Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPLETELY DISPOSABLE COOKING APPARATUS FOR FILLING AND DECORATING OF FOODS
Document Type and Number:
WIPO Patent Application WO/2013/012660
Kind Code:
A1
Abstract:
A completely disposable cooking apparatus used for preparing, filling assembling and decorating of foods, that is a one-piece disposable construction, comprising an elongated bag with a soft side wall, an open first end through which food material can be inserted into the bag and a second end that is closed by a tapered discharge orifice. The orifice has a first end in contact with the second end of the bag and a distal end away from the bag. The cross- sectional area of the orifice at the first end is greater than the cross-sectional area of the orifice at the distal end. For example, the bag can be made from 0.1mm thick polyethylene and the orifice can be made from 1.02 mm thick ethylene vinyl acetate, and the second end of the bag can be overlaid and welded to the first end of the orifice.

Inventors:
GRIMES BRENDA MARIA (US)
GRIMES CHARLES WILSON (US)
Application Number:
PCT/US2012/046393
Publication Date:
January 24, 2013
Filing Date:
July 12, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GRIMES BRENDA MARIA (US)
GRIMES CHARLES WILSON (US)
International Classes:
B65D35/00; B29C48/05; B29C48/06; B29C48/12; B29C48/30; B29C48/31; B29C48/325
Domestic Patent References:
WO2004049816A12004-06-17
WO2005115162A12005-12-08
WO2007090588A12007-08-16
WO2009032647A12009-03-12
Foreign References:
US20070131713A12007-06-14
US2320496A1943-06-01
US5248071A1993-09-28
US5787947A1998-08-04
US4598844A1986-07-08
US2959327A1960-11-08
US5538050A1996-07-23
US2723779A1955-11-15
US4844917A1989-07-04
US4961517A1990-10-09
US5758802A1998-06-02
US5931346A1999-08-03
US6065651A2000-05-23
US6273307B12001-08-14
US6386395B12002-05-14
US7021505B22006-04-04
US4869915A1989-09-26
Other References:
See also references of EP 2731886A4
Attorney, Agent or Firm:
BUCKLEY, Patrick, J. (Maschoff & Talwalkar LLC50 Locust Avenu, New Canaan CT, US)
Download PDF:
Claims:
WHAT IS CLAIMED:

1. A one-piece completely disposable device for use in cooking, adapted to dispense food material therefrom in an easy and yet controlled manner for preparing, filling, assembling and decorating purposes and to then be discarded, said device comprising: an elongated envelope having: (A) a side wall; (B) a first end for inserting such food material into said envelope; and (C) a distal second end having an integral, discharge orifice having an opening for discharging such food material from said envelope through said orifice upon application of external pressure to said side wall; said orifice having: (i) an internal wall; and (ii) treatment means extending inwardly from said internal wall for treating such food material as it passes through said orifice upstream of said opening.

2. The device of claim 1, wherein said orifice further having: (iii) an axis running parallel to the flow of such food material through said orifice; and (iv) varying cross sectional dimensions along the length of said axis; said orifice still further including: (v) means for permitting said orifice to be cut at various points along the length of said axis of said orifice in order to permit said opening of said orifice to have a desired cross-sectional dimension without interfering with the operation of said treatment means.

3. The device of claim 2, wherein said treatment means comprises protrusions that: (a) extend inwardly from said internal wall in a direction perpendicular to said axis; and (b) run longitudinally in a direction parallel to said axis, either in select sections or along the entire length of said axis.

4. The device of claim 3, wherein said bag and said orifice are made from elastic material.

5. The device of claim 4, wherein said elastic material used in the manufacture of said orifice allows said orifice to expand in order to pass lumps within such food material through said second end and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

5. The device of claim 4, wherein said elastic material used in the manufacture of said orifice allows said orifice to be compressed upstream of said second end in order to break up lumps within such food material in order to pass such broken up lumps through said second end and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

6. A one-piece completely disposable device for use in cooking, adapted to dispense food material therefrom in an easy and yet controlled manner for preparing, filling, assembling and decorating purposes, and to then be discarded, said device comprising: an elongated envelope and a tapered discharge orifice, said envelope having: (A) a side wall; (B) a first end for inserting such food material into said envelope; and (C) a distal second end for discharging such food material from said envelope into said orifice; said tapered discharge orifice having: (A) a first end attached to said second end of said envelope for receiving such food material; and (B) a distal second end for dispensing such food material; whereby such food material passes out of said envelope through said second end of said envelope, into said orifice through said first end of said orifice, and out of said orifice through said second end of said orifice upon application of external pressure to said side wall; said orifice having: (i) an internal wall; and (ii) treatment means extending inwardly from said internal wall for treating such food material as it passes through said orifice upstream of said second end; said orifice further including means for allowing said orifice to be cut along the length of said orifice to permit selection of the desired opening size for said second end of said orifice without impacting the effectiveness of said treatment means.

7. The device of claim 6, wherein said orifice has an outside wall and cutting guides applied to said outside wall of said orifice along its length, indicated by scoring or coloring and corresponding to a preset orifice hole or exit opening size.

8. The device of claim 6, further including color delivery means inside either said envelope or said orifice for allowing color to be added to the food material as it passes through said envelope and orifice.

9. The device of claim 6, wherein said envelope and said orifice are made from elastic material.

10. The device of claim 9, wherein said elastic material used in the manufacture of said orifice allows said orifice to expand in order to pass lumps within such food material through said second end and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

11. The device of claim 9, wherein said elastic material used in the manufacture of said orifice allows said orifice to be compressed upstream of said second end in order to break up lumps within such food material in order to pass such broken up lumps through said second end and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

12. A one-piece completely disposable device for use in cooking, adapted to dispense food material therefrom in an easy and yet controlled manner for preparing, filling, assembling and decorating purposes, and to then be discarded, said device comprising: a one- piece elongated envelope having: (A) a soft side wall; (B) a first end capable of being opened for inserting such food material into said envelope; and (C) a second end for dispensing such food material; said second end having an integral, discharge orifice with an opening through which such food material can exit said envelope upon application of external pressure to said side wall of said envelope; said orifice having: (i) an internal wall; (ii) an axis running parallel to the flow of such food material through said orifice; (iii) varying cross sectional dimensions along the length of said axis; and treatment means extending inwardly from said internal wall for treating such food material as it passes through said orifice upstream of said opening; said treatment means comprising ridges that both: (a) extend inwardly from said internal wall in a direction perpendicular to said axis; and (b) are disposed at select points along the length of said axis; wherein said orifice is made of a material so that it is capable of being cut at any point along its longitudinal axis to yield an exit opening or hole with a desired cross-sectional dimension or size; and wherein regardless of the point of cut, i.e., regardless of the size of the hole or opening, said inwardly extending ridges insure that the material is "treated" upstream of said opening before it is expelled from said envelope through said opening.

13. The device of claim 12, wherein said orifice further comprises deformation means which allows said orifice to expand in order to pass lumps within such food material through said opening and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

14. The device of claim 12, wherein said orifice further comprises deformation means which allows said orifice to be compressed upstream of said opening in order to break up lumps within such food material in order to pass such broken up lumps through said opening and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

15. The device of claim 12, wherein said side wall is made of a temperature impervious material, which allows the user to work with a variety of food materials, including very warm and very cold materials.

