 -1318 has a first end portion 1340 configured to be connected to the substrate 1330 (see Figures 21 -24), and a second free end portion 1342 opposite the first end portion 1340. The second free end portions 1342 are arranged to contact the plug contacts P1 -P8 (see Figure 4), respectively, of the plug 100 (see Figure 4) when the plug is inserted into an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) including the subassembly 1300 (see Figures 21 -24).

Each of the outlet contacts 131 1 -1318 has a knuckle portion 1344 (substantially similar to the knuckle portion 1044 depicted in Figure 12-14) between the first end portion 1340 and the second free end portion 1342. The spring assembly 350 (see Figures 21 -24) presses on the knuckle portions 1344 of the outlet contacts 1310. The plug contacts P1 -P8 (see Figure 4) contact the outlet

contacts 131 1 -1318, respectively, at or near their knuckle portions 1344. Thus, a portion of each of the outlet contacts 131 1 -1318 between the second free end portion 1342 and the knuckle portion 1344 may be characterized as being a non- current carrying portion. Similarly, a portion of each of the outlet contacts 131 1 -1318 between the knuckle portion 1344 and the first end portion 1340 may be characterized as being a current carrying portion.

Like the outlet contacts 1010 (see Figures 8-16), each of the outlet contacts 1310 has at least one thicker (or taller) portion 1350 (referred to hereafter as a fin 1350) substantially similar to the fins 1050. At their fins 1350, each of the outlet contacts 1310 has a generally L-shaped cross-sectional shape. However, at their thicker (or taller) portions 1350, the outlet contacts 1310 may have other shapes. For example, Figures 17A-17F depict alternate cross-sectional shapes that may be used to construct the taller or thicker portions 1350 of the outlet

contacts 1310.

By way of a non-limiting example, the outlet contacts 1310 may be formed from a sheet material (e.g., sheet metal) having a uniform thickness of about 0.20 millimeters. As will be described below, the fins 1350 may be formed by bending a portion of the sheet material upwardly. Thus, the fins 1350 are taller than other portions of the outlet contacts 1310. For example, at the fins 1350, the outlet contacts 1310 may each have a height of about 0.75 millimeters.

Like the outlet contacts 101 1 -1018, the outlet contacts 131 1 -1318 may be described as being organized into differential signaling (or transmission) pairs. A first outlet contact pair includes the outlet contacts 1314 and 1315. A second outlet contact pair includes the outlet contacts 131 1 and 1312. A third outlet contact pair includes the outlet contacts 1313 and 1316. A fourth outlet contact pair includes the outlet contacts 1317 and 1318.

Referring to Figures 26 and 27, the outlet contacts 131 1 and 1312 (of the second outlet contact pair) are configured to position the fin 1350 of the outlet contact 131 1 alongside the fin 1350 of the outlet contact 1312. The fin 1350 of the outlet contact 131 1 is spaced apart from and does not touch the fin 1 350 of the outlet contact 1312 to inductively and/or capacitively couple the outlet contacts 131 1 and 1312 of the second outlet contact pair together.

The outlet contacts 1317 and 1318 (of the fourth outlet contact pair) are configured to position the fin 1350 of the outlet contact 1317 alongside the fin 1350 of the outlet contact 1318. The fin 1350 of the outlet contact 1317 is spaced apart from and does not touch the fin 1350 of the outlet contact 1318 to inductively and/or capacitively couple the outlet contacts 1317 and 1318 of the fourth outlet contact pair together.

Referring to Figure 26, the outlet contacts 1313 and 1315 (of two different outlet contact pairs) are configured to position the fin 1350 of the outlet contact 1313 alongside the fin 1350 of the outlet contact 1315. The fin 1350 of the outlet contact 1313 is spaced apart from and does not touch the fin 1 350 of the outlet contact 1315 to inductively and/or capacitively couple the outlet contacts 1313 and 1315 together. This coupling helps provide crossover-type crosstalk compensation.

Referring to Figure 27, the outlet contacts 1314 and 1316 (of two different outlet contact pairs) are configured to position the fin 1350 of the outlet contact 1314 alongside the fin 1350 of the outlet contact 1316. The fin 1350 of the outlet contact 1314 is spaced apart from and does not touch the fin 1 350 of the outlet contact 1316 to inductively and/or capacitively couple the outlet contacts 1314 and 1316 together. This coupling helps provide crossover-type crosstalk compensation.

In the embodiment illustrated, the fins 1350 of the first, second, third, and fourth outlet contact pairs are aligned along the same vertical plane. Further, the fins 1350 of the outlet contacts of the first and fourth outlet contact pairs are aligned along the same horizontal plane. However, the fins 1350 of the outlet contacts 1314 and 1316 are position above the fins 1350 of the outlet contacts 1313 and 1315, respectively.

The impedance of each of the outlet contact pairs may be configured for high-speed transmission (e.g., 40Gb/s, Category 8 Ethernet). The inductive and/or capacitive coupling described above between selected ones of the outlet contacts 131 1 -1318 helps reduce crosstalk within an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) that includes the

subassembly 1300 (see Figures 21 -24). Further, at least some of the outlet contact pairs are spaced farther apart from one another than in a conventional RJ-45 type connector. In contrast to other high speed connectors (e.g. ARJ connectors, and RJ- 45 type connectors), an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) that includes the subassembly 1300 (see Figures 21 -24), spacing (or distance) between the outlet contact pairs is used to reduce and/or eliminate pair- to-pair crosstalk that occurs in many prior art connectors.

The outlet contacts 1310 may be positioned too close together to be formed from a single piece of sheet metal using a progressive die configured to stamp and form conventional outlet contacts with precision punches. Further, splitting them into two sets may not be enough to solve the spacing problem.

Generally speaking, if sufficient space is provided to define the fins 1350, the outlet contacts 1310 are too far apart to obtain desirable electrical and/or transmission characteristics. On the other hand, if the outlet contacts 1310 are positioned close enough together to obtain desirable electrical and/or transmission characteristics, the fins 1350 will be too short. One non-limiting solution to this problem is to weld the fins 1350 onto the outlet contacts 1310. Another non-limiting solution is to form the outlet contacts 1310 and the fins 1350 using a stereo-lithographic process.

Yet another non-limiting solution is to first bend the fins 1350 upwardly and then shift the outlet contacts 1310 laterally into appropriate positions. However, as mentioned above, the neighboring fins 1350 may be too close together to stamp and fold. This may be avoided in part by making some (e.g., every other one) of the outlet contacts 1310 out of a separate piece of sheet metal (referred to as a "lead frame").

