Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITE POLYMERIC LAYERS AND METHODS OF MAKING THE SAME
Document Type and Number:
WIPO Patent Application WO/2015/050598
Kind Code:
A2
Abstract:
Composite polymeric comprising, in order, first, second, and third polymeric layers. The first layer is compositionally different than the second layer. The third layer is compositionally different than the second layer. The second layer comprises an array of void spaces therein, but not through the first and second major surfaces. The void spaces each have a series of areas through the void spaces ranging from minimum to maximum areas. The minimum area is not adjacent to either the first or third layer. Methods for making the composite polymeric layers are also disclosed. Polymeric layers described herein are useful, for example, as components in personal care garments such as diapers and feminine hygiene products. They can also be useful for filtering (including liquid filtering) and acoustic applications.

Inventors:
AUSEN RONALD W (US)
BORST RONALD R (US)
HANSCHEN THOMAS P (US)
KOPECKY WILLIAM J (US)
LEGATT MICHELLE L (US)
ZHANG WEI (US)
Application Number:
PCT/US2014/043585
Publication Date:
April 09, 2015
Filing Date:
June 23, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
3M INNOVATIVE PROPERTIES CO (US)
International Classes:
B32B5/00; B29C48/345; B32B7/027; B29C48/05; B29C48/08
Domestic Patent References:
WO2013028654A22013-02-28
WO1996039349A11996-12-12
Foreign References:
US201361779997P2013-03-13
US6465107B12002-10-15
US3471588A1969-10-07
US6228449B12001-05-08
US6348249B22002-02-19
US5948517A1999-09-07
US5614310A1997-03-25
Other References:
A. SATPATHY; S. HAYES; S. DODDS: "Is Compression Bandaging Accurate? The Routine Use of Interface Pressure Measurements in Compression Bandaging of Venous Leg Ulcers", PHLEBOLOGY, vol. 21, 2006, pages 36
Attorney, Agent or Firm:
ALLEN, Gregory D., et al. (Office of Intellectual Property CounselPost Office Box 3342, Saint Paul Minnesota, US)
Download PDF:
Claims:
What is claimed is:

1. A composite polymeric layer having first and second, generally opposed major surfaces, the composite layer comprising, in order, first, second, and third polymeric layers, wherein the first layer is compositionally different than the second layer, wherein the third layer is compositionally different than the second layer, wherein the second layer comprises an array of void spaces therein, but not through the first and second major surfaces, wherein the void spaces each have a series of areas through the void spaces ranging from minimum to maximum areas, and wherein the minimum area is not adjacent to either the first or third layer.

2. The composite polymeric layer of claim 1, wherein the first major surface comprises an adhesive.

3. The composite polymeric layer of claim 1 or 2, wherein the total open area for a cross- section of the second polymeric layer taken parallel to the first major surface is not greater than 50 percent of the total area of the cross-section.

4. The composite polymeric layer of claim 3, wherein for at least a majority of the void spaces in the cross-section, the area of each void space is not greater than 5 mm2.

5. The composite polymeric layer of any preceding claim, wherein the void spaces have lengths in a range from 100 micrometers to 10 mm.

6. The composite polymeric layer of any preceding claim, wherein the layer has a thickness up to 2 mm.

7. The composite polymeric layer of any preceding claim having a basis weight in a range from 25 g/m2 to 600 g/m2.

8. The composite polymeric layer of any preceding claim having a crossweb load at break less than 26.7N (6 lbf) as determined by the Cross Web Strength Test.

9. A breathable compression wrap comprising the composite polymeric layer of any preceding claim, wherein the composite polymeric layer has first and second generally opposed major surfaces, and wherein the first major surface has an affinity for the second major surface.

10. The breathable compression wrap of claim 9 exhibits a tensile force per inch (2.54 cm) of width at 28% elongation of less than 7.78 N (1.75 lbf) as determined by the Stretching Test.

1 1. A method of making a polymeric layer of any claims 1 to 8, the method comprising at least one of passing through a nip or calendaring a netting comprising an array of polymeric strands periodically joined together at bond regions throughout the array, the netting has first and second, generally opposed major surfaces, wherein the bond regions are generally perpendicular to the first and second major surfaces, wherein the array comprises a first plurality of strands having first and second, generally opposed major surfaces, wherein the array comprises a second plurality of strands having first and second, generally opposed major surfaces, wherein the first major surface of the netting comprises the first major surfaces of the first and second plurality of strands, wherein the second major surface of the netting comprises the second major surfaces of the first and second plurality of strands, wherein the first major surface of the first plurality of strands comprises a first material, wherein the second major surface of the first plurality of strands comprises a second material, wherein the first major surface of the second plurality of strands comprises a third material, wherein the second major surface of the second plurality of strands comprises a fourth material, wherein there is a fifth material disposed between the first and second materials, wherein there is a sixth material disposed between the first and second materials, wherein the first and fifth materials are different, wherein the first, second, third, and fourth are the same, and wherein the first material does not extend to the second major surface of the first plurality of strands.

12. The method of any of claim 1 1, wherein at least one of the first, second, third, or fourth materials of the netting comprises a pressure sensitive adhesive.

13. The method of claim 1 1 or 12, wherein the netting has a basis weight in a range from 0.5 g/m2 to 40 g/m2.

14. The method of any claims 1 1 to 13, wherein the netting has a strand pitch in a range from 0.5 mm to 20 mm.

15. The method of any claims 1 1 to 14, wherein the first strands of the netting have an average width in a range from 10 micrometers to 500 micrometers.

16. The method of any claims 1 1 to 15 where the netting is stretched.

Description:
COMPOSITE POLYMERIC LAYERS AND METHODS OF MAKING THE SAME

Cross Reference To Related Application

This application claims the benefit of U.S. Provisional Patent Application Number 61/840156, filed June 27, 2013, the disclosure of which is incorporated by reference herein in its entirety.

Background

[0001] Co-extrusion of polymeric layers is well known in the art. Effective co-extrusion is facilitated by matching layer properties such as melt viscosity and processing temperatures. It is also helpful for layers to adhere well to each other to prevent mechanical delamination when the composite layer is stressed.

[0002] There exists a need for additional polymeric layers constructions.

Summary

[0003] In one aspect, the present disclosure describes a composite polymeric layer having first and second, generally opposed major surfaces, the composite layer comprising, in order, first, second, and third polymeric layers, wherein the first layer is compositionally different than the second layer, wherein the third layer is compositionally different than the second layer, wherein the second layer comprises an array of void spaces therein, but not through the first and second major surfaces (i.e., they may extend into other layers (e.g., the first and third layers, but not through the first and second major surfaces), wherein the void spaces each have a series of areas through the void spaces ranging from minimum to maximum areas, and wherein the minimum area is not adjacent to either the first or third layer.

[0004] The term "different" in terms of polymeric materials means at least one of (a) a difference of at least 2% in at least one infrared peak, (b) a difference of at least 2% in at least one nuclear magnetic resonance peak, (c) a difference of at least 2% in the number average molecular weight, or (d) a difference of at least 5% in polydispersity. Examples of differences in polymeric materials that can provide the difference between polymeric materials include composition, microstructure, color, and refractive index.

[0005] The term "same" in terms of polymeric materials means not different.

[0006] In another aspect, the present disclosure provides a method of making composite polymeric layers described herein, the method comprising at least one of passing through a nip or calendaring a netting comprising an array of polymeric strands periodically joined together at bond regions throughout the array, wherein the netting has first and second, generally opposed major surfaces, wherein the bond regions are generally perpendicular to the first and second major surfaces, wherein the array comprises a first plurality of strands having first and second, generally opposed major surfaces, wherein the array comprises a second plurality of strands having first and second, generally opposed major surfaces, wherein the first major surface of the netting comprises the first major surfaces of the first and second plurality of strands, wherein the second major surface of the netting comprises the second major surfaces of the first and second plurality of strands, wherein the first major surface of the first plurality of strands comprises a first material, wherein the second major surface of the first plurality of strands comprises a second material, wherein the first major surface of the second plurality of strands comprises a third material, wherein the second major surface of the second plurality of strands comprises a fourth material, wherein there is a fifth material disposed between the first and second materials, wherein there is a sixth material disposed between the third and fourth materials, wherein the first and fifth materials are different, wherein the first, second, third, and fourth are the same, and wherein the first material does not extend to the second major surface of the first plurality of strands.

[0007] Composite polymeric layers described herein are useful, for example, as tapes and packaging materials, as well as components in personal care garments (e.g., diapers and feminine hygiene products). They can also be useful as layered films and tapes where adhesion to the core material is facilitated by adhesion through the core.