16. The device of claim 12, wherein said side wall has texturing to facilitate gripping by the user.

16. The device of claim 12, wherein said orifice has a star-shaped cross section along its longitudinal length.

17. The device of claim 12, wherein said orifice has an outside wall and cutting guides applied to said outside wall of said orifice along its length, indicated by scoring or coloring and corresponding to a preset orifice hole or exit opening size.

18. The device of claim 12, further including color delivery means inside said bag for allowing color to be added to the food material as it is forced out of said bag.

19. A completely disposable device for use in cooking, adapted for attachment to a bag and for dispensing food material from such bag through such device in an easy and yet controlled manner for preparing, filling, assembling and decorating purposes, said device comprising a malleable, tapered, discharge orifice; said orifice having: (i) an internal wall; and (ii) treatment means extending inwardly from said internal wall for treating such food material as it is expelled from such bag; said orifice being either initially closed or manufactured with a small opening or hole; said orifice being made of a material so as to be capable of being cut at any point along its longitudinal axis to yield an exit opening or hole with a desired size without interfering with the efficacy of said treatment means.

20. The device of claim 19, wherein said treatment means comprises serrations or ridges placed at select locations longitudinally along either portions or all of the length of said orifice, wherein said serrations or ridges insure that such food material is "treated" as it is expelled from such bag through said orifice regardless of the size of the hole or opening.

21. The device of claim 19, wherein said orifice has an outside wall and cutting guides applied to said outside wall of said orifice along its length, indicated by scoring or coloring and corresponding to a preset orifice hole or exit opening size.

22. The device of claim 19, further including color delivery means inside said orifice for allowing color to be added to the food material as it passes through said orifice.

23. A one-piece completely disposable device for use in cooking, adapted for dispensing food material therefrom in an easy and yet controlled manner for filling and decorating purposes, said device comprising: a one-piece envelope having: (A) a side wall; and (B) an integral, discharge orifice having an opening through which such food material can exit said envelope upon application of external pressure to said side wall; said orifice having: (i) an internal wall; and (ii) treatment means extending inwardly from said internal wall for treating such food material as it passes through said orifice upstream of said opening; said orifice further including means for allowing said orifice to be deformed in order to facilitate passage of such food material through said orifice despite the presence of lumps within such food material.

24. The device of claim 23, wherein said deformation means comprises an elastic material used in the manufacture of said orifice which allows said orifice to expand in order to pass lumps within such food material through said opening and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

25. The device of claim 23, wherein said deformation means comprises a malleable material used in the manufacture of said orifice which allows said orifice to be compressed upstream of said opening in order to break up lumps within such food material and then allows said orifice to return to its original shape so as not to interfere with further operation of said treatment means.

26. A one-piece completely disposable device for use in cooking, adapted for dispensing food material therefrom in an easy and yet controlled manner for filling and decorating purposes, said device comprising: a one-piece envelope having: (A) a side wall; and (B) an integral, discharge orifice having an opening through which such food material can exit said envelope upon application of external pressure to said side wall; said orifice having: (i) an internal wall; and (ii) treatment means extending inwardly from said internal wall for treating such food material as it passes through said orifice upstream of said opening; said orifice further having: (iii) an axis running parallel to the flow of such food material through said orifice; and (iv) varying cross sectional dimensions along the length of said axis; said treatment means comprising protrusions that both: (a) extend inwardly from said internal wall in a direction perpendicular to said axis; and (b) run longitudinally in a direction parallel to said axis; said orifice still further including: (v) means for permitting said orifice to be cut at points along the longitudinal axis of said orifice in order to permit a desired cross-sectional dimension of said orifice to be selected without interfering with the operation of said treatment means; said orifice still further including: (vi) means for allowing said orifice to be deformed in order to facilitate passage of such food material through said orifice and out said opening despite the presence of lumps within such food material.

27. A one-piece completely disposable device for use in cooking, adapted for dispensing food material therefrom in an easy and yet controlled manner for filling and decorating purposes, said device comprising: a one-piece elongated envelope having: (A) a soft side wall; (B) a first end capable of being opened for inserting such food material into said envelope; and (C) a second end for dispensing such food material; said second end having an integral, discharge orifice with an opening through which such food material can exit said envelope upon application of external pressure to said side wall of said envelope; said orifice having: (i) an internal wall; and (ii) treatment means extending inwardly from said internal wall for treating such food material as it passes through said orifice upstream of said opening; said orifice further comprising means for allowing said orifice to deform in order to facilitate passage of such food material through such orifice despite the presence of lumps within such food material.

28. The device of Claim 27, said orifice further having: (iii) an axis running parallel to the flow of such food material through said orifice; and (iv) varying cross sectional dimensions along the length of said axis; said treatment means comprising ridges that both: (a) extend inwardly from said internal wall in a direction perpendicular to said axis; and (b) run longitudinally in a direction parallel to said axis; wherein said orifice is made of a material so that it is capable of being cut at any point along its longitudinal axis to yield an exit opening or hole with a desired cross-sectional dimension or size; and wherein regardless of the point of cut, i.e., regardless of the size of the hole or opening, said inwardly extending ridges insure that the material is "treated" upstream of said opening before it is expelled from said envelope through said opening.

29. A one-piece completely disposable device for use in cooking, adapted for dispensing food material therefrom in an easy and yet controlled manner for filling and decorating purposes, said device comprising a one-piece, funnel-shaped bag having: (A) a soft side wall; (B) an open first end at the "top" or wider end of said funnel through which food material can be inserted into said bag; and (C) a closed second end at the "bottom" or narrow end of said funnel; said second end having an integral, malleable, conical shaped, discharge orifice; said orifice having: (i) an internal wall; and (ii) serrations or ridges extending inwardly from said internal wall and running longitudinally along the length of said orifice; said orifice being either initially closed or manufactured with a small opening or hole; said orifice being made of a material so as to be capable of being cut at any point along its longitudinal axis to yield an exit opening or hole with a desired size; said inwardly extending serrations or ridges insuring that such food material is "treated" as it is expelled from said bag through said orifice regardless of the size of the hole or opening; wherein said orifice is either: (a) elastic or flexible enough in order to allow the hole or opening in said orifice to expand to pass "clogs" or "lumps" in such food material and then for said orifice to return to its original shape; or (b) supple or deformable enough in order to allow said orifice to be compressed or collapsed "upstream" of said hole or opening so that the "clogs" or "lumps" can be broken up and then passed through said hole or opening and said orifice can return to its original shape.

30. The device of Claim 29, wherein said side wall is made of a temperature impervious material, which allows the user to work with a variety of food materials, including very warm and very cold materials.

31. The device of Claim 29, wherein said side wall has texturing to facilitate gripping by the user.

32. The device of Claim 29 in combination with a stand that includes support means for engaging said bag about the perimeter of said first end of said bag for supporting said bag during filling.

