Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITE COMPRISING AN ELASTOMER COMPOSITION AND A METAL REINFORCING ELEMENT
Document Type and Number:
WIPO Patent Application WO/2022/207996
Kind Code:
A1
Abstract:
The invention relates to a composite comprising at least one reinforcing element having a surface including an alloy of copper, zinc and 1 to 10 wt% of at least one metal selected from among cobalt, nickel, tin, indium, manganese, iron, bismuth and molybdenum, said reinforcing element being embedded in an elastomer composition based on at least one diene elastomer, a reinforcing filler and a sulphur crosslinking system, comprising a metal oxide, a stearic acid derivative and a vulcanization accelerator, wherein the sulphur content is between 1 and 5 phr, and wherein the ratio by mass of metal oxide to stearic acid derivative is less than 4.

Inventors:
THUILLIEZ ANNE-LISE (FR)
GAVARD-LONCHAY ODILE (FR)
BARBOUTEAU JOËL (FR)
Application Number:
PCT/FR2022/050510
Publication Date:
October 06, 2022
Filing Date:
March 21, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MICHELIN & CIE (FR)
International Classes:
B60C1/00; B60C9/00; C08K3/22; C08K5/09; C08L7/00; C23C28/00; C23C30/00; D07B1/06
Domestic Patent References:
WO2021029378A12021-02-18
WO2016058942A12016-04-21
WO2016058943A12016-04-21
WO1997036724A21997-10-09
WO1999016600A11999-04-08
WO2003016837A12003-02-27
WO2003002648A12003-01-09
WO2003002649A12003-01-09
WO2002030939A12002-04-18
WO2002031041A12002-04-18
WO2006125532A12006-11-30
WO2006125533A12006-11-30
WO2006125534A12006-11-30
Foreign References:
US5284713A1994-02-08
EP0343254A11989-11-29
US4859289A1989-08-22
US4347290A1982-08-31
EP3476624A12019-05-01
US20050016651A12005-01-27
US20050016650A12005-01-27
US20040132880A12004-07-08
Attorney, Agent or Firm:
LOURET, Sylvain (FR)
Download PDF:
Claims:
REVENDICATIONS

[Revendication l] Composite comprenant au moins un élément de renfort présentant une surface comprenant un alliage de cuivre, de zinc, et de 1 à 10% poids d’au moins un métal choisi parmi le cobalt, le nickel, l’étain, l’indium, le manganèse, le fer, le bismuth et le molybdène, ledit élément de renfort étant noyé dans une composition élastomérique à base d’au moins un élastomère diénique, une charge renforçante et un système de réticulation au soufre, comprenant un oxyde métallique, un dérivé de l’acide stéarique et un accélérateur de vulcanisation, la teneur en soufre étant comprise entre 1 et 5 pce, et le ratio massique oxyde métallique sur dérivé de l’acide stéarique étant inférieur à 4.

[Revendication 2] Composite selon la revendication 1 dans lequel la surface de l’élément de renfort comprend un alliage de cuivre, de zinc, et de 1 à 10% poids d’au moins un métal choisi parmi le cobalt, le nickel, l’étain le manganèse, le fer et le molybdène, préférentiellement choisi parmi le cobalt et le nickel.

[Revendication 3] Composite selon la revendication 2 dans lequel la surface de l’élément de renfort comprend un alliage de cuivre, de zinc, et de 2 à 8% poids d’au moins un métal choisi parmi le cobalt et le nickel, préférentiellement le cobalt.

[Revendication 4] Composite selon l’une quelconque des revendications précédentes dans lequel la surface de l’élément de renfort comprend de 55 à 75% poids de cuivre.

[Revendication 5] Composite selon l’une quelconque des revendications précédentes dans lequel la composition élastomérique comprend au moins 50 pce, préférentiellement au moins 70 pce, de manière préférée au moins 90 pce d’au moins un élastomère isoprénique.

[Revendication 6] Composite selon la revendication précédente dans lequel la composition élastomérique comprend 100 pce d’au moins un élastomère isoprénique.

[Revendication 7] Composite selon l’une quelconque des revendications précédentes dans lequel la composition élastomérique comprend de 1 à 4 pce de soufre.

[Revendication 8] Composite selon l’une quelconque des revendications précédentes dans lequel le ratio massique soufre/accélérateur de vulcanisation est inférieur ou égal à 4.

[Revendication 9] Composite selon l’une quelconque des revendications précédentes dans lequel le ratio massique oxyde métallique sur dérivé de l’acide stéarique dans la composition élastomérique est inférieur à 3.

[Revendication 10] Composite selon l’une quelconque des revendications précédentes dans lequel la composition élastomérique ne comprend pas de sels de cobalt ou en comprend moins de 1 pce, de manière préférée moins de 0,5 pce. [Revendication 11] Composite selon l’une quelconque des revendications précédentes dans lequel la charge renforçante de la composition élastomérique comprend majoritairement du noir de carbone.

[Revendication 12] Composite selon l’une quelconque des revendications 1 à 10 dans lequel la charge renforçante de la composition élastomérique comprend majoritairement de la silice.

[Revendication 13] Composite selon l’une quelconque des revendications précédentes dans lequel la composition élastomérique ne comprend pas de résine renforçante, tackifïante ou promotrice d’adhésion, ou en comprend au total moins de 2 pce, préférentiellement moins de 1 pce. [Revendication 14] Article fini ou semi-fini comprenant un composite selon l’une quelconque des revendications précédentes.

[Revendication 15] Bandage pneumatique comprenant un composite selon l’une quelconque des revendications 1 à 13.