Brief Description of the Drawings

[0008] FIG. 1 is a schematic view of an apparatus for making forming composite polymeric layers having void spaces therein as described herein;

[0009] FIG. 2 is a cross-section view of the forming composite polymeric layer having void spaces therein as described herein taken along section lines 2-2 in FIG. 1 ;

[0010] FIG. 3 is a plan view of an exemplary shim suited to form a repeating sequence of shims capable of forming a netting having optionally two different types of strands where at least one strand has optionally two different materials in a three layered arrangement;

[001 1] FIG. 3 A is a detail view of the section referenced as "detail 3 A" in FIG. 3;

[0012] FIG. 4 is a plan view of another exemplary shim suited to form a repeating sequence of shims capable of forming a netting having two different types of strands each of optionally two different materials in a three layered arrangement;

[0013] FIG. 4A is a detail view of the section referenced as "detail 4A" in FIG. 4; [0014] FIG. 5 is a plan view of another exemplary shim suited to form a repeating sequence of shims capable of forming a netting having two different types of strands each of optionally two different materials in a three layered arrangement;

[0015] FIG. 5A is a detail view of the section referenced as "detail 5A" in FIG. 5;

[0016] FIG. 6 is a plan view of another exemplary shim suited to form a repeating sequence of shims capable of forming a netting having two different types of strands each of optionally two different materials in a three layered arrangement;

[0017] FIG. 7 is a plan view of another exemplary shim suited to form a repeating sequence of shims capable of forming a netting having two different types of strands each of optionally two different materials in a three layered arrangement;

[0018] FIG. 7A is a detail view of the section referenced as "detail 7A" in FIG. 7;

[0019] FIG. 8 is a plan view of another exemplary shim suited to form a repeating sequence of shims capable of forming a netting having two different types of strands each of optionally two different materials in a three layered arrangement;

[0020] FIG. 8A is a detail view of the section referenced as "detail 8A" in FIG. 8;

[0021 ] FIG. 9 is a plan view of another exemplary shim suited to form a repeating sequence of shims capable of forming a netting having two different types of strands each of optionally two different materials in a three layered arrangement;

[0022] FIG. 9A is a detail view of the section referenced as "detail 9A" in FIG. 9;

[0023] FIG. 10 is an exploded perspective view of a single instance of a repeating sequence of shims suitable to form the netting shown in FIG.1 1 ;

[0024] FIG. 1 1 is a perspective view of an exemplary first netting for making composite polymeric layers described herein;

[0025] FIG. 12 is a detail view of the repeating sequence of shims of FIG. 10 emphasizing the dispensing surfaces;

[0026] FIG. 13 is an exploded perspective view of an exemplary mount suitable for an extrusion die composed of multiple repeats of the repeating sequence of shims of FIG. 10;

[0027] FIG. 14 is a perspective view of the mount of FIG. 13 in an assembled state;

[0028] FIG. 15 is a schematic perspective view of an alternate arrangement of the extrusion die relative to the nip; and [0029] FIG. 16 is a perspective view of a composite polymeric layer formed from three-material strands, sized and nipped so as to close the openings within the layers that comprise the first and the second major surfaces, and further permit these two layers to contact one another through openings in a layer between within the layers that comprise the first and the second major surfaces.

Detailed Description

[0030] Composite polymeric layers described herein can be made, for example, from co-extruded polymeric netting.

[0031 ] Referring to FIG. 1 , exemplary apparatus 20 for making a composite polymeric layer having void spaces therein is shown. Apparatus 20 has extruder 22 extruding polymeric netting 24 joined together at bond regions 30. Useful polymeric netting is described, for example, in co-pending application having U.S. Serial No. 61/779,997, filed March 13, 2013, the disclosure of which is incorporated herein by reference. As will be illustrated in FIG. 2 below, netting for making composite polymeric layers described herein includes strands that have at least three layers.

[0032] As shown, polymeric netting 24 is extruded vertically, into nip 40. Nip 40 includes backup roll 42, and nip roll 44. In some embodiments, backup roll 42 is a smooth, chrome-plated steel roll and nip roll 44 is a silicone rubber roll. In some embodiments, both backup roll 42 and nip roll 44 are temperature controlled with, for example, internal liquid (e.g., water) flow.

[0033] In some embodiments, for example, the one depicted in FIG. 1, polymeric netting 24 passes directly into nip 40, where nip 40 is a quench nip. However, this is not considered necessary, and the extrusion of the netting and the entry into the nip need not be immediately sequential.

[0034] After passing through nip 40, polymeric netting 24 has been transformed into composite polymeric layer 50 having void spaces 56. In some embodiments, it may be advantageous to allow composite polymeric layer 50 to remain wrapped around backup roll 42 for at least a portion of its circumference. Composite polymeric layer 50 comprises first, second, and third layers 53, 55, and 57, respectively, (second layer 55 will is hidden in this view, but will be seen in FIG. 2) first major surface 52 on the side towards the viewer, and second major surface 54 on the side opposite from the viewer. Numerous void spaces 56 allow the first layer 53 to contact the third layer directly, passing through void spaces in the second polymeric layer 55.

[0035] These features of void spaces 56 can be better appreciated in FIG. 2, which is a cross-section view of composite polymeric layer 50 taken along section lines 2-2 in FIG. 1. Here it can be seen that first and third layers 53 and 57 do contact each other internally, passing through void spaces 56 in the second layer 55. In some embodiments, the area of the void spaces 56 range from 0.005 mm 2 to 5 mm 2 , although other sizes are also useful.

[0036] Referring to FIG. 1 1, exemplary second netting 1 1200 which can be substituted, for example, for netting 24 has array of polymeric strands 1 1210 periodically joined together at bond regions 1 1213 throughout array 1 1210. Netting 1 1200 has first and second, generally opposed major surfaces 1 121 1, 1 1212. Bond regions 1 1213 are generally perpendicular to first and second major surfaces 1 121 1, 1 1212. Array 1 1210 has first plurality of strands 1 1221 having first and second, generally opposed major surfaces 1 1231, 1 1232. Array 1 1210 has second plurality of strands 1 1222 having first and second, generally opposed major surfaces 1 1241, 1 1242. First major surface 1 121 1 comprises first major surfaces 1 1231, 11241of first and second plurality of strands 1 1221, 1 1222. Second major surface 1 1212 comprises second major surfaces 11232, 1 1242 of first and second plurality of strands 1 1221, 1 1222. First major surface 1 1231 of first plurality of strands 11221 comprises a first material. Second major surface 1 1232 of first plurality of strands 1 1221 comprises a second material. First major surface 1 1241 of second plurality of strands 1 1222 comprises a third material. Second major surface 1 1242 of second plurality of strands 1 1222 comprises a fourth material. A fifth material 1 1255 is disposed between the first and second materials. A sixth material 1 1256 is disposed between the third and fourth materials. The first and fifth materials are different, the first, second, third, and fourth are the same, and the first material does not extend to second major surface 1 1232 of first plurality of strands 1 1221. Optionally, the third material does not extend to second major surface 1 1242 of second plurality of strands 11222.

[0037] Referring now to FIG. 15, a schematic perspective view of another exemplary apparatus 20a with a different arrangement of extrusion die 22 relative to nip 40 is shown. In alternate apparatus 20a, extrusion die 22 is positioned so that polymeric netting 24 is dispensed onto nip roller 44 and carried on that roller into nip between nip roller 44 and backup roller 42. By positioning extrusion die 22 quite close to nip roller 44, there is little time for the strands that make up polymeric netting 24 to sag and extend under the force of gravity. An advantage provided by this positioning is that void spaces 56a in composite polymeric layer 50a tend to be rounder. More in this regard can be achieved by extruding not only very close to one of the rolls forming nip 40, but also at an extrusion speed similar to the circumferential speed of that roll.

[0038] In some embodiments, it may be desirable to pattern one side or both sides of the layer. This can be achieved, for example, using patterning the surface of one or both of nip roller 44 and backup roller 42. It has been shown in the field of polymeric hook forming that the use of patterned rolls can preferentially move polymer in the cross direction or downweb direction. This concept can be used to shape the hole on one or both sides of the layer. [0039] An exemplary netting for making second embodiments of composite polymeric layers described herein comprises an array of polymeric strands periodically joined together at bond regions throughout the array. The netting has first and second, generally opposed major surfaces. The bond regions are generally perpendicular to the first and second major surfaces. The array comprises a first plurality of strands having first and second, generally opposed major surfaces. The array comprises a second plurality of strands having first and second, generally opposed major surfaces. The first major surface of the netting comprises the first major surfaces of the first and second plurality of strands. The second major surface of the netting comprises the second major surfaces of the first and second plurality of strands. The first major surface of the first plurality of strands comprises a first material. The second major surface of the first plurality of strands comprises a second material. The first major surface of the second plurality of strands comprises a third material. The second major surface of the second plurality of strands comprises a fourth material. There is a fifth material disposed between the first and second materials. There is a sixth material disposed between the third and fourth materials, wherein the first and fifth materials are different. The first, second, third, and fourth are the same. The first material does not extend to the second major surface of the first plurality of strands. In some embodiments, the third material does not extend to the second major surface of the second plurality of strands. In some embodiments, the first and sixth materials are the same. In some embodiments, the fifth and sixth materials are the same.

[0040] Suitable netting for making composite polymeric layers described herein include a method comprising:

providing an extrusion die comprising a plurality of shims positioned adjacent to one another, the shims together defining at least a first cavity, a second cavity, and a dispensing surface, wherein the dispensing surface has a first array of dispensing orifices alternating with a second array of dispensing orifices, wherein at least the first dispensing orifices are defined by an array of first vestibules, and wherein the plurality of shims comprises a plurality of a repeating sequence of shims, wherein the repeating sequence comprises: shims that provide a fluid passageway between the first cavity and one of the first vestibules, shims that provide a second passageway extending from the second cavity to the same vestibule, such that the area where the second fluid passageway enters the first vestibules is below the area where the first fluid passageway enters the first vestibules; and

dispensing first polymeric strands from the first dispensing orifices at a first strand speed while simultaneously dispensing second polymeric strands from the second dispensing orifices at a second strand speed, wherein one of the strand speeds is at least 2 (in some embodiments, in a range from 2 to 6, or even 2 to 4) times the other strand speed to provide the netting. In some embodiments, the extrusion die further comprises a third passageway extending from a cavity to the first vestibule, such that the area where the second fluid passageway enters the first vestibule is above the area where the third fluid passageway enters the first vestibule. In some embodiments, each of the second dispensing orifices are defined by a second vestibule, and wherein each second vestibule has at least two passageways extending from it each to a different cavity, such that the area where one of those passageways enters the second vestibule is above the area where the other of those passageways enters the second vestibule.

[0041 ] In another aspect, the present disclosure describes a first extrusion die having at least first and second cavities, a first passageway extending from the first cavity into a first vestibule defining a first dispensing orifice, and a second passageway extending from the second cavity to the vestibule, such that the area where the first fluid passageway enters the vestibule is above the area where the second fluid passageway enters the vestibule. In some embodiments, the extrusion die further comprises a third passageway extending from a cavity to the first vestibule, such that the area where the second fluid passageway enters the first vestibule is above the area where the third fluid passageway enters the first vestibule. In some embodiments, the extrusion die comprises a plurality of first vestibules, together defining a first dispensing array, and further comprises a plurality of second dispensing orifices, together defining a second dispensing array alternating along a dispensing surface with the first dispensing array, each of the second dispensing orifices having at least one passageway extending to a cavity, wherein in some embodiments, the second dispensing orifices are defined by a second vestibule, and each second vestibule has at least two passageways extending from it each to a different cavity, such that the area where one of those passageways enters the second vestibule is above the area where the other of those passageways enters the second vestibule.

