Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITION AND ARTICLE OF MANUFACTURE COMPRISING THEREOF
Document Type and Number:
WIPO Patent Application WO/2016/004618
Kind Code:
A1
Abstract:
Provided is a composition comprising A) one or more monomers and/or oligomers selected from the group consisting of and wherein each R is independently selected from the group consisting of the following; substituted or unsubstituted hydrocarbylenes, and substituted or unsubstituted hetero-hydrocarbylenes, each of the hydrocarbylenes and hetero-hydrocarbylenes having between 4 and 40 carbon atoms and x is any integer equal to or greater than 1; B) at least one chlorinated olefin-based polymer and/or at least one functionalized chlorinated olefin-based polymer; and C) at least one styrene-based block copolymer or derivative thereof.

Inventors:
YU BRIAN (CN)
CHEN YONG CHU (CN)
Application Number:
PCT/CN2014/082037
Publication Date:
January 14, 2016
Filing Date:
July 11, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DOW GLOBAL TECHNOLOGIES LLC (US)
YU BRIAN (CN)
CHEN YONG CHU (CN)
International Classes:
C08F279/02; C08L25/04; C08L27/06; C09J127/06
Domestic Patent References:
WO2008082257A12008-07-10
WO2007056154A22007-05-18
Foreign References:
US20110244240A12011-10-06
CN102516890A2012-06-27
Attorney, Agent or Firm:
WU, FENG & ZHANG CO. (Tower BBeijing Aerospace CPMIEC Building,No. 30, Haidian South Road, Haidian District, Beijing 0, CN)
Download PDF:
Claims:
CLAIMS

A composition comprising the following:

A) one or more monomers and/or oligomers selected from the group consisting

wherein each R is independently selected from the group consisting of the following; substituted or unsubstituted hydrocarbylenes, and substituted or unsubstituted hetero-hydrocarbylenes, each of the hydrocarbylenes and hetero-hydrocarbylenes having between 4 and 40 carbon atoms and x is any integer equal to or greater than 1 ;

B) at least one chlorinated olefin-based polymer and/or at least one functionalized chlorinated olefin-based polymer; and

C) at least one styrene-based block copolymer or derivative thereof.

2. The composition according to claim 1, further comprising D) at least one photoinitiator.

3. The composition according to any one of the preceding claims, further comprising E) one or more non-aromatic and nonchlorinated organic solvents.

4. The composition according to any one of the preceding claims, wherein the one or more monomers and/or oligomers, component A), comprises 1,6-hexanediol dimethacrylate (HDD A).

5. The composition according to any one of the preceding claims, wherein the one or more monomers and/or oligomers, component A), comprises tripropylene glycol diacrylate (TPGDA).

6. The composition according to any one of the preceding claims, wherein the at least one styrene-based block copolymer or derivative thereof, component C), is selected from the group consisting of the following: styrene-ethylene/butylene-styrene block copolymer (SEBS), styrene/butadiene/styrene block copolymer (SBS), and maleic anhydride grafted styrene- ethylene/butylene-styrene block copolymer (SEBS-g-MAH).

7. The composition according to any one of the preceding claims, wherein the at least one chlorinated olefin-based polymer B), is selected from the group consisting of chlorinated olefin- based polymers that have a chlorine content from 10 to 40 wt%, based on the weight of the chlorinated olefin-based polymer.

8. The composition according to claim 3, wherein the composition comprises from 0.1—10 wt% combined amount of components A), B), C) and D) and from 99.9 to 90 wt% of the one or more non-aromatic and nonchlorinated organic solvents; each wt% based on the weight of the composition.

9. The composition according to any one of the preceding claims, wherein the composition comprises from 0.1 to 90 wt% component A), from 1 to 90 wt% component B), from 1 to 90 wt% component C) and from 0.1 to 10 wt% component D), each based on the total weight of components A), B), C) and D) combined.

10. An article of manufacture comprising at least one component which comprises the composition according to any one of the preceding claims.

11. The article of manufacture according to claim 10 selected from the group consisting of footwear.

12. The article of manufacture according to claim 11, wherein the at least one component is an adhesive primer for a midsole.

Description:
COMPOSITION AND ARTICLE OF MANUFACTURE

COMPRISING THEREOF

Field of Invention

The instant invention relates to a composition and an article of manufacture comprising the same.