Description:
Composite comprenant une composition élastomérique et un élément de renfort métallique

Domaine technique de l’invention

La présente invention est relative au domaine des produits en caoutchouc renforcés, en particulier à destination des bandages pneumatiques ou non pneumatiques, ainsi qu’aux articles comprenant de tels produits renforcés.

Art antérieur

Les nappes de renforcement des bandages pneumatiques ou des articles renforcés en caoutchouc comprennent habituellement une composition de caoutchouc, dite de calandrage, et des câbles de renforcement métalliques. La composition de calandrage doit répondre à de nombreuses caractéristiques, telles que de bonnes propriétés d’adhésion aux câbles de renforcement métalliques, des propriétés hystérétiques conférant aux nappes une faible contribution à la résistance au roulement ainsi qu’une bonne résistance à la fissuration et ce, tout au long de la vie du pneumatique.

L’adhésion entre les câbles métalliques et le caoutchouc environnant est une des propriétés clés pour l’efficacité des nappes de renforcement des bandages pneumatiques ou des articles renforcés en caoutchouc. Les compositions de calandrage, qui comprennent un élastomère diénique, notamment du caoutchouc naturel, une charge renforçante, comprennent également en général un système de vulcanisation spécifique et, en tant que promoteur d’adhésion, des sels de cobalt. Ce système de vulcanisation spécifique comprend usuellement un taux de soufre élevé, un ratio massique oxyde de zinc sur acide stéarique élevé, un accélérateur de vulcanisation dit lent et un retardateur de vulcanisation. Dans ces systèmes, l’adhésion entre la composition de calandrage et le câble métallique se crée via le phénomène de sulfuration de la surface laitonnée du câble, les sels de cobalt ayant une action sur la pérennité de l’adhésion.

De nombreux travaux ont été réalisés par les manufacturiers de bandages pneumatiques pour limiter les teneurs en soufre, en oxyde métallique et/ou en sels de cobalt tout en maintenant une ou plusieurs des performances des compositions de calandrage, ainsi que leur pérennité. Ainsi, les documents WO2016/058942 et WO2016/0589431 proposent de gainer les éléments de renfort métallique, permettant d’abaisser les taux de soufre et d’oxyde de zinc dans les compositions de calandrage des renforts ainsi gainés et de diminuer, voire de supprimer le cobalt de la composition de calandrage. Toutefois, cette approche nécessite de gainer les éléments de renfort. D’autres travaux de recherche se sont axés sur la reformulation du support métallique, en proposant notamment des éléments de renfort dont la surface est revêtue d’un alliage comprenant du cobalt. On peut citer par exemple le brevet US 4,347,290 qui enseigne un composite comprenant une composition élastomérique et un élément de renfort métallique dont la surface est revêtue d’un alliage Cu-Zn-Co montrant une amélioration de l’adhésion, avec toutefois un ratio ZnO/acide stéarique relativement élevé. Ce document n’aborde pas l’aspect de la tenue dans le temps des propriétés.

Le document EP 3 476624 enseigne un composite comprenant une composition élastomérique et un élément de renfort dont la surface comprend du laiton et de 1 à 10% poids d’un ou plusieurs métaux choisis parmi le cobalt, le nickel, l'étain, l'indium, le manganèse, le fer, le bismuth et le molybdène. Les exemples montrent que des compositions élastomériques comprenant une résine promotrice d’adhésion (système résorcinol/HMMM) et ne comprenant pas de sels de cobalt, présentent une bonne tenue dans le temps des propriétés d’adhésion.

Poursuivant ses recherches, la demanderesse a découvert qu’un composite comprenant au moins un élément de renfort présentant une surface comprenant un alliage de cuivre, de zinc, et de 1 à 10% poids d’au moins un métal choisi parmi le cobalt, le nickel, l’étain, l’indium, le manganèse, le fer, le bismuth et le molybdène, ledit élément de renfort étant noyé dans une composition élastomérique à base d’au moins un élastomère diénique, une charge renforçante et un système de réticulation au soufre, comprenant un oxyde métallique, un dérivé de l’acide stéarique et un accélérateur de vulcanisation, la teneur en soufre étant comprise entre 1 et 5 pce, et le ratio massique oxyde métallique sur dérivé de l’acide stéarique étant inférieur à 4, présentait à la fois de bonnes propriétés d’adhésion de la composition à l’élément de renfort, tout en améliorant la pérennité des performances en terme, notamment, de tenue de l’adhésion, de contribution à la résistance au roulement et de résistance à la fissuration.

Description détaillée de l’invention

L’invention concerne un composite comprenant au moins un élément de renfort présentant une surface comprenant un alliage de cuivre, de zinc, et de 1 à 10% poids d’au moins un métal choisi parmi le cobalt, le nickel, l’étain, l’indium, le manganèse, le fer, le bismuth et le molybdène, ledit élément de renfort étant noyé dans une composition élastomérique à base d’au moins un élastomère diénique, une charge renforçante et un système de réticulation au soufre, comprenant un oxyde métallique, un dérivé de l’acide stéarique et un accélérateur de vulcanisation, la teneur en soufre étant comprise entre 1 et 5 pce, et le ratio massique oxyde métallique sur dérivé de l’acide stéarique étant inférieur à 4. Préférentiellement, l’invention concerne un composite dans lequel la surface de l’élément de renfort comprend un alliage de cuivre, de zinc, et de 1 à 10% poids d’au moins un métal choisi parmi le cobalt, le nickel, l’étain le manganèse, le fer et le molybdène, préférentiellement choisi parmi le cobalt et le nickel.