[0042] In another aspect, the present disclosure describes a second extrusion die comprising a plurality of shims positioned adjacent to one another, the shims together defining at least a first cavity, a second cavity, and a dispensing surface, wherein the dispensing surface has an array of dispensing orifices defined by an array of vestibules, wherein the plurality of shims comprises a plurality of a repeating sequence of shims, wherein the repeating sequence comprises: shims that provide a fluid passageway between the first cavity and one of the vestibules, shims that provide a second passageway extending from the second cavity to the same vestibule, such that the area where the second fluid passageway enters the vestibule is below the area where the first fluid passageway enters the vestibule. In some embodiments, the second fluid passageway is diverted into branches that meet the first fluid passageway at areas above and below the first fluid passageways at the point where the second fluid passageway enters the vestibule.

[0043] In some embodiments, the extrusion die further comprises a third passageway extending from a cavity to the first vestibule, such that the area where the second fluid passageway enters the first vestibule is above the area where the third fluid passageway enters the first vestibule. In some embodiments, the extrusion die comprises a plurality of first vestibules, together defining a first dispensing array, and further comprises a plurality of second dispensing orifices, together defining a second dispensing array alternating along a dispensing surface with the first dispensing array, each of the second dispensing orifices having at least one passageway extending to a cavity, wherein in some embodiments, the second dispensing orifices are defined by a second vestibule, and each second vestibule has at least two passageways extending from it each to a different cavity, such that the area where one of those passageways enters the second vestibule is above the area where the other of those passageways enters the second vestibule.

[0044] In some embodiments, the plurality of shims comprises a plurality of at least one repeating sequence of shims that includes shims that provide a passageway between a first and second cavity and the first dispensing orifices. In some of these embodiments, there will be additional shims that provide a passageway between the first and/or the second cavity, and/or a third (or more) cavity and second dispensing orifices. Typically, not all of the shims of dies described herein have passageways, as some may be spacer shims that provide no passageway between any cavity and a dispensing orifice. In some embodiments, there is a repeating sequence that further comprises at least one spacer shim. The number of shims providing passageway to the first dispensing orifices may be equal or unequal to the number of shims providing a passageway to the second dispensing orifices.

[0045] In some embodiments, the first dispensing orifices and the second dispensing orifices are collinear. In some embodiments, the first dispensing orifices are collinear, and the second dispensing orifices are also collinear but offset from and not collinear with the first dispensing orifices.

[0046] In some embodiments, extrusion dies described herein include a pair of end blocks for supporting the plurality of shims. In these embodiments it may be convenient for one or all of the shims to each have one or more through-holes for the passage of connectors between the pair of end blocks.

Bolts disposed within such through-holes are one convenient approach for assembling the shims to the end blocks, although the ordinary artisan may perceive other alternatives for assembling the extrusion die. In some embodiments, the at least one end block has an inlet port for introduction of fluid material into one or both of the cavities.

[0047] In some embodiments, the shims will be assembled according to a plan that provides a repeating sequence of shims of diverse types. The repeating sequence can have diverse numbers of shims per repeat. For example, referring to FIG. 10 (and FIG. 12, which is a more detailed view of FIG. 10), a sixteen-shim repeating sequence is shown which can be used with molten polymer to form a netting with three-layered strands alternating with each other so that a netting generally as depicted in FIG. 1 1 can be formed. As another for example, FIG. 18 (and FIG. 18A, which is a more detailed view of FIG. 18), a four-shim repeating sequence is shown which can be used with molten polymer to form a netting with two-layered strands alternating with each other so that a netting generally as depicted in FIG. 2 can be formed. [0048] Exemplary passageway cross-sectional shapes include square and rectangular shapes. The shape of the passageways within, for example, a repeating sequence of shims, may be identical or different. For example, in some embodiments, the shims that provide a passageway between the first cavity and a first dispensing orifice might have a flow restriction compared to the shims that provide a conduit between the second cavity and a second dispensing orifice. The width of the dispensing orifice within, for example, a repeating sequence of shims, may be identical or different.

[0049] Additional cavities can be used to create layered strands of more than two layers by joining the passageways at the vestibule in a top down configuration. It may be desired to ratio the passageway opening to that of the desired layer ratio of the resultant strand. For example, a strand with a small top layer would have a die design with a relatively narrow passageway for the top cavity merging with a wide passageway for the bottom cavity. In some embodiments, three or more layers are present where two or more layers are the same material, and it may be desirable to use one cavity for the layers that are the same. A passageway can be created from a set of spacer shims (e.g., shims 400 and 800 in FIG. 10) to provide a passage within a vestibule (e.g., vestibule 1 101 in FIG. 10). Into such a passageway, on each side of the vestibule, a furcated terminus (e.g., 364a in FIG. 3A) can feed into the vestibule from the side, and within the spacer shims, to provide one or more layers of the same material. In some embodiments, polymer for the top and bottom layers (as shown) of a three-layer construction from one side only may create a layer of varying thickness across the strand.

[0050] In some embodiments, the assembled shims (conveniently bolted between the end blocks) further comprise a manifold body for supporting the shims. The manifold body has at least one (or more (e.g., two, three, four, or more)) manifold therein, the manifold having an outlet. An expansion seal (e.g., made of copper or alloys thereof) is disposed so as to seal the manifold body and the shims, such that the expansion seal defines a portion of at least one of the cavities (in some embodiments, a portion of both the first and second cavities), and such that the expansion seal allows a conduit between the manifold and the cavity.

[0051 ] In some embodiments, with respect to extrusion dies described herein, each of the dispensing orifices of the first and the second arrays have a width, and each of the dispensing orifices of the first and the second arrays are separated by up to two times the width of the respective dispensing orifice.

[0052] Typically, the passageway between cavity and dispensing orifice is up to 5 mm in length. In some embodiments, the first array of fluid passageways has greater fluid restriction than the second array of fluid passageways. [0053] In some embodiments, for extrusion dies described herein, each of the dispensing orifices of the first and the second arrays have a cross sectional area, and each of the dispensing orifices of the first arrays has an area different than that of the second array.

[0054] Typically, the spacing between orifices is up to two times the width of the orifice. The spacing between orifices is greater than the resultant diameter of the strand after extrusion. This diameter is commonly referred to as die swell. This spacing between orifices is greater than the resultant diameter of the strand after extrusion leads to the strands repeatedly colliding with each other to form the repeating bonds of the netting. If the spacing between orifices is too great the strands will not collide with each other and will not form the netting.

[0055] The shims for dies described herein typically have thicknesses in the range from 50 micrometers to 125 micrometers, although thicknesses outside of this range may also be useful.

Typically, the fluid passageways have thicknesses in a range from 50 micrometers to 750 micrometers, and lengths less than 5 mm (with generally a preference for smaller lengths for decreasingly smaller passageway thicknesses), although thicknesses and lengths outside of these ranges may also be useful. For large diameter fluid passageways several smaller thickness shims may be stacked together, or single shims of the desired passageway width may be used.

[0056] The shims are tightly compressed to prevent gaps between the shims and polymer leakage. For example, 12 mm (0.5 inch) diameter bolts are typically used and tightened, at the extrusion temperature, to their recommended torque rating. Also, the shims are aligned to provide uniform extrusion out the extrusion orifice, as misalignment can lead to strands extruding at an angle out of the die which inhibits desired bonding of the net. To aid in alignment, an alignment key can be cut into the shims. Also, a vibrating table can be useful to provide a smooth surface alignment of the extrusion tip.

[0057] The size (same or different) of the strands can be adjusted, for example, by the composition of the extruded polymers, velocity of the extruded strands, and/or the orifice design (e.g., cross sectional area (e.g., height and/or width of the orifices)). For example, a first polymer orifice that is three times greater in area than the second polymer orifice can generate netting with equal strand sizes while meeting the velocity difference between adjacent strands.

[0058] In general, it has been observed that the rate of strand bonding is proportional to the extrusion speed of the faster strand. Further, it has been observed that this bonding rate can be increased, for example, by increasing the polymer flow rate for a given orifice size, or by decreasing the orifice area for a given polymer flow rate. It has also been observed that the distance between bonds (i.e., strand pitch) is inversely proportional to the rate of strand bonding, and proportional to the speed that the netting is drawn away from the die. Thus, it is believed that the bond pitch and the netting basis weight can be independently controlled by design of the orifice cross sectional area, the takeaway speed, and the extrusion rate of the polymer. For example, relatively high basis weight nettings, with a relatively short bond pitch can be made by extruding at a relatively high polymer flow rate, with a relatively low netting takeaway speed, using a die with a relatively small strand orifice area. Additional general details for adjusting the relative speed of strands during net formation can be found, for example, in PCT Pub. No. WO 2013/028654 (Ausen et al.), published February 28, 2013, the disclosure of which is incorporated herein by reference.

[0059] Typically, the polymeric strands are extruded in the direction of gravity. This facilitates collinear strands to collide with each other before becoming out of alignment with each other. In some embodiments, it is desirable to extrude the strands horizontally, especially when the extrusion orifices of the first and second polymer are not collinear with each other.

[0060] In practicing methods described herein, the polymeric materials might be solidified simply by cooling. This can be conveniently accomplished passively by ambient air, or actively by, for example, quenching the extruded polymeric materials on a chilled surface (e.g., a chilled roll). In some embodiments, the polymeric materials are low molecular weight polymers that need to be cross-linked to be solidified, which can be done, for example, by electromagnetic or particle radiation. In some embodiments, it is desirable to maximize the time to quenching to increase the bond strength.