Figure 28 is a flow diagram of a method 1360 of constructing the outlet contacts 1310. In first block 1362, referring to Figure 29, a first lead frame 1380 is stamped to define the outlet contacts 131 1 , 1313, 1315, and 1318, and a second lead frame 1382 is stamped to define the outlet contacts 1312, 1314, 1316, and 1317. Materials commonly used in the industry to construct outlet contacts may be used to construct the first and second lead frames 1380 and 1382. By way of a non- limiting example, the first and second lead frames 1380 and 1382 may be stamped from phosphor bronze C51000 spring temper shim stock having a thickness of about 0.20 millimeters. Additional non-limiting examples of suitable materials include phosphor-bronze and beryllium-copper with coatings of tin, nickel, and gold to help prevent corrosion, enhance conductivity, and aid solderability.

In the first lead frame 1380, the outlet contacts 131 1 , 1313, 1315, and 1318 are connected together at their first end portions 1340 by a first end portion 1384 of the first lead frame 1380. The outlet contacts 131 1 , 1313, 1315, and 1318 are also connected together at their second end portions 1342 by a second end portion 1386 of the first lead frame 1380.

Similarly, in the second lead frame 1382, the outlet contacts 1312, 1314, 1316, and 1317 are connected together at their first end portions 1340 by a first end portion 1388 of the second lead frame 1382. The outlet contacts 1312,

1314, 1316, and 1317 are also connected together at their second end portions 1342 by a second end portion 1390 of the second lead frame 1382.

Then, referring to Figures 28 and 30, in optional block 1364, the first and second lead frames 1380 and 1382 may be stamped or coined to define the knuckle portions 1344. At this point, the first and second lead frames 1380 and 1382 are substantially planar except for the knuckle portions 1344.

Then, referring to Figure 28, in optional block 1366, the first and second lead frames 1380 and 1382 may be plated. For example, the first and second lead frames 1380 and 1382 may be plated with nickel. Then, selected areas of the first and second lead frames 1380 and 1382 may be plated with gold.

Next, in block 1368, referring to Figure 31 , the fins 1350 are bent into the positions illustrated in Figures 26 and 27.

Referring to Figures 32 and 33, in block 1370 (see Figure 28), the first lead frame 1380 is bent to position the outlet contacts 1313 and 1315 closer to one another, and the second lead frame 1382 is bent to position the outlet contacts 1314 and 1316 closer to one another. In the embodiment illustrated, in block 1370 (see Figure 28), a first generally V-shaped bend 1392 is formed in the first end portion 1384 of the first lead frame 1380 between the outlet contacts 1313 and 1315, and a second generally V-shaped bend 1394 is formed in the second end portion 1386 of the first lead frame 1380 between the outlet contacts 1313 and 1315. Together, the bends 1392 and 1394 pull the outlet contacts 1313 and 1315 closer together. Similarly, in the embodiment illustrated, in block 1370 (see Figure 28), a first generally V-shaped bend 1396 is formed in the first end portion 1388 of the second lead frame 1382 between the outlet contacts 1314 and 1316. A second generally V-shaped bend 1398 is formed in the second end portion 1390 of the second lead frame 1382 between the outlet contacts 1314 and 1316. Together, the bends 1396 and 1398 pull the outlet contacts 1314 and 1316 closer together.

In block 1372 (see Figure 28), referring to Figure 33, the first lead frame 1380 is bent to form the contours in the outlet contacts 131 1 , 1313, 1315, and 1318, and the second lead frame 1382 is bent to form the contours in the outlet contacts 1312, 1314, 1316, and 1317. Thus, after block 1372 (see Figure 28), the first and second lead frames 1380 and 1382 are no longer substantially planar. The bends at the knuckle portions 1344 may be less (e.g., about half) than those formed in other portions of the outlet contacts 131 1 -1318 to help prevent cracking in the plating, if any, applied in optional block 1366 (see Figure 28).

In optional block 1374 (see Figure 28), referring to Figure 34, the second end portions 1386 and 1390 of the first and second lead frames 1380 and 1382 may be stapled together. Stapling aligns the second free end portions 1342 of the outlet contacts 1310.

Then, the method 1360 (see Figure 28) terminates. As is apparent to those of ordinary skill in the art, referring to Figure 34, before an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) that includes the subassembly 1300 (see Figures 21 -24) is assembled, the first and second end portions 1384 and 1386 are trimmed from the outlet contacts 131 1 , 1313, 1315, and 1318, and the first and second end portions 1388 and 1390 are trimmed from the outlet contacts 1312, 1314, 1316, and 1317. A substantially similar process can be used to form the outlet contacts 101 1 through 1018.

DIELECTRIC COMB

Referring to Figure 35, the dielectric comb 1304 is substantially similar to the dielectric comb 1004 (see Figures 9-1 1 , 15, and 16) and may be configured to perform the same or similar functions described with respect to the dielectric comb 1004. The dielectric comb 1304 may be constructed from any material suitable for constructing the dielectric comb 1004.

The dielectric comb 1304 has a body portion 1400 from which dielectric members 1402, 1404, and 1406 extend outwardly toward the outlet contacts 1310. The dielectric member 1402 extends between the fins 1350 of the outlet

contacts 131 1 and 1312 (of the second outlet contact pair). In the embodiment illustrated, the dielectric member 1402 extends from a first location at or near the substrate 1330 to a second location nearer the knuckle portions 1344 of the outlet contacts 131 1 and 1312. Thus, the dielectric member 1402 extends along at least a portion of the current carrying portions of the outlet contacts 1 31 1 and 1312. In the embodiment illustrated, the dielectric member 1402 extends along about one quarter of the length of the outlet contacts 131 1 and 1312.

The dielectric member 1406 extends between the fins 1350 of the outlet contacts 1317 and 1318 (of the fourth outlet contact pair). In the embodiment illustrated, the dielectric member 1406 extends from a first location at or near the substrate 1330 to a second location nearer the knuckle portions 1 344 of the outlet contacts 1317 and 1318. Thus, the dielectric member 1406 extends along at least a portion of the current carrying portions of the outlet contacts 1317 and 1318. In the embodiment illustrated, the dielectric member 1406 extends along about one quarter of the length of the outlet contacts 1317 and 1318.

The dielectric member 1404 extends between the fins 1350 of the outlet contacts 1314 and 1316. The dielectric member 1404 also extends between the fins 1350 of the outlet contacts 1313 and 1315. In the embodiment illustrated, the dielectric member 1404 extends from a first location at or near the substrate 1330 to a second location nearer the knuckle portions 1344 of the outlet

contacts 1313-1316. Thus, the dielectric member 1404 extends along at least a portion of the current carrying portions of the outlet contacts 1313-1316. In the embodiment illustrated, the dielectric member 1404 extends along about one quarter of the length of the outlet contacts 1313-1316. The dielectric members 1402 and 1406 may extend further along the outlet contacts 1310 than the dielectric member 1404. However, this is not a requirement.