Préférentiellement, l’invention concerne un composite dans lequel la surface de l’élément de renfort comprend un alliage de cuivre, de zinc, et de 2 à 8% poids d’au moins un métal choisi parmi le cobalt et le nickel, préférentiellement le cobalt.

Préférentiellement, l’invention concerne un composite dans lequel la surface de l’élément de renfort comprend de 55 à 75% poids de cuivre.

Préférentiellement, l’invention concerne un composite dans lequel la composition élastomérique comprend au moins 50 pce, préférentiellement au moins 70 pce, de manière préférée au moins 90 pce d’au moins un élastomère isoprénique.

Préférentiellement, l’invention concerne un composite dans lequel la composition élastomérique comprend 100 pce d’au moins un élastomère isoprénique.

Préférentiellement, l’invention concerne un composite dans lequel l’élastomère isoprénique est choisi dans le groupe constitué par les polyisoprènes de synthèse, le caoutchouc naturel, les copolymères d’isoprène et leurs mélanges, préférentiellement choisi dans le groupe constitué par le caoutchouc naturel et les polyisoprènes comprenant un taux massique de liaisons cis 1,4 d’au moins 90%, plus préférentiellement d’au moins 98% par rapport à la masse d’élastomère isoprénique et leurs mélanges.

Préférentiellement, l’invention concerne un composite dans lequel la composition élastomérique comprend de 1 à 4 pce de soufre.

Préférentiellement, l’invention concerne un composite dans lequel le ratio massique soufre/accélérateur de vulcanisation est inférieur ou égal à 4.

Préférentiellement, l’invention concerne un composite dans lequel le ratio massique oxyde métallique sur dérivé de l’acide stéarique dans la composition élastomérique est inférieur à 3.

Préférentiellement, l’invention concerne un composite dans lequel l’oxyde métallique du système de réticulation est l’oxyde de zinc. Préférentiellement, l’invention concerne un composite dans lequel la composition élastomérique ne comprend pas de sels de cobalt ou en comprend moins de 1 pce, de manière préférée moins de 0,5 pce.

Préférentiellement, dans un arrangement préféré, l’invention concerne un composite dans lequel la charge renforçante de la composition élastomérique comprend majoritairement du noir de carbone. Préférentiellement, dans un autre arrangement préféré, l’invention concerne un composite dans lequel la charge renforçante de la composition élastomérique comprend majoritairement de la silice.

Préférentiellement, dans cet arrangement préféré, l’invention concerne un composite dans lequel la composition élastomérique comprend un agent de couplage de la silice, la teneur en agent de couplage étant dans un domaine allant de 5 à 18% en poids par rapport à la quantité de silice, préférentiellement dans un domaine allant de 8 à 12% en poids par rapport à la quantité de silice. Préférentiellement, l’invention concerne un composite dans lequel la composition élastomérique ne comprend pas de résine renforçante, tackifïante ou promotrice d’adhésion, ou en comprend au total moins de 2 pce, préférentiellement moins de 1 pce.

L’invention concerne également un article fini ou semi-fini comprenant un composite selon l’invention.

L’invention concerne également un bandage pneumatique comprenant un composite selon l’invention. Définitions!

Les composés comprenant du carbone mentionnés dans la description peuvent être d'origine fossile ou biosourcés. Dans ce dernier cas, ils peuvent être, partiellement ou totalement, issus de la biomasse ou obtenus à partir de matières premières renouvelables issues de la biomasse. Sont concernés notamment les polymères, les plastifiants, les charges, etc.

Composite L’invention concerne un composite comprenant au moins un élément de renfort présentant une surface comprenant un alliage de cuivre, de zinc, et de 1 à 10% poids d’au moins un métal choisi parmi le cobalt, le nickel, l’étain, l’indium, le manganèse, le fer, le bismuth et le molybdène, ledit élément de renfort étant noyé dans une composition élastomérique.

Par l'expression composite "comprenant au moins un élément de renfort, ledit renfort étant noyé dans une composition élastomérique", il faut entendre un composite comprenant l’élément de renfort et ladite composition, la composition ayant pu réagir avec la surface de l’élément de renfort lors des différentes phases de fabrication du composite, en particulier au cours de la réticulation de la composition ou au cours de la confection du composite avant réticulation de la composition, ledit élément de renfort étant totalement recouvert de ladite composition.

Ledit élément de renfort est un élément fïlaire. Il peut être tout ou partie métallique. Par élément fïlaire, on entend un élément présentant une longueur au moins 10 fois plus grande que la plus grande dimension de sa section, quelle que soit la forme de cette dernière : circulaire, elliptique, oblongue, polygonale, notamment rectangulaire ou carrée ou ovale. Dans le cas d’une section rectangulaire, l’élément fïlaire présente la forme d’une bande.

Ledit élément de renfort comprend une surface métallique.

La surface métallique de l’élément de renfort constitue au moins une partie, et préférentiellement la totalité de la surface dudit élément et est destinée à entrer directement au contact de la composition élastomérique. De préférence, l’élément de renfort est métallique, c’est-à-dire constitué d’un matériau métallique. Préférentiellement, l’élément de renfort est un élément de renfort en acier revêtu d’une surface métallique telle que définie dans la présente.

L’acier de l’élément de renfort en acier est préférentiellement un acier au carbone ou un acier inoxydable. Lorsque l’acier est un acier au carbone, sa teneur en carbone, exprimée en % poids, est de préférence comprise entre 0.01% et 1.2% ou entre 0.05% et 1.2%, ou bien encore entre 0.2% et 1.2%, notamment entre 0.4% et 1.1%. Lorsque l’acier est inoxydable, il comporte de préférence au moins 11% poids de chrome et au moins 50% poids de fer.