[0061 ] Dies and methods described herein can be used to form netting where polymeric strands are formed of two different materials in a layered arrangement. FIGS. 3-9 illustrate exemplary shims useful for assembling an extrusion die capable of producing netting where both of the strands are of a layered, of optionally different materials. FIG. 10 is an exploded perspective assembly illustration of an exemplary repeating sequence employing those shims. FIG. 12 is a detail perspective view of the exemplary dispensing surface associated with the repeating sequence of FIG. 10. FIG. 13 is an exploded perspective view of a mount suitable for an extrusion die composed of multiple repeats of the repeating sequence of shims of FIG. 10. FIG. 14 shows the mount of FIG. 13 in an assembled state.

[0062] Referring now to FIG. 3, a pian view of shim 300 is illustrated. Shim 300 has first aperture

360a, second aperture 360b, third aperture 360c, and fourth aperture 360d. When shim 300 is assembled with others as shown in FIGS. 10 and 12, aperture 360a helps define first cavity 362a, aperture 360b helps define second cavity 362b, aperture 360c helps define third cavity 362c and aperture 360d helps define fourth cavity 362d. Shim 300 has several holes 47 to allow the passage of, for example, bolts to hold shim 300 and others to be described below into an assembly. Shim 300 has dispensing surface 367, and in this particular embodiment, dispensing surface 367 has indexing groove 380 and identification notch 382. Shim 300 has shoulders 390 and 392. Shim 300 has dispensing opening 356, but it will be noted that this shim has no integral connection between dispensing opening 356 and any of cavities 362a, 362b, 362c, or 362d. There is no connection, for example, from cavity 362a to dispensing opening 356, via, for example, passageway 368a, but the flow has a route to the dispensing surface in the perpendicular-to-the-plane-of-the-drawing dimension when shim 300 is assembled with shim 400 as illustrated in assembly drawing (see FIG. 12). This facilitates material to flow all the way to point 364a. More particularly, passageway 368a has furcated terminus 364a to direct material from cavity 362a into a passageway in the adjacent shim as will be discussed below in connection with FIG. 4. Passageway 368a, furcated terminus 364a, and dispensing opening 356 may be more clearly seen in the expanded view shown in FIG. 3A.

[0063] Referring now to FIG. 4, a plan view of shim 400 is illustrated. Shim 400 has first aperture 460a, second aperture 460b, third aperture 460c, and fourth aperture 460d. When shim 400 is assembled with others as shown in FIGS. 10 and 12, aperture 460a helps define first cavity 362a, aperture 460b helps define second cavity 362b, aperture 460c helps define third cavity 362c, and aperture 460d helps define fourth cavity 362d. Shim 400 has dispensing surface 467, and in this particular embodiment, dispensing surface 467 has indexing groove 480 and identification notch 482. Shim 400 has shoulders 490 and 492. Shim 400 has dispensing opening 456, but it will be noted that this shim has no integral connection between dispensing opening 456 and any of cavities 362a, 362b, 362c, or 362d. Rather, blind recess 494 behind dispensing openings 456 has two furcations and provides a path to allow a flow of material from the furcated terminus 364a as discussed above in connection with FIG. 3. Blind recess 494 has two furcations to direct material from passageways 368a into top and bottom layers on either side of the middle layer provided by second polymeric composition emerging from third cavity 568c. When the die is assembled as shown in FIG. 12, the material flowing into blind recess 494 will form, for example, layers 1 1231 and 1 1232 in strand 1 1221 of FIG. 1 1. Blind recess 494 and dispensing opening 456 may be more clearly seen in the expanded view shown in detail drawing FIG. 4A.

[0064] Referring now to FIG. 5, a plan view of shim 500 is illustrated. Shim 500 has first aperture 560a, second aperture 560b, third aperture 560c, and fourth aperture 560d. When shim 500 is assembled with others as shown in FIGS. 10 and 12, aperture 560a helps define first cavity 362a, aperture 560b helps define second cavity 362b, aperture 560c helps define third cavity 362c, and aperture 560d helps define fourth cavity 362d. Shim 500 has dispensing surface 567, and in this particular embodiment, dispensing surface 567 has indexing groove 580 and an identification notch 582. Shim 500 has shoulders 590 and 592. It might seem that there is no path from cavity 362c to dispensing opening 556, via, for example, passageway 568c, but the flow has a route in the perpendicular-to-the-plane-of-the- drawing dimension when the sequence of FIGS. 10 and 12 is completely assembled. Passageway 568c includes furcations 548 that further conduct the flow of a molten polymeric composition from cavity 362a via furcations 494 in shim 400. When assembled and in use, molten material from cavity 362c flows through passageway 568c to form material 1 1255 in strand 1 1221 in FIG. 1 1. These structures may be more clearly seen in the detail view of FIG. 5A. [0065] Referring now to FIG. 6, a plan view of shim 600 is illustrated. Shim 600 has first aperture 660a, second aperture 660b, third aperture 660c, and fourth aperture 660d. When shim 600 is assembled with others as shown in FIGS. 10 and 12, aperture 660a helps define first cavity 362a, aperture 660b helps define second cavity 362b, aperture 660c helps define third cavity 362c, and aperture 660d helps define fourth cavity 362d. Shim 600 has dispensing surface 667, and in this particular embodiment, dispensing surface 667 has indexing groove 680 and identification notch 682. Shim 600 has shoulders 690 and 692. There is no passage from any of the cavities to dispensing surface 667, as this shim creates a non-dispensing area along the width of the die, in actual use separating the shims producing first strand 1 1221 from the shims producing second strand 1 1222.

[0066] Referring now to FIG. 7, a plan view of shim 700 is illustrated. Shim 700 is a near reflection of shim 300, and has first aperture 760a, second aperture 760b, third aperture 760c, and fourth aperture 760d. When shim 700 is assembled with others as shown in FIGS. 10 and 12, aperture 760a helps define first cavity 362a, aperture 760b helps define second cavity 362b, aperture 760c helps define third cavity 362c, and aperture 760d helps define fourth cavity 362d. Shim 700 has several holes 47 to allow the passage of, for example, bolts to hold shim 700 and others to be described below into an assembly.

Shim 700 has dispensing surface 767, and in this particular embodiment, dispensing surface 767 has indexing groove 780 and an identification notch 782. Shim 700 has shoulders 790 and 792. Shim 700 has dispensing opening 756, but it will be noted that this shim has no integral connection between dispensing opening 756 and any of the cavities 362a, 362b, 362c, or 362d. There is no direct connection, for example, from cavity 362b to dispensing opening 756, via, for example, passageway 768b, but the flow has a route to the dispensing surface in the perpendicular-to-the-plane-of-the-drawing dimension when shim 700 is assembled with shim 800 as illustrated in assembly drawing FIG. 12. This facilitates material to flow all the way to point 769b. More particularly, passageway 768b has furcated terminus 769b to direct material from cavity 362b into a passageway in the adjacent shim as will be discussed below in connection with FIG. 8.

[0067] Passageway 768b, furcated terminus 769b, and dispensing opening 756 may be more clearly seen in the detail view shown in FIG. 7A. It will be observed that the shape of dispensing opening 756 is slightly different from dispensing opening 356 in FIG. 3. This illustrates that netting for making composite polymeric layers described herein does not require that the first and second strands (1 1221 and 1 1222 in FIG. 1 1) be the same size.

[0068] Referring now to FIG. 8, a plan view of shim 800 is illustrated. Shim 800 is a near reflection of shim 400, and has first aperture 860a, second aperture 860b, third aperture 860c, and fourth aperture 860d. When shim 800 is assembled with others as shown in FIGS. 10 and 12, aperture 860a helps define first cavity 362a, aperture 860b helps define second cavity 362b, aperture 860c helps define third cavity 362c, and aperture 860d helps define fourth cavity 362d. Shim 800 has dispensing surface 867, and in this particular embodiment, dispensing surface 867 has indexing groove 880 and an identification notch 882. Shim 800 has shoulders 890 and 892. Shim 800 has dispensing opening 856, but it will be noted that this shim has no integral connection between dispensing opening 856 and any of the cavities 362a, 362b, 362c, or 362d. Rather, blind recess 894 behind dispensing openings 856 has two furcations and provides a path to allow a flow of material from furcated terminus 769b as discussed above in connection with FIG. 7. The two furcations on blind recess 894 has direct material from passageway 768b into top and bottom layers on either side of the middle layer provided by the polymeric composition emerging from fourth cavity 362d as will be discussed with more particularity in connection with FIG. 9 below. When the die is assembled as shown in FIG. 12, the material flowing into blind recess 894 will form, for example, layers 1 1241 and 1 1242 in strand 11222 (see FIG. 1 1). Blind recess 894 and dispensing opening 856 may be more clearly seen in the expanded view shown in detail drawing FIG. 8A. Analogous from the observation made in connection with FIG. 7A above, it will be observed that the shape of dispensing opening 856 is slightly different from dispensing opening 456 in FIG. 4. This illustrates that the netting for making composite polymeric layers described herein does not require that the first and second strands (1 1221 and 1 1222 in FIG. 1 1) be the same size.

[0069] Referring now to FIG. 9, a plan view of shim 900 is illustrated. Shim 900 has first aperture 960a, second aperture 960b, third aperture 960c, and fourth aperture 960d. When shim 900 is assembled with others as shown in FIGS. 10 and 12, aperture 960a helps define first cavity 362a, aperture 960b helps define second cavity 362b, aperture 960c helps define third cavity 362c, and aperture 960d helps define fourth cavity 362d. Shim 900 has dispensing surface 967, and in this particular embodiment, dispensing surface 967 has indexing groove 980 and an identification notch 982. Shim 900 has shoulders 990 and 992. It might seem that there is no path from cavity 362d to dispensing opening 556, via, for example, passageway 968d, but the flow has a route in the perpendicular-to-the-plane-of-the- drawing dimension when the sequence of FIGS. 10 and 12 is completely assembled. Passageway 968d includes furcations 994 that further conduct the flow of a molten polymeric composition from cavity

362b via the furcations 894 in shim 800. When assembled and in use, molten material from cavity 362d flows through passageway 968d to form material 1 1256 in strand 1 1222 (see FIG. 11). These structures may be more clearly seen in the detail view of FIG. 9A.