33. The combination of Claim 32, wherein said support means comprises fingers on said stand and said bag includes excess material about the perimeter of said first end of said bag, and said bag is supported by said stand by folding said excess material of said bag over said fingers of said stand.

34. The combination of Claim 32, wherein said support means comprises fingers on said stand and said bag includes support holes about the perimeter of said first end of said bag, and said bag is supported by said stand by passing said fingers of said stand through said holes of said bag.

35. The device of Claim 29, wherein said nozzle is made out of a material that is elastic, such as a thermoset elastomer.

36. The device of Claim 29, wherein said nozzle is made out of a material that is flexible, but not elastic, such as a thermoplastic.

37. The device of Claim 29, wherein said side wall is made from polyethylene so that it can be welded to said nozzle.

38. A completely disposable device for use in cooking, adapted for attachment to a bag and for dispensing food material from such bag through such device in an easy and yet controlled manner for filling and decorating purposes, said device comprising a malleable, conical shaped, discharge orifice; said orifice having: (i) an internal wall; and (ii) serrations or ridges extending inwardly from said internal wall and running longitudinally along the length of said orifice; said orifice being either initially closed or manufactured with a small opening or hole; said orifice being made of a material so as to be capable of being cut at any point along its longitudinal axis to yield an exit opening or hole with a desired size; said inwardly extending serrations or ridges insuring that such food material is "treated" as it is expelled from such bag through said orifice regardless of the size of the hole or opening; wherein said orifice is either: (a) elastic or flexible enough in order to allow the hole or opening in said orifice to expand to pass "clogs" or "lumps" in such food material and then for said orifice to return to its original shape; or (b) supple or deformable enough in order to allow said orifice to be compressed or collapsed "upstream" of said hole or opening so that the "clogs" or "lumps" can be broken up and then passed through said hole or opening and said orifice can return to its original shape.

Description:
COMPLETELY DISPOSABLE COOKING APPARATUS FOR FILLING AND

DECORATING OF FOODS

BACKGROUND OF THE INVENTION

The EASY FILL BAG™ ("EFB") apparatus of this invention "resembles" a commonly used, prior art "Disposable Decorating Bag" ("DDB"), such as those

manufactured and sold by Wilton Brands, Inc., Hutzler Manufacturing Co., Inc. and Kitchen Krafts, Inc.

However, there are significant differences between the EFB apparatus of this invention and the previous DDB apparatus, both in terms of construction and manner of operation.

The typical DDB apparatus is a multi-piece construction, including a bag, a non- disposable rigid decorating tip with treatment means at the annular discharge end of the tip and a coupler and coupler collar. Typical DDB tips are made of metal or rigid white plastic and the coupler and coupler collar are made of rigid white plastic.

In order to use the DDB apparatus, a DDB bag is assembled with a desired decorating tip (i.e., with the desired opening size and treatment means at the annular end) using a coupler and coupler collar.

The ability to have different sized discharge openings with a DDB apparatus necessitates the user having a selection of different tips.

If, after initial use, the user decides a larger size opening is desired, the user must disassemble the DDB apparatus and reassemble the DDB apparatus with a new tip.

During use of the DDB apparatus, if the selected tip becomes "clogged," i.e., if the material being expelled out of the DDB apparatus through the tip has a "lump" that gets "stuck" in the tip, the bag and tip must be disassembled so that the tip can be accessed and cleaned.

Once use of the DDB apparatus is completed, the DDB apparatus is taken apart, the bag is disposed of, and the tip, coupler and coupler collar are cleaned and stored away for future use.

The EFB apparatus of this invention, on the other hand, in the preferred embodiment, is a one-piece, fully disposable cooking apparatus used for preparing, filling, assembling and decorating of foods, comprising an elongated bag with a first open end for introducing food material into the bag and a second end for discharging the food material that is closed by an integral, tapered discharge orifice for "treating" the food material being expelled from the bag through the second end. In a preferred embodiment the bag is made from 0.1mm thick polyethylene and the orifice is made from 1.02 mm thick ethylene vinyl acetate. The second end of the bag is welded to the larger end of the tapered orifice or the two parts can be formed (molded) simultaneously as a one-piece construction. The discharge orifice has protrusions, serrations or ridges extending inwardly from the internal wall of the orifice and, in one embodiment, running longitudinally along the length of the orifice or parallel to the flow of food material from the bag out the treatment end, along all or a part of the length of the discharge orifice. The orifice is made of a material so that it is capable of being cut at any point along its longitudinal dimension to yield an exit opening or hole with a desired size or cross-sectional dimension. Regardless of the point of cut, i.e., regardless of the size of the hole or opening or the cross-sectional dimension, the inwardly extending serrations or ridges that remain insure that the food material is "treated" as it is expelled from the bag through the orifice. After the EFB apparatus has been used, it is simply discarded, such that sanitary issues from reuse of prior art DDB apparatus are avoided. In an alternative embodiment, the EFB apparatus of this invention has sections of the orifice with protrusions, serrations or ridges extending inwardly from the internal wall of the orifice at select locations or sections along the axis and locations or sections without protrusions, serrations or ridges so that the orifice can be cut at one of those areas and used as a piping bag.

Prior art patents have issued for a number of decorating, dispensing and icing bags, none of which disclose the unique features or advantages of the EFB apparatus of this invention. Prior art patents noted but not believed to be relevant to the novelty or non- obviousness of the current invention include: Parker et al. U.S. Pat. No. 2,723,779;

DeLorimiere U.S. Pat. No. 4,844,917; Tkac U.S. Pat. No. 4,961,517; Wallays U.S. Pat. No. 5,758,802; Wallays U.S. Pat. No. 5,931,346; Tedeschi, Jr. et al. U.S. Pat. No. 6,065,651 ; Gross et al. U.S. Pat. No. 6,273,307 Bl; Lunghetti U.S. Pat. No. 6,386,395 B l; Franczyk U.S. Pat. No. 7,021,505 B2; Folkmar PCT No. WO 2004/049816 Al ; Ejeblad PCT No. WO 2005/115162 Al; and Ejeblad PCT No. WO 2007/090588 Al.