The dielectric comb 1304 may help achieve the desired impedance, without increasing unwanted crosstalk. As explained above, the outlet contacts 1310 and the dielectric members 1402, 1404, and 1406 of the dielectric comb 1304 are interleaved. This enhances the inductive and/or capacitive coupling between the outlet contacts of the first and fourth outlet contact pairs as well as between the outlet contacts 1314 and 1316, and between the outlet contacts 1313 and 1315 where such coupling is desired. For example, the dielectric members 1402, 1404, and 1406 may increase the dielectric constant between the outlet contacts of the first and fourth outlet contact pairs as well as between the outlet contacts 1314 and 1316, and between the outlet contacts 1313 and 1315. This may provide improved high voltage protection.

Each of the dielectric members 1402, 1404, and 1406 may be generally planar. Referring to Figure 24, each of the dielectric members 1402, 1404, and 1406 has a lower edge 1408. Referring to Figure 35, each of the dielectric members 1402 and 1406 includes a notch 1410. The notch 1410 formed in the dielectric member 1402 is positioned to accommodate the first end portion 1340 of the outlet contact 1312. Similarly, the notch 1410 formed in the dielectric member 1406 is positioned to accommodate the first end portion 1340 of the outlet contact 1317.

Referring to Figure 23, one or more projections or mounting pegs 1412A and 1412B extend outwardly from the body portion 1400 of the dielectric comb 1304 toward the substrate 1330.

Referring to Figure 35, the outlet contacts 131 1 and 1318 are positioned outside the dielectric comb 1304 and can deflect upwardly. In contrast, the outlet contacts 1312-1317 are positioned inside the dielectric comb 1304 and may also be deflected upwardly but toward the body portion 1400.

Referring to Figures 23 and 24, the dielectric comb 1304 may be mounted to the substrate 1330 in substantially the same manner that the dielectric comb 1004 (see Figures 9-1 1 , 15, and 16) may be mounted to the substrate 1030 (see Figure 8-1 1 and 20). Further, like the dielectric comb 1004, the dielectric comb 1304 may be unattached from the substrate 1330. In such embodiments, the dielectric comb 1304 may be characterized as "floating."

Referring to Figures 22-24, in alternate embodiments, the dielectric comb 1304 and the spring assembly 350 may be combined into a single component (not shown).

COMPENSATION CIRCUITS

Referring to Figure 25, the compensation circuit 1322 has a plurality of electrically conductive contacts 1440 configured to physically contact selected ones of the outlet contacts 1310. In the example illustrated, the contacts 1440 include the contacts 1442-1447 configured to physically contact the outlet contacts 1312-1317, respectively. In this manner, electrical connections are formed between the contacts 1442-1447 and the outlet contacts 1312-1317, respectively. In alternate

embodiments, the contacts 1442 and 1447 may be omitted. In such embodiments, the contacts 1443-1446 physically contact the outlet contacts 1313-1316,

respectively, and form electrical connections therewith.

In the embodiment illustrated, the contacts 1442-1447 physically contact (e.g., are soldered to) the outlet contacts 1312-1317, respectively, between the first end portions 1340 and their knuckle portions 1344. Thus, the contacts 1442- 1447 physically contact the outlet contacts 1312-1317, respectively, at their current carrying portions. Similarly, in embodiments omitting the contacts 1442 and 1447, the contacts 1443-1446 physically contact the outlet contacts 1313-1316,

respectively, at their current carrying portions.

The contacts 1440 are connected to compensation circuitry (described below) patterned on a flexible substrate 1452 to form a "flex circuit." Referring to Figure 36, the flexible substrate 1452 of the compensation circuit 1322 may curve or bend upwardly away from the outlet contacts 1310 and rest against the body portion 1400 of the dielectric comb 1304.

The flexible substrate 1452 has a first side 1450 opposite a second side 1451 (see Figure 24). In the embodiment illustrated, the flexible substrate 1452 includes a plurality of outwardly extending generally parallel finger portions 1454. A different one of the contacts 1440 is formed on each of the finger portions 1454 on the second side 1451 (see Figure 24) of the flexible substrate 1452. Thus, in the embodiment illustrated, the finger portions 1454 include figure portions F2-F7 with the contact 1442-1447, respectively, formed thereon. In alternate embodiments, the contacts 1442 and 1447 and the finger portions F2 and F7 may be omitted.

SUBSTRATE

Referring to Figures 23 and 24, the substrate 1330 has a first forwardly facing side 1460 opposite a second rearwardly facing side 1462. The

substrate 1330 includes apertures 1464A and 1464B substantially identical to the apertures 522A and 522B (see Figure 6), respectively, and apertures 1466A and 1466B substantially identical to the apertures 552A and 552B (see Figure 6), respectively. The protrusions 520A and 520B of the spring assembly 350 may be received in the apertures 1464A and 1464B, respectively, and the protrusions 550A and 550B of the contact positioning member 352 may be received in the apertures 1466A and 1466B, respectively. The substrate 1330 may include apertures 1468A and 1468B configured to receive the mounting pegs 1412A and 1412B, respectively, of the dielectric comb 1304. The apertures 1464A, 1464B, 1466A, 1466B, 1468A, and 1468B are formed in the forwardly facing side 1460. In the embodiment illustrated, the apertures 1464A, 1464B, 1466A, 1466B, 1468A, and 1468B have been implemented as through-holes. However, this is not a requirement.

Referring to Figure 37, the substrate 1330 includes a plurality of conductors 1470 (e.g., traces) that connect the outlet contacts 131 1 -1318 to the wire contacts 361 -368 (see Figure 23), respectively. As is apparent to those of ordinary skill in the art, other configurations of the conductors 1470 may be used and the substrate 1330 is not limited to use with the configuration illustrated.

Referring to Figure 37, the substrate 1030 includes apertures 1471 - 1478 (e.g., plated through-holes) configured to receive the first end portions 1340 (see Figure 25) of the outlet contacts 131 1 -1318 (see Figure 25), respectively, and electrically connect each of the outlet contacts 131 1 -1318 to a portion of the conductors 1470. The apertures 1471 -1478 may be spaced apart from one another by substantially more than similar openings are spaced apart in a conventional RJ- type outlet. Such relatively wide spacing allows compensation circuitry to be placed in between at least some of the apertures 1471 -1478. For example, capacitive compensation circuitry may be placed between the apertures 1473 and 1474 and between the apertures 1475 and 1476.

The substrate 1330 also includes apertures 1481 -1488 (e.g., plated through-holes) configured to receive each of the wire contacts 361 -368 (see Figure 23), respectively, and electrically connect the wire contacts 361 -368 (see Figure 23) to a portion of the conductors 1470.

