Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMMUNICATION EXCHANGE FOR LOCAL DATA SERVICES
Document Type and Number:
WIPO Patent Application WO/2017/161190
Kind Code:
A1
Abstract:
The present invention is directed towards a communication exchange system where an ecosystem of one or more HPMN and VPMN operators that are connected to a gateway / exchange that facilitates local data services for users. These users are roaming in the VPMN over existing roaming relationship between VPMN and their HPMN. The local data services are facilitated by adding an identifier to APN. The communication exchange systems also includes an interface that maintains a bi-directional connection with the gateway to exchange information related to the roaming services, and a bi-directional connection with users via their mobile devices' user interface.

Inventors:
JIANG JOHN YUE (US)
Application Number:
PCT/US2017/022813
Publication Date:
September 21, 2017
Filing Date:
March 16, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GLOBETOUCH INC (US)
International Classes:
H04M3/32; H04M3/04; H04M3/54
Domestic Patent References:
WO2014195809A12014-12-11
WO2012064980A12012-05-18
Foreign References:
US20120287844A12012-11-15
Attorney, Agent or Firm:
CHESSER, Wilburn L. et al. (US)
Download PDF:
Claims:
CLAIMS

1. A communication exchange system comprising:

an ecosystem of one or more HPMN and VPMN operators;

a gateway for facilitating local data services for user, wherein the user is roaming in a visited network (VPMN) over existing roaming relationship between the VPMN and a home network (HPMN), by adding an identifier to APN; and

an interface maintaining a bi-directional connection with the gateway to exchange information related to the roaming services, and a bi-directional connection with users via their mobile devices' user interface.

2. The system of claim 1, wherein the identifier is either a VPAA flag or a new operator identifier of an operator who is responsible for DNS resolution. 3. The system of claim 1, wherein the identifier is of HPMN operator, VPMN operator, Gateway or merchant.

4. The system of claim 1, wherein the identifiers allows one of HPMN operator, VPMN operator, Gateway or merchant, to perform DNS resolution on flagged APN to a LBO.

5. The system of claim 4, wherein the VPMN updates its DNS to LBO APN to facilitate an incoming data session request on LBO APN to be resolved to local GGSN/PGW.

6. The system of claim 1, wherein the gateway facilitates the local data services for one or more of a localized area, a city, a region, a country or group of countries.

7. The system of claim 1, wherein the gateway adds an identifier on existing APN profile of an inbound roaming users HPMN.

8. The system of claim 1, wherein the gateway adds an identifier to APN for only those users who have requested for local data services.

9. The system of claim 1, wherein the interface sets up a VPN connection to the gateway.

10. The system of claim 1, wherein the gateway is a cloud based electronic trading service platform that establishes connections with at least one of HPMNs and

VPMNs, the HPMNs and VPMNs being part of the ecosystem, and their users being registered at the gateway.

1 1. The system of claim 1, wherein the interface interacts with the gateway using one or more of a bidirectional IP interface, WiFi, Cellular data, USSD, and SMS channel, wherein either one of the interface and the gateway initiates a request or push notification.

12. The system of claim 1, wherein the interface is one or more of a mobile application, a web interface, a desktop interface, an IoT device, a connected car interface, a smart watch.

13. The system of claim 1, wherein the interface enables the users to trade data packages from the VPMN, without changing their SIM.

14. The system of claim 1, wherein the data service is activated based on user preferences as one of automatic, on-demand, threshold triggered, and top-up alert triggered.

15. The system of claim 1, wherein the data service is selected for a specific VPMN operator, the user being steered for roaming to this specific VPMN operator.

16. A method of facilitating local data services for users, the method comprising: receiving a location update message of users at a gateway, the gateway being a communication exchange system having an ecosystem of one or more HPMN and VPMN operators;

adding an identifier to APN of the users to enable their local data services when the users are roaming in the VPMN, the local data services being enabled via an interface that maintains a bi-directional connection with the gateway and users' mobile devices' user interface.

17. The method of claim 16, wherein the identifier is either a VPAA flag or a new operator identifier of an operator who is responsible for DNS resolution.

18. The method of claim 16, wherein the identifier is of HPMN operator, VPMN operator, Gateway or merchant.

19. The method of claim 16, wherein the identifiers allows one of HPMN operator, VPMN operator, Gateway or merchant, to perform DNS resolution on flagged APN to a LBO.

20. The method of claim 19, wherein the VPMN updates its DNS to LBO APN to facilitate an incoming data session request on LBO APN to be resolved to local GGSN/PGW.

21. The method of claim 16, wherein the gateway facilitates the local data services for one or more of a localized area, a city, a region, a country or group of countries.

22. The method of claim 16, wherein the gateway adds an identifier on existing APN profile of an inbound roaming users HPMN.

23. The method of claim 16 wherein the gateway adds an identifier to APN for only those users who have requested for local data services. 24. The method of claim 16, wherein the interface sets up a VPN connection to the gateway

25. The method of claim 16, wherein the gateway is a cloud based electronic trading service platform that establishes connections with at least one of HPMNs and VPMNs, the HPMNs and VPMNs being part of the ecosystem, and their users being registered at the gateway.

Description:
COMMUNICATION EXCHANGE FOR LOCAL DATA SERVICES

Related Applications

This application claims the benefit of U.S. Provisional Patent Application No. 62/309,000 entitled "DATA X - A GLOBAL MOBILE OTT AND CLOUD-BASED APPROACH FOR VISITING OPERATORS TO RETAIL LOCAL PREPAID DATA PLANS TO INBOUND ROAMERS AND FOR HOME OPERATORS TO ALLOW SUCH PURCHASE BY THEIR OUTBOUND ROAMERS AT VISITING OPERATORS WITHOUT ENABLING DATA ROAMING," filed on March 16, 2016, the entire contents of which are incorporated by reference herein.

Field of the Invention

The present invention generally relates to mobile communications. More specifically, the invention relates to enabling local data services while roaming.

Background of the Invention Roaming traffic contributes a significant percentage of an operator's revenue and even a better percentage of the operator's margin. With increasing competition and regulatory control, operators are being more pressured to increase their roaming revenue. As the global mobile roaming market business model is evolving, the industry understands the strategic importance of roaming to operator's revenues and profit margins and is adapting various newly proposed regulations. The operators understand that they must develop strategies for driving the number of roamers and roaming usage, while lowering tariff rates. Mostly, the roaming revenue is contributed by voice calls based revenue and less revenue contribution is due to data services. Around 70% of global mobile data users do not use data services when on roaming. Hence, data roaming is currently underutilized by a factor of 25 times despite significant uptake with much reduced retail pricing and 10% increase of data roamers.

This situation would is exacerbated with the increasing adoption of smartphone and 4G technologies. Data roaming is still the primary source of customer complaints and comprehension as it is difficult to count volume of data usage on smartphone applications given the variety of the background running usage; while voice and messaging can be easily controlled and understood by the customers via CDRs. Gone are the days when data usage used to be a luxury option. Now, it is a necessity of everyday use of mobile phone. In fact, it is the essence of keeping in touch these days given the popular adoption of social media platforms. It is also an increasingly important source of exchanging valuable information and conducting e- commerce. In accordance with the foregoing, there is a need in the art of a system, a method, for creating a solution that gives an operator the ways to leverage the ecosystem of partnering operators to enable a user use data services while roaming, at competitive rates, with the aim of simplifying user's experience and maximizing roaming revenue for participating operators.

Summary

The present invention is directed towards a communication exchange system where an ecosystem of one or more HPMN and VPMN operators that are connected to a gateway / exchange that facilitates local data services for users. These users are roaming in the VPMN over existing roaming relationship between VPMN and their HPMN. The local data services are facilitated by adding an identifier to APN. The communication exchange systems also includes an interface that maintains a bidirectional connection with the gateway to exchange information related to the roaming services, and a bi-directional connection with users via their mobile devices' user interface.

The present invention is also directed towards providing a method for facilitating local data services for the users. The gateway / exchange receiving a location update message of the users. The gateway is connected to the ecosystem of operators, having one or more HPMN and VPMN. The gateway adds an identifier to APN of the users who are roaming in the VPMN, wherein the identifier is added to APN using an interface that maintains a bi-directional connection with the gateway and users' mobile devices' user interface.

Brief Description of Drawings

In the drawings, the same or similar reference numbers identify similar elements or acts.