In the absence of the availability of EFB apparatus as disclosed herein, individuals have been known to take readily available ZIPLOC® and GLAD® zipper plastic bags, fill them with food material and cut the corner of the bag in order to create "homemade" disposable decorating bags with a "dispensing hole." Such "homemade" bags are unsatisfactory for several reasons, most notably because: (i) they do not permit the

"treatment" of the material as it exits the "hole"; (ii) they do not permit the selection of a desired size of exit hole while at the same time retaining the capability to treat the food material as it is delivered; and the lack of an orifice prevents the desired controlled delivery of the food material.. SUMMARY OF THE INVENTION

The EASY FILL BAG™ ("EFB") apparatus of this invention in a preferred embodiment is a one-piece disposable construction, comprising an elongated bag with a soft side wall, having an open first end through which food material can be inserted into the bag and a closed second end at the distal end of the elongated bag, with an integral tapered discharge orifice. The bag in a preferred embodiment is made from 0.1mm thick

polyethylene and the orifice is made from 1.02 mm thick ethylene vinyl acetate. The second end of the bag is welded to the larger end of the tapered orifice or the bag and orifice are molded simultaneously as a one-piece construction. The tapered orifice has protrusions, serrations or ridges extending inwardly from the internal wall of the orifice at select locations along the length of the orifice or parallel to the flow of food material from the bag out the treatment end and through the tapered discharge orifice, along all or a part of the length of the orifice. The orifice can either be initially closed or provided with a small opening or hole. The orifice is made of a material so that it is capable of being cut at any point along its longitudinal axis to yield an exit opening or hole with a desired size or cross-sectional dimension. Regardless of the point of cut, i.e., regardless of the size of the hole or opening or cross-sectional dimension, in the preferred embodiment, the inwardly extending serrations or ridges that remain insure that the material is "treated" as it is expelled from the bag through the orifice. After the EFB apparatus has been used, it is simply discarded, such that sanitary issues from reuse of prior art DDB apparatus are avoided. While the orifice at the end of an EFB apparatus is capable of "treating" the material as it is discharged from the bag, the orifice is also either: (a) elastic or flexible enough in order to: (a)(i) allow the orifice to "open up" or "expand" so that "clogs" or "lumps" can pass through the orifice while still "treating" the material being passed therethrough; and (a)(ii) cause the orifice to return to its original shape after the "clog" or "lump" has passed in order to continue to "treat" material that subsequently passes through the orifice; or (b) supple or deformable enough in order to: (b)(i) allow the orifice to be compressed or collapsed so that the "clogs" or "lumps" can be broken up so that they can pass through the orifice; and (b)(ii) cause the orifice to return to its original shape after the "clog" or "lump" has been broken up in order to "treat" all of the material that passes through the orifice.

In one embodiment, the bag side wall is made of a temperature impervious material, which allows the user to work with a variety of materials, including very warm and very cold materials.

In another embodiment the bag side wall has texturing to facilitate gripping by the user.

In an alternative embodiment, the EFB orifice of this invention is provided without being attached to an integral bag, but rather, with a mating collar, and the EFB orifice is affixed to a bag in the manner of a traditional DDB apparatus, such that the benefits and features of this invention are achieved albeit at a slightly higher price and without the convenience of the integral one-piece completely disposable design.

In still a further embodiment, the EFB apparatus is used in combination with a stand that engages and supports the EFB apparatus during filling. More particularly, the EFB apparatus can be supported by mating mechanisms on the EFB apparatus and the stand, e.g., three "support holes" along the "top" of the EFB apparatus that "attach" to fingers of the EFB stand, or an excess of EFB side wall material that is reversible on itself for folding over arms of the EFB support stand. Using the EFB stand allows the user to fill the bag easily with both hands free.

The EFB apparatus of this invention can be used for piping, decorating, filling, assembling and dispensing the food material in connection with any number of other cooking and baking activities without departing from the scope of this invention, e.g., cakes and cupcakes, stuffed shells, manicotti, cannoli's, deviled eggs, stuffed mushrooms, twice baked potatoes, cookies, canapes, pastry cups, meringue, etc.

The EFB apparatus comes in a variety of sizes, with "larger" EFB apparatus having larger bags and comparatively larger orifices.

The EFB apparatus is completely disposable once use of it is complete.

The EFB apparatus of this invention will be packaged and sold like reusable, re- sealable zipper storage bags, such as the ZipLock® bags originally developed by Dow Chemical Company and now produced by S. C. Johnson & Son or Glad® bags produced by The Glad Products Company.

Each box (or each "starter box") of the EFB apparatus of this invention may include an apparatus stand, which will enable the user to attach each of the EFB apparatus in the box upright on the stand for ease of filling.

An object of the disclosed invention is to provide individuals with bags that have an integral unique discharge orifice (also sometimes referred to as a nozzle or a tip) that can be used to dispense treated food material and then completely disposed of.

A further object of the disclosed invention is to provide individuals with bags, the universal orifice of which can be cut to a desired hole or opening size, while still retaining the treatment capacity of the orifice.

A further object of the disclosed invention is to provide individuals with bags, the orifice of which is made of a malleable material such that "clogs" or "lumps" do not clog the orifice.

A still further object of the disclosed invention is to provide individuals with bags, the orifice of which is made of a sufficiently elastic material so that the orifice can expand to allow "clogs" or "lumps" to pass through the orifice and the orifice can then return to its original shape.

A still further object of the disclosed invention is to provide individuals with bags, the orifice of which is made of a sufficiently deformable material so that the orifice can be collapsed to break up "clogs" or "lumps" so that they can pass through the orifice and the orifice can return to its original shape.

A still further object of the disclosed invention is to provide individuals with bags, the orifices of which have a star-shaped cross section along its longitudinal length.

A still further object of the disclosed invention is to provide individuals with bags, the orifices of which have cutting guides that can be indicated by scoring or coloring applied to the outside wall of the orifice and corresponding to a preset orifice hole or exit opening size.

A still further object of the disclosed invention is to provide individuals with bags with universal orifices, so that the bags can be interchangeably used both for dispensing food material that has been "treated" with a design and for dispensing food material that can be used for "piping."

A still further object of the disclosed invention is to provide individuals with bags, inside of which color delivery means allows color to be added to the food material as it is forced out of the EFB apparatus.

A yet further object of the disclosed invention is to provide individuals with bags, the nozzle of which is made out of material with a durometer of between 27A and 60A.

A yet further object of the disclosed invention is to provide individuals with bags, the orifice of which is made out of a material that is elastic, such as a thermoset elastomer, such as latex rubber or silicone rubber, or a thermoplastic elastomer, such as polyurethane.

A yet further object of the disclosed invention is to provide individuals with bags, the orifice of which is made out of a material that is flexible, but not elastic, such as a thermoplastic such as polyethylene.

A yet further object of the disclosed invention is to provide individuals with bags made from .1 mm thick polyethylene with integral orifices made from 1.02 mm thick ethylene vinyl acetate.

A yet further object of the disclosed invention is to provide individuals with bags, where the orifice can be cut to afford a bag opening with an internal diameter of up to 0.8 inches.

A yet further object of the disclosed invention is to provide individuals with bags, the soft side of which is made from polyethylene that can be welded to the orifice material.

A yet further object of this invention is to provide individuals with universal orifices and mating clamping mechanisms, that can be used with traditional bags, which orifices can be both cut to a desired hole or opening size while still retaining the treatment capacity of the orifice, or cut to a different desired hole or opening size for piping purposes, and where such orifice is made of a malleable material such that "clogs" or "lumps" do not clog the orifice.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 depicts a side view of a first preferred embodiment of the apparatus disclosed herein.

FIG. 2 depicts a sectional view of the apparatus in FIG. 1.

FIG. 3 depicts a top view of the apparatus in FIG. 1.

FIG. 4 depicts a bottom view of the apparatus in FIG. 1.

FIG. 5 depicts a side view of a second alternative embodiment of the apparatus disclosed herein.

FIG. 6 depicts a sectional view of the apparatus in FIG. 5.