[0070] Referring new to FIG. 10, an exploded perspective view of a single instance of a sixteen-shim repeating sequence 1000 of shims 300, 400, 500, 600, 700, 800, and 900, suitable to form, for example, netting 1 1200 shown in FIG. 1 1, is illustrated. FIG. 12 is a detail view of the repeating sequence of shims 1000 of FIG. 10 emphasizing the dispensing surfaces. In FIG. 12, it can be appreciated that when shims 300, 400, and 500, are assembled together, first vestibule 1 101 is formed having a dispensing orifice jointly defined by the dispensing openings of the shims. Similarly, when shims 700, 800, and 900, are assembled together, second vestibule 1 102 is formed having a dispensing orifice jointly defined by the dispensing openings of those shims. It should be noted that in the depicted embodiment the area of the dispensing orifices associated with first vestibule 1 101 is one half that of the dispensing orifices associated with the second vestibule 1 102. This facilitates dispensing first polymeric strands from the first dispensing orifices at a first strand speed while simultaneously dispensing second polymeric strands from the second dispensing orifices at a second strand speed while keeping the total relative flowrate from the first and second vestibules 1 101 and 1 102 the same. Whether by making sizes of the orifices different or by varying the pressure of the molten polymer within the cavities, netting is properly formed when one of the strand speeds is at least two (in some embodiments, in a range from 2 to 6, or even 2 to 4) times the other strand speed.

[0071 ] Referring now to FIG. 13, an exploded perspective view of a mount 2000 suitable for an extrusion die composed of multiple repeats of sequences of shims of FIGS. 10 and 12 is illustrated. Mount 2000 is particularly adapted to use shims 300, 400,500, 600, 700, 800, and 900 as shown in FIGS. 3-9. However for visual clarity, only a single instance of shim 500 is shown in FIG. 13. The multiple repeats of sequences of shims of FIG. 10 and 12 are compressed between two end blocks 2244a and 2244b. Conveniently, through bolts can be used to assemble the shims to the end blocks 2244a and 2244b, passing through holes 47 in shims 300, 400, 500, 600, 700, 800, and 900.

[0072] In this embodiment, four inlet fittings 2250a, 2250b, and 2250c (and fourth inlet fitting hidden in this view on the far side of end block 2244a) provide a flow path for four streams of molten polymer through end blocks 2244a and 2244b to cavities 362a, 362b, 362c, and 362d. Compression blocks 2204 have a notch 2206 that conveniently engages the shoulders on the shims (e.g., 390 and 392 on 300).

When mount 2230 is completely assembled, compression blocks 2204 are attached by, for example, machine bolts to backplates 2208. Holes are conveniently provided in the assembly for the insertion of cartridge heaters 52.

[0073] Referring now to FIG. 14, a perspective view of mount 2000 of FIG. 13 is illustrated in a partially assembled state. A few shims (e.g., 500) are in their assembled positions to show how they fit within mount 2000, but most of the shims that would make up an assembled die have been omitted for visual clarity.

[0074] Modifications of the shims shown in FIGS. 3- 10, 12, can be useful for making other

embodiments of netting for making composite polymeric layers described herein. For example, the shims shown in FIGS. 3-10 and 12 can be modified to have only two cavities, and first passageways 568a and third passageways 868c can be modified to extend from the same cavity. With this modification, netting having first and second strands 1 1221 and 1 1222 as depicted in FIG. 1 1, where the first strand 1 1221 and second strand 1 1222 have layers of identical composition can be made. In other embodiments, the shims shown in FIGS. 3-10 and 12 can be modified to provide first and/or second strands that have four, five, or even more layers. In planning and using such modifications, it remains necessary to arrange for the differential between the first and second speed speeds, either with restrictions in the passageways, restrictions in the dispensing orifices, or control of the flowrate of polymer via the pressure in the cavities.

[0075] Portions of the exteriors of the first and second strands bond together at the bond regions. In methods described herein for making nettings for making composite polymeric layers described herein, the bonding occurs in a relatively short period of time (typically less than 1 second). The bond regions, as well as the strands typically cool through air and natural convection and/or radiation. In selecting polymers for the strands, in some embodiments, it may be desirable to select polymers of bonding strands that have dipole interactions (or H-bonds) or covalent bonds. Bonding between strands has been observed to be improved by increasing the time that the strands are molten to enable more interaction between polymers. Bonding of polymers has generally been observed to be improved by reducing the molecular weight of at least one polymer and or introducing an additional co-monomer to improve polymer interaction and/or reduce the rate or amount of crystallization. In some embodiments, the bond strength is greater than the strength of the strands forming the bond. In some embodiments, it may be desirable for the bonds to break and thus the bonds will be weaker than the strands.

[0076] Suitable polymeric materials for extrusion from dies described herein, methods described herein, and for nettings for making composite polymeric layers described herein include thermoplastic resins comprising polyolefms (e.g., polypropylene and polyethylene), polyvinyl chloride, polystyrene, nylons, polyesters (e.g., polyethylene terephthalate) and copolymers and blends thereof. Suitable polymeric materials for extrusion from dies described herein, methods described herein, and for making netting for making composite polymeric layers described herein also include elastomeric materials (e.g., ABA block copolymers, polyurethanes, polyolefin elastomers, polyurethane elastomers, metallocene polyolefin elastomers, polyamide elastomers, ethylene vinyl acetate elastomers, and polyester elastomers).

Exemplary adhesives for extrusion from dies described herein, methods described herein, and for making composite polymeric layers described herein include acrylate copolymer pressure sensitive adhesives, rubber based adhesives (e.g., those based on natural rubber, polyisobutylene, polybutadiene, butyl rubbers, styrene block copolymer rubbers, etc.), adhesives based on silicone polyureas or silicone polyoxamides, polyurethane type adhesives, and poly(vinyl ethyl ether), and copolymers or blends of these. Other desirable materials include, for example, styrene-acrylonitrile, cellulose acetate butyrate, cellulose acetate propionate, cellulose triacetate, polyether sulfone, polymethyl methacrylate, polyurethane, polyester, polycarbonate, polyvinyl chloride, polystyrene, polyethylene naphthalate, copolymers or blends based on naphthalene dicarboxylic acids, polyolefms, polyimides, mixtures and/or combinations thereof. Exemplary release materials for extrusion from dies described herein, methods described herein, and for making composite polymeric layers described herein include silicone-grafted polyolefms such as those described in U.S. Pat. Nos. 6,465,107 (Kelly) and 3,471,588 (Kanner et al.), silicone block copolymers such as those described in PCT Publication No. WO96039349, published December 12, 1996, low density polyolefin materials such as those described in U.S. Pat. Nos. 6,228,449 (Meyer), 6,348,249 (Meyer), and 5,948,517 (Adamko et al.), the disclosures of which are incorporated herein by reference.

[0077] In some embodiments, at least one of the first, second, third, or fourth materials comprises an adhesive (including pressure sensitive adhesives). In some embodiments, netting described herein, at least some of the polymeric strands comprise a first polymer that is a thermoplastic (e.g., adhesives, nylons, polyesters, polyolefins, polyurethanes, elastomers (e.g., styrenic block copolymers), and blends thereof).

[0078] In some embodiments, one or both of the major surfaces of nettings described herein comprise a hot melt or pressure sensitive adhesive. In some embodiments, the first polymeric strands and the second polymeric strands are both formed with an over/under arrangement. In particular, the first polymeric strands may have a first major surface of a first polymeric material and a second major surface of a second, different polymeric material, and the second polymeric strands may have a first major surface of a third polymeric material and a second major surface of a fourth, polymeric material. The die design for this scenario utilizes cavities. In some embodiments, the first polymeric strands and the second polymeric strands are both formed with a layered arrangement. In particular, the first polymeric strands may have a first major surface and a second major surface of a first polymeric material sandwiching a center of a second, different polymeric material, and the second polymeric strands may have first and second major surface of a third polymeric material sandwiching a center of a fourth, polymeric material. The die design for this scenario utilizes four cavities.

[0079] In some embodiments, polymeric materials of the composite polymeric layers described herein and nettings for making composite polymeric layers described herein may comprise a colorant (e.g., pigment and/or dye) for functional (e.g., optical effects) and/or aesthetic purposes (e.g., each has different color/shade). Suitable colorants are those known in the art for use in various polymeric materials. Exemplary colors imparted by the colorant include white, black, red, pink, orange, yellow, green, aqua, purple, and blue. In some embodiments, it is desirable level to have a certain degree of opacity for one or more of the polymeric materials. The amount of colorant(s) to be used in specific embodiments can be readily determined by those skilled in the (e.g., to achieve desired color, tone, opacity, transmissivity, etc.). If desired, the polymeric materials may be formulated to have the same or different colors. When colored strands are of a relatively fine (e.g., less than 50 micrometers) diameter, the appearance of the web may have a shimmer reminiscent of silk.

[0080] In some embodiments, strands netting for making composite polymeric layers described herein do not substantially cross over each other (i.e., at least 50 (at least 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or even 100) percent by number). [0081] In some embodiments, netting for making composite polymeric layers described herein have a thickness up to 750 micrometers (in some embodiments, up to 500 micrometers, 250 micrometers, 100 micrometers, 75 micrometers, 50 micrometers, or even up to 25 micrometers; in a range from 10 micrometers to 750 micrometers, 10 micrometers to 750 micrometers, 10 micrometers to 500 micrometers, 10 micrometers to 250 micrometers, 10 micrometers to 100 micrometers, 10 micrometers to 75 micrometers, 10 micrometers to 50 micrometers, or even 10 micrometers to 25 micrometers), although thicknesses outside of these size are also useful.

[0082] In some embodiments, the polymeric strands of netting for making composite polymeric layers described herein have an average width in a range from 10 micrometers to 500 micrometers (in some embodiments, in a range from 10 micrometers to 400 micrometers, or even 10 micrometers to 250 micrometers), although other sizes are also useful.