In the embodiment illustrated, the first end portions 1340 of the outlet contacts 131 1 -1318 may be pressed into the apertures 1471 -1478, respectively, from the first forwardly facing side 1460 of the substrate 1330 and the wire

contacts 361 -368 may be pressed into the apertures 1481 -1488, respectively, in the substrate 1330 from the second rearwardly facing side 1462 of the substrate 1330. Thus, as shown in Figures 21 and 22, the outlet contacts 1310 and the wire contacts 360 extend away from the substrate 1330 in opposite directions. The outlet contacts 1310 may be subsequently soldered into place, if desired. ALTERNATE EMBODIMENT

Referring to Figure 38, in alternate embodiments, the outlet 120 (see Figures 2 and 5), the outlet 170 (see Figure 7), and/or other outlets constructed to comply with the RJ-45 standard may include a subassembly 1500 instead of and in place of the subassembly 1002 (see Figures 8-1 1 ), the subassembly 358 (see Figures 5 and 6), or the subassembly 1310 (see Figure 36). For ease of illustration, like reference numerals have been used in the drawings to identify like components.

Referring to Figure 39, the subassembly 1500 includes a dielectric comb 1504, the compensation circuit 1322, the outlet contacts 1310, the optional spring assembly 350, the contact positioning member 352, the substrate 1330, and the wire contacts 360. DIELECTRIC COMB

Referring to Figure 39, the dielectric comb 1504 is substantially similar to the dielectric comb 1304 (see Figures 22-24, 35, and 36) and may be configured to perform the same or similar functions described with respect to the dielectric comb 1304. The dielectric comb 1304 may be constructed from any material suitable for constructing the dielectric comb 1004. Because the dielectric comb 1504 differs only with respect to a few minor design choices and is functionally equivalent to the dielectric comb 1304, the dielectric comb 1504 will not be described in detail. In alternate embodiments, the dielectric comb 1504 and the spring assembly 350 (see Figures 38, 39, and 41 ) may be combined into a single component (not shown).

COMPENSATION CIRCUIT

Referring to Figure 40, as mentioned above, the conductive contacts 1442-1447 of the compensation circuit 1322 are configured to physically contact the outlet contacts 1312-1317, respectively, and form electrical connections therewith. Without being limited by theory, it is believed that it may be advantageous for the contacts 1442-1447 to physically contact the outlet contacts 1312-1317, respectively, at locations that are half way in between the second free end portions 1342 of the outlet contacts 1312-1317 and locations whereat one or more imbalances are introduced. An imbalance is introduced into the outlet contacts 1312-1317 where a first one of them crosses over a second one of them. In the embodiment illustrated, the contacts 1442-1447 physically contact (e.g., are soldered to) the outlet contacts 1312-1317, respectively, between their second free end portions 1342 and their knuckle portions 1344. Thus, in the embodiment illustrated, the contacts 1442-1447 physically contact (e.g., are soldered to) the non-current carrying portions of the outlet contacts 1312-1317, respectively.

Similarly, in embodiments omitting the contacts 1442 and 1447, the contacts 1443-1446 physically contact the outlet contacts 1313-1316, respectively, on their non-current carrying portions.

Referring to Figure 41 , the flexible substrate 1452 of the compensation circuit 1322 may curve or bend upwardly away from the outlet contacts 1310 and around the spring assembly 350. Optionally, the flexible substrate 1452 may be attached to the spring assembly 350.

POSITION OF COMPENSATION CIRCUIT

Referring to Figure 25, in the subassembly 1300 (see Figures 21 -24), the contacts 1440 physically contact the upper surfaces of selected ones of the outlet contacts 1310 (e.g., the outlet contacts 1312-1317) between their first end portions 1340 and their knuckle portions 1344. Thus, the contacts 1440 physically contact the selected ones of the outlet contacts 1310 (e.g., the outlet contacts 1312- 1317) at their current carrying portions. Referring to Figure 36, the flexible substrate 1452 of the compensation circuit 1322 may curve or bend upwardly away from the outlet contacts 1310 and rest against the body portion 1400 of the dielectric comb 1304.

Referring to Figure 40, in the subassembly 1500 (see Figures 38 and 39), the contacts 1440 (see Figure 25) of the compensation circuit 1322 physically contact the upper surfaces of selected ones of the outlet contacts 1310 (e.g., the outlet contacts 1312-1317) between their second free end portions 1342 and their knuckle portions 1344. Thus, in the embodiment illustrated, the contacts 1440 (see Figure 25) physically contact (e.g., are soldered to) the non-current carrying portions of the selected ones of the outlet contacts 1310 (e.g. , the outlet contacts 1312-1317). Further, referring to Figure 41 , the flexible substrate 1452 curves or bends upwardly away from the outlet contacts 1310 and around the spring assembly 350. This may be characterized as being a "Forward Flex" configuration.

Thus, the figures depict the compensation circuit 1322 in two different locations. However, the compensation circuit 1322 may be positioned at any location along the selected ones of the outlet contacts 1310 (e.g., the outlet contacts 1312-1317). For example, the compensation circuit 1322 may be positioned at or near the first end portions 1340 of the outlet contacts 1312-1317 (or the outlet contacts 1313-1316). Further, the compensation circuit 1322 may be physically connected to the lower surfaces of the outlet contacts 1312-1317 (or the outlet contacts 1313-1316), instead of their upper surfaces, at any location along the outlet contacts 1312-1317 (or the outlet contacts 1313-1316).

Referring to Figure 40, as mentioned above, in some embodiments, the contacts 1442 and 1447 may be omitted. In such embodiments, the contacts 1443- 1446 may be connected to the upper or lower surfaces of the outlet contacts 1313- 1316, respectively, anywhere along the lengths of the outlet contacts 1313-1316, respectively.

COMPENSATION CIRCUITRY

Compensation of the type disclosed herein makes it possible to satisfy very high bit rate requirements of a RJ-45 connector and at the same time, introduce little to no crosstalk. The compensation circuit 1322 may be characterized as being a high-impedance compensation flex circuit configured to reduce and/or eliminate crosstalk between outlet contacts (e.g., the outlet contacts 131 1 -1318). As mentioned above, the compensation circuit 1322 includes the contacts 1440 (see Figure 25) that are connected to compensation circuitry patterned on the flexible substrate 1452. Three exemplary embodiments for implementing the compensation circuitry are described below. As is apparent to those of ordinary skill in the art, different portions of the compensation circuitry may be positioned on different layers of the flexible substrate 1452.