L’élément de renfort présente une résistance mécanique allant de 1000 MPa à 5000 MPa. De telles résistances mécaniques correspondent aux grades d’acier couramment rencontrés dans le domaine du pneumatique, à savoir, les grades NT (Normal Tensile), HT (High Tensile), ST (Super Tensile), SHT (Super High Tensile), UT (Ultra Tensile), UHT (Ultra High Tensile) et MT (Mega Tensile), Tutilisation de résistances mécaniques élevées permettant éventuellement un renforcement amélioré de la composition élastomérique dans laquelle l’élément de renfort est noyé, et un allègement de la composition élastomérique ainsi renforcée.

La composition élastomérique enrobe la totalité de l’élément de renfort, à l’exception éventuelle des plans de coupes du composite.

La surface métallique de l’élément de renfort comprend un alliage de cuivre, de zinc, et de 1 à 10% poids d’au moins un métal choisi parmi le cobalt, le nickel, l’étain, l’indium, le manganèse, le fer, le bismuth et le molybdène.

De manière préférée, la surface métallique de l’élément de renfort comprend un alliage de cuivre, de zinc, et de 2 à 8% poids d’au moins un métal choisi parmi le cobalt et le nickel, préférentiellement le cobalt.

Préférentiellement, la surface métallique de l’élément de renfort comprend de 55 à 75% poids de cuivre.

Certains métaux étant sujets à l’oxydation au contact de l’air ambiant, le métal peut être en partie oxydé.

Selon un mode de réalisation préféré, le composite est un produit renforcé qui comprend plusieurs éléments de renforts tels que définis ci-dessus et une composition élastomérique de calandrage dans laquelle sont noyés les éléments de renforts, la composition élastomérique de calandrage consistant en la composition élastomérique du composite selon l’invention. Selon ce mode de réalisation, les éléments de renforts sont agencés généralement côte à côte selon une direction principale. Pour une application envisagée dans un bandage pneumatique, le composite peut donc constituer une armature de renforcement pour bandage pneumatique.

Le composite conforme à l’invention peut être à l’état cru (avant réticulation de la composition élastomérique) ou à l’état cuit (après réticulation de la composition élastomérique). Le composite est cuit après mise en contact du ou des éléments de renfort avec la composition élastomérique décrite dans la présente.

Le composite peut être fabriqué par un procédé qui comprend les étapes suivantes :

Réaliser deux couches de la composition élastomérique du composite selon l’invention, Prendre le ou les éléments de renfort en sandwich dans les deux couches en le(s) déposant entre les deux couches,

Le cas échéant cuire le composite.

Alternativement, le composite peut être fabriqué en déposant l’élément de renfort sur une portion d’une couche, la couche est alors repliée sur elle-même pour couvrir l’élément de renfort qui est ainsi pris en sandwich sur toute sa longueur ou une partie de sa longueur.

La réalisation des couches peut se faire par calandrage. Au cours de la cuisson du composite, la composition élastomérique est réticulée.

Lorsque le composite est destiné à être utilisé en tant qu’armature de renforcement dans un bandage pneumatique, la cuisson du composite a lieu généralement lors de la cuisson du bandage pneumatique.

Élastomères diéniques

Le composite selon l’invention comprend une composition élastomérique à base d’au moins un élastomère diénique. Par élastomère du type diénique, on rappelle que doit être entendu un élastomère qui est issu au moins en partie (i.e. un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).

Ces élastomères diéniques peuvent être classés dans deux catégories : "essentiellement insaturés" ou "essentiellement saturés". On entend en général par "essentiellement insaturé", un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles) ; c'est ainsi que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'alpha-oléfïnes type EPDM n'entrent pas dans la définition précédente et peuvent être notamment qualifiés d'élastomères diéniques "essentiellement saturés" (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15% (% en moles)). Les élastomères diéniques compris dans la composition selon l’invention sont préférentiellement essentiellement insaturés.

On entend particulièrement par élastomère diénique susceptible d'être utilisé dans les compositions conformes à l'invention : a) tout homopolymère d’un monomère diène, conjugué ou non, ayant de 4 à 18 atomes de carbone ; b) tout copolymère d'un diène, conjugué ou non, ayant de 4 à 18 atomes de carbone et d’au moins un autre monomère.

L’autre monomère peut être l’éthylène, une oléfïne ou un diène, conjugué ou non.

A titre de diènes conjugués conviennent les diènes conjugués ayant de 4 à 12 atomes de carbone, en particulier les 1,3 diènes, tels que notamment le 1,3 butadiène et l’isoprène.

A titre d’oléfïnes conviennent les composés vinylaromatiques ayant de 8 à 20 atomes de carbone et les crmonooléfïnes aliphatiques ayant de 3 à 12 atomes de carbone.

A titre de composés vinylaromatiques conviennent par exemple le styrène, l'ortho-, méta-, para-méthylstyrène, le mélange commercial "vinyle-toluène", le para-tertiobutylstyrène.

A titre d’crmonooléfïnes aliphatiques conviennent notamment les crmonooléfïnes aliphatiques acycliques ayant de 3 à 18 atomes de carbone.

L’élastomère diénique est de préférence un élastomère diénique du type fortement insaturé, en particulier un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les polybutadiènes (BR), les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), les copolymères d’isoprène-butadiène (BIR), les copolymères d'isoprène-styrène (SIR), les copolymères d’isoprène-butadiène-styrène (SBIR), les copolymères d’éthylène-butadiène (EBR) et les mélanges de tels copolymères.