FIG. 7 depicts a top view of the apparatus in FIG. 5. FIG. 8 depicts a bottom view of the apparatus in FIG. 5.

FIG. 9 depicts the cross-sectional dimension of the orifice of a still further alternative embodiment of the apparatus disclosed herein.

FIGS. 10 and 10A depict two further alternative embodiments of the apparatus disclosed herein, wherein each orifice has cuttable sections for affecting "treated" flow of the food material alternating between sections for affecting "non-treated" or "piping" flow of the food, the former sized for affecting increasingly larger cross-sectional dispensing holes, and the latter sized for affecting constant cross-sectional dispensing holes.

FIGS. 10B and IOC depict two further alternative embodiments of the apparatus disclosed herein, wherein each orifice has cuttable sections for affecting "treated" flow of the food material alternating between sections for affecting "non-treated" or "piping" flow of the food, and wherein the "treatment" of the food is affected by jagged inwardly facing edges or protrusions that extend from the internal wall of the apparatus at select locations along the flow of the food. In the apparatus of FIG. 10B the end of the apparatus is initially closed and in the apparatus of FIC. IOC the end is initially open.

FIG. 11 depicts a multiple orifice alternative embodiment of the apparatus disclosed herein.

FIGS. 12 - 16 depict a wire stand for use in combination with an EFB apparatus of this invention.

FIG. 12 depicts a perspective view of the wire stand.

FIG. 13 depicts a side view of the wire stand of FIG. 12.

FIG. 14 depicts a top view of the wire stand of FIG. 12.

FIG. 15 depicts a bottom view of the wire stand of FIG. 12.

FIG. 16 depicts a side view of the wire stand of FIG. 12 in combination with the EFB apparatus of this invention shown mounted on the wire stand. FIGS. 17- 22 depict a collapsible annular stand for use in combination with an EFB apparatus of this invention.

FIG. 17 depicts a perspective view of the collapsible annular stand in the expanded position.

FIG. 18 depicts a perspective view of the collapsible annular stand of FIG. 17 in the collapsed position.

FIG. 19 depicts a side view of the collapsible annular stand of FIG. 17 in the expanded position.

FIG. 20 depicts a side view of the collapsible annular stand of FIG. 17 in the collapsed position.

FIG. 21 depicts a top view of the collapsible annular stand of FIG. 17 in both the expanded and collapsed positions.

FIG. 22 depicts a bottom view of the collapsible annular stand of FIG. 17 in both the expanded and collapsed positions.

FIGS. 23- 26 depict a tubular stand for use in combination with an EFB apparatus of this invention.

FIG. 23 depicts a perspective view of the tubular stand.

FIG. 24 depicts a side view of the tubular stand of FIG. 23.

FIG. 25 depicts a top view of the tubular stand of FIG. 23.

FIG. 26 depicts a bottom view of the tubular stand of FIG. 23.

FIGS. 27 and 28 display the addition of color reservoirs to the EFB apparatus of this invention, that are either in the bag itself as shown in the former or in the orifice as shown in the latter. FIGS. 29 and 30 display the addition of color deposits to the EFB apparatus of this invention, that are covered with removable sealing strips and that are either in the bag itself as shown in the former or in the orifice as shown in the latter.

DETAILED DESCRIPTION OF THE INVENTION

The EASY FILL BAG™ ("EFB") apparatus of this invention can be used with a variety of viscous foodstuffs, including to assemble, fill and prepare a variety of foods, such as stuffed shells, manicotti, cannoli's, deviled eggs, stuffed mushrooms, 2x baked potatoes, cookies, canapes, pastry cups, meringue, etc., and to decorate with icing and the like.

In a preferred embodiment, the EFB apparatus is a completely disposable, one-piece construction, comprising a bag with an integral, flexible discharge orifice at the end for "treating" material being expelled from the bag through the end.

To create an aesthetic design in the dispensed material, the EFB apparatus includes an integral orifice in the end that has jagged inwardly facing edges or protrusions, ridges or serrations that "treat" the material as it passes through the orifice.

While the orifice at the end of an EFB apparatus is capable of "decorating" the material as it is discharged from the bag, the orifice is also flexible or supple enough in order to: (i) allow the orifice to "open up" or "expand" so that "clogs" or "lumps" can pass through the orifice; and (ii) cause the orifice to return to its original shape after the "clog" or "lump" has passed in order to "treat" material that subsequently passes through the orifice.

The EFB bag can be made of a material that inhibits the transfer of heat or cold from the contents of the bag through to the user's hands.

The EFB bag can be made with a textured exterior surface so as to facilitate the user's gripping of the EFB bag. Once use of the EFB apparatus is completed, it is the intention of this invention that the entire one-piece EFB apparatus is disposed of.

The EFB apparatus comes in several sizes, with larger EFB apparatus having larger bags and respectively larger integral, flexible discharge orifices.

The EFB apparatus comes with a stand that engages and supports the EFB bag during filling. More particularly, the EFB apparatus can be supported by mating mechanisms on the EFB bag and the stand, e.g., "support holes" in the EFB bag that "attach" to fingers of the EFB stand, or an excess of EFB bag material that is reversible on itself for folding over arms of the EFB support stand.

EFB apparatus will be packaged and sold like reusable, re-sealable zipper storage bags, such as the ZipLock® bags originally developed by Dow Chemical Company and now produced by S. C. Johnson & Son, or the Glad® bags sold by The Glad Products Company.

It is envisioned that a "starter" box of EFB apparatus, or possibly every box of EFB apparatus, may include an apparatus stand, which will enable the user to attach each EFB bags upright on the stand for ease of filling.

In the preferred embodiment, the EFB apparatus includes a funnel shaped bag for easy filling, handling, decorative dispensing, and disposing.

The choice of discharge orifice (or nozzle) material may be driven to some extent by the target cost of the product. Whatever the material is, it must enable the user to clear clogs without taking the food out of the bag, either by expanding to allow the clog to pass

(preferred) or allowing the user to crush and break up the clog (preferred and alternate).

In an alternative embodiment, the discharge orifices (or nozzles) of the EFB apparatus are sold separately, i.e., without an attached bag, but rather, with a mating connection mechanism, such as a collar, so that the EFB orifice and mating connection mechanism can be attached to a traditional bag of any size. Referring now to the figures, FIGS. 1-4 show a first, preferred embodiment of an EFB apparatus in accordance with this invention.

In FIG. 1, a side view of the nozzle or discharge orifice 10 is shown, with an integral bag 12. The bag 12 is elongated, and in a preferred embodiment as seen in FIG. 1, funnel shaped and the bag 12 is either attached to the nozzle 10 during manufacture, as a simultaneously created one piece construction, or the bag 12 is attached to the nozzle 10 in a secondary operation, e.g., by making the nozzle first, for example, by injection molding, and then by dip molding the bag over it, or by welding, gluing or connecting the nozzle and bag together by other means available and known in the art, including by using a disposable connection mechanism. The bag 12 has a first end 14 that is at the "top" or wider end of the funnel shape that is "open" and through which the food material 10A can be inserted into the bag 12, a second end 16 that is at the "bottom" or narrow end of the funnel shape that is "closed" as a result of the attachment of the nozzle 10, and a soft side wall 17 that allows the user to squeeze the bag 12 and cause food material 10A in the bag 12 to be expelled out of the bag 12 through the nozzle 10. The nozzle 10 is malleable and tapered, and in a preferred embodiment as seen in FIG. 1, is conical shaped and has a longitudinal or conical axis 18 and a discharge opening or hole 20 distal from the end of the nozzle 10 attached to the second end 16 of the bag 12. The sections 10a, 10b, 10c and lOd of the nozzle 10 are increasingly larger in cross-section and each respectively has a "cut line" 21a, 21b, 21c and 21d at which the nozzle 10 can be cut prior to or during use to achieve different the desired different opening or hole 20.