Background of the Invention

Olefin-based polymers can be produced with specially designed molecular weight and molecular weight distribution. This process affords some very unique characteristics to the products, and these polymers are finding many applications, for example, as shoe soles in footwear. Currently the materials used in footwear midsole are dominated by ethylene vinyl acetate copolymers (EVA). Olefin-based polymers (for example, POE (polyolefin elastomers) and OBC (olefin block copolymers)) have several advantages, compared with EVA, such as light weight (due to the comparatively low polymer density) which is a general trend in sole design. In addition, the comparatively high melting point of OBC also brings additional advantages such as low shrinkage, low compression set, and improved dynamic fatigue resistance at elevated temperatures, which are also very important in footwear production and use. Currently, OBC has been commercialized in several footwear applications, and it is expected there will be more applications in the future.

The non-polar molecular nature of the above mentioned olefin-based polymers makes them difficult to be bonded, painted, and printed, due to the low surface energy of the polyolefins. For example, in the assembling process, the midsole is bonded to the vulcanized rubber outsole usually using thermoplastic polyurethane (TPU), and to the shoe upper, which is made from natural/artificial leather. The existing maximum total olefin-based polymer loading in the midsole formulation cannot exceed 30% (the balance is EVA) due to adhesion issues of higher olefin-based polymer content compositions. Therefore, there is a need to improve the adhesion characteristics of the olefin-based polymer materials, so as to improve bonding, paintability and printability.

Summary of the Invention

In one embodiment, the instant invention provides a composition comprising A) one or more monomers and/or oligomers selected from the group consisting of

wherein each R is independently selected from the group consisting of the following: substituted or unsubstituted hydrocarbylenes, and substituted or unsubstituted hetero- hydrocarbylenes, each of the hydrocarbylenes and hetero-hydrocarbylenes having between 4 and 40 carbon atoms and x is any integer equal to or greater than 1 ; B) at least one chlorinated olefin-based polymer and/or at least one functionalized chlorinated olefin-based polymer; and C) one or more styrene-based block copolymer or derivative thereof.

Brief Description of the Drawings

Figure is a schematic depicting a test sample for the T-Peel test;

Figure 2 is a schematic diagram of a bonding process utilizing the inventive composition;

Figure 3 is a chart illustrating the average peel strength for Comparative Examples 1 and 2 and Inventive Examples 1 and 2 on a 50% POE foam substrate;

Figure 4 is a chart illustrating the average peel strength for Comparative Examples 1 and 2 and Inventive Examples 1 and 2 on a 70% POE foam substrate; and

Figure 5 is a chart illustrating the impact on peel strength of Inventive Example 2 on various substrates.

Detailed Description of the Invention

The term "polymer," as used herein, refers to a polymeric compound prepared by polymerizing monomers, whether of the same or a different type. The generic term polymer thus embraces the term homopolymer (employed to refer to polymers prepared from only one type of monomer, with the understanding that trace amounts of impurities can be incorporated into the polymer structure), and the term interpolymer as defined hereinafter. Trace amounts of impurities (for example, catalyst residues) may be incorporated into and/or within the polymer.

The term "interpolymer," as used herein, refers to polymers prepared by the

polymerization of at least two different types of monomers. The generic term interpolymer includes copolymers (employed to refer to polymers prepared from two different types of monomers), and polymers prepared from more than two different types of monomers.

The term "olefin-based polymer," as used herein, refers to a polymer that comprises a majority amount of polymerized olefin monomer, for example ethylene or propylene (based on weight of the polymer) and, optionally, may contain at least one comonomer.

The term "ethylene-based polymer," as used herein, refers to a polymer that comprises a majority amount of polymerized ethylene monomer (based on weight of the polymer) and, optionally, may contain at least one comonomer.

The term "ethylene/a-olefin interpolymer," as used herein, refers to an interpolymer that comprises a majority amount of polymerized ethylene monomer (based on the weight of the interpolymer) and at least one a-olefin.

The term, "ethylene/a-olefin copolymer," as used herein, refers to a copolymer that comprises a majority amount of polymerized ethylene monomer (based on the weight of the copolymer), and an a-olefin, as the only two monomer types.

The term "propylene-based polymer," as used herein, refers to a polymer that comprises a majority amount of polymerized propylene monomer (based on weight of the polymer) and, optionally, may comprise at least one comonomer.

The term "propylene/a-olefin interpolymer," as used herein, refers to an interpolymer that comprises a majority amount of polymerized propylene monomer (based on the weight of the interpolymer) and at least one a-olefin. The a-olefin of a propylene/a-olefin interpolymer may be ethylene.