FIG. 1 illustrates a system for implementing Communication exchange for local data service, in accordance with an aspect of the present invention;

FIG. 2 represents a flowchart for implementing Communication exchange for local data service, in accordance with an aspect of the present invention; FIG. 3 represents a flow diagram for implementing the communication exchange in monitoring mode, in accordance with a first aspect of the present invention;

FIG. 4 represents a flow diagram for implementing the communication exchange in proxy mode, in accordance with a first aspect of the present invention;

Fig. 5 represents a flow diagram for implementing the communication exchange in monitoring mode, in accordance with a second aspect of the present invention;

FIG. 6 represents a flow diagram for implementing the communication exchange in proxy mode, in accordance with a second aspect of the present invention;

FIG. 7 represents a flow diagram for overall business model and its key transactions, in accordance with an aspect of the present invention;

FIG. 8 represents a flow diagram for sample transaction process in activation of local data services, in accordance with an aspect of the present invention; and FIG. 9 represents a flow diagram for implementing basic architecture for activation of local data services, in accordance with an aspect of the present invention.

Detailed Description

In the following description, for purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the present invention may be practiced without these specific details. In some instances, well-known features may be omitted or simplified, so as not to obscure the present invention. Furthermore, reference in the specification to "one aspect" or "an aspect" means that a particular feature, structure or characteristic, described in connection with the aspect, is included in at least one aspect of the present invention. The appearance of the phrase "in an aspect," in various places in the specification, does not necessarily refer to the same aspect.

The present invention provides a system and a method for facilitating local data services for a user of a Home Public Mobile Network (HPMN) roaming in a Visited Public Mobile Network (VPMN). In accordance with various aspects, the present invention provides a method and system providing the user a facility to use data services even while roaming but charged at local rates.

FIG. 1 illustrates a system 100 for facilitating the local data service for roaming users, in accordance with an aspect of the present invention. A user 102 of HPMN 104 (from home country) is roaming in a VPMN 106 (from visiting country). The user 102 is connected to a VPMN VLR 108, when it is roaming outside HPMN 102. The system 100 includes a gateway 1 10, hereinafter, interchangeably referred to as communication exchange 1 10 or exchange 1 10 that facilitates local data services for user 102 while in VPMN 106, in accordance with various aspects of the present invention. The user 102 uses a smartphone device that has a provision to have a software interface / software application that helps in maintaining a bi-directional connection with gateway 1 10 to exchange information related to the roaming services, and a bi-directional connection with user 102 via his/her mobile devices' user interface. For sake of representation only two operators (HPMN and VPMN) are shown, however, in various aspects of the present invention, exchange 1 10 works with an ecosystem that has multiple operators (HPMNs and VPMNs), who would like their subscribers to use this facility of local data services. In further aspects the scenario of only VPMN operators participating is also explained.

In accordance with various aspects of the present invention, local data services provided are hereinafter interchangeably referred to as "DataX services" or "FiGo services." The interface for user could be either a mobile application (such as DataX app), a web interface, a desktop interface, an IoT device, a connected car interface, or even a smart watch interface.

In one aspect of the invention, VPMN VLR 108 is connected with an SGSN-R 1 12, which is further connected with STP-R / DEA 1 14, via SS7 protocol. The exchange 1 10 is connected with STP-R / DEA 1 14 via IP in monitoring mode. User profile data corresponding to user 102 is stored in HPMN HLR-H 1 16. The signaling corresponding to user 102 is routed using STP-H 1 18. The signaling between HPMN 104 and VPMN 106 is carried using SS7 signaling architecture. The signals exchanged between HPMN 104 and VPMN 106 are MAP based signals.

For sake of representation, system 100 represents network elements from both LTE and GSM networks. HPMN 104 including HSS/ HLR-H 1 16 connects via a STP-H / DEA 1 18 to an MME, which is further connected to an MSC-R / VLR-H in HPMN 104 via BSSAP+ protocol. These network elements communicate with each other over a Signaling System 7 (SS7) link.

It will also be apparent to a person skilled in the art that HPMN 104 and VPMN 108 may also include various other network components (not shown in FIG. 1), depending on the architecture under consideration. It will also be apparent to a person skilled in the art that various components of HPMN 104 communicate with VPMN 106 using various signaling techniques including, but not limited to, SS7, SIP, IP, ISUP etc.

In accordance with various aspects of the present invention, the exchange 1 10 is a B2B2C cloud-based electronic trading service that is built on an clearing exchange with an ecosystem of mobile operators (considered as merchants) that allows users such as user 102 through a software front end interface (without requiring them to change their mobile device and /or SIM) to sell and buy a local rate data package for use of a roaming or local device in a mobile operator of the ecosystem. In addition to cross operator trading between users of different networks, the users of a joining operator can even buy and sell local rate data packages in the same network. This electronic market place simplifies the user experience by enabling a pure smartphone (such as, but not limited to iOS based devices, Android based devices) application interface for the trading service.

In accordance with various aspects of the present invention, the exchange 1 10 provides a seamless experience to user 102. A roaming user or a local user with a smartphone (as defined above) with an unchanged HPMN 104's SIM using an application downloaded from an application store registers an account with the trading service, provided by exchange 1 10. Now, through this application, the user 102 can buy a local rate data package offered by a local mobile operator with a stored wallet or a payment method. In accordance with several aspects of the present invention, the interface enables payments related to sale or purchase of data packages, using at least one of mobile wallet, PayPal, Credit Cards, Debit Card, wire transfers, NFC payments, WePay, Alipay, PayTM, and online payment systems. Once the user 102 has bought a data package, the data package can be activated on a scheduled time, on registration automatically or on demand manually. The user 102 may also manually select the mobile operator (via the application the application or via the user's mobile interface) or the user 102's phone is automatically steered to the desired mobile operator.

An enterprise service administrator (local or international) using the software interface (i.e., the application on user's mobile or a web interface or just a desktop client) registers an account with the trading service and can then buy an individual or group local rate data package on the trading platform for an individual or group of mobile devices (such as a company's employee group, M2M and Internet Of Things) the enterprise manages. Once a device is part of a bought package, the device's local usage can be activated on a scheduled time, on registration automatically or on demand remotely over the air. The device may also be configured for the selected mobile operator remotely over the air or be automatically steered to the mobile operator. Individual device's usage and monetary spending can also be controlled by the administrator. User 102 with a smartphone with an unchanged home operator SIM using an application on his smartphone registers an account with the trading service. Now through the application, user 102 can sell a portion of his unused local rate data package bought on the trading platform to another roaming traveler or a local user. The application informs the user how much data used so far and how much data is unused on its current data plan. Once the portion is sold, the user would be credited with the money in its stored wallet.

A mobile operator using the interface registers an account with the communication exchange 100 / trading service, and can price and sell a local rate data package for one or more devices on the trading platform. Once the portion of package is sold, the operator account would be credited with the money in its stored wallet. The buyer could be a local user or a roaming user or local enterprise or international enterprise. An enterprise service administrator using the interface registers an account with trading service 1 10 and can sell a portion of the enterprise's unused local rate data package bought on the trading platform. The software interface informs the administrator on usage of the data. Once the portion of data package is sold, the enterprise account would be credited with the money in its stored wallet. The buyer could be a local user or a roaming user or an enterprise.

It will be apparent to a person skilled in the art that the trading service 1 10 of local rate data plan can also be used by locals within the same operator or roaming devices between operators of national roaming and international roaming. Moreover, an operator merchant normally only sells data packages although there is no system restriction for the merchant to buy data packages as an enterprise too. However, non- operator merchant seller is restricted to sell only data packages that are bought via the trading service. FIG. 2 represents a flowchart for implementing the communication exchange for local data service, in accordance with an aspect of the present invention. At step 202, gateway 1 10 receives a location update message of user 102. Thereafter, at step 204, the gateway 1 10 adds an identifier to APN of user 102 to enable his/her local data services in VPMN 106. The gateway 1 10 either adds a VPAA flag as an identifier, or a new operator identifier who is responsible for DNS resolution to Local Break Out (LBO) at HLR-H 1 16 profile of user 102. The new operator could be VPMN 106 or Gateway 1 10 or any other partner merchant / operator. In accordance with another aspect of the present invention, the HPMN 104 itself could resolve the DNS to LBO, in case HPMN 104 is supportive of local data services.

In accordance with various aspects of the present invention, implementing local data services, could be done either in APN change approach (as explained above), or non-APN change approach (wherein user's APN is not changed, but on network side APN profile is modified to point to Gateway 1 10).

FIG. 3 represents a flow diagram for implementing the communication exchange in monitoring mode, in accordance with a first aspect of the present invention where APN is changed. In this case VPMN 106 has gateway / exchange 1 10 functioning in monitoring mode to monitor incoming roaming users' data registration at SGSN-R 1 12. The gateway 1 1 10 dynamically either adds VPAA identifier to APN profile to user's 102 profile at SGSN-R 1 12 or modifies APN to point to VPMN 106, if user 102's MSISDN is registered for local data services. Subsequently, VPMN 106 updates its DNS to LBO APN to facilitate an incoming data session request on LBO APN to be resolved to local GGSN/PGW. In case the user 102's MSISDN is not registered, then exchange doesn't make any change in its APN.