Les élastomères diéniques ci-dessus peuvent être par exemple à blocs, statistiques, séquencés, microséquencés, et être préparés en dispersion ou en solution ; ils peuvent être couplés et/ou étoilés ou encore fonctionnalisés avec un agent de couplage et/ou d'étoilage ou de fonctionnalisation, par exemple époxydés.

De manière préférée, la composition élastomérique du composite selon l’invention comprend au moins 50 pce, préférentiellement au moins 70 pce, de manière préférée au moins 90 pce d’au moins un élastomère isoprénique. Dans un mode très préféré, la composition élastomérique du composite selon l’invention comprend 100 pce d’au moins un élastomère isoprénique. Par "élastomère isoprénique", on entend un homopolymère ou un copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR) qui peut être plastifié ou peptisé, les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène, en particulier les copolymères d'isoprène-styrène (SIR), d'isoprène- butadiène (BIR) ou d'isoprène-butadiène-styrène (SBIR), et les mélanges de ces élastomères.

De manière préférée, l’élastomère isoprénique est choisi dans le groupe constitué par les polyisoprènes de synthèse, le caoutchouc naturel, les copolymères d’isoprène et leurs mélanges, de préférence dans le groupe constitué par le caoutchouc naturel, les polyisoprènes comprenant un taux massique de liaisons cis 1,4 d’au moins 90%, plus préférentiellement d’au moins 98% par rapport à la masse d’élastomère isoprénique et leurs mélanges. De manière très préférée, l’élastomère isoprénique est le caoutchouc naturel.

Charge renforçante

La composition élastomérique du composite selon l’invention comprend une charge renforçante. On peut utiliser tout type de charge renforçante connue pour ses capacités à renforcer une composition élastomérique utilisable pour la fabrication de bandages pneumatiques, par exemple une charge organique telle que du noir de carbone, une charge inorganique renforçante telle que de la silice, ou encore un coupage de ces deux types de charge, notamment un coupage de noir de carbone et de silice.

Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs du type HAF, ISAF, SAF conventionnellement utilisés dans les pneumatiques (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçant des séries 100, 200 ou 300 (grades ASTM), comme par exemple les noirs NI 15, N134, N234, N326, N330, N339, N347, N375, ou encore, selon les applications visées, les noirs de séries plus élevées (par exemple N660, N683, N772). Les noirs de carbone pourraient être par exemple déjà incorporés à un élastomère isoprénique sous la forme d'un masterbatch (voir par exemple demandes WO 97/36724 ou WO 99/16600). La surface spécifique BET des noirs de carbone est mesurée selon la norme D6556-10 [méthode multipoints (au minimum 5 points) — gaz : azote - domaine de pression relative R/R0 : 0,1 à 0,3]

Par "charge inorganique renforçante", doit être entendu dans la présente demande, par définition, toute charge inorganique ou minérale (quelle que soit sa couleur et son origine naturelle ou de synthèse), encore appelée charge "blanche", charge "claire" voire "charge non noire" ("non-black filler") par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu’un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de bandages pneumatiques, en d’autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (ΌH) à sa surface.

Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type siliceux, en particulier de la silice (S1O2), ou du type alumineux, en particulier de l'alumine (AI2O3). La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m 2 /g, de préférence de 30 à 400 m 2 /g. A titre de silices précipitées hautement dispersibles (dites "HD S"), on citera par exemple les silices « Ultrasil 7000 » et « Ultrasil 7005 » de la société Degussa, les silices « Zeosil 1165MP », « 1135MP » et « 1115MP » de la société Rhodia, la silice « Hi-Sil EZ150G » de la société PPG, les silices « Zeopol 8715 », « 8745 » et « 8755 » de la Société Huber, les silices à haute surface spécifique telles que décrites dans la demande WO 03/16837.

L'état physique sous lequel se présente la charge inorganique renforçante est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, de billes ou toute autre forme densifiée appropriée. Bien entendu on entend également par charge inorganique renforçante des mélanges de différentes charges inorganiques renforçantes, en particulier de charges siliceuses et/ou alumineuses hautement dispersibles.

La charge inorganique renforçante utilisée, en particulier s'il s'agit de silice, a de préférence une surface BET comprise entre 45 et 400 m 2 /g, plus préférentiellement comprise entre 60 et 300 m 2 /g.

De manière préférentielle, la composition élastomérique du composite selon l’invention comprend de 10 à 100 pce, plus préférentiellement de 10 à 80 pce et de manière préférée de 10 à 60 pce de noir de carbone, l'optimum étant de manière connue différent selon les applications particulières visées : le niveau de renforcement attendu sur un bandage pneumatique vélo, par exemple, est bien sûr inférieur à celui exigé sur un bandage pneumatique apte à rouler à grande vitesse de manière soutenue, par exemple un pneu moto, un pneu pour véhicule de tourisme ou pour véhicule utilitaire tel que Poids lourd. Dans un arrangement préféré, la charge renforçante comprend majoritairement du noir de carbone, et de préférence est constituée de noir de carbone. De manière préférentielle, la composition élastomérique du composite selon l’invention comprend de 10 à 150 pce, de préférence de 10 à 100 pce de silice. Dans un arrangement préféré, la charge renforçante comprend majoritairement de la silice et de préférence est constituée de silice.

Pour coupler la charge inorganique renforçante à l'élastomère, on peut de manière optionnelle utiliser de manière connue un agent de couplage (ou agent de liaison) au moins bifonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge inorganique (surface de ses particules) et l'élastomère, en particulier des organosilanes, ou des polyorganosiloxanes bifonctionnels .