FIG. 2 shows a cut away view of the nozzle 10 of FIG. 1, taken along the line 30-30 in FIG. l. The elements of the nozzle 10 seen in FIG. 1 that are still visible in FIG.2 are similarly numbered. FIG.2 additionally shows the internal wall 32 of the nozzle 10 and the protrusion, serrations or ridges 34 that extend inwardly from said internal wall 32 and run longitudinally along the length of the nozzle 10, parallel to the conical axis 18. Thus it can be seen that regardless of whether the nozzle 10 is cut at "cut line" 21a, i.e., at a point close to the hole 20 and before the protrusions 34 begin, or at any of the other "cut lines" 21b, 21c or 2 Id, which would cause a portion of the protrusions 34 also to be cut, lengths of the protrusions 34 remain within the nozzle 10 that "treat" the food material 10A as it passes from the bag 12 through the nozzle 10 and out the hole 20.

FIG. 3 is a top view of the nozzle 10 (as would be seen were one to look at the nozzle down into and through the bag 12). The protrusions 34 extending inwardly from the internal wall 32 create a star-shape that is imparted to the food material 10A as it passes through the nozzle 10 and is "treated" thereby.

FIG. 4 is a bottom view of the nozzle 10 before any cut has been made, showing all of the sections 10a, 10b, 10c and lOd and the cut lines 21a, 21b, 21c and 21d.

Either before or after the food material 10A is introduced into the bag 12, the user cuts the nozzle 10 at a desired cut line 21a, 21b, 21c or 21d to achieve a desired opening or hole 20 and controlled dispensation of the food material 10A out through the nozzle 10. If the user initially cuts at cut line 21b, sufficient length of protrusions 34 remain to "treat" the food material 10A as it passes through the nozzle 10. If a lump clogs the nozzle 10, the nozzle is malleable enough to allow the lump to "pass." The manner in which the nozzle 10 will "pass" the lump depends upon which of the two embodiments of the invention is being employed. If the nozzle 10 is elastic, it will expand upon the user's application of pressure to the bag 12 and the lump will be expelled and the nozzle 10 will return to its normal size and shape. Alternatively, if the nozzle 10 is plastic, it will allow the user to apply pressure to the lump upstream of the opening 20 by squeezing the nozzle, to thereby break up the lump. The broken up lump will then be able to pass through the opening 20 and the nozzle will return to its normal size and shape. During use, if the user would like to increase the size of the opening or hole 20, the user can elect to make a further cut in the nozzle 10. For example, if the user made the first cut at line 21b as described above, the user can elect to make a further or second cut in the nozzle 10 at cut line 21c or at cut line 21d to achieve a desired larger opening or hole 20 and controlled dispensation of a greater amount of the food material 10A out through the nozzle 10. If the user cuts at cut line 21c or cut line 2 Id, sufficient length of protrusions 34 nevertheless still remains to "treat" the food material 10A as it passes through the nozzle 10. If a lump clogs the nozzle 10, the nozzle is still malleable enough to allow the lump to "pass." The manner in which the nozzle 10 will "pass" the lump still depends upon which of the two embodiments of the invention is being employed. If the nozzle 10 is elastic, it will still expand upon the user's application of pressure to the bag 12 and the lump will be expelled and the nozzle 10 will return to its normal size and shape. Alternatively, if the nozzle 10 is plastic, it will still allow the user to apply pressure to the lump upstream of the opening 20 by squeezing the nozzle, to thereby break up the lump. The broken up lump will then be able to pass through the opening 20 and the nozzle will return to its normal size and shape.

If the user needs to, additional material can be added to the bag 12. Once the user is finished, the entire EFB apparatus can be completely disposed of.

FIGS. 1-4 show a preferred embodiment of the EFB apparatus according to this invention where the protrusions 34 run the length of the nozzle 10. FIGS. 5-8 show an alternative embodiment where the protrusions 36 are sections strategically placed between the cut lines.

In FIG. 5, a side view of an alternative nozzle or discharge orifice 110 is shown, with an integral bag 112. The bag 1 12 is funnel shaped and the bag 112 is either attached to the nozzle 110 during manufacture, as a simultaneously created one piece construction, or the bag 1 12 is attached to the nozzle 110 in a secondary operation, e.g., by making the nozzle first, for example, by injection molding, and then by dip molding the bag over it, or by welding, gluing or connecting the nozzle and bag together by other means available and known in the art, including by using a disposable connection mechanism. The bag 112 has a first end 114 that is at the "top" or wider end of the funnel shape that is "open" and through which the food material 10A can be inserted into the bag 112, a second end 116 that is at the "bottom" or narrow end of the funnel shape that is "closed" as a result of the attachment of the nozzle 110, and a soft side wall 117 that allows the user to squeeze the bag 1 12 and cause food material 10A in the bag 112 to be expelled out of the bag 112 through the nozzle 110. The nozzle 1 10 is malleable and conical shaped and has a conical axis 118 and a discharge opening or hole 120. The sections 1 10a, 1 10b, 110c and 1 lOd of the nozzle 110 are increasingly larger in cross-section and each respectively has a "cut line" 121a, 121b, 121c and 12 Id at which the nozzle 1 10 can be cut prior to or during use to achieve different the desired different opening or hole 120.

The difference between the nozzle 10 and nozzle 110 is that, as best seen in FIG. 6 (a cut away view of the nozzle 110 of FIG. 5, taken along the line 40-40 in FIG.5), the protrusions 134 run longitudinally in a direction parallel to the axis of the nozzle, but only in select sections along said axis, such that, depending upon where the cut is made in the nozzle 110, the opening 120 will end up being either an annular opening without protrusions (i.e., if the cut is made at 121a or 121c) or an opening with the inwardly extending protrusions 134a (if the cut is made at 121 d) or protrusions 134b (if the cut is made at 121b). The elements of the nozzle 110 seen in FIG. 5 that are still visible in FIG.6 are similarly numbered. FIG.6 additionally shows the internal wall 132 of the nozzle 1 10 and the protrusion, serrations or ridges 134a and 134b that extend inwardly from the internal wall 132 and run longitudinally for discrete sections along the length of the nozzle 110, parallel to the conical axis 118. FIG. 7 is a top view of the nozzle 110 (as would be seen were one to look at the nozzle 110 down into and through the bag 1 12). The protrusions 134a and 134b extending inwardly from the internal wall 132 create two different star-shapes, one of which might be imparted to the food material 10A as it passes through the nozzle 110, depending upon the cut that is made in the nozzle 1 10, as described herein.