FIG. 4 represents a flow diagram for implementing gateway 1 10 in proxy mode, in accordance with a first aspect of the present invention, where APN is changed. As shown in the call flow, since gateway 1 10 is made as a proxy to SS7/Diameter messages location update messages, in which case still not all SS7/Diameter messages need to be proxied through gateway 1 10. In this case, it is possible to handle situations where the roaming user 102 might not have a data roaming service enabled by HPMN 104. In this case, when the location update message is proxied thru gateway 1 10, if the user 102's MSISDN is not registered with gateway 1 10, then the signaling is simply bypassed by gateway 1 10 and subsequent return or exchange messages will not involve gateway 1 10. Otherwise, if the user 102's MSISDN is registered with gateway 1 10 for local data service, the return message from HPMN 104 will go via gateway 1 10. In such a case, gateway 1 10 either modifies it to add VPAA identifier to APN or adds a new APN that points to partner operator VPMN 106. Subsequently, in either case, VPMN 106 updates its DNS to LBO APN to facilitate an incoming data session request on LBO APN to be resolved to local GGSN/PGW. Once the data registration is granted success, it also renders the GSM/voice steering useless. In accordance with various aspects of the invention, the LBO APN for Release 4 message can just be operator identifier replacement (APN-OI replacement) rather than network identifier change of an APN. In this way, no device client change of APN would be required. FIG. 5 represents a flow diagram for implementing the communication exchange in monitoring mode, in accordance with a second aspect of the present invention where APN is not changed. In this case VPMN 106 has gateway / exchange 1 10 functioning in monitoring mode to monitor incoming roaming users' data registration at SGSN-R 1 12. The gateway 1 1 10 dynamically adds VPAA identifier to APN profile to user's 102 profile at SGSN-R 1 12, if user 102's MSISDN is registered for local data services. Subsequently, VPMN 106 updates its DNS to LBO APN to facilitate an incoming data session request on LBO APN to be resolved to local GGSN/PGW. In case the user 102's MSISDN is not registered, then exchange doesn't make any change in its APN.

FIG. 6 represents a flow diagram for implementing gateway 110 in proxy mode, in accordance with a second aspect of the present invention, where APN is not changed. As shown in the call flow, since gateway 1 10 is made as a proxy to SS7/Diameter messages location update messages, in which case still not all SS7/Diameter messages need to be proxied through gateway 1 10. In this case, it is possible to handle situations where the roaming user 102 might not have a data roaming service enabled by HPMN 104. In this case, when the location update message is proxied thru gateway 1 10, if the user 102's MSISDN is not registered with gateway 1 10, then the signaling is simply bypassed by gateway 1 10 and subsequent return or exchange messages will not involve gateway 1 10. Otherwise, if the user 102's MSISDN is registered with gateway 1 10 for local data service, the return message from HPMN 104 will go via gateway 1 10. In such a case, gateway 1 10 modifies it to add VPAA identifier to APN. Subsequently, VPMN 106 updates its DNS to LBO APN to facilitate an incoming data session request on LBO APN to be resolved to local GGSN/PGW. Once the data registration is granted success, it also renders the GSM/voice steering useless.

In accordance with various aspects of the present invention, user 102 can buy the local data services plan with or without an Internet connection. In first aspect, without an Internet connection, as long as there is a merchant or operator in the country for user 102, the user can go through the setting of a local data connection path for only accessing restricted sites, e.g. buying a plan or even activating plan. This local data connection would be free to the user.

However, when user 102 registers at the operator (e.g. VPMN 106), gateway 1 10 defines an APN or adds a VPAA or APN-OI as defined in profile modification approaches (either APN change or no APN change approach) mentioned earlier. Only then user 102 is allowed free internet access. Even though user 102 has not bought a plan, the profile modification will still proceed as long as the user's MSISDN is registered with the gateway 1 10 for local data service.

In some aspects of the present invention, all inbound roamers profiles are modified as in such a way, so as to eliminate the need for external IP interface between merchant operators and the gateway 1 10 for dynamic profile modification.

In accordance with another aspect of the present invention, when user 102 tries to buy a plan via the OTT, if there is no Internet connection at the country, the OTT guides user 102 in setting a local data connection, should there be an operator in the current country. This involves setting an APN and selecting the operator. In fact there can be an explicit user experience in the OTT to recommend or having an option to set up a free local data connection. In accordance with an aspect of the present invention, activating the local services plan in a country also requires an Internet connection, and as there might not be a Wifi connection or data roaming charge is undesirable, the interface (or the local data service application) still allow user 102 to activate the local data services plan or access the service without incurring charges by setting up a free local data connection.

In order to setup a free local data connection, user 102 needs to select an operator network from the ecosystem, and sets the right APN by following the activation steps. In an android setup, it can be done offline by selecting or setting the APN of communication exchange 1 10. In iOS, the APN need be configured via a profile. To do offline mode (assuming there is no Internet connection yet) for iOS, user 102 needs to click the mobileconfig file in the welcome email attachment sent to user 102 at the time of registering to the local data service. The mobileconfig file can be signed by a trusted root certificate by the iOS so it can still be installed offline. Once the profile is installed, the user can have an APN that allows data services.

Since the local data services plan is cached, a user can buy the plan later even when there is no connection. Since there is no verification of payment, the plan bought is only tentatively available. This can be concluded whenever there is a connection available. This aspect can be particularly useful, if there is no WiFi connection and no local merchant available at the current country.

In accordance with various aspects of the present invention, a member operator of the ecosystem plays two key roles, one as a visiting operator for inbound roamers and another as a home operator for its outbound roamers. As a visiting operator, the member operator can configure to offer its local data plans to selected home operators (which don't have to be a member of the ecosystem) who have a data roaming relationship with the member operator. In accordance with an aspect of the present invention, the selection of operator is based on all operators, subset of individual operators (e.g. ATT, China Mobile, or groups of operators (e.g. Vodafone group, Telefonica group etc), or alliances (e.g. Connexus, Bridge etc) or based on selections of previous choices who grant explicitly or implicitly the member operator for the local data service. The home operator (HPMN 104) has a subscriber profile for its outbound roamers with local breakout APN. In another aspect of the present invention, as home operator HPMN 104 ( as a member operator of the ecosystem) configures explicitly to grant local data services to selected visitor operators (which aren't a member of the ecosystem) who have a data roaming relationship with HPMN 104. The selection can be based on all operators, subset of individual operators (e.g. ATT, China Mobile, or groups of operators (e.g. Vodafone group, Telefonica group etc), or alliances (e.g. Connexus, Bridge etc).

Additionally in this aspect, HPMN 104, also adds an explicit local breakout APN for the gateway 1 10 or similar local breakout service. In this case, the dynamic profile gateway 1 10 would not require to need insert a local breakout APN. The OTT app's APN profile for user 102 would be dynamic based on the HPMN 104 's local breakout APN. The HPMN 104 can also choose to add a revenue share charge requirement for such an APN use by VPMN 106. The revenue charge can be bilateral but best to be defined as a standard rate (e.g. 20% of retail data plan offered by the visiting member operator to the inbound roamer).

In accordance with an aspect of the present invention, steering of roamers to VPMN 106, HPMN 104 provides APN in their users' profiles (and as a default APN for some SIMs, e.g. local data travel SIMs) to ease APN selection/configuration. Also HPMN 104 helps set up merchant ecosystem without the need to deploy local nodes or configure DNS in merchant networks, as the APN is resolved by HPMN 104 DNS. The welcome email or the APN profile will be dynamically created based on home operator of subscriber's registered number.

In accordance with other aspects of the present invention, for some member operators based on their SGSN/SGW capabilities, the member operator configures their SGSN with the following rule:

- If subscriber mobile's access APN is not defined in subscriber profile at the SGSN or the profile contains a wildcard APN, and the APN is a supported local breakout APN by the member operator, then the SGSN/SGW accepts the mobile's access APN and the APN DNS can point to the local break out gateway 110 of the cloud infrastructure. With this approach, there is no need to deploy dynamic profile gateway (i.e., gateway 1 10) at such a member operator. This approach is particularly useful for operators with small SGSN footprint, as there aren't many configurations required for SGSNs. This approach is also useful for member operator to offer on-demand prepaid local data service via the application (i.e., interface) to its own subscribers as long as the subscribers is using LBO / DataX or FiGo APN. For example, user 102 can on demand buy a daily plan, a weekly plan (without or running out of a recurring subscription plan). In this case, member operator puts this APN as a non-default or default APN of the subscriber profiles in HLR/HSS 1 18.