On peut utiliser notamment des silanes polysulfurés, dits "symétriques" ou "asymétriques" selon leur structure particulière, tels que décrits par exemple dans les demandes W003/002648 (ou US 2005/016651) et W003/002649 (ou US 2005/016650).

A titre d'exemples de silanes polysulfurés, on citera plus particulièrement les polysulfurés (notamment disulfures, trisulfures ou tétrasulfures) de bis-(alkoxyl(Cl-C4)-alkyl(Cl-C4)silyl· alkyl(Cl C4)), comme par exemple les polysulfurés de bis(3-triméthoxysilylpropyl) ou de bis(3 triéthoxysilylpropyl). Parmi ces composés, on utilise en particulier le tétrasulfure de bis(3 triéthoxysilylpropyl), en abrégé TESPT, de formule [(C2H50)3Si(CH2)3S2]2 ou le disulfure de bis-(triéthoxysilylpropyle), en abrégé TESPD, de formule [(C2H50)3Si(CH2)3S]2. On citera également à titre d'exemples préférentiels les polysulfurés (notamment disulfures, trisulfures ou tétrasulfures) de bis-(monoalkoxyl(Cl-C4)-dialkyl(Cl-C4)silylpropyl), plus particulièrement le tétrasulfure de bis-monoéthoxydiméthylsilylpropyl tel que décrit dans la demande de brevet US 2004/132880.

A titre d'agent de couplage autre qu'alkoxysilane polysulfuré, on citera notamment des POS (polyorganosiloxanes) bifonctionnels ou encore des polysulfurés d'hydroxysilane tels que décrits dans les demandes de brevet WO 02/30939 et WO 02/31041, ou encore des silanes ou POS porteurs de groupements fonctionnels azo-dicarbonyle, tels que décrits par exemple dans les demandes de brevet WO 2006/125532, WO 2006/125533, WO 2006/125534.

Dans les compositions élastomériques conformes à l'invention, la teneur en agent de couplage est préférentiellement dans un domaine allant de 5 à 18% en poids par rapport à la quantité de silice, préférentiellement dans un domaine allant de 8 à 12% en poids par rapport à la quantité de silice. L'homme du métier comprendra qu'à titre de charge équivalente de la charge inorganique renforçante décrite dans le présent paragraphe, pourrait être utilisée une charge renforçante d'une autre nature, notamment organique, dès lors que cette charge renforçante serait recouverte d'une couche inorganique telle que silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, permettant d’établir la liaison entre la charge et l'élastomère en présence ou non d’un agent de recouvrement ou de couplage.

Système de réticulation

La composition élastomérique du composite selon l’invention comprend un système de réticulation à base de soufre comprenant un oxyde métallique, un dérivé de l’acide stéarique et un accélérateur de vulcanisation. On parle alors d’un système de vulcanisation. Le soufre peut être apporté sous toute forme, notamment sous forme de soufre moléculaire, ou d'un agent donneur de soufre.

Le soufre est utilisé à un taux compris entre 1 et 5 pce, en particulier allant de 1 à 4 pce. Ce taux, bien que faible par rapport aux compositions de calandrage usuelles, est suffisant dans le cadre de l’invention pour assurer à la fois une bonne réticulation de la composition élastomérique et une adhésion suffisante et pérenne à l’élément de renfort métallique.

L'accélérateur de vulcanisation est utilisé à un taux préférentiel tel que le ratio massique soufre/accélérateur de vulcanisation est inférieur ou égal à 4.

On peut utiliser comme accélérateur tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, notamment des accélérateurs du type thiazoles ainsi que leurs dérivés, des accélérateurs de types sulfénamides, thiurames, dithiocarbamates, dithiophosphates, thiourées et xanthates. A titre d'exemples de tels accélérateurs, on peut citer notamment les composés suivants : disulfure de 2- mercaptobenzothiazyle (en abrégé "MBTS"), N-cyclohexyl-2-benzothiazyle sulfénamide ("CBS"), N,N-dicyclohexyl-2-benzothiazyle sulfénamide ("DCBS"), N-ter-butyl-2-benzothiazyle sulfénamide ("TBBS"), N-ter-butyl-2-benzothiazyle sulfénimide ("TBSI"), disulfure de tetrabenzylthiurame ("TBZTD"), dibenzyldithiocarbamate de zinc ("ZBEC") et les mélanges de ces composés.

Le ratio massique oxyde métallique sur dérivé de l’acide stéarique dans le système de réticulation est inférieur à 4, et de préférence inférieur à 3. L’oxyde métallique est préférentiellement l’oxyde de zinc. Le système de réticulation peut également éventuellement comprendre un retardateur de vulcanisation.

Additifs divers

La composition élastomérique du composite selon l’invention peut également comprendre tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastomères destinées à la fabrication de bandages pneumatiques, comme par exemple des plastifiants ou des huiles d'extension, que ces derniers soient de nature aromatique ou non-aromatique, des pigments, des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, anti oxydants, des agents anti-fatigue.

De manière préférée, la composition élastomérique du composite selon l’invention ne comprend pas de résine renforçante, tackifïante, ou promotrice d’adhésion, ou en comprend au total moins de 2 pce, préférentiellement moins de 1 pce et de manière très préférée moins de 0,2 pce. En effet, l’utilisation de telles résines n’est pas nécessaire pour obtenir et maintenir les bonnes performances du composite selon l’invention, en particulier les performances d’adhésion.