The term, "propylene/a-olefin copolymer," as used herein, refers to a copolymer that comprises a majority amount of polymerized propylene monomer (based on the weight of the copolymer), and an a-olefin, as the only two monomer types. The α-olefin of a propylene/a- olefin copolymer may be ethylene. The term "composition," as used herein, includes a mixture of materials which comprise the composition, as well as reaction products and decomposition products formed from the materials of the composition.

As used herein, the term "chlorinated olefin-based polymer," refers to an olefin-based polymer comprising units derived from one or more chlorine-containing comonomers or an olefin-based polymer which is subjected to a chlorination reaction. Exemplary chlorination reactions are described in U.S. Patent Nos. 7763692, 5446064, 4767823 and PCT Publication No. WO2008/002952, the disclosures of which are incorporated herein by reference.

In one embodiment, the chlorinated olefin-based polymer has a chlorine content of from 15 to 40 wt%, based on the weight of the polymer. All individual values and subranges from 15 to 40 wt% are included and disclosed herein; for example, the chlorine content can range from a lower limit of 15, 20, 25, 30 or 35 wt% to an upper limit of 20, 25, 30, 35,or 40 wt%.

Preferable examples of olefin-based polymers for use in the production of chlorinated olefin-based polymers include, but are not limited to, polypropylene-based polymers, such as, polypropylene homopolymers, propylene-alpha-olefin interpolymers and propylene-alpha-olefin copolymers; and ethylene-based polymers, such as such as, polyethylene homopolymers, ethylene-alpha-olefin interpolymers and ethylene-alpha-olefin copolymers.

Examples of alpha-olefins in propylene-alpha-olefin interpolymers and copolymers include ethylene or C 4- 2o alpha-olefins, such as ethylene, 1-butene, 1-pentene, 1-hexene, 1- heptene, 1-octene, 1-decene, 1-dodecene, 1 -hexadecene, 4-methyl- 1-pentene.

Examples of alpha-olefins in ethylene-alpha-olefin copolymers include C3-20 a-olefins, such as propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1- hexadecene, 4-methyl- 1-pentene.

In one embodiment, the chlorinated olefin-based polymer has a weight average molecular weight, Mw, from 25,000 to 125,000 g/mole. All individual values and subranges from 25,000 to 125,000 are included and disclosed herein; for example, the Mw can be from a lower limit of 25000, 50000, 75000, or 100000 g/mole to an upper limit of 50000, 75000, 100000, or 125000. For example, the Mw can be from 25000 to 125000, or in the alternative, from 25000 to 75000, or in the alternative, from 75000 to 125000, or in the alternative, from 50000 to 100000. Examples of chlorinated ethylene-based polymers include those prepared from copolymers comprising ethylene and at least one ethylenically unsaturated monomer, selected from the group consisting of C 3 -C8 alpha-olefins.

Specific examples of suitable chlorinated ethylene-based copolymers, which may be employed in the compositions of this invention, include copolymers of ethylene with propylene, 1-butene, 3 -methyl- 1-pentene, 1-pentene, 1-hexene, 1-heptene or octene.

Examples of chlorinated propylene-based polymers (not functionalized) include

HARDLEN DX-526P and HARDLEN 14-LWP which are commercially available from Toyo Kasei Kogyo Company (Japan).

Examples of chlorinated ethylene-based polymers include the TYRIN chlorinated poly ethylenes which are commercially available from The Dow Chemical Company.

As used herein, the term "functionalized, chlorinated olefin-based polymer" refers to one or more of the following: (a) a chlorinated olefin-based polymer onto which anhydride (for example, maleic anhydride) and/or carboxylic acid functional groups are grafted onto the olefin based polymer; (b) an olefin-based polymer comprising one or more chlorine containing comonomers, and which is later functionalized with maleic anhydride and/or carboxylic acid functional groups; and (c) chlorinated polymers containing one or more comonomers containing carboxylic acid and/or ester groups. Grafting reactions, are described for example in U.S.

Patents 8,450,430 and 7,763,692, the disclosures of which are incorporated herein by reference. Alternatively, the functional group may be present in a copolymer (i.e., carboxylic acid functional group) which is copolymerized with the olefin monomers to form the olefin based polymer.

In one embodiment, the functionalized chlorinated olefin-based polymer is an anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer, which is formed from a chlorinated olefin-based polymer onto which maleic anhydride and/or carboxylic acid functional groups is grafted onto the olefin based polymer. U.S. Patent 7,763,692 discloses exemplary functionalized chlorinated olefin-based polymers.