It would be apparent to a person skilled in the art that if a user or his subscriber is not subscribed to DataX services then gateway 1 10 can block the user from using local data services. For example, a Chinese local subscriber would not be allowed to use the local data services of the DataX cloud deployed outside China as this might break local China law.

In accordance with various aspects of the present invention, since APN selected is a local breakout, the DNS resolution of the APN points to a local gateway of DataX service. This local gateway could be the member operator's GGSN/PGW, but for easier deployment, consistency and flexible control, DataX service uses its own local gateways (e.g. gateway 1 10). Each member operator DNS will have primary and secondary pointing to these local gateways.

Rather than changing member operator's DNS configuration, local gateway is required. In accordance with an aspect of the present invention, the member operator DNS forwards the LBO APN resolution to DNS of gateway 1 10, which then dynamically selects LBO gateway based on the DNS origination address. In accordance with another aspect of the present invention, the GTP-C traffic is centrally located in regional local gateways. However, the regional local gateways redirect GTP-U traffic to the closer local gateway based on the originator address.

The present invention focuses on covering as many countries and users as possible. In accordance with various aspects of the present invention, the DataX provider, may reward the early-bird operators in a country, an exclusivity period (e.g. 6 months). Alternatively, such an operator may be given a branded sponsor for any dataX users (including local competitors) of the same country. For example, if AT&T carrier in USA is a DataX operator, AT&T logo can appear in the DataX app (i.e, interface) downloaded by any users including Tmobile, Verizon etc. Furthermore, the AT&T provider may offer discounts on retail data rates offered by selected (e.g Mexico, Singapore etc.) or all ecosystem partners to the competition (e.g., Tmobile, Verizon) or all USA customers (i.e., including AT&T customers).

The merchant operator logo will be dynamically inserted for all users of the country where the merchant operator is based. If the merchant is a group (e.g. Orange), then the logo can be dynamically inserted for all users of the countries where the merchant operator group provides network services.

It will be apparent to a person skilled in the art that that similarly the present invention can also be used to sponsor enterprise logos with discounts and durations. For example, Mastercard can sponsor discounts with a duration on retail data rates offered by selected or all ecosystem partners. In this case, DataX application with have these sponsors logos. In accordance with an aspect of the present invention, the interface on user

102's device (i.e. the DataX application) is distributed from application stores on iOS or Android or Windows platform, or from OTT apps/players, such as Uber or Facebook. The present invention provides four possible approaches for integrating with

OTT players:

1. The OTT app (e.g Facebook) and the DataX app reside individually on the same user device and the OTT app invokes the DataX app for local data service from DataX

2. The OTT app (e.g. Uber) has the DataX app embedded as an SDK and the DataX app interfaces with the DataX backend server (gateway 1 10). Thus, the user 102 relationship and payment is handled via gateway 1 10 The OTT app has its own device front end and interfaces directly with the DataX server (i.e. gateway 1 10) via OTT backend. Thus, the user 102 relationship and payment is handled via gateway 1 10 The OTT app has its own device front end and will interface directly with with the DataX server (i.e. gateway 1 10) via OTT frontend. Thus, the user 102 relationship and payment happens via gateway 1 10

In all above explained approaches, the OTT can add its own margins or retail prices at each merchant operator or give discount on overall retail price with or without sponsorship. The revenue can be shared with DataX service provider or even with DataX partner operator.

In accordance with another aspect of the present invention, in each country the partner operator plan may have a free DataX service plan with a limit of X MB (e.g. 20 MB of data per day). In such a case, the user 102 may only use this plan to access local data services, such as purchasing a plan and chatting with help desk etc. When the user 102 reviews plan, there is no need for pay and go straight to activation. After activation, the plan would still be in plan list with metering. When user 102 buys a paid plan, all usage would be counted against the new plan when the plan is activated. When the paid plan is consumed, user 102 can go back to the free DataX plan to buy additional plans. The old usage will continue or can be reset to zero each time a new plan is bought. If user 102 tries to select and activate a new free DataX service plan, the BSS will inform user 102 there is a plan already used within the last 24 hours. User 102 is advised to use the plan where there is still balance left or wait until another day. The free DataX plan can also be achieved via social media promotion both referrer and referred.

In accordance with another aspect of the present invention, each country partner can also have their own free plan for 1st time or X time users. User 102 can use this plan to access Internet free of charges. When user 102 reviews plan, there is no need for pay and go straight to activation. After activation, the plan would still be in his plan list with metering. The plan can only be used for first X time. If user 102 tries to select and activate a new free internet service plan beyond X times, the BSS will inform user 102 all X times used up and advise him/her to buy a new plan. In addition to country plan, there could also regional and group plans, e.g. Asia plans, Europe Plan, Multi-Country Plan, Vodafone Group plan etc. In each merchant plan, there can also be data plans and sponsored plans. When sponsored plans are selected, user 102 goes to select sponsor choices. The sponsor allows user 102 to use the sponsor service for free and each time there is a transaction with the sponsor, the sponsor will also offer a free Internet plan.

FIG. 7 represents a flow diagram for overall business model and its key transactions, in accordance with an aspect of the present invention. The basic business model of the service is that the exchange 1 10 takes a transaction fee of a transaction. Exchange 1 10 acts as a broker or middle man that handles all the transactions and payments. All monetary exchange would be prepaid and based on a cascading model. The seller decides the price of data package. The buyer of a transaction by a seller pays exchange 1 10 as a broker. Exchange 1 10 pays the seller minus the transaction fee. Exchange 1 10 shares the fee with the seller's mobile operator and the mobile operator of the buyer if the buyer's mobile operator is a HPMN operator (like HPM 104) of the ecosystem of the trading communication exchange. Exchange 1 10 is liable for the seller and the buyer is liable for exchange 1 10. Because all transactions are prepaid, the risk for exchange 1 10 is the least. Although there is no financial clearing per se, the seller's operator can do data clearing with the exchange for reconciliation, whose success can be based on an agreed margin of error (e.g. l%-3%) and a settlement procedure on any failed reconciliation. It will be apparent to a person skilled in the art that the trading exchange is not operating as a MVNO model but as simply an electronic retail distribution model for operators tailored for locals, travelers and enterprises without a new SIM for user 102. Although, it is trading local rate data service, it does not offer customer care to end user communication service. This is very similar to other trading exchanges like eBay, Priceline, selling car rentals / hotels where these trading services do not provide customer care for the hotel or car service. As a result, the customer care for end user communication service is still with the serving or home mobile operator. This is similar to car rental bought through Priceline where car service is still a responsibility of the car rental company. Notwithstanding, trading exchange 1 10 has its own customer care for handling complaints about the trading service rendered by mobile operator at exchange 1 10, similar to customer care in Priceline or Hotel.com. As the users and merchants' financial transactions are going through the exchange 1 10 as a broker, similar to issuing/acquiring banks of credit cards for charge backs, the trading service would also handle refunds in case the user service is not rendered for the paid packages. In the case, the refund is cascaded as well. The trading service would refund the users and the operators/merchants would need to refund the trading service including all transaction fees.

In accordance with one aspect of the present invention, if the seller is a user in addition to an operator, then the refund process would only be done by exchange 1 10 as the user might lose opportunity to sell to another buyer and the user is not at fault for any service issue.

In accordance with various other aspects of the present invention, the exchange 1 10 (i.e. DataX server or simply DataX) allows interchangeable retail data plans across visitor group and alliance operators (e.g. Singapore & Malaysia, US & Mexico, Orange Europe, Bridge) or regions (e.g. Europe, Asia, Singapore-Malaysia- Thailand). Hence, if a DataX subscriber bought a data plan at a merchant / partner operator, the plan could also be used in other merchant operator(s). These operators associated with such a plan are viewed as associated operators. When a subscriber is using its retail data plan bought from any associated operator, the BSS backend will check if the subscriber already had bought an active plan associated with the current operator or an associated operator's data plan. If it is, the subscriber can use and deduct usage as if the associated operator is the operator where he bought the plan. The business model of multi-operators price plans can be that either revenue gets evenly distributed among all involved merchant operators, or it's more for the selling merchant operator or simply based on usage. The former two models are simpler than the third model.

Instead of associating a multi-operator or regional plan with a merchant, the present invention also makes it possible to have a regional/multi-operator plan independently. In this case, the plan will be presented under a group or region heading. For example, under regions (instead of countries) or groups, there will be a bridge /connexus plan, e.g., Europe plan, North America plan or an Asia plan, etc. Each plan details explains the coverage of operators involved. The revenue can still be evenly distributed or based on the usage.