For ease of illustration, the contacts 1440 (see Figure 25) of the compensation circuit 1322 will be described below as being connected (e.g., soldered) to selected ones of the outlet contacts 1310. However, as is apparent to those of ordinary skill in the art, the compensation circuit 1322 is not limited to use with any particular outlet contacts. By way of non-limiting examples, the

compensation circuit 1322 may be used with conventional outlet contacts, the outlet contacts 342 (see Figures 5-7 and 51 ), the outlet contacts 1010 (see Figures 8-12, 15, and 16), the outlet contacts 1310, and the like. For example, the compensation circuit 1322 may be used in the subassembly 358 illustrated in Figures 5 and 6 (instead of the flexible PCB 530 illustrated in Figure 6), the subassembly 1002 illustrated in Figures 8-1 1 (instead of the compensation circuit 1020 illustrated in Figures 9-1 1 , 18, and 19), the subassembly 1300 illustrated in Figures 21 -24, and/or the subassembly 1500 illustrated in Figures 38 and 39.

First Embodiment

Figures 42 and 44 depict the compensation circuit 1322 including in a first embodiment of compensation circuitry 1700. In such embodiments, the compensation circuit 1322 may be characterized as being a two-layer high- impedance high-speed compensation flex circuit. The compensation circuitry 1700 employs a special technique for crosstalk compensation that does not absorb the signal being conveyed by the third split pair of outlet contacts (e.g., the outlet contacts 1313 and 1316 depicted in Figures 25 and 40).

Referring to Figure 43, the compensation circuitry 1700 includes traces 17TA-17TF connected to the contacts 1443, 1445, 1447, 1446, 1444, and 1442, respectively. The traces 17TB, 17TC, 17TE, and 17TF extend entirely on the second side 1451 (see Figure 44) of the flexible substrate 1452. The trace 17TA has a first portion 17TA1 that extends from the contact 1443 along the second side 1451 (see Figure 44) of the flexible substrate 1452 to a via 17V1 . The trace 17TA has a second portion 17TA2 that extends from the via 17V1 along the first side 1450 (see Figure 42) of the flexible substrate 1452.

Referring to Figure 42, the trace 17TA has an end portion 17EA positioned on the first side 1450 of the flexible substrate 1452. An intermediate portion 17IA connects the end portion 17EA of the trace 17TA to the via 17V1 . In the embodiment illustrated, the intermediate portion 17IA is substantially linear.

Referring to Figure 44, the traces 17TB and 17TC have end portions 17EB and 17EC, respectively, positioned on the second side 1451 of the flexible substrate 1452. A connecting portion 17CB of the trace 17TB positioned on the second side 1451 of the flexible substrate 1452 connects the end portion 17EB of the trace 17TB to the contact 1445. In the embodiment illustrated, the intermediate portion 17IA (see Figure 42) of the trace 17TA crosses over the end portion 17EB and/or the connecting portion 17CB of the trace 17TB. The intermediate portion 17IA (see Figure 42) of the trace 17TA also crosses over the trace 17TE. The first portion 17TA1 (see Figure 43) of the trace 17TA crosses under the trace 17TD.

A connecting portion 17CC of the trace 17TC positioned on the second side 1451 of the flexible substrate 1452 connects the end portion 17EC of the trace 17TC to the contact 1447. None of the traces 17TA, 17TB, and 17TD-17TF crosses over the trace 17TC.

The end portion 17EA (see Figure 42) of the trace 17TA is spaced apart from the end portion 17EB of the trace 17TB by the flexible substrate 1452. The end portion 17EA (see Figure 42) of the trace 17TA and the end portion 17EB of the trace 17TB are relatively long when compared with the end portion 17EC of the trace 17TC. Thus, the longer end portions 17EA and 17EB of the traces 17TA and 17TB are formed on opposite sides of the flexible substrate 1452 and are

substantially parallel to one another along spaced apart planes defined by the first and second sides 1450 and 1451 , respectively, of the flexible substrate 1452.

The end portions 17EA and 17EB of the traces 17TA and 17TB have the same general two-dimensional shape. For example, in the embodiment illustrated, the end portions 17EA and 17EB are generally U-shaped. However, the shape defined by the end portion 17EB is smaller than and would be completely surrounded by the shape defined by the end portion 17EA if the end portions 17EA and 17EB were in the same plane.

The shorter end portion 17EC of the trace 17TC is spaced apart from the longer end portion 17EA of the trace 17TA by the flexible substrate 1452. In the embodiment illustrated, the shorter end portion 17EC is substantially linear and substantially parallel with at least a substantially linear portion 17LA (see Figures 42 and 43) of the longer end portion 17EA of the trace 17TA. If the substantially linear portion 17LA of the trace 17TA were in the same plane as the end portions 17EB and 17EC of the traces 17TB and 17TC, respectively, the substantially linear portion 17LA would extend between the end portions 17EB and 17EC of the traces 17TB and 17TC and contact neither the end portion 17EB of the trace 17TB nor the end portion 17EC of the trace 17TC. Referring to Figure 25, a signal on the outlet contact 1316 (for example) radiates crosstalk to the nearby outlet contacts 1317 and 1315. To counteract this crosstalk, the counter-signal being conveyed by the outlet contact 1313 is conducted by the trace 17TA (see Figure 44). Referring to Figure 44, the longer end portion 17EA of the trace 17TA radiates a crosstalk canceling signal onto both the longer end portion 17EB of the trace 17TB (which is connected to the outlet contact 1315) and the shorter end portion 17EC of the trace 17TC (which is connected to the outlet contact 1317). In other words, distributed coupling along the relatively thin traces 17TA-17TC applies the counter-signal to the traces 17TB and 17TC thereby reducing crosstalk using less capacitance (and thus higher

impedance) than the conventional high-speed compensation circuit 12 illustrated in Figures 1A-1 C. Inductance distributed along the traces 17TA-17TC acts with the capacitance to resonate at a very high frequency that also helps reduce crosstalk.

The traces 17TD-17TF provide similar functionality. Referring to Figure 42, the trace 17TD has an end portion 17ED positioned on the first side 1450 of the flexible substrate 1452. An intermediate portion 17ID connects the end portion 17ED of the trace 17TD to the via 17V2. In the embodiment illustrated, the intermediate portion 17ID has a substantially linear portion connected to the via 17V2, and a curved portion that connects the linear portion to the end portion 17ED and extends partway around the via 17V1 .

Referring to Figure 44, the traces 17TE and 17TF have end portions 17EE and 17EF, respectively, positioned on the second side 1451 of the flexible substrate 1452. A connecting portion 17CE of the trace 17TE positioned on the second side 1451 of the flexible substrate 1452 connects the end portion 17EE of the trace 17TE to the contact 1444. In the embodiment illustrated, the intermediate portion 17ID (see Figure 42) of the trace 17TD crosses over the end portion 17EE and/or the connecting portion 17CE of the trace 17TE. The intermediate portion 17ID (see Figure 42) of the trace 17TD also crosses over the trace 17TB and the first portion 17TA1 (see Figure 43) of the trace 17TA.