In one embodiment, the functionalized chlorinated olefin-based polymer is an anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer that has a chlorine content from 10 to 35 wt%, based on the total weight of the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer and a thermoplastic elastomer. All individual values and subranges from 10 to 35 wt% chlorine are included and disclosed herein; for example, the chlorine content can be from a lower limit of 10, 14, 18, 22, 26, 30 or 34 wt% to an upper limit of 12, 16, 20, 24, 28, 32, or 35 wt%. For example, the chlorine content can be from 10 to 35 wt%, or in the alternative, from 10 to 20 wt%, or in the alternative, from 20 to 35 wt%, or in the alternative, from 18 to 32 wt%, or in the alternative, from 15 to 30 wt%, or in the alternative. In a particular embodiment, the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer is a maleic anhydride grafted chlorinated polyolefin (MAH-g-CPO). In yet another specific embodiment, the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer is a maleic anhydride grafted chlorinated polyolefin having a maleic anhydride content of from 0.75 to 3 wt%, based on the weight of the anhydride functionalized, chlorinated olefin-based polymer. All individual values and subranges from 0.75 to 3 wt% are included and disclosed herein; for example, the maleic anhydride level can be from a lower limit of 0.75, 1, 1.5, 2, 2.5 or 2.75 wt% to an upper limit of 0.9, 1.35, 1.8, 2.25, 2.8 or 3 wt%. For example, the maleic anhydride level can be from 0.75 to 3 wt%, or in the alternative, from 0.75 to 1.75 wt%, or in the alternative, from 1.75 to 3 wt%, or in the alternative, from 1 to 2 wt%.

In one embodiment, the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer is a maleic anhydride grafted chlorinated polyolefin having a weight average molecular weight, Mw, from 25,000 to 125,000 g/mole. All individual values and subranges from 25,000 tto 125,000 are included and disclosed herein; for example, the Mw can be from a lower limit of 25000, 50000, 75000, or 100000 g/mole to an upper limit of 50000, 75000, 100000, or 125000. For example, the Mw can be from 25000 to 125000, or in the alternative, from 25000 to 75000, or in the alternative, from 75000 to 125000, or in the alternative, from 50000 to 100000.

The term "hydrocarbylene," as used herein, refers to a divalent (diradical) chemical group containing only hydrogen and carbon atoms.

The term "substituted hydrocarbylene," as used herein, refers to a hydrocarbylene, in which at least one hydrogen atom is substituted with a substituent that comprises at least one heteroatom.

The term "heterohydrocarbylene," as used herein, refers to a hydrocarbylene, in which at least one carbon atom, or CH group, or CH2 group, is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms include, but are not limited to, O, N, P and S.

The term "substituted heterohydrocarbylene," as used herein, refers to a

heterohydrocarbylene, in which at least one hydrogen atom is substituted with a substituent that comprises at least one heteroatom.

The instant invention is a composition comprising A) one or more monomers and/or oligomers selected from the group consisting of

wherein each R is independently selected from the group consisting of the following; substituted or unsubstituted hydrocarbylenes, and substituted or unsubstituted hetero-hydrocarbylenes, each of the hydrocarbylenes and hetero-hydrocarbylenes having between 4 and 40 carbon atoms and x is any integer equal to or greater than 1 ;

B) at least one chlorinated olefin-based polymer and/or at least one functionalized chlorinated olefin-based polymer; and

C) at least one styrene-based block copolymer or derivative thereof.

In an alternative embodiment, the instant invention provides an article of manufacture comprising at least one component which comprises the composition according to any of the embodiments disclosed herein.

Component A)

Component A) is one or more monomers and/or oligomers selected from the group consisting of

wherein each R is independently selected from the group consisting of hydrocarbylenes and hetero-hydrocarbylenes, each of the hydrocarbylenes and hetero-hydrocarbylenes having between 4 and 40 carbon atoms and x is any integer equal to or greater than 1. Exemplary monomers and oligomers include 1,6-hexanediol dimethacrylate (HDD A) (having the structure shown in Formula 1) and tripropylene glycol diacrylate (TPGDA) (having the structure shown in Formula 2). In one embodiment, component A) is HDD A. In an alternative embodiment, component A) is TPGDA.