[0083] In some embodiments, netting for making composite polymeric layers described herein, the bond regions of the netting have an average largest dimension perpendicular to the strand thickness, wherein the polymeric strands of the netting have an average width, and wherein the average largest dimension of the bond regions of the netting is at least two (in some embodiments, at least 2.5, 3, 3.5, or even at least 4) times greater than the average width of the polymeric strands of the netting.

[0084] To facilitate converting netting to the polymeric layers described herein having void spaces, in some embodiments, the materials creating the continuous layer has a lower melting or softening temperature than the layer providing the blind holes, the continuous layer is formed from a material that crystallizes slower than that of the void space layer, and/or the nip rolls that form the continuous layers have embossing patterns to enable the layers to flow and create a continuous layer.

[0085] In some embodiments, the first material layer of the netting has a thickness in a range from 2 micrometers to 750 micrometers (in some embodiments, in a range from 5 micrometers to 500 micrometers, or even 25 micrometers to 250 micrometers), although thicknesses outside of these sizes are also useful. In some embodiments, the second material layer of the netting has a thickness in a range from 2 micrometers to 750 micrometers (in some embodiments, in a range from 5 micrometers to 500 micrometers, or even 25 micrometers to 250 micrometers), although thicknesses outside of these sizes are also useful. In some embodiments, the third material layer of the netting has a thickness in a range from 2 micrometers to 750 micrometers (in some embodiments, in a range from 5 micrometers to 500 micrometers, or even 25 micrometers to 250 micrometers), although thicknesses outside of these sizes are also useful. In some embodiments, the fourth material layer of the netting has a thickness in a range from 2 micrometers to 750 micrometers (in some embodiments, in a range from 5 micrometers to 500 micrometers, or even 25 micrometers to 750 micrometers), although thicknesses outside of these sizes are also useful. In some embodiments, the fifth material layer of the netting has a thickness in a range from 2 micrometers to 750 micrometers (in some embodiments, in a range from 5 micrometers to 500 micrometers, or even 25 micrometers to 250 micrometers), although thicknesses outside of these sizes are also useful. In some embodiments, the sixth material layer of the netting has a thickness in a range from 2 micrometers to 750 micrometers (in some embodiments, in a range from 5 micrometers to 500 micrometers, or even 25 micrometers to 250 micrometers), although thicknesses outside of these sizes are also useful.

[0086] In some embodiments, netting for making composite polymeric layers described herein have a basis weight in a range from 5 g/m to 600 g/m (in some embodiments, 10 g/m to 600 g/m , 10 g/m to 400 g/m 2 , or even 400 g/m 2 to 600 g/m 2 ), for example, netting as-made from dies described herein, although basis weights outside of these sizes are also useful. In some embodiments, netting for making composite polymeric layers described herein after being stretched have a basis weight in a range from 0.5 g/m 2 to 40 g/m 2 (in some embodiments, 1 g/m 2 to 20 g/m 2 ), although basis weights outside of these sizes are also useful.

[0087] In some embodiments, netting for making composite polymeric layers described herein has a strand pitch (i.e., center point-to-center point of adjacent bonds in the machine direction) in a range from 0.5 mm to 20 mm (in some embodiments, in a range from 0.5 mm to 10 mm), although other sizes are also useful.

[0088] In some embodiments, a composite polymeric layer described herein is stretched to achieve a desired thickness. The composite polymeric layers may be stretched in the cross direction only to achieve void spaces that are extended in the cross direction, or stretched only in the machine direction to achieve void spaces that are extended in the machine direction, or stretched in both the cross and machine direction to achieve relatively round void spaces. Stretching can provide a relatively easy method to for yielding relatively low basis weight composite polymeric layers. In addition, the void space size can be reduced after stretching by calendaring a composite polymeric layer.

[0089] In some embodiments, netting for making composite polymeric layers described herein are elastic. In some embodiments, the polymeric strands of netting for making composite polymeric layers have a machine direction and a cross-machine direction, wherein the netting or arrays of polymeric strands is elastic in machine direction, and inelastic in the cross-machine direction. In some embodiments, the polymeric strands of netting for making composite polymeric layers have a machine direction and a cross-machine direction, wherein the netting or arrays of polymeric strands is inelastic in machine direction, and elastic in the cross-machine direction. Elastic means that the material will substantially resume its original shape after being stretched (i.e., will sustain only small permanent set following deformation and relaxation which set is less than 50 percent (in some embodiments, less than 25, 20, 15, or even less than 10 percent) of the original length at moderate elongation (i.e., about 400- 500%; in some embodiments, up to 300% to 1200%, or even up to 600% to 800%) elongation at room temperature). The elastic material can be both pure elastomers and blends with an elastomeric phase or content that will still exhibit substantial elastomeric properties at room temperature.

[0090] It is within the scope of the instant disclosure to use heat-shrinkable and non-heat shrinkable elastics. Non-heat shrinkable means that the elastomer, when stretched, will substantially recover sustaining only a small permanent set as discussed above at room temperature (i.e., about 25°C).

[0091 ] In some embodiments of netting for making composite polymeric layers described herein, the array of polymeric strands exhibits at least one of diamond-shaped, triangular-shaped, or hexagonal- shaped openings.

[0092] In some embodiments, the polymeric strands of netting for making composite polymeric layers described herein have an average width in a range from 10 micrometers to 500 micrometers (in some embodiments, in a range from 10 micrometers to 400 micrometers, or even 10 micrometers to 250 micrometers), although other sizes are also useful.

[0093] In some embodiments, the strands of netting for making composite polymeric layers described herein (i.e., the first strands, second strands, and bond regions, and other optional strands, each have thicknesses that are substantially the same.

[0094] In some embodiments, composite polymeric layers described herein for at least a majority of the void spaces, the area of each void space is not greater than 5 (in some embodiments, not greater than 2.5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.075, or even not greater than 0.005) mm 2 , although other sizes are also useful.

[0095] In some embodiments, composite polymeric layers described herein at least some of the void spaces have at least two pointed ends. In some embodiments, composite polymeric layers described herein at least some of the void spaces are elongated with at least two pointed ends. In some embodiments, composite polymeric layers described herein at least some of the void spaces are elongated with two opposed pointed ends. In some embodiments, composite polymeric layers described herein at least some of the void spaces are oval.

[0096] Some embodiments, composite polymeric layers described herein have in a range from

50,000 to 6,000,000 (in some embodiments, 100,000 to 6,000,000, 500,000 to, 6,000,000, or even 1,000,000 to 6,000,000) void spaces /m 2 , although other sizes are also useful.

[0097] In some embodiments, composite polymeric layers described herein the void spaces have a length and a width, and a ratio of lengths to widths in a range from 2: 1 to 100: 1 (in some embodiments, 2: 1 to 75: 1, 2: 1 to 50: 1, 2: 1 to 25: 1, or even, 2: 1 to 10: 1), although ratios outside of these sizes are also useful. In some embodiments, composite polymeric layer described herein the void spaces have a length and a width, and a ratio of lengths to widths in a range from 1 : 1 to 1.9: 1, although ratios outside of these sizes are also useful. In some embodiments, composite polymeric layer described herein the void spaces have widths in a range from 5 micrometers tol mm (in some embodiments, 10 micrometers to 0.5 mm), although other sizes are also useful. In some embodiments, composite polymeric layers described herein the void spaces have lengths in a range from 100 micrometers to 10 mm (in some embodiments, 100 micrometers to 1 mm), although other sizes are also useful.

[0098] Some embodiments of composite polymeric layers described herein have a thickness up to 2 mm (in some embodiments, up to 1 mm, 500 micrometers, 250 micrometers, 100 micrometers, 75 micrometers, 50 micrometers, or even up to 25 micrometers; in a range from 10 micrometers to 750 micrometers, 10 micrometers to 750 micrometers, 10 micrometers to 500 micrometers, 10 micrometers to 250 micrometers, 10 micrometers to 100 micrometers, 10 micrometers to 75 micrometers, 10 micrometers to 50 micrometers, or even 10 micrometers to 25 micrometers, although thicknesses outside of these sizes are also useful.

[0099] Some embodiments of composite polymeric layers described herein are sheets having an average thickness in a range from 250 micrometers to 5 mm, although thicknesses outside of these sizes are also useful. Some embodiments of composite polymeric layers described herein have an average thickness not greater than 5 mm, although thicknesses outside of these sizes are also useful.

[00100] Some embodiments of composite polymeric layers described herein have a basis weight in a range from 25 g/m 2 to 600 g/m 2 (in some embodiments, 50 g/m 2 to 250 g/m 2 ), although basis weights outside of these sizes are also useful.

[00101] FIG. 20 is a perspective view of composite polymeric layer 24024 formed from three- material strands, sized and nipped so as to close the openings within the layers that comprise the first and the second major surfaces, and further permit these two layers to contact one another through void spaces in a layer between within the layers that comprise the first and the second major surfaces. In the depicted embodiment, void spaces 24056 are retained only within the third, core, material 24057. Thus there is no through hole from first major surface 24052 to second major surface 24054. Depending on the choice of first material 24053, second material 24055, and third material 24057, diverse flexible netlike structured tapes can be prepared. For example, if the core material is relatively stiff and the first and second materials are adhesive, a relatively strong double-stick tape can be prepared with adhesive- to- adhesive bonding through openings 24056.

[00102] Some embodiments of composite polymeric layers described herein are also useful, for example, for breathable (i.e., a moisture vapor transmission rate (MVTR) value of at least 500 g/m 2 /day as measured using ASTM E 96 (1980) at 40°C. The use of this test in connection with web material is discussed in U.S. Pat. No. 5,614,310 (Delgado et al.), the disclosures of which are incorporated herein by reference. When wrapping a limb with a compression wrap, it is typical to apply the wrap so that one course partially overlaps the previous course. Therefore, it is convenient for compression wraps to have a first major surface that has some tendency to self adhere to a second major surface of the wrap.