A connecting portion 17CF of the trace 17TF positioned on the second side 1451 of the flexible substrate 1452 connects the end portion 17EF of the trace 17TF to the contact 1442. None of the traces 17TA-17TE crosses over the trace 17TF.

The end portion 17ED (see Figure 42) of the trace 17TD is spaced apart from the end portion 17EE of the trace 17TE by the flexible substrate 1452. The end portion 17ED (see Figure 42) of the trace 17TD and the end portion 17EE of the trace 17TE are relatively long when compared with the end portion 17EF of the trace 17TF. Thus, the longer end portions 17ED and 17EE of the traces 17TD and 17TE are formed on opposite sides of the flexible substrate 1452 and are

substantially parallel to one another along spaced apart planes defined by the first and second sides 1450 and 1451 , respectively, of the flexible substrate 1452.

The end portions 17ED and 17EE of the traces 17TD and 17TE have the same general two-dimensional shape. For example, in the embodiment illustrated, the end portions 17ED and 17EE are generally U-shaped. However, the shape defined by the end portion 17EE is smaller than and would be completely surrounded by the shape defined by the end portion 17ED if the end portions 17ED and 17EE were in the same plane.

The shorter end portion 17EF of the trace 17TF is spaced apart from the longer end portion 17ED of the trace 17TD by the flexible substrate 1452. In the embodiment illustrated, the shorter end portion 17EF is substantially linear and substantially parallel with at least a substantially linear portion 17LD (see Figures 42 and 43) of the longer end portion 17ED of the trace 17TD. If the substantially linear portion 17LD of the trace 17TD were in the same plane as the end portions 17EE and 17EF of the traces 17TE and 17TF, respectively, the substantially linear portion 17LD would extend between the end portions 17EE and 17EF of the traces 17TE and 17TF and contact neither the end portion 17EE of the trace 17TE nor the end portion 17EF of the trace 17TF.

Referring to Figure 25, a signal on the outlet contact 1313 (for example) radiates crosstalk to the nearby outlet contacts 1312 and 1314. To counteract this crosstalk, the counter-signal being conveyed by the outlet contact 1316 is conducted by the trace 17TD (see Figure 44). The longer end portion 17ED of the trace 17TD radiates a crosstalk canceling signal onto both the longer end portion 17EE of the trace 17TE (which is connected to the outlet contact 1314) and the shorter end portion 17EF of the trace 17TF (which is connected to the outlet contact 1312). In other words, distributed coupling along the relatively thin traces 17TD-17TF applies the counter-signal to the traces 17TE and 17TF thereby reducing crosstalk using less capacitance (and thus higher impedance) than the conventional high-speed compensation circuit 12 illustrated in Figures 1A-1 C. Inductance distributed along the traces 17TD-17TF acts with the capacitance to resonate at a very high frequency that also helps reduce crosstalk.

By way of a non-limiting example, the traces 17TA-17TF may have a width of about 0.10 millimeters and a thickness of about 35 micrometers ("μητι").

In some embodiments, the contacts 1442 and 1447 are omitted. In such embodiments, the traces 17TF and 17TC may be omitted from the

compensation circuitry 1700. Second Embodiment

Figures 45 and 47 depict the compensation circuit 1322 including in a second embodiment of compensation circuitry 1800. In such embodiments, the compensation circuit 1322 may be characterized as being a single-layer high- impedance high-speed compensation flex circuit. This embodiment employs a special technique similar to that employed by the compensation circuitry 1 800.

Referring to Figure 47, the compensation circuitry 1800 includes traces 18TA-18TF connected to the contacts 1443, 1445, 1447, 1446, 1444, and 1442, respectively. By way of a non-limiting example, the traces 18TA-18TF may each have a width of about 0.10 millimeters and a thickness of about 35 micrometers ("Mm").

The traces 18TB, 18TC, 18TE, and 18TF extend entirely on the second side 1451 of the flexible substrate 1452. The trace 18TA has a first portion 18TA1 that extends from the contact 1443 along the second side 1451 of the flexible substrate 1452 to a via 18V1 . Referring to Figure 45, the trace 18TA has an intermediate portion 18TA2 that extends from the via 18V1 along the first side 1450 to a via 18V2. Referring to Figure 47, the trace 18TA has an end portion 18EA that extends from the via 18V2 along the second side 1451 of the flexible substrate 1452.

The trace 18TB has an end portion 18EB. A connecting portion 18CB of the trace 18TB connects the end portion 18EB of the trace 18TB to the contact 1445. In the embodiment illustrated, the intermediate portion 18TA2 of the trace 18TA is substantially linear and crosses over the end portion 18EB and/or the connecting portion 18CB of the trace 18TB. The intermediate portion 18TA2 (see Figure 42) of the trace 18TA also crosses over the trace 18TE. The first portion 18TA1 (see Figure 47) of the trace 18TA crosses under the trace 18TD.

The trace 18TC has an end portion 18EC. A connecting portion 18CC of the trace 18TC connects the end portion 18EC of the trace 18TC to the contact 1447. None of the traces 18TA, 18TB, and 18TD-18TF crosses over the trace 18TC.

The end portions 18EA and 18EB of the traces 18TA and 18TB are spaced apart from one another along the second side 1451 of the flexible substrate 1452. The end portions 18EA and 18EB of the traces 18TA and 18TB are relatively long when compared with the end portion 18EC of the trace 18TC. The end portions 18EA and 18EB of the traces 18TA and 18TB have the same general two- dimensional shape. For example, in the embodiment illustrated, the end portions 18EA and 18EB are generally U-shaped. However, the shape defined by the end portion 18EB is smaller than and completely surrounded by the shape defined by the end portion 18EA.

The shorter end portion 18EC of the trace 18TC is spaced apart from the longer end portion 18EA of the trace 18TA along the second side 1451 of the flexible substrate 1452. In the embodiment illustrated, the shorter end portion 18EC is substantially linear and substantially parallel with at least a substantially linear portion 18LA of the longer end portion 18EA of the trace 18TA. Thus, the

substantially linear portion 18LA extends between the end portions 18EB and 18EC of the traces 18TB and 18TC and contacts neither the end portion 18EB of the trace 18TB nor the end portion 18EC of the trace 18TC.