In accordance with another aspect of the present invention, DataX also allows the merchant operator to offer to its own subscribers for on-demand data plans with a global consistent user experience OTT. This is useful for users running out of monthly data plans or people just want to do on-demand small usage plans which are generally significantly more expensive than monthly plan on per byte basis. It also allows the users to buy group or regional plans on-demand as well from home operator.

FIG. 8 represents a flow diagram for sample transaction process in activation of local data services, in accordance with an aspect of the present invention. A seller puts a data package on sale to exchange 1 10. Thereafter, exchange 1 10 validates the data package and reserves it if the seller is user 102. If the sale is expired, exchange 1 10 re-deposits the data package pack if the seller is user 102 and alerts the seller. If there is a buyer, the buyer money would be deducted from its account and alerted for the transaction; and the seller account would be credited including commission for the trading exchange, and VPMN and HPMN for the transaction fees, etc.

After the buyer activates the local package and visits the country, HPMN 104 helps to steer the roaming user 102 to the operator of the data package. The buyer accesses VPMN 106 where credit control is made with exchange 1 10 and alerts are communicated with exchange 1 10 and the buyer.

The present invention in its various aspects, offers either public or privat DataX cloud network. In case of a private cloud it's owned (jointly or solely) at a group or country or even operator level. For private cloud, the member operator can control its retail data price plan for its own associated operator subscribers, the DataX app logo, the private BSS API interface although attribution to DataX is maintained. The private cloud may not involve local node deployment, DNS configuration by merchant member if the home operator provides the LBO APNs, though each merchant member would still need to filter out DataX CDR based on the LBO APNs to avoid charging to HPMN 104. The private cloud may also be connected to Public cloud so that subscribers of one member of either cloud could roam and use plans offered by other cloud. The private cloud owner can also share service revenue with DataX service provider for the usage of their cloud. The downloadable DataX app by the subscribers of the private cloud owners can also dynamically insert private brands of the owners. The API of the private cloud will also expose the public cloud API so that the private cloud can expose the API to its business customers and partners such as OTT players to derive new applications that leverage both private and public clouds. The public clouds can provide the private cloud interfaces to access each other merchant's prices. The private cloud can be completely or partially white labelled from DataX app, API, SDK, merchant portal, BSS, local infrastructures.

In accordance with other aspects of the present invention, the location update proxy provides an HPMN independent solution to handle users who are not data roaming enabled. It cannot distinguish between data roaming not allowed as a steering decision by the home operator or the ones that are simply not roaming enabled. In such case, the HPMN support is needed. As DataX service at VPMN operator requires data roaming supported by the inbound roaming device, this could be a restriction for roamers of countries where data roaming is not enabled by default, such as India, China and Taiwan etc. While such roamers could go to operators to enable roaming, the procedure in some countries is not very conducive. By providing or allowing outbound local DataX service, at least home operators can share some revenue from DataX service on outbound local DataX transactions. This helps the operator against competition with operators that do not have good data roaming rates with partners.

The DataX works without roaming enablement, by having HPMN 104 deploy gateway 1 10 in its network that intercepts and relays roaming data registration message with home network HLRs from allowed visiting networks of DataX service offering as configured and controlled by HPMN 104. On receiving roaming profile on data registration, gateway 1 10 bypasses the response to the serving network without being in the loop subsequently. Upon receiving roaming not allowed on data registration from any allowed DataX offering destinations, gateway 1 10 reinitiates a new relay message to HLR-H 1 18 by mapping SGSN-R 1 12 to a home operator address so to fool HLR-H 118 to download profiles as if the roamer is at home country. Once the profile is received, gateway 1 10 removes the home operator nonlocal breakout APN and insert a local breakout APN (if not there already) and then relays the modified profile to the SGSN-R 1 12.

In this way, user 102 can still use local breakout DataX service at VPMN 106. The gateway 1 10 can also enable voice and SMS roaming this way based on home operator configuration. In particular, HPMN 104 can choose to enable MT voice and SMS only or MO and MT voice SMS or just SMS. With voice and SMS enabled some way, HPMN 104 can avoid roamers that swap home SIM out and can additionally get some roaming revenue in voice and SMS in some capacity. Even without voice and SMS roaming enabled in any capacity, HPMN 104 can still share data revenue (even if it is offered by a visiting operator).

The present invention also provides local data services for connected devices such as connected car, smart watch or any other IoT device. In accordance with various aspect of the present invention, the connected device, such as a connected car owner, can also use DataX app to buy on-demand plan with a local dataX member operator. In this way, SIM in the connected device does not need to be an eSIM or to have a local profile but just on a roaming IMSI - permanent roaming one in general. Since the owner might already have bought a data plan with the connected device company (e.g. Mercedes) on some operator coverage (e.g. AT&T, Tmobile), the owner might want to buy another operator data plan (e.g. Verizon) independently or a plan that shares with the car company data plan. The company device plan might be at 3G and the new operator plan could be 4G from the same operator. For example, the car company device plan covers 3G of AT&T and Tmobile, the owner could buy a shared data plan of 4G of AT&T (or Tmobile or both).

Since connected device could be on a permanent roaming IMSI, to share a (permanent) roaming data plan with a local data plan as offered by DataX of the visiting local operator, the DataX offers a sharing plan price by a visiting operator as presented to relevant IMSI range associated with the connected device. In this way, a connected car can present the dataX offering to the car owner, where the car owner can have a list of different operators who offer data sharing plans. When a subscriber chooses such a sharing plan offering with an operator, he pre-pays the fee for sharing. The fees would be recurring in general, such as a monthly fee, but prepaid ahead in each month. The subscriber can choose to explicitly opt in/opt-out per month. For any usage by the subscriber at VPMN 106, dataX service will sponsor for it by paying VPMN 106 but deduct the usage against the roaming IMSI data plan. The visiting operator can also share the transaction fee of the shared data plan instead of charging for actual usage to the DataX service provider. The subscriber's DataX local breakout usage will go via the gateway 1 10 where the BSS associated with gateway checks if user 102 has bought the shared device data plan, in which case BSS will instruct the gateway to tunnel the data path to the address of the gateway of the roaming IMSI plan, which could be the same gateway. The gateway of the roaming IMSI plan can then deduct the common usage against the roaming IMSI plan.

In accordance with another aspect of the present invention, in addition to deploying outbound roaming gateway for auto-enablement of data roaming of non- data-roaming subscribers at visiting merchant operators and steering DataX subscribers to the merchant operators they bought the packages, the home operators can also enable a LBO APN profile for subscribers at granted or favored merchant operators. Furthermore, the home operator may block any data sessions on such LBO APNs (e.g. not allowing LBO APNs at its GGSN/PGWs) from any visitor operator. In this way, there is no need to deploy probe and DPG at merchant operators who only wish to offer dataX to such home operators' subscribers. The home operator can resolve the APN to point to the dataX cloud gateways. The LBO APN can be added to HLR-H 1 18 for all roaming partners or based on allowed merchant operators (e.g. merchant ecosystem to which the home operator is a member of), or dynamically added (if the LBO APN is not in HLR profile for subscribers) or removed (if the LBO APN is already in HLR in all subscriber profile) via a probe/an-path signaling gateway and DPG at home operator.

Since hotspot and 4G LTE APNs could be different from 3G APN, it is important for home operator to have same LBO APNs at hot spot and 4G LTE level. Otherwise, home operator profile should have a LBO-hotspot or LBO-LTE APNs which can be DNS-mapped to the dataX local gateways by the merchants. Since LBO APNs would not be provisioned/allowed at home operator GGSN/PGWs, it is easier to provision LBO APNs for all subscribers for all roaming partners. Then whichever merchant including the home operator has implemented the LBO APN DNS resolution to the Data infrastructure Gateways (GGSN/PGWs), it will be routed via these gateways and whose data sessions would then be controlled by the associated OCS/BSS/PCRFs of the gateways.

In accordance with another aspect of the present invention, for a merchant operator to offer different prices for different home operators' subscribers, the offer can even be location specific. For example, a cheap offer can presented at airport only, ideal for inbound transit customers, such as Dubai where there are about 70 million transit visitors a year. Another example, is all US airport offerings for a month.