Par résine renforçante, on entend une résine connue de l’homme du métier pour rigidifïer des compositions élastomériques, rigidité mesurée par exemple par le Module de Young, selon la norme ASTM 412-98a, ou le module complexe de cisaillement dynamique G* selon la norme ASTM D 5992-96. Par résine promotrice d’adhésion, en entend une résine connue de l’homme du métier pour améliorer l’adhésion sur un élément de renfort, par exemple une résine de type formophénolique ou à base de résorcinol, utilisée généralement à faible taux, typiquement jusqu’à 2 pce, cette résine pouvant également présenter des propriétés renforçantes lorsqu’elle est utilisée à des taux plus élevés.

De manière préférée, la composition élastomérique du composite selon l’invention ne comprend pas de sels de cobalt ou en comprend moins de 1 pce, de manière préférée moins de 0,5 pce.

Ainsi, les caractéristiques spécifiques de la composition élastomérique et de la surface métallique du composite selon l’invention permettent d’atteindre et de maintenir d’excellentes performances, en terme notamment d’adhésion, de pertes hystérétiques et de résistance à la fissuration.

Article fini ou semi-fini et pneumatique

L’invention a également pour objet un article fini ou semi-fini comprenant un composite selon l’invention. L’article fini ou semi-fini peut être tout article comprenant un composite. On peut citer par exemple et de manière non limitative les bandes transporteuses, bandages pneumatiques ou non pneumatiques.

Le bandage pneumatique, autre objet de l’invention, a pour caractéristique essentielle de comprendre le composite conforme à l’invention. Le bandage pneumatique peut être à l’état cru (avant réticulation de la composition élastomérique) ou à l’état cuit (après réticulation de la composition élastomérique). Généralement, au cours de la fabrication du bandage pneumatique, le composite est déposé à l’état cru (c’est-à-dire avant réticulation de la composition élastomérique) dans la structure du bandage pneumatique avant l’étape de cuisson du bandage pneumatique.

L'invention concerne particulièrement des bandages pneumatiques destinés à équiper des véhicules à moteur de type tourisme, SUV ("Sport Utility Vehicles"), ou deux roues (notamment motos), ou avions, ou encore des véhicules industriels choisis parmi camionnettes, « Poids-lourd », c’est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules horsda-route tels qu'engins agricoles ou de génie civil, et autres.

Exemples

Préparation des éprouvettes

On procède pour les essais qui suivent de la manière suivante : on introduit dans un mélangeur interne (taux de remplissage final : environ 70% en volume), dont la température initiale de cuve est d’environ 60 °C, successivement, l’élastomère diénique, la charge renforçante ainsi que les divers autres ingrédients à l’exception du système de vulcanisation. On conduit alors un travail thermomécanique (phase non-productive) en une étape, qui dure au total environ 3 à 4 min, jusqu’à atteindre une température maximale de « tombée » de 165°C.

On récupère le mélange ainsi obtenu, on le refroidit puis on incorpore du soufre et un accélérateur (sulfénamide), sur un mélangeur (homo-finisseur) à 30 °C, en mélangeant le tout (phase productive) pendant un temps approprié (par exemple entre 5 et 12 min).

Les compositions ainsi obtenues sont ensuite calandrées sous la forme de plaques (épaisseur de 2 à 3 mm) ou de feuilles fines de caoutchouc puis sont soit soumises à une étape de cuisson à 150°C pendant 15 min avant la mesure de leurs propriétés physiques ou mécaniques soit utilisées pour confectionner les éprouvettes de mesure pour les tests d’adhésion, comme décrit ci-dessous. Méthodes de mesures

Test d’adhésion

Les compositions élastomériques ainsi préparées sont utilisées pour confectionner un composite sous la forme d’une éprouvette selon le protocole détaillé ci-après.

Le composite métal/ caoutchouc utilisé dans ce test est un bloc de composition élastomérique, constitué de deux plaques de dimension 200 mm par 4,5 mm (millimètres) et d'épaisseur 3,5 mm, appliquées l'une sur l'autre avant la cuisson ; l'épaisseur du bloc résultant est alors de 7 mm. C'est lors de la confection de ce bloc que les renforts, par exemple au nombre de quinze, sont emprisonnés entre les deux plaques crues ; seule une longueur de renfort déterminée, par exemple de 4,5 mm, est laissée libre pour venir au contact de la composition élastomérique à laquelle cette longueur de renfort se liera pendant la cuisson ; le reste de la longueur des renforts est isolé de la composition élastomérique (par exemple à l'aide d'un film plastique ou métallique) pour empêcher toute adhésion en dehors de la zone de contact déterminée. Chaque renfort traverse le bloc de caoutchouc de part en part, au moins une de ses extrémités libres étant conservée de longueur suffisante (au moins 5 cm, par exemple entre 5 et 10 cm) pour permettre la traction ultérieure du renfort.

Chaque renfort métallique est constitué de 2 fils d’acier à 0,7% de carbone, de 30/100è millimètres de diamètre retordus ensemble. Deux revêtements sont évalués, à savoir un revêtement dit « laiton » comprenant 63% de cuivre et le reste en zinc, et un revêtement dit « ternaire » comprenant 67% de cuivre, 4% de cobalt et le reste en zinc.

Le bloc comportant les quinze renforts est alors placé dans un moule adapté puis cuit pendant 15 minutes à 150°C, sous une pression d'environ 15 bar.

Après cuisson du bloc, on applique les conditions de vieillissement accéléré qui suivent, permettant de déterminer la résistance des échantillons à l'action combinée de la chaleur et de l’humidité : les blocs de caoutchouc sont placés dans une étuve à une température de 55°C, pendant 14 jours et sous une humidité relative de 95%.