Referring to Figure 25, a signal on the outlet contact 1316 (for example) radiates crosstalk to the nearby outlet contacts 1317 and 1315. To counteract this crosstalk, the counter-signal being conveyed by the outlet contact 1313 is conducted by the trace 18TA (see Figure 47). Referring to Figure 47, the longer end portion 18EA of the trace 18TA radiates a crosstalk canceling signal onto both the longer end portion 18EB of the trace 18TB (which is connected to the outlet contact 1315) and the shorter end portion 18EC of the trace 18TC (which is connected to the outlet contact 1317). In other words, distributed coupling along the relatively thin traces 18TA-18TC applies the counter-signal to the traces 18TB and 18TC thereby reducing crosstalk using less capacitance (and thus higher

impedance) than the conventional high-speed compensation circuit 12 illustrated in Figures 1 A-1 C. Inductance distributed along the traces 18TA-18TC acts with the capacitance to resonate at a very high frequency that also helps reduce crosstalk.

The traces 18TD-18TF provide similar functionality. The trace 18TD has a first portion 18TD1 that extends from the contact 1446 along the second side 1451 of the flexible substrate 1452 to a via 18V3. Referring to Figure 45, the trace 18TD has an intermediate portion 18TD2 that extends from the via 18V3 along the first side 1450 to a via 18V4. Referring to Figure 47, the trace 18TD has an end portion 18ED that extends from the via 18V4 along the second side 1451 of the flexible substrate 1452.

The trace 18TE has an end portion 18EE. A connecting portion 18CE of the trace 18TE connects the end portion 18EE of the trace 18TE to the contact 1444. In the embodiment illustrated, the intermediate portion 18TD2 (see Figure 45) of the trace 18TD is substantially linear and crosses over the end portion 18EE and/or the connecting portion 18CE of the trace 18TE. The intermediate portion 18TD2 (see Figure 45) of the trace 18TD also crosses over the trace 18TB. The intermediate portion 18TD2 (see Figure 45) of the trace 18TD crosses over the first portion 18TA1 of the trace 18TA.

The trace 18TF has an end portion 18EF. A connecting portion 18CF of the trace 18TF connects the end portion 18EF of the trace 18TF to the contact 1442. None of the traces 18TA-18TD crosses over the trace 18TF.

The end portions 18ED and 18EE of the traces 18TD and 18TE are spaced apart from one another along the second side 1451 of the flexible substrate 1452. The end portions 18ED and 18EE of the traces 18TD and 18TE are relatively long when compared with the end portion 18EF of the trace 18TF. The end portions 18ED and 18EE of the traces 18TD and 18TE have the same general two- dimensional shape. For example, in the embodiment illustrated, the end portions 18ED and 18EE are generally U-shaped. However, the shape defined by the end portion 18EE is smaller than and completely surrounded by the shape defined by the end portion 18ED.

The shorter end portion 18EF of the trace 18TF is spaced apart from the longer end portion 18ED of the trace 18TD along the second side 1451 of the flexible substrate 1452. In the embodiment illustrated, the shorter end portion 18EF is substantially linear and substantially parallel with at least a substantially linear portion 18LD of the longer end portion 18ED of the trace 18TD. Thus, the

substantially linear portion 18LD extends between the end portions 18EE and 18EF of the traces 18TE and 18TF and contacts neither the end portion 18EE of the trace 18TE nor the end portion 18EF of the trace 18TF.

In the embodiment illustrated, the linear portion 18LD of the trace 18TD defines part of the general U-shape of the end portion 18ED of the trace 18TD. Specifically, the linear portion 18LD forms one of the legs of the U-shape. Further, the linear portion 18LD is connected to the via 18V4 by an angled portion 18PD that does not form part of the U-shape.

Referring to Figure 25, a signal on the outlet contact 1313 (for example) radiates crosstalk to the nearby outlet contacts 1312 and 1314. To counteract this crosstalk, the counter-signal being conveyed by the outlet contact 1316 is conducted by the trace 18TD (see Figure 47). Referring to Figure 47, the longer end portion 18ED of the trace 18TD radiates a crosstalk canceling signal onto both the longer end portion 18EE of the trace 18TE (which is connected to the outlet contact 1314) and the shorter end portion 18EF of the trace 18TF (which is connected to the outlet contact 1312). In other words, distributed coupling along the relatively thin traces 18TD-18TF applies the counter-signal to the traces 18TE and 18TF thereby reducing crosstalk using less capacitance (and thus higher

impedance) than the conventional high-speed compensation circuit 12 illustrated in Figures 1A-1 C. Inductance distributed along the traces 18TD-18TF acts with the capacitance to resonate at a very high frequency that also helps reduce crosstalk.

Thus, the compensation circuitry 1800 operates in much the same manner as the compensation circuitry 1700 (see Figures 42-44). However, the relatively long and thin end portions 18EA-18EF of the traces 18TA-18TF, respectively, are all positioned on the same side (or layer) of the flexible substrate 1452. Controlling tolerances may be easier with this arrangement because the structures that interact (e.g., the end portions 18EA-18EC, and the end portions 18ED-18EF) may be formed using the same optical template.

In some embodiments, the contacts 1442 and 1447 are omitted. In such embodiments, the traces 18TF and 18TC may be omitted from the

compensation circuitry 1800.

The compensation circuitry 1700 and 1800 differ significantly from conventional approaches (like the conventional high-speed compensation circuit 12 illustrated in Figures 1A-1 C) that use "lumped element" capacitive plates or fingers. In contrast, the compensation circuitry 1700 and 1800 each use single trace interaction. The single trace (e.g., each of the traces 17TA, 17TD, 18TA, and 18TD) spreads out capacitive and inductive compensation effects. This distributed compensation increases impedance (of the compensation) and provides a beneficial resonance, which both improve signal transfer. This increased (or high) impedance compensation makes it possible to pass signal power, while experiencing only a satisfactory amount of insertion loss, through an outlet (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and/or other outlets constructed to comply with the RJ-45 standard) that includes the compensation circuit 1322.

Third Embodiment

Figures 48 and 50 depict the compensation circuit 1322 including in a third embodiment of compensation circuitry 1900. In such embodiments, the compensation circuit 1322 may be characterized as being a two-stage high-speed compensation flex circuit. Two-stage crosstalk compensation or reduction relies on delaying part of the compensation to reduce total crosstalk. To introduce enough delay, conventional two-stage crosstalk reduction uses long structures. Unfortunately, because of space limitations, such long structures could not be formed on a flexible circuit board and placed inside a communication outlet that conforms with the RJ-45 standard.

However, the inventors made a surprising breakthrough. At frequencies greater than 1 .0 Gigahertz, structures operable to implement two-stage crosstalk reduction may be formed on a flexible circuit board that is small enough to be placed inside a communication outlet that conforms with the RJ-45 standard (e.g., the outlet 120 illustrated in Figures 2 and 5, the outlet 170 illustrated in Figure 7, and the like).