For APN-change based approach, the logic of profile modification for DataX subscribers remain the same as previous invention from the current inventor. On the data session side of using a plan however, during the data session (initiation and update) of an inbound roamer, the location information (routing area id, tracking area id, SGSN/SGW address, cell ID etc. depending on granularity required) is also compared with the location of the plan the inbound roamer bought (in addition to country and network information) and activated. In case the area of plan includes location area of the data session, the data session would be granted for further access. Otherwise, user would be alerted via the DataX app for the reason of failed data access. It would be apparent to a person skilled in the art that when SGSN changes or data session changes due to location information change, the above logic of checking against the location specific plan would be implemented again.

Similarly, in non-APN change approach, when a GTP control session of an inbound roamer's data session is proxied via a DataX local breakout gateway 1 10, the location information (routing area id, tracking area id etc) of the control session is also compared with the location of a plan the inbound roamer bought. In case the area of at least the bought plan includes location area of GTP control session then local break out gateway engages SGSN in both control and user data payload sessions against the plan. Otherwise, after local breakout gateway relayed the control session to home operator data gateway and back to the serving gateway, the local breakout gateway would not be in either subsequent control or user data payload sessions. In case the local breakout session is updated, if the new location information is not covered by the current active plan, the session would be relayed home or terminated based on a simple configuration.

When a home routed session is updated, if the new location information is covered by the current active plan, the session would still be home routed, unless the home routed session is relayed via the local break gateway always in both control and data payload sessions.

FIG. 9 represents a flow diagram for implementing basic architecture for activation of local data services, in accordance with an aspect of the present invention. The software interface interacts with the Exchange Service over a bidirectional or peering IP interface, which means either party can initiate request/push. The software application can obtain a store market place from the exchange 1 10. It can notify exchange 1 10 on any activation by user 102. Thereafter, exchange 1 10 can also push notifications (e.g., data usage alerts, threshold alerts) to the software interface. Exchange 1 10 interacts with operator backend over also a bi-directional or peering IP interface which means either party can initiate request/push. Subsequently, exchange 1 10 can send the operator info on a user bought or sold data package to enforce/update a credit control on user 102. The operator can check usage authorization, push notification (e.g. data usage alerts, threshold alerts) to exchange 1 10.

In accordance with various aspects of the present invention, the trading exchange can also be extended to automatically select a data plan and sells an unused plan for a subscriber should he opt-in so based on the criteria user sets.

In accordance with various aspects of the present invention, the exchange 1 10 manages a wallet account for each registered user similar to Paypal or Amazon Payment due to transactional funds similar to Ebay or Paypal. Like the Paypal the account could be backed up by credit card or bank transfer automatically when the balance is running out. Also like the Paypal, the balance could be cashed out directly via a bank card or transfer back to a bank account. The DataX service supports multiple payment methods (e.g. credit card, debit card, Unionpay, Alipay, Paypal, Applepay etc.) via a single or multiple payment gateways which can also distribute payments to different bank accounts based on application identifiers (e.g. Facebook integration on dataX can be paid first into its bank account).

DataX can also integrate with customized payment methods, e.g. carrier billing, prepaid balance, mobile wallets (e.g. mpesa), voucher (existing mechanism of merchants or newly generated by dataX but sold by merchants or their distributors). For home operator based dataX solution that offers to its own susbscribers, payment method can even be postpaid even though usage is still controlled by bundles.

In accordance with several other aspects of the present invention, the trading exchange can also be extended to auctioning of data packages, similar to Priceline or Ebay. The present invention allows user 102 to be a seller other than an operator, the auction allows the following possibilities: a) The buyer can name own price

b) The buyer can bid for a deal

c) The seller can provide an optional minimum price and an optional definite sell price for buyers to bid (within a bid period)

d) The seller can just present a non-negotiable pricing

e) There can be multiple operators' offering to choose.

However, the auction extension in the non-operator merchant seller case continues to be restricted to packages bought via the trading exchange.

During DataX registration via the DataX OTT app, the subscriber enters the MSISDN and receives a one-time code to enter to continue. The subscriber account would be associated with the MSISDN. In generic case, IMSI and MSISDN would not be distinguishable. However, there are many variations the MSISDN account approach provides. The BSS stores an association of MSISDN and a list of IMSIs, including home IMSl, sponsor IMSIs and even dynamic IMSIs. If an IMSl changes association to a new number, the old association with another number would be removed.

Anytime a MSISDN is detected from a DataX data session, the associated IMSl will be associated with the MSISDN and disassociated from any other MSISDN if any.

1. Different IMSl and Single MISSDN

2. Dynamic IMSl SIMs During subscriber's roaming registration at a merchant operator, the IMSl of the subscriber might actually vary based on roaming destination, to check if the IMSl has a plan at the merchant operator, the MSISDN associated with the IMSl in the roaming registration profile is actually checked against a plan at the merchant operator bought by the subscriber.

The new IMSl and the MSISDN association is also stored.

1) Lost SIM

When a SIM is lost, the subscriber can still obtain a new SIM/IMSI with the same MSISDN without losing his account or the plans he bought or used before. 2) Single IMSl multiple MSISDNs

There are use cases where a single IMSl SIM might have different MSISDNs. Since different MSISDNs might indicate different purposes (e.g. personal vs business, local vs international) by subscribers, the DataX can still separate subscriber's merchant plans based on their MSISDNs.

If a subscriber wants to have different numbers on the same plan, he would need to verify each number in the registration process. 3) Multi IMSIs and multiple MSISDNs

There are also use cases where a Multi-IMSI SIM might have different MSISDNs. Since different MSISDNs might indicate different purposes (e.g. personal vs business, local vs international) by subscribers, we can still separate subscriber's merchant plans based on their MSISDNs.

If a subscriber wants to have different numbers on the same plan, he would need to verify each number in the registration process.

4) Dynamic local MSISDNs

There are also use cases where a SIM might have a temporary MSISDN or even one that is not known to the SIM subscriber at some destinations. In many of these cases, home MSISDN was still received at the merchant operator first before a temporary one was sent.

During a subscriber's roaming registration at a merchant operator, to check if the IMSI of the subscriber has a plan at the merchant operator, the home operator MSISDN associated with the IMSI in the roaming registration profile is actually checked against a plan at the merchant operator bought by the subscriber.

If home MSISDN was not received at the merchant operator and the MSISDN profile of the roaming subscriber is changed to a temporary one, DataX only uses a combination of MSISDN and IMSI to ensure one of them gets a mapping. Basically tries to use the MSISDN to locate a plan for the subscriber and failing that uses the IMSI. The following generic logic applies to all cases: When a subscriber buys a plan or accesses the DataX service, the DataX BSS records both the MSISDN and IMSI used in the purchase or access as the GGSN/PGW will capture both the MSISDN and IMSI of the data session. Then, when an inbound roamer is registering at a merchant operator, to determine if the roamer is a DataX subscriber of the merchant or not:

a) First is to use the MSISDN from the inbound roamer's registration profile at the merchant operator to find a non-expired merchant plan for the roamer at the location If a plan is found, then the inbound roamer is considered a dataX subscriber at the merchant, corresponding actions would be applied (e.g. in the APN change approach, a VPAA flag is inserted in APN of roamer profile.

If no plan is found, then DataX uses the IMSI from the inbound roamer' s registration profile at the merchant operator to find a non- expired merchant plan for the roamer at the location

If a plan is found, then the inbound roamer is considered a DataX subscriber at the merchant, corresponding actions would be applied (e.g. in the APN change approach, a dataX/LBO APN would be inserted in the roamer profile).

If no plan is found, then the subscriber is not considered a DataX subscriber at the merchant operator. In accordance with various aspects of the present invention, if HPMN is supportive, the DNS configuration on the DataX APN can also be done at home operator side. Then DNS query will recursively goes to home operator DNS server which can be configured to point to a GTP proxy such as the dataX data gateway. Also with HPMN support, HPMN can even define in subscriber profiles the DataX APN, there is even no need to probe or DPG (Dynamic profile gateway) at the merchant side.

In accordance with various aspects of the present invention, in addition to helping manage the steering of roaming to dataX merchant for its outbound roamers, the home operator also helps out in setting the VPAA flag of the DataX roamer roaming at a merchant partner. The VPAA flag can be dynamically set on HLR via an HLR AP or by a dynamic profile gateway (on an active probe or passive probe interface) based on some subscription information of the subscriber for the special DataX service and plan. In the case of latter, the deployment can be similar to the one deployed at a merchant operator, except it is deployed in the home operator. There is no need for merchant side deployment of probe (active or passive) and dynamic profile gateway. However the merchant still needs to define DNS resolution on the VPAA flagged APN to point to a DataX gateway. The merchant can filter out the CDR from TAP processing based on the VPAA flag and share the transaction revenue with the home operator. The transactional DataX plan price can be defined by the merchant or home operator and paid into either party first. Alternatively the merchant can still charge home operator as normal or special (based on the VPAA flag) roaming wholesale rates (without doing any CDR filtering) via normal TAP processing. Home operator in this case defines the transactional price of DataX plans and doesn't share revenue with the merchant

The advantage is that the home operator outbound roamers do not need to change APN nor need to manually select a merchant network although he still needs to activate DataX subscription. As a result, there is no risk of accidental user leakage of data roaming usage due to personal hotspot or 4G LTE roaming, which might have hidden APNs that could not be changed.