Mesure des forces d’arrachement

A l'issue de la cuisson et du vieillissement décrit ci-dessus, le bloc est découpé en éprouvettes servant d'échantillons, contenant chacune un renfort que l'on tractionne hors du bloc de caoutchouc, à l'aide d'une machine de traction selon la méthode décrite dans la norme ASTM D 2229-02 ; la vitesse de traction est de 100 mm/min ; on caractérise ainsi l'adhérence par la force nécessaire pour arracher le renfort hors de l'éprouvette, à température ambiante ; la force d'arrachement représente la moyenne des 15 mesures correspondant aux 15 renforts du composite.

Plus la valeur de la force est élevée, plus l'adhésion entre le câble et la composition élastomérique est grande. Les résultats sont exprimés en base 100 par rapport à l’éprouvette témoin non vieillie de composition C01 pour les mélanges ne comprenant que du noir de carbone en tant que charge renforçante, et de composition C06 pour les mélanges comprenant de la silice. Une valeur supérieure à celle de l’éprouvette témoin non vieillie, arbitrairement fixée à 100, indique un résultat amélioré, c'est-à-dire une force d’arrachement supérieure à celle de l’éprouvette témoin non vieillie.

Evaluation des pertes hystérétiques

La résistance au roulement induite par la composition testée est estimée par la mesure des pertes d’énergie, à une température de 60°C, de l’énergie restituée au sixième rebond d’un échantillon auquel on a imposé une énergie initiale, telle que décrite dans la norme DIN 53- 512 d’avril 2000. Cette mesure est calculée comme suit : P60(%)=100x(E0 El)/E0, où E0 représente l’énergie initiale et El l’énergie restituée. Les éprouvettes sont testées après cuisson et après un vieillissement accéléré à 77 °C pendant 14 jours et 21 jours dans une enceinte ventilée.

Les résultats sont exprimés en base 100 par rapport à l’éprouvette témoin non vieillie de composition C01 pour les mélanges ne comprenant que du noir de carbone en tant que charge renforçante, et de composition C06 pour les mélanges comprenant de la silice. Une valeur supérieure à celle de l’éprouvette témoin non vieillie, arbitrairement fixée à 100, indique un résultat dégradé, c'est-à-dire une perte hystérétique (valeur de P60) supérieure à celle de l’éprouvette témoin non vieillie.

Test de résistance à la propagation des fissures

La vitesse de fissuration a été mesurée sur des éprouvettes des compositions élastomériques C01 à CIO, à l'aide d'une machine de fatigue cyclique (« Elastomer Test System ») du type 381, de la société MTS, comme expliqué ci-après.

La résistance à la fissuration est mesurée à l'aide de tractions répétées sur une éprouvette initialement accommodée (après un premier cycle de traction), puis entaillée. L'éprouvette de traction est constituée par une plaque de caoutchouc de forme parallélépipédique, par exemple d'épaisseur comprise entre 0,5 et 1,5 mm, de longueur entre 60 et 100 mm et de largeur entre 4 et 8 mm, les deux bords latéraux étant chacun recouverts dans le sens de la longueur d'un bourrelet de caoutchouc cylindrique (diamètre 5 mm) permettant l'ancrage dans les mors de la machine de traction. Les éprouvettes ainsi préparées sont testées après cuisson et après un vieillissement accéléré à 77 °C pendant 14 jours et 21 jours dans une enceinte ventilée. Le test a été conduit à l'air, à une température de 60°C. Après accommodation, 4 entailles très fines de longueur comprise entre 5 et 7 mm sont réalisées à l'aide d'une lame de rasoir, à mi-largeur et alignées dans le sens de la longueur de l'éprouvette, une à chaque extrémité et deux situées de part et d’autre du centre de l’éprouvette, avant le démarrage du test. A chaque cycle de traction, le taux de déformation de l'éprouvette est ajusté automatiquement de manière à maintenir constant le taux de restitution d'énergie (quantité d'énergie libérée lors de la progression de la fissure), à une valeur égale à environ 1000 J/m2. La vitesse de propagation de fissure est mesurée en nanomètre par cycle.

Les résultats sont exprimés en base 100 par rapport à l’éprouvette témoin non vieillie de composition C01 pour les mélanges ne comprenant que du noir de carbone en tant que charge renforçante, et de composition C06 pour les mélanges comprenant de la silice. Une valeur supérieure à celle de l’éprouvette non vieillie, arbitrairement fixée à 100, indique un résultat dégradé, c'est-à-dire une vitesse de propagation de fissure supérieure à celle de l’éprouvette témoin non vieillie. Lorsque l’éprouvette casse, la mention « nm » pour « non mesurable » est indiquée. Cette mention témoigne d’une éprouvette présentant une faible résistance à la propagation de fissures.

Résultats

Les tableaux ci-dessous montrent les résultats de mesures réalisées sur les mélanges C01 à CIO. Les mélanges C01 à C05 ne comprennent que du noir de carbone en tant que charge renforçante. Les mélanges C06 à C09 ne comprennent que de la silice en tant que charge renforçante et le mélange CIO comprend un coupage de noir de carbone et de silice.

Ces exemples montrent que les mélanges conformes à l’invention présentent un excellent compromis de performance adhésion/propriétés hystérétiques/résistance à la propagation de fissures et une adhésion améliorée lorsque le support est conforme à l’invention.

[Tableau l] nm=non mesurable

[Tableau 2]

nm=non mesurable