FIG. 8 is a bottom view of the nozzle 110 before any cut has been made, showing all of the sections 110a, 1 10b, 1 10c and HOd and the cut lines 121a, 121b, 121c and 12 Id.

As with the preferred embodiment, either before or after the food material 10A is introduced into the bag 1 12, the user cuts the nozzle 110 at a desired cut line 121a, 121b, 121c or 121 d to achieve a desired opening or hole 120 and controlled dispensation of the food material 10A out through the nozzle 110. If the user initially cuts at cut line 121a or 121c, the food material 10A will pass through the resultant annular opening without any sort of design "treatment." If the user cuts the nozzle 1 10 at 121b or 121d, the protrusions 134b and 134 a, respectively, will "treat" the food material 10A as it passes through the nozzle 110.

Regardless of where the cut in the nozzle 110 is made, if a lump clogs the nozzle 110, the nozzle is malleable enough to allow the lump to "pass." The manner in which the nozzle 110 will "pass" once again depends upon which of the two embodiments of the invention is being employed. If the nozzle 110 is elastic, it will expand upon the user's application of pressure to the bag 112 and the lump will be expelled and the nozzle 110 will return to its normal size and shape. Alternatively, if the nozzle 110 is plastic, it will allow the user to apply pressure to the lump upstream of the opening 120 by squeezing the nozzle, to thereby break up the lump. The broken up lump will then be able to pass through the opening 120 and the nozzle will return to its normal size and shape.

During use of the alternative embodiment of FIGS. 5-8, if the user cuts the nozzle 110 at cut line 121b, the food material 10A will be "treated" by protrusions 134b as it is passed through the nozzle 1 10 and out of the opening 120. If the user would like to switch and have the food material 10A dispensed without treatment, e.g., for "piping," the user can elect to make a further or second cut at cut line 121c. Thereafter, the user can elect to make a still further or third cut in the nozzle 1 10 at cut line 12 Id so that the food material 10A will be "treated" by protrusions 134a as it is passed through the nozzle 1 10 and out of the opening or hole 120.

Regardless of where the user cuts the nozzle 110, if a lump clogs the nozzle 110, the nozzle 110 is still malleable enough to allow the lump to "pass." The manner in which the nozzle 110 will "pass" the lump still depends upon which of the two embodiments of the invention is being employed. If the nozzle 1 10 is elastic, it will still expand upon the user's application of pressure to the bag 112 and the lump will be expelled and the nozzle 1 10 will return to its normal size and shape. Alternatively, if the nozzle 110 is plastic, it will still allow the user to apply pressure to the lump upstream of the opening 120 by squeezing the nozzle 110, to thereby break up the lump. The broken up lump will then be able to pass through the opening 20 and the nozzle 110 will return to its normal size and shape.

The user can refill the bag 112 of the apparatus of alternate embodiment as needed and, once the user is finished, the entire EFB apparatus can be completely disposed of.

FIG. 9 shows a bottom view of a nozzle 210 according to this invention with a design for protrusions 234 extending inwardly from the inside wall 232 that has been found to be preferred.

FIG. 10 shows a nozzle 310 attached to bag 312, for dispensing food material 10A, which nozzle 310 is similar to the nozzle 110 shown in FIGS, 5-8, in that it has alternating internal profiles. The internal profiles of sections 310a, 310b and 310c are circular and the internal profiles of sections 31 Od and 31 Oe are star shaped as a result of the internal protrusions 314a and 314b. Where the cut is made in nozzle 310 will alter the manner in which food material 10A is dispensed out of hole 320.

FIG. 10A shows a nozzle 320 attached to the bag 322, for dispensing food material 10A, which nozzle is similar to the nozzle 310 shown in FIG. 10 and the nozzle 110 shown in FIGS. 5-8, in that it has alternating internal profiles. The internal profiles of sections 320a, 320b and 320c are all circular and they all are of the same cross -sectional dimension. The internal profiles 320d and 320e have identically sized internal protrusions 324a and 324b and they are of the same cross-sectional dimension. Accordingly, during use, the user can select to make a cut at 320a for "un-treated" dispensing of the food material, and then to make a cut at 320d for effecting "treated" dispensing of the food material, and then another cut at 320b for the same "un-treated" dispensing as effected by section 320a, and then a cut at 320e for the same "treated" dispensing as affected by section 320d, and finally a cut at 320c for effecting the same "un-treated" dispensing as effected by sections 310a and 310b.

FIG. 10B shows a nozzle 330 manufactured as a separate piece, with the end 331 closed, that can be welded to a bag (not shown) in accordance with the disclosure of this invention to form a one-piece construction, or used with a bag currently commercially available, for dispensing food material 10A, which nozzle is similar to the nozzle 310 shown in FIG. 10 and the nozzle 1 10 shown in FIGS. 5-8, in that it has alternating internal profiles. The internal profiles of sections 330a, 330b, 330c, 330d, 330e and 330f are all tapered and of differing cross -sectional dimension. The internal profiles 330g, 330h, 330i, 330j and 330k are also all tapered with differing cross-sectional dimension and have identically sized internal edges or protrusions 334a, 334b, 334c, 334d and 334e (although it is to be understood that the sizes of the edges or protrusions could be different without departing from the scope of this invention). Accordingly, during use, the user can select to make a cut at 330a for "un-treated" dispensing of the food material, and then to make a cut at 330g for effecting "treated" dispensing of the food material, and then another cut at 330b for effecting larger "un-treated" dispensing, and then a cut at 330h for effecting larger "treated" dispensing, and then another cut at 330c for effecting still larger "un-treated" dispensing, and then a cut at 330i for effecting still larger "treated" dispensing, and then another cut at 330d for effecting yet larger "un-treated" dispensing, and then a cut at 330j for effecting yet larger "treated" dispensing, and then another cut at 330e for effecting even larger "un-treated" dispensing, and then a cut at 330k for effecting even larger "treated" dispensing, and then finally a cut at 330f for effecting the largest possible "un-treated" dispensing.