Typically therapeutic regimens performed with compression wraps apply a force in a range from about 14 to about 35 mm Hg to the wrapped portion of the patient's body (see, e.g., the discussion at, "Compression Bandaging in the Treatment of Venous Leg Ulcers;" S. Thomas; World Wide Wounds, Sept. 1997). It is therefore convenient for a compression wrap to have some extensibility so that minor changes in the diameter of the patient's limbs will not drastically change the compression force against the skin from the target pressure prescribed for the patient's indication. The compression wrap force can be measured as described in "Is Compression Bandaging Accurate? The Routine Use of Interface Pressure Measurements in Compression Bandaging of Venous Leg Ulcers;" A. Satpathy, S. Hayes and S. Dodds; Phlebology 2006 21 : 36, the disclosure of which is incorporated herein by reference. In some embodiments, composite polymeric layers described herein are convenient for use as compression wrap, for example, have openings in each of the first and second major surfaces that comprise in a range from 10 to 75 percent of their respective surface areas.

[00103] In some embodiments, composite polymeric layers described herein exhibit a tensile force per inch (2.54 cm) of width at 28% elongation of less than 7.78 N (1.75 lbf) as determined by the Stretching Test below. In some embodiments, the tensile force per inch of with at 28% elongation ranges from 6.89 N (1.55 lbf) to 0.44 N (0.1 lbf), or even 5.78 N (1.3 lbf) to 1.1 N (0.25 lbf). The Stretching Test is conducted as follows: A tensile strength tester (available under the trade designation "INSTRON 5500R"; Model 1 122 from Instron, Norwood, MA) with a 22.68 Kg (50 lb) load cell is used to measure the force required to stretch the polymeric layer to 200% elongation. Force (lbf) and tensile strain (%) are measured every 0.1 second (100 ms). A 15.24 cm (6 inch) long (in the machine direction) by 7.62 cm (3 inch) wide sample of polymeric layer is clamped between 7.62 cm (3 inch) wide grips. The initial gap length is 10.16 cm (4 inch). The rate of crosshead separation is 0.127 m/min (5 in/min.). An average of 5 replicates are tested to determine the average value.

[00104] In some embodiments, composite polymeric layers described herein exhibits preferable hand tearable characteristics in the crossweb direction. For example, some embodiments of composite polymeric layers described herein have a crossweb load at break less than 26.7 N (6 lbf) (in some embodiments in a range from 20.0 N (4.5 lbf) to 2.22 N (0.5 lbf) as determined by the Cross Web Strength Test. The Cross Web Strength Test is conducted as follows: A 2.54 cm (1 inch) wide strip of the polymeric layer (cut across the web) is loaded into a tensile strength tester ("INSTRON 5500R"; Model 1 122) with a 22.68 Kg (50 lb) load cell. The load and tensile strain (%) at break for each sample is recorded where the initial gap is 5.08 cm (2 inch) with a crosshead separation rate of 1.27 m/min. (50 in min.). An average of 10 replicates are tested to determine the average value. [00105] The cross web strength and tearability of embodiments of composite polymeric layers described herein can be adjusted, for example, by adjusting the extrusion temperature (e.g., until microscopic surface melt fracture is present or not), adjusting the speed of the take away chill roll speed, by extruding netting used to make composite polymeric layers described herein through shorter (decreased height) orifice holes, by adjusting the straight-to-oscillating strand area ratios (height by width of orifice holes), and by adjusting the oscillation strand relative to the straight strand extruder rates.

Exemplary Embodiments

1 A. A composite polymeric layer having first and second, generally opposed major surfaces, the composite layer comprising, in order, first, second, and third polymeric layers, wherein the first layer is compositionally different than the second layer, wherein the third layer is compositionally different than the second layer, wherein the second layer comprises an array of void spaces therein, but not through the first and second major surfaces (i.e., they may extend into other layers (e.g., the first and third layers, but not through the first and second major surfaces), wherein the void spaces each have a series of areas through the void spaces ranging from minimum to maximum areas, and wherein the minimum area is not adjacent to either the first or third layer.

2A. The composite polymeric layer of Exemplary Embodiment 1A, wherein the first major surface comprises an adhesive.

3A. The composite polymeric layer of Exemplary Embodiment 1A, wherein the first major surface comprises a pressure sensitive adhesive.

4A. The composite polymeric layer of either Exemplary Embodiment 2A or 3A, wherein the second major surface comprises an adhesive.

5A. The composite polymeric layer of either Exemplary Embodiment 2A or 3A, wherein the first major surface comprises a pressure sensitive adhesive. 6A. The composite polymeric layer of any preceding Exemplary Embodiment A, wherein at least a portion of the first major surface comprises a third material different than the first material.

7A. The composite polymeric layer of Exemplary Embodiment 6A, wherein the third material is an adhesive.

8A. The polymeric layer of Exemplary Embodiment 6A, wherein the third material is a pressure sensitive adhesive.

9A. The composite polymeric layer of any of Exemplary Embodiments 1A to 5A, wherein at least a portion of the first major surface comprises a third material different than the first material, and wherein at least a portion of the second major surface comprises a fourth material different than the second and third materials.

10A. The composite polymeric layer of any of Exemplary Embodiments 1 A to 5A, wherein at least a portion of the first major surface comprises a third material different than the first material, and wherein at least a portion of the second major surface comprises a fourth material different than the second material.

1 1A. The composite polymeric layer of any of Exemplary Embodiments 1A to 5 A, wherein at least a portion of the first major surface comprises a third material different than the first material, and wherein at least a portion of the second major surface comprises a fourth material different than the second and third materials.

12A. The composite polymeric layer of any of Exemplary Embodiments 1A to 5 A, wherein at least a portion of the second major surface comprises a material that is the same as the first material.

13 A. The composite polymeric layer of any preceding Exemplary Embodiment A, wherein the total void spaces area for a cross-section of the second polymeric layer taken parallel to the first major surface is not greater than 50 (in some embodiments, not greater than 45, 40, 35, 30, 25, 20, 15,

10, 5, 4, 3, 2, 1, 0.75, 0.5, 0.25, or even not greater than 0.1 ; in some embodiments, in a range from 0.1 to not greater than 50, 0.1 to not greater than 45, 0.1 to not greater than 40, 0.1 to not greater than 35, 0.1 to not greater than 30, 0.1 to not greater than 25, 0.1 to not greater than 20, 0.1 to not greater than 15, 0.1 to not greater than 10, or even 0.1 to not greater than 5) percent of the total area of the cross-section.

14A. The composite polymeric layer of Exemplary Embodiment 13 A, wherein for at least a majority of the void spaces in the cross-section, the area of each void space is not greater than 5 (in some embodiments, not greater than 2.5, 2, 1 , 0.5, 0.1 , 0.05, 0.01 , 0.075, or even not greater than 0.005) mm 2 .

15A. The composite polymeric layer of any preceding Exemplary Embodiment A, wherein at least some of the void spaces have at least two pointed ends.

16A. The composite polymeric layer of any of Exemplary Embodiments 1A to 14A, wherein at least some of the void spaces are elongated with at least two pointed ends.

17A. The composite polymeric layer of any of Exemplary Embodiments 1A to 14A, wherein at least some of the void spaces are elongated with two opposed pointed ends.

18 A. The composite polymeric layer of any of Exemplary Embodiments 1A to 14A, wherein at least some of the void spaces are oval.

19A. The composite polymeric layer of any preceding Exemplary Embodiment A having in a range from 50,000 to 6,000,000 (in some embodiments, 100,000 to 6,000,000, 500,000 to, 6,000,000, or even 1 ,000,000 to 6,000,000) void spaces Ira 2 .

20A. The composite polymeric layer of any preceding Exemplary Embodiment A, wherein the void spaces have a length and a width, and a ratio of lengths to widths in a range from 2: 1 to 100: 1 (in some embodiments, 2: 1 to 75: 1 , 2: 1 to 50: 1 , 2: 1 to 25: 1 , or even, 2: 1 to 10: 1).

21 A. The composite polymeric layer of any of Exemplary Embodiments 1A to 19A, wherein the void spaces have a length and a width, and a ratio of lengths to widths in a range from 1 : 1 to 1.9: 1. 22A. The composite polymeric layer of any preceding Exemplary Embodiment A, wherein the void spaces have widths in a range from 5 micrometers tol mm (in some embodiments, 10 micrometers to 0.5 mm).

23A. The composite polymeric layer of any preceding Exemplary Embodiment A, wherein the void spaces have lengths in a range from 100 micrometers to 10 mm (in some embodiments, 100 micrometers to 1 mm).

24A. The composite polymeric layer of any preceding Exemplary Embodiment A, wherein the layer has a thickness up to 2 mm (in some embodiments, up to 1 mm, 500 micrometers, 250 micrometers, 100 micrometers, 75 micrometers, 50 micrometers, or even up to 25 micrometers; in a range from 10 micrometers to 750 micrometers, 10 micrometers to 750 micrometers, 10 micrometers to 500 micrometers, 10 micrometers to 250 micrometers, 10 micrometers to 100 micrometers, 10 micrometers to 75 micrometers, 10 micrometers to 50 micrometers, or even 10 micrometers to 25 micrometers).

25A. The composite polymeric layer of any of Exemplary Embodiments 1A to 23 A, wherein the polymeric layer is a sheet having an average thickness in a range from 250 micrometers to 5 mm.

26A. The composite polymeric layer of any of Exemplary Embodiments 1 A to 23 A, wherein the composite polymeric layer is a film having an average thickness not greater than 5 mm.

27A. The composite polymeric layer of any preceding Exemplary Embodiment A having a basis weight in a range from 25 g/m 2 to 600 g/m 2 (in some embodiments, 50 g/m 2 to 250 g/m 2 ).

28A. The composite polymeric layer of any preceding Exemplary Embodiment A comprising at least one of a dye or pigment therein.

29A. The composite polymeric layer of any preceding Exemplary Embodiment A having a crossweb load at break less than 26.7 N (6 lbf) (in some embodiments in a range from 20.0 N (4.5 lbf) to 2.22 N (0.5 lbf) as determined by the Cross Web Strength Test. 3 OA. A breathable compression wrap comprising the composite polymeric layer of any preceding Exemplary Embodiment A, wherein the composite polymeric layer has first and second generally opposed major surfaces, and wherein the first major surface has an affinity for the second major surface.