In addition to helping out managing steering of roaming to the DataX merchant for its outbound roamers, the home operator can also provide a DataX service to its outbound roamers at partner merchants without the merchant partner doing anything. In this case, the outbound roamers data control session will be routed to a home operator data proxy. The proxy will direct the data user traffic gateway to local breakout dataX gateway if the outbound roamer is a DataX service subscriber or has a bought a plan. Otherwise the proxy will direct the data user traffic gateway to the home operator normal gateway. The proxy need be defined to only handle outbound roamer data control session messages.

In accordance with an aspect of the present invention, the data package bought could be application based charging. For example, only Facebook is free with the bought data package. Or the data package would be unlimited for the fixed price but with speed downgraded to 2G. VPMN 106 could also allow a URL access for free for the trading exchange 1 10. This will be automatically updated into the software interface for accessing the store front when the user 102's device is accessing the network. In another aspect of the present invention, the trading exchange can be extended to support VoIP by offering multiple number VoIP service where a member mobile operator of the ecosystem can contribute a local number for roamers or non- member customers to permanently or temporarily use for making or receiving calls and SMS. Moreover, the trading exchange can bind incoming calls to a user's number of the member mobile operator over IP to reduce roaming cost.

It yet another aspect of the present invention, a travel enterprise (e.g. airline, hotels, tourist business including shopping and restaurants etc.) software application is built on the trading exchange API so that the cost on the usage of user 102 on the software application in roaming or local environment including VoIP calls can be covered by the enterprise for the trading exchange. In this case, the enterprise does the B2C advertising and own services including free or sponsored data roaming and VoIP calls. The enterprise also does cross advertising and B2B trading among related enterprise on the exchange, for example, Chase Bank advertise on Nike App, hotels on airline apps, car rentals on hotels etc. In a continued aspect of the present invention, OTT apps such as Skype, Facebook, WhatsApp, Google voice etc. are built on the trading exchange to leverage a sponsored data plan in return for advertising revenue. Moreover, all the buyers' traveling destinations, data usage statistics, buying expense etc., and all the sellers' unused data amount statistics and selling operators etc. provide valuable analytics for advertising, traveling enterprise apps and targeted marketing of further trades.

In other aspect of the present invention, the trading exchange tracks and report application protocols and URLs etc. based on DPI support of VPMN 106. In particular, VPMN 106 provides foot fall data intelligence on travelers, while the trading exchange provides travelers profiles around the world. The combined profile allows traveling enterprises to form targeted advertising on different enterprise applications. If HPMN 104 also participates, more subscriber profile data (on local usage and worldwide roaming usage) is used for better targeted advertising.

However, that all privacy issues are protected in the following ways 1) Only generic profile data (e.g male more than 50 years, spending 50 USD a day etc.) is collected and cannot be related to an individual user (e.g. John P. of ABC company)

2) While the generic profile data is collected and shared across enterprise apps for targeted advertising, it is not shared for sign on to avoid correlation-ship with individuals.

The analytics services such generated are used by enterprise including M2M and IoT. In such cases, user 102's mobile's software interface is configured by enterprise admins to track and report all usage information.

It will be apparent to a person skilled in the art that when LBO is chosen, software application residing on user 102's mobile device would configure/select the LBO APN for the device data access profile. When home routing is chosen, the device client would configure/select back the home profile for the device data access profile. In general, LBO APN breakout does not interfere with other services such as CSFB and VOLTE. Nevertheless, for CSFB, LBO is not a concern, while for VOLTE another APN IMS used for local breakout. As devices allow multiple APNs and local breakout sessions, there are no interferences. As VOLTE is still considered as voice roaming even though it is a data service, it would not incur local data package consumption.

In yet another aspect of the present invention, since the trading exchange operates based on MSISDN, number portability works when changing operators except when the new operator has no roaming relationships with the visiting operator of the bought package. User 102 still will be liable for payment in this exceptional case, similar to no-show cancellation on non-refund, e.g. trip cancelled. However, unlike no-show cancellation policy, user 102 can sell the unused package to other users through the trading exchange. If user 102 changes numbers either on existing or new operators or the user 102 intends to use another SIM, user 102 will still be liable for the payment. However, user 102 can transfer the data package on its new number without incurring any charges. User 102 can also sell it but that would incur additional charges. In accordance to another aspect, the number portability feature is used to implement gifting. Unlike number change, the gifting might not verify the gifted party's number although to avoid mistakes, it is recommended to verify it. The software interface manages multiple SIMs accounts to allow user 102 to swap SIMs, as the software interface can switch accounts as buyers and sellers for the correspond SIMs. However, each SIM can only have one account, verified at the time of registration. Once registered, user 102 is free to use the trading service using any SIMs as it can switch accounts on line for trading data packages on the selected account.

In accordance with yet another aspect of the present invention, the gateway 1 10 facilitates local data roaming for users using multi-IMSI SIM. The new multi- IMSI SIM has several static IMSIs based on partnership between operators.

It will be apparent to a person skilled in the art, that the present invention can also be applied to Code Division Multiple Access (CDMA)/ American National Standards Institute # 4 ID (ANSI-41D), and various other technologies such as, but not limited to, VoIP, WiFi, 3GSM and inter-standard roaming. In one exemplary case, a CDMA outbound roamer travels with an HPMN CDMA handset. In another exemplary case, the CDMA outbound roamer travels with an HPMN GSM SIM and a GSM handset. In yet another exemplary case, GSM outbound roamer travels with an HPMN CDMA RUIM and a CDMA handset. To support these variations, system 100 will have a separate SS7 and network interfaces, corresponding to both the HPMN and VPMN networks. It will also be apparent to a person skilled in the art that these two interfaces in different directions may not have to be the same technologies. Moreover, there could be multiple types of interface in both directions.

An exemplary list of the mapping between GSM MAP and ANSI-41D is described in the table below as a reference.

SRI LOCATION REQUEST

ForwardSMS SMSDPP

ReadyForSMS SMSNOTIFICATION

AlertServiceCenter SMSNOTIFICATION

ReportSMSDelivery SMDPP

ProvideRoamingNumber ROUTING REQUEST

The present invention can take the form of an entirely hardware aspect, an entirely software aspect, or an aspect containing both hardware and software elements. In accordance with an aspect of the present invention, software, including but not limited to, firmware, resident software, and microcode, implements the invention.

Furthermore, the invention can take the form of a computer program product, accessible from a computer-usable or computer-readable medium providing program code for use by, or in connection with, a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk - read only memory (CDROM), compact disk - read/write (CD-R/W) and Digital Versatile Disk (DVD).

The components of present system described above include any combination of computing components and devices operating together. The components of the present system can also be components or subsystems within a larger computer system or network. The present system components can also be coupled with any number of other components (not shown), such as other buses, controllers, memory devices, and data input/output devices, in any number of combinations. In addition, any number or combination of other processor-based components may be carrying out the functions of the present system.

It should be noted that the various components disclosed herein may be described using computer aided design tools and/or expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising," and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of "including, but may not be limited to." Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words "herein," "hereunder," "above," "below," and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word "or" is used in reference to a list of two or more items, it covers all of the following interpretations: any of the items in the list, all of the items in the list and any combination of the items in the list. The above description of illustrated aspects of the present system is not intended to be exhaustive or to limit the present system to the precise form disclosed. While specific aspects of, and examples for, the present system are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the present system, as those skilled in the art will recognize. The teachings of the present system provided herein can be applied to other processing systems and methods. They may not be limited to the systems and methods described above. The elements and acts of the various aspects described above can be combined to provide further aspects. These and other changes can be made in light of the above detailed description. Other Variations

Provided above for the edification of those of ordinary skill in the art, and not as a limitation on the scope of the invention, are detailed illustrations of a scheme for proactive roaming tests, discoveries of roaming partner services and discoveries of frauds in roaming using simulated roaming traffic. Numerous variations and modifications within the spirit of the present invention will of course occur to those of ordinary skill in the art in view of the aspects that have been disclosed. For example, the present invention is implemented primarily from the point of view of GSM mobile networks as described in the aspects. However, the present invention may also be effectively implemented on GPRS, 3G, CDMA, WCDMA, WiMax etc., or any other network of common carrier telecommunications in which end users are normally configured to operate within a "home" network to which they normally subscribe, but have the capability of also operating on other neighboring networks, which may even be across international borders.