Referring to Figure 48, capacitor plates 19C1 -19C4 are formed on the first side 1450 of the flexible substrate 1452. Referring to Figure 49, the first and fourth capacitor plates 19C1 and 19C4 are connected by traces 19T1 and 19T2, respectively, to the contact 1446. The trace 19T2 is longer than the trace 19T1 . Thus, the signal received by the contact 1446 (from the outlet contact 1316) must travel further and takes longer to reach the fourth capacitor plate 19C4 than the first capacitor plate 19C1 .

The second and third capacitor plates 19C2 and 19C3 are connected by traces 19T3 and 19T4, respectively, to the contact 1443. The trace 19T3 is longer than the trace 19T4. Thus, the signal received by the contact 1443 (from the outlet contact 1313) must travel further and takes longer to reach the third capacitor plate 19C3 than the second capacitor plate 19C2.

Referring to Figure 50, capacitor plates 19C5-19C8 are formed on the second side 1451 of the flexible substrate 1452. The fifth capacitor plate 19C5 is connected by a trace 19T5 to the contact 1447. The sixth capacitor plate 19C6 is connected by a trace 19T6 to the contact 1442. The seventh capacitor plate 19C7 is connected by a trace 19T7 to the contact 1445. The eighth capacitor plate 19C8 is connected by a trace 19T8 to the contact 1444. Referring to Figure 49, the first capacitor plate 19C1 is juxtaposed across the flexible substrate 1452 (see Figures 48 and 50) with both the sixth capacitor plate 19C6 and the eighth capacitor plate 19C8. Further, the eighth capacitor plate 19C8 is juxtaposed across the flexible substrate 1452 (see Figures 48 and 50) with the third capacitor plate 19C3. Thus, the first, third, sixth, and eighth capacitor plates 19C1 , 19C3, 19C6, and 19C8 are capacitively coupled together. This coupling, capacitively couples together the contacts 1442, 1443, 1444, and

1446 (and therefore, the outlet contacts 1312, 1313, 1314, and 1316).

Similarly, the second capacitor plate 19C2 is juxtaposed across the flexible substrate 1452 (see Figures 48 and 50) with both the fifth capacitor plate 19C5 and the seventh capacitor plate 19C7. Further, the seventh capacitor plate 19C7 is juxtaposed across the flexible substrate 1452 (see Figures 48 and 50) with the fourth capacitor plate 19C4. Thus, the second, fourth, fifth, and seventh capacitor plates 19C2, 19C4, 19C5, and 19C7 are capacitively coupled together. This coupling, capacitively couples together the contacts 1443, 1445, 1446, and

1447 (and therefore, the outlet contacts 1313, 1315, 1316, and 1317).

The first stage of the two-stage crosstalk reduction is implemented as follows. As mentioned above, the signal on the outlet contact 1316 (for example) radiates noise and produces crosstalk in the nearby outlet contacts 1315 and 1317. To counteract that crosstalk, the counter-signal of the outlet contact 1313 is conducted (by the trace 19T3) to the second capacitor plate 19C2. Capacitive coupling between the second capacitor plate 19C2 and the fifth and seventh capacitor plates 19C5 and 19C7 (connected to the contacts 1447 and 1445, respectively) reduces (or at least partially cancels) crosstalk in the outlet contacts 1315 and 1317 caused by the outlet contact 1316. Similarly, to counteract crosstalk in the outlet contacts 1312 and 1314 caused by the outlet contact 1313, the counter- signal of the outlet contact 1316 is conducted (by the trace 19T1 ) to the first capacitor plate 19C1 . Capacitive coupling between the first capacitor plate 19C1 and the sixth and eighth capacitor plates 19C6 and 19C8 (connected to the contacts 1442 and 1444, respectively) reduces (or at least partially cancels) crosstalk in the outlet contacts 1312 and 1314 caused by the outlet contact 1313. The second stage of the two-stage crosstalk reduction, which occurs at the same time that the first stage is occurring, is implemented as follows. As mentioned above, the signal received by the contact 1446 (from the outlet contact 1316) must travel further and takes longer to reach the fourth capacitor plate 19C4 than the first capacitor plate 19C1 . Thus, the signal traveling along the trace 19T2 is delayed with respect to the signal traveling along the trace 19T1 . That delay shifts the phase of the signal before the signal reaches the fourth capacitor plate 19C4 (via the trace 19T2) and affects the seventh and second capacitor plates 19C7 and 19C2 that are connected to the contacts 1445 and 1443 (and therefore, the outlet contacts 1315 and 1313), respectively. Further, as mentioned above, the second capacitor plate 19C2 is capacitively coupled to the fifth capacitor plate 19C5 that is connected to the contact 1447 (and therefore, the outlet contacts 1317). The phase is changed enough (along the trace 19T2) that when the delayed signal from the contact 1446 combines with the counter-signal received from the outlet contact 1313 (via the trace 19T3), the total crosstalk on the outlet contacts 1315 and 1317 is further reduced.

Similarly, as mentioned above, the signal received by the contact 1443 (from the outlet contact 1313) must travel further and takes longer to reach the third capacitor plate 19C3 than the second capacitor plate 19C2. Thus, the signal traveling along the trace 19T4 is delayed with respect to the signal traveling along the trace 19T3. That delay shifts the phase of the signal before the signal reaches the third capacitor plate 19C3 (via the trace 19T4) and affects the eighth and first capacitor plates 19C8 and 19C1 that are connected to the contacts 1444 and 1446 (and therefore, the outlet contacts 1314 and 1316), respectively. Further, as mentioned above, the first capacitor plate 19C1 is capacitively coupled to the sixth capacitor plate 19C6 that is connected to the contact 1442 (and therefore, the outlet contacts 1312). The phase is changed enough (along the trace 19T4) that when the delayed signal from the contact 1443 combines with the counter-signal received from the outlet contact 1316 (via the trace 19T1 ), the total crosstalk on the outlet contacts 1314 and 1312 is further reduced. In some embodiments, the contacts 1442 and 1447 are omitted. In such embodiments, the capacitor plates 19C6 and 19C5 and the traces 18T6 and 18T5 may be omitted from the compensation circuitry 1800. The foregoing described embodiments depict different components contained within, or connected with, different other components. It is to be

understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected," or "operably coupled," to each other to achieve the desired functionality.

While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this invention and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this invention. Furthermore, it is to be understood that the invention is solely defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as "open" terms (e.g., the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "includes" should be interpreted as "includes but is not limited to," etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g., "a" and/or "an" should typically be interpreted to mean "at least one" or "one or more"); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of "two recitations," without other modifiers, typically means at least two recitations, or two or more recitations).

Accordingly, the invention is not limited except as by the appended claims.