FIG. IOC shows a nozzle 340 manufactured as a separate piece, with the end 341 open, that can be welded to a bag (not shown) in accordance with the disclosure of this invention to form a one-piece construction, or used with a bag currently commercially available, for dispensing food material 10A, which nozzle is similar to the nozzle 310 shown in FIG. 10 and the nozzle 1 10 shown in FIGS. 5-8, in that it has alternating internal profiles. The internal profiles of sections 340a and 340b are both circular but of differing cross - sectional dimension. The internal profiles of sections 340c, 340d, 340e, 340f and 330g are all tapered and of differing cross -sectional dimension. The internal profiles 340h, 340i, 340j, 340k and 3301 are also all tapered with differing cross-sectional dimension and have identically sized internal edges or protrusions 344a, 344b, 344c, 344d and 344e (although it is to be understood that the sizes of the edges or protrusions could be different without departing from the scope of this invention). Accordingly, during use, the user can select not to make a cut and effect "un-treated" dispensing of the food material via 340a, and then to make a cut at 340h for effecting "treated" dispensing of the food material, and then another cut at 340b for effecting smaller "un-treated" dispensing, and then a cut at 340c for effecting larger "un-treated" dispensing, then a cut at 340i for effecting larger "treated" dispensing, and then another cut at 340d for effecting still larger "un-treated" dispensing, and then a cut at 340j for effecting still larger "treated" dispensing, and then another cut at 340e for effecting yet larger "un-treated" dispensing, and then a cut at 340k for effecting yet larger "treated" dispensing, and then another cut at 340f for effecting even larger "un-treated" dispensing, and then a cut at 3401 for effecting even larger "treated" dispensing, and then finally a cut at 340g for effecting the largest possible "un-treated" dispensing. While pairs of edges or protrusions 334a and 335a, 334b and 335b, 334c and 335c, 334d and 335d, and 334e and 335e in FIG. 10B, and 344a and 345a, 344b and 345b, 344c and 345c, 344d and 345d and 344e and 345e in FIG. IOC are shown positioned at the same location along the axis of flow across from each other, it is to be understood that the edges or protrusions need not be paired nor be positioned across from each other in order to accomplish the objects of and come within the scope of this invention. As is readily understood by those skilled in the art, the size, shape, number and positioning of the edges or protrusions can be varied and selected in order to effect the desired output without departing from the objects of or scope of this invention.

FIG. 11 shows a multiple outlet device with nozzles 410, 510 and 610 in accordance with this invention.

FIGS. 12-26 disclose various stands for use with the EFB apparatus during filling with food material.

The stand shown in FIGS. 12-16 is a wire stand 910, shown with a base ring 911 and four extending support arms 912a, 912b, 912c and 912d. Each support arm has a support finger 914a, 914b, 914c and 914d for engaging (as shown in FIG. 16) corresponding to holes 920a, 920b, 920c (920d not shown) in the bag 990.

The stand 344 shown in FIGS. 17-22 is a collapsible annular stand with a number of nesting sections 350a, 350b, 350c, 350d and 350e and a base 325. Stand 344 engages and supports the EFB bag during filling by having an excess amount of EFB bag material that is reversible on itself folded over the top edge 352 of section 350a. The stand 344 is "opened" by the user by pulling apart the outer nesting section 350a and the base 352. The stand remains "open" by friction or other means as would be commonly known in connection with such mechanisms. The stand is "collapsed" by the user pushing the outer nesting section 350a and the base 352 towards each other. The stand is shown "open" in FIGS. 17 and 19 and "collapsed" or "closed" in FIGS. 18 and 20. FIGS. 21 and 22 depict the stand in both the "open" and "closed" positions.

The stand shown in FIGS. 23-26 is a tubular stand 810, shown with three base sections 81 la, 81 lb and 81 lc, three top sections 812a, 812b and 812c and six support legs 814a, 814b, 814c, 814d, 814e and 814f. Stand 810 engages and supports the EFB bag during filling by having an excess amount of EFB bag material that is reversible on itself folded over the top sections 812a, 812b and 812c.

Once the cut is made in a nozzle constructed in accordance with this invention, it remains possible to make a new cut, to enlarge the opening, without having to remove the food material from the bag and without having to take any other intermediary steps.

The design of the unique nozzle according to this invention allows the food material to be dispensed through the nozzle in a uniform, controlled and yet easy and effortless manner. Problems of lumps and clogs no longer cause the dispensation to have to be stopped to take time consuming remedial measures.

The dimensioning of the tip has been found to be critical. Slitted nozzle end designs of prior art devices may "give enough" to allow food to pass, but they are not capable of both widening out to enable desired passage of lumps and subsequently providing continued "treatment." Moreover, slitted ends can result in ribbons of food coming out the side of the nozzle hole when a lump is encountered. Further, slitted ends preclude the selection of a cut area anywhere along the longitudinal length of the tapered nozzle. The longitudinally extending internal protrusions of this invention overcome such deficiencies. The material used to manufacture the nozzle is critical. It cannot be rigid as with prior art devices as it will not allow lumps or clogs to be passed. At the same time, it must not be too elastic so that the nozzle has no "integrity" and thus no control of the flow of the food material. A suitable elastic material in the embodiment where the nozzle is expected to flex and open would be either a thermoset elastomer, such as latex rubber or silicone rubber, or a thermoplastic elastomer, such as polyurethane. A suitable flexible but non-elastic material would be a thermoplastic such as polyethylene. These materials enable the user to clear clogs without taking the food out of the bag, either by expanding to allow the clog to pass (preferred), or by allowing the user to crush and break up the clog (alternative).

The nozzle should be made of a material of between 27A and 60A durometers, with 60A being the preferred embodiment.

In the preferred embodiment, the widest cut of the nozzle should yield a star shaped opening of up to 0.8 inches in inside diameter.

The cut lines can be notches as shown and can include colors and a color coded guide to help the user understand where to cut.

Referring to FIGS. 27 and 28, in order to introduce color into the food material as it is expelled, pre-positioned quantities of coloring agents can be manufactured into one or more reservoirs 710a and 710b in the bag 712 as shown in FIG. 27 or one or more reservoirs 710c, 710d and 710e in the nozzle 714 as shown in FIG. 28, such that pressure (as well as heat and moisture) from the food material (not shown) can activate the reservoirs 710 a-e and cause the simultaneous expulsion of the coloring agents. If the reservoirs 710a and 710b are located in the bag 712 (FIG. 27), tubes or piping 716a and 716b can lead from the reservoirs 710a and 710b down alongside the edge of the nozzle 718 to a closed end at the area of the end of the nozzle 720. Cutting the nozzle can simultaneously result in cutting of the color tubes or piping 716a and 716b. If the reservoirs 710c, 710d and 710e are located in the nozzle 714 (FIG. 28), tubes or piping 716c, 716d and 716e (not shown) can lead from the reservoirs 710c, 710d and 710e alongside the edge of the nozzle 714 to a closed end at the area of the end of the nozzle 720. Cutting the nozzle can simultaneously result in cutting of the color tubes or piping 716c, 716d and 716e.

Referring to FIGS. 29 and 30, an alternate embodiment for introducing color into the food material as it is expelled is disclosed. Pre-positioned quantities of coloring agents can be placed in longitudinally extending deposits 740a and 740b on the internal surface 750 of the bag 752 as shown in FIG. 29 or placed in longitudinally extending deposits 740c and 740d on the internal surface 760 of the nozzle 762 as shown in FIG. 30. Prior to use, the integrity and viability of the color deposits, whether on the internal wall 750 of the bag 752, or on the internal wall 760 of the nozzle 762, is ensured by sealing strips 770a, 770b, 770c and 770d that overlay and seal the color deposits. Prior to depositing the food material in the bag 752, or prior to using the nozzle 762, in order to prepare the color deposits for

"activation" by the passage of food material thereby, such sealing strips 770a, 770b, 770c and 770d are removed by pulling on tabs 772a, 772b, 772c and 772d, respectively,

While the preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by the appended claims.