The examples under the system of present invention detailed in the illustrative examples contained herein are described using terms and constructs drawn largely from GSM mobile telephony infrastructure. However, use of these examples should not be interpreted as limiting the invention to those media. The system and method can be of use and provided through any type of telecommunications medium, including without limitation: (i) any mobile telephony network including without limitation GSM, 3GSM, 3G, CDMA, WCDMA or GPRS, satellite phones or other mobile telephone networks or systems; (ii) any so-called WiFi apparatus normally used in a home or subscribed network, but also configured for use on a visited or non- home or non-accustomed network, including apparatus not dedicated to telecommunications such as personal computers, Palm-type or Windows Mobile devices; (iii) an entertainment console platform such as Sony Playstation, PSP or other apparatus that are capable of sending and receiving telecommunications over home or non-home networks, or even (iv) fixed-line devices made for receiving communications, but capable of deployment in numerous locations while preserving a persistent user id such as the eye2eye devices from Dlink; or telecommunications equipment meant for voice over IP communications such as those provided by Vonage or Packet8.

In describing certain aspects of the system under the present invention, this specification follows the path of a telecommunications call, from a calling party to a called party. For the avoidance of doubt, such a call can be a normal voice call, in which the user telecommunications equipment is also capable of visual, audiovisual or motion-picture display. Alternatively, those devices or calls can be for text, video, pictures or other communicated data.

In the foregoing specification, specific aspects of the present invention have been described. However, one of ordinary skill in the art will appreciate that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and the figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur, or to become more pronounced, are not to be construed as a critical, required, or essential feature or element of any or all of the claims.

APPENDIX

CAP Camel Application Part

CB Call Barring

CC Country Code

CDMA Code Division Multiplexed Access

CdPA Called Party Address

CDR Call Detail Record

CF Call Forwarding

CgPA Calling Party Address

CIC Circuit Identification Code

CLI Calling Line Identification

CSD Circuit Switched Data

CSI Camel Subscription Information

DPC Destination Point Code

DSD Delete User Data

DTMF Dual Tone Multi-Frequency

ERB CAP Event Report Basic call state model

EU European Union

FPMN Friendly Public Mobile Network

FTN Forward-To-Number

GLR Gateway Location Register

GGSN Gateway GPRS Support Node

GMSC Gateway MSC

GMSC-F GMSC in FPMN

GMSC-H GMSC in HPMN

GPRS General Packet Radio System

GSM Global System for Mobile

GSMA GSM Association

GSM SSF GSM Service Switching Function

GsmSCF GSM Service Control Function

GT Global Title

GTP GPRS Tunnel Protocol

HLR Home Location Register

HPMN Home Public Mobile Network

IN Intelligent Network

IOT Inter-Operator Tariff

GTT Global Title Translation

IAM Initial Address Message

IDP Initial DP IN/CAP message

IDD International Direct Dial

IMSI International Mobile User Identity

IMSI-H HPMN IMSI

IN Intelligent Network

INAP Intelligent Network Application Part

INE Interrogating Network Entity

IP Internet Protocol

IREG International Roaming Expert Group

IRS International Revenue Share

ISC International Service Carrier ISD MAP Insert User Data

ISG International Signal Gateway

1ST Immediate Service Termination

ISTP International STP

ISTP-F ISTP connected to FPMN STP

ISTP-H ISTP connected to HPMN STP

ISUP ISDN User Part

ITPT Inbound Test Profile Initiation

ITR Inbound Traffic Redirection

IVR Interactive Voice Response

LU Location Update

LUP MAP Location Update

MAP Mobile Application Part

MCC Mobile Country Code

MCC Mobile Country Code

MD Missing Data

ME Mobile Equipment

MGT Mobile Global Title

MMS Multimedia Message Service

MMSC Multimedia Message Service Center

MMSC-F FPMN MMSC

MMSC-H HPMN MMSC

MNC Mobile Network Code

MNP Mobile Number Portability

MO Mobile Originated

MOS Mean Opinion Score

MS Mobile Station

MSC Mobile Switching Center

MSISDN Mobile Station International User Directory Number

MSISDN-F FPMN MSISDN

MSISDN-H HPMN MSISDN

MSRN Mobile Station Roaming Number

MSRN-F FPMN MSRN

MSRN-H HPMN MSRN

MT Mobile Terminated

MTP Message Transfer Part

NDC National Dialing Code

NP Numbering Plan

NPI Numbering Plan Indicator

NRTRDE Near Real Time Roaming Data Exchange

O-CSI Originating CAMEL Subscription Information

OCN Original Called Number

ODB Operator Determined Barring

OPC Origination Point Code

OR Optimal Routing

ORLCF Optimal Routing for Late Call Forwarding

OTA Over The Air

OTPI Outbound Test Profile Initiation PDP Protocol Data Packet

PDN Packet Data Network

PDU Packet Data Unit

PRN MAP Provide Roaming Number

PSI MAP Provide User Information

QoS Quality of Service

RAEX Roaming Agreement Exchange

RI Routing Indicator

RIS Roaming Intelligence System

RDN Redirecting Number

RNA Roaming Not Allowed

RR Roaming Restricted due to unsupported feature

RRB CAP Request Report Basic call state model

RSD Restore Data

RTP Real-Time Transport Protocol

SAI Send Authentication Info

SC Short Code

SCA Smart Call Assistant

SCCP Signal Connection Control part

SCP Signaling Control Point

SF System Failure

SG Signaling Gateway

SGSN Serving GPRS Support Node

SGSN-F FPMN SGSN

SIM User Identity Module

SIGTRAN Signaling Transport Protocol

SME Short Message Entity

SM-RP-UI Short Message Relay Protocol User Information

SMS Short Message Service

SMSC Short Message Service Center

SMSC-F FPMN SMSC

SMSC-H HPMN SMSC

SoR Steering of Roaming

SPC Signal Point Code

SRI MAP Send Routing Information

SRI-SM MAP Send Routing Information For Short Message ss Supplementary Services

SS7 Signaling System #7

SSN Sub System Number

SSP Service Switch Point

STK SIM Tool Kit Application

STP Signal Transfer Point

STP-F FPMN STP

STP-H HPMN STP

TADIG Transferred Account Data Interchange Group

TAP Transferred Account Procedure

TCAP Transaction Capabilities Application Part

VT-CSI Visited Terminating CAMEL Service Information TP SMS Transport Protocol

TR Traffic Redirection

TS Traffic Steering

TE Termination Ecosystem

TT Translation Type

UD User Data

UDH User Data Header

UDHI User Data Header Indicator

USSD Unstructured Supplementary Service Data

VAS Value Added Service

VIP Very Important Person

VLR Visited Location Register

VLR-F FPMN VLR

VLR-H HPMN VLR

VLR-V VPMN VLR

VMSC Visited Mobile Switching Center

VoIP Voice over IP

VPMN Visited Public Mobile Network

ATI Access Transport Information

UDV Unexpected Data Value

USI User Service Information

WAP Wireless Access Protocol

Technical references Each of the following technical references is incorporated by reference herein in its entirety.

GSM 902 on MAP specification

Digital cellular telecommunications system (Phase 2+)

Mobile Application Part (MAP) Specification

(3GPP TS 09.02 version 7.9.0 Release 1998)

GSM 340 on SMS

Digital cellular telecommunications system (Phase 2+)

Technical realization of the Short Message Service (SMS)

(GSM 03.40 version 7.4.0 Release 1998)

GSM 378 on CAMEL,

GSM 978 on CAMEL Application Protocol, GSM 379 on CAMEL Support of Optimal Routing (SOR),

GSM 318 on CAMEL Basic Call Handling

ITU-T Recommendation Q.1214 (1995), Distributed functional plane for intelligent network CS-1,

ITU-T Recommendation Q.1218 (1995), Interface Recommendation for intelligent network CS-1,

ITU-T Recommendation Q.762 (1999), Signaling system No. 7 - ISDN user part general functions of messages and signals,

ITU-T Recommendation Q.763 (1999), Signaling system No. 7 - ISDN user part formats and codes,

ITU-T Recommendation Q.764 (1999), Signaling system No. 7 - ISDN user part signaling procedures,

ITU-T Recommendation Q.765 (1998), Signaling system No. 7 - Application transport mechanism,

ITU-T Recommendation Q.766 (1993), Performance objectives in the integrated services digital network application,

ITU-T Recommendation Q.769.1 (1999), Signaling system No. 7 - ISDN user part enhancements for the support of Number Portability