31A. The breathable compression wrap of Exemplary Embodiment 3 OA exhibits a tensile force per inch (2.54 cm) of width at 28% elongation of less than 7.78 N (1.75 lbf) (in some

embodiments, in a range from 6.89 N (1.55 lbf) to 0.44 N (0.1 lbf), or even 5.78 N (1.3 lbf) to 1.1 N (0.25 lbf)) as determined by the Stretching Test.

32A. The breathable compression wrap of either Exemplary Embodiment 30A or 31 A, wherein in a range from 10 to 75 percent of each of the first and second major surfaces comprise said openings.

IB. A method of making a polymeric layer of any preceding Exemplary Embodiment A, the method comprising at least one of passing through a nip or calendaring a netting comprising an array of polymeric strands periodically joined together at bond regions throughout the array, the netting has first and second, generally opposed major surfaces, wherein the bond regions are generally perpendicular to the first and second major surfaces, wherein the array comprises a first plurality of strands having first and second, generally opposed major surfaces, wherein the array comprises a second plurality of strands having first and second, generally opposed major surfaces, wherein the first major surface of the netting comprises the first major surfaces of the first and second plurality of strands, wherein the second major surface of the netting comprises the second major surfaces of the first and second plurality of strands, wherein the first major surface of the first plurality of strands comprises a first material, wherein the second major surface of the first plurality of strands comprises a second material, wherein the first major surface of the second plurality of strands comprises a third material, wherein the second major surface of the second plurality of strands comprises a fourth material, wherein there is a fifth material disposed between the first and second materials, wherein there is a sixth material disposed between the third and fourth materials, wherein the first and fifth materials are different, wherein the first, second, third, and fourth are the same, and wherein the first material does not extend to the second major surface of the first plurality of strands. 2B. The method of Exemplary Embodiment IB, wherein the third material of the netting does not extend to the second major surface of the second plurality of strands of the netting.

3B. The method of either Exemplary Embodiment IB or 2B, wherein the first and sixth materials of the netting are the same.

4B. The method of either Exemplary Embodiment IB or 2B, wherein the fifth and sixth materials of the netting are the same.

5B. The method of any preceding Exemplary Embodiment B, wherein at least one of the first, second, third, or fourth materials of the netting comprises an adhesive.

6B. The method of any of Exemplary Embodiments IB to 4B, wherein at least two of the first, second, third, or fourth materials of the netting comprises an adhesive.

7B. The method of any of Exemplary Embodiments IB to 4B, wherein at least three of the first, second, third, or fourth materials of the netting comprises an adhesive.

8B. The method of any of Exemplary Embodiments IB to 4B, wherein each of the first, second, third, or fourth materials of the netting comprises an adhesive.

9B. The method of any of Exemplary Embodiments IB to 4B, wherein at least one of the first, second, third, or fourth materials of the netting comprises a pressure sensitive adhesive.

10B. The method of any of Exemplary Embodiments IB to 4B, wherein at least two of the first, second, third, or fourth materials of the netting comprises a pressure sensitive adhesive.

1 IB. The method of any of Exemplary Embodiments IB to 4B, wherein at least three of the first, second, third, or fourth materials of the netting comprises a pressure sensitive adhesive. 12B. The method of any of Exemplary Embodiments IB to 4B, wherein each of the first, second, third, or fourth materials of the netting comprises a pressure sensitive adhesive.

13B. The method of any preceding Exemplary Embodiment B, wherein the netting has a thickness in a range from 2 micrometers to 750 micrometers (in some embodiments, in a range from 5 micrometers to 500 micrometers, or even 25 micrometers to 250 micrometers).

14B. The method of any preceding Exemplary Embodiment B, wherein the polymeric strands of the netting do not substantially cross over each other (i.e., at least 50 (at least 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or even 100) percent by number).

15B. The method of any preceding Exemplary Embodiment B, wherein the netting has a basis

2 2 2 2 2 weight in a range from 5 g/m to 600 g/m (in some embodiments, 10 g/m to 600 g/m , 10 g/m to 400 g/m 2 , or even 400 g/m 2 to 600 g/m 2 ).

16B. The method of any preceding Exemplary Embodiment B, wherein the netting has a basis weight in a range from 0.5 g/m 2 to 40 g/m 2 (in some embodiments, 1 g/m 2 to 20 g/m 2 ).

17B. The method of any preceding Exemplary Embodiment B, wherein the netting has a strand pitch (i.e., center point-to-center point of adjacent bonds in the machine direction) in a range from 0.5 mm to 20 mm (in some embodiments, in a range from 0.5 mm to 10 mm).

18B. The method of any preceding Exemplary Embodiment B, wherein the netting is elastic.

19B. The method of any preceding Exemplary Embodiment B, wherein the netting has a machine direction and a cross-machine direction, and wherein the netting is elastic in the machine direction, and inelastic in the cross-machine direction.

20B. The method of any of Exemplary Embodiments IB to 18B, wherein the netting has a machine direction and a cross-machine direction, and wherein the netting is inelastic in the machine direction, and elastic in the cross-machine direction. 2 IB. The method of any preceding Exemplary Embodiment B, wherein the array of polymeric strands of the netting exhibits at least one of diamond-shaped or hexagonal-shaped openings.

22B. The method of any preceding Exemplary Embodiment B, wherein at least some of the polymeric strands of the netting comprise a first polymer that is a thermoplastic (e.g., adhesives, nylons, polyesters, polyolefins, polyurethanes, elastomers (e.g., styrenic block copolymers), and blends thereof).

23B. The method of any preceding Exemplary Embodiment B, wherein the first strands of the netting have an average width in a range from 10 micrometers to 500 micrometers (in some

embodiments, in a range from 10 micrometers to 400 micrometers, or even 10 micrometers to 250 micrometers).

24B. The method of any preceding Exemplary Embodiment B, wherein the second strands of the netting have an average width in a range from 10 micrometers to 500 micrometers (in some embodiments, in a range from 10 micrometers to 400 micrometers, or even 10 micrometers to 250 micrometers).

25B. The method of any preceding Exemplary Embodiment B where the netting is stretched.

26B. The method of any preceding Exemplary Embodiment B, wherein the bond regions of the netting have an average largest dimension perpendicular to the strand thickness, wherein the polymeric strands have an average width, and wherein the average largest dimension of the bond regions of the netting is at least 2 (in some embodiments, at least 2.5, 3, 3.5, or even at least 4) times greater than the average width of the polymeric strands.

[00106] Advantages and embodiments of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention. All parts and percentages are by weight unless otherwise indicated.

Example [00107] A co-extrusion die as generally depicted in FIG. 14 and assembled with a multi shim repeating pattern of extrusion orifices as generally illustrated in FIG. 12, was prepared. The thickness of the shims in the repeat sequence was 4 mils (0.102 mm) for shims 300, 600, 700, and 900. The thickness of the shims in the repeat sequence was 2 mils (0.051 mm) for shims 400, 800. The thickness of the shims in the repeat sequence was 8 mils (0.204 mm) for shims 500, one shim was used in the repeat. These shims were formed from stainless steel, with perforations cut by a wire electron discharge machining. The height of dispensing orifices were both cut to 30 mils (0.765 mm). The extrusion orifices were aligned in a collinear, alternating arrangement, and resulting dispensing surface was as shown in FIG 12. The total width of the shim setup was 15 cm.

[00108] The inlet fittings on the two end blocks were each connected to three conventional single-screw extruders. The extruder feeding the cavities 362C and 362D were loaded with polyolefin elastomer (obtained under the trade designation "8401 Engage" from Dow, Midland MI) dry blended with 3% red color concentrate, (obtained under the trade designation "RED POLYPROPYLENE PIGMENT" from Clariant, Minneapolis, MN). Cavity 362a was left empty for this example. Cavity 362b was loaded with acrylate copolymer adhesive (obtained under the trade designation "93/7" from 3M Company, St. Paul, MN).

[00109] The melt was extruded vertically into an extrusion quench takeaway nip. The quench nip was a smooth temperature controlled chrome plated 20 cm diameter steel roll and an 1 1 cm diameter silicone rubber roll. The rubber roll was about 60 durometer. Both were temperature controlled with internal water flow. Both rolls were wrapped with a release liner. The nip pressure was generated with two pressurized air cylinders. The web path wrapped 180 degrees around the chrome steel roll and then to a windup roll. A schematic of the quench process is shown in FIG. 1. Under these conditions a polymeric layer generally as depicted in FIG. 20 with the top and bottom adhesive layer contacting through the center layer apertures was produced.

[001 10] Other process conditions are listed below:

Orifice width for the first orifice: 0.51 mm

Orifice height for the first orifice: 0.765 mm

Orifice width of the second orifice: 1.02 mm

Orifice height of the second orifice: 0.765 mm

Land spacing between orifices 0.408 mm

Flow rate of first polymer (first cavity core) 1.4 kg/hr.

Flow rate of second polymer (2 nd cavity core) 0.9 kg/hr

Flow rate of third polymer (2 nd cavity skins) 1.1 kg/hr.

Extrusion temperature 204°C Quench roll temperature 15°C

Quench takeaway speed 2.3 m/min.

Melt drop distance 2 cm

Nip Pressure 1 kg/cm

[001 1 1] Using an optical microscope, at 50X magnification, the dimensions of the resulting polymeric layer having an array of void spaces between the major surfaces were measured, and are listed below.

Film thickness 0.28 mm

Film basis weight 230 g/m 2

Hole general shape vesica piscis

Void space cross direction 0.09 mm

Void space machine direction 2.3 mm

voids/cm 2 8.3

[001 12] Foreseeable modifications and alterations of this disclosure will be apparent to those skilled in the art without departing from the scope and spirit of this invention. This invention should not be restricted to the embodiments that are set forth in this application for illustrative purposes.