Formula 1 : o o

H2 : C: CH— C— O— (CM 2 > 6 O— C— CM CH 2

Formula 2

Component B): Styrenic Block Copolymers

Examples of styrenic block copolymers suitable for the invention are described in EP 0 712 892 Bl, WO 2004/041538 Al, USP 6,582,829B1, US2004/0087235 Al, US2004/0122408 Al, US2004/0122409A1, and USP 4,789,699, 5,093,422 and 5,332,613, the disclosures of which are incorporated herein by reference.

In general, hydrogenated styrenic block copolymers suitable for the invention have at least two mono-alkenyl arene blocks, preferably two polystyrene blocks, separated by a block of saturated conjugated diene comprising less than 20% residual ethylenic unsaturation, preferably a saturated polybutadiene block. The preferred styrenic block copolymers have a linear structure although in some embodiments, branched or radial polymers or functionalized block copolymers make useful compounds (amine-functionalized styrenic block copolymers are generally disfavored in the manufacture of the artificial leather of this invention).

Typically, polystyrene-saturated polybutadiene-polystyrene and polystyrene-saturated polyisoprene-polystyrene block copolymers comprise polystyrene end-blocks having a number average molecular weight from 5,000 to 35,000 and saturated polybutadiene or saturated polyisoprene mid-blocks having a number average molecular weight from 20,000 to 170,000. The saturated polybutadiene blocks preferably have from 35-55% 1 ,2-configuration and the saturated polyisoprene blocks preferably have greater than 85% 1 ,4-configuration.

The total number average molecular weight of the styrenic block copolymer is preferably from 30,000 to 250,000 if the copolymer has a linear structure. Such block copolymers typically have an average polystyrene content from 10% by weight to 30%, more typically from 10% by weight to 20% by weight.

SEBS (S is styrene, E is ethylene and B is butylene) and SEPS (P is propylene) block copolymers useful in certain embodiments of the present invention are available from each of Kraton Polymers, Asahi Kasei and Kuraray America.

Component C): Functionalized, Chlorinated Olefin-Based Polymer

The composition is formed using an anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer that has a chlorine content from 10 to 40 wt%, based on the total weight of the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer and a thermoplastic elastomer. All individual values and subranges from 10 to 40 wt% chlorine are included and disclosed herein; for example, the chlorine content can be from a lower limit of 10, 14, 18, 22, 26, 30 or 34 wt% to an upper limit of 12, 16, 20, 24, 28, 32, 35 or 40 wt%. For example, the chlorine content can be from 10 to 40 wt%, or in the alternative, from 10 to 20 wt%, or in the alternative, from 20 to 40 wt%, or in the alternative, from 18 to 32 wt%, or in the alternative, from 15 to 30 wt%, or in the alternative. In a particular embodiment, the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer is a maleic anhydride grafted chlorinated poly olefin. In yet another specific embodiment, the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer is a maleic anhydride grafted chlorinated poly olefin having a maleic anhydride content of from 0.75 to 3 wt%, based on the weight of the anhydride functionalized, chlorinated olefin-based polymer. All individual values and subranges from 0.75 to 3 wt% are included and disclosed herein; for example, the maleic anhydride level can be from a lower limit of 0.75, 1, 1.5, 2, 2.5 or 2.75 wt% to an upper limit of 0.9, 1.35, 1.8, 2.25, 2.8 or 3 wt%. For example, the maleic anhydride level can be from 0.75 to 3 wt%, or in the alternative, from 0.75 to 1.75 wt%, or in the alternative, from 1.75 to 3 wt%, or in the alternative, from 1 to 2 wt%. In another embodiment, the anhydride and/or carboxylic acid functionalized, chlorinated olefin-based polymer is a maleic anhydride grafted chlorinated poly olefin having a weight average molecular weight, Mw, from 25,000 to 125,000 g/mole. All individual values and subranges from 25,000 to 125,000 are included and disclosed herein; for example, the Mw can be from a lower limit of 25000, 50000, 75000, or 100000 g/mole to an upper limit of 50000, 75000, 100000, or 125000. For example, the Mw can be from 25000 to 125000, or in the alternative, from 25000 to 75000, or in the alternative, from 75000 to 125000, or in the alternative, from 50000 to 100000.

Exemplary component C) species include maleic anhydride grafted chlorinated polyolefins

Component D): Photoinitiator

Photoinitiators, a/k/a photopolymerization initiators, photoreaction initiators, and the like, are known in the art. Exemplary photoinitiators include benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, benzoin, . alpha. -methylbenzo in, benzoin n-butyl ether, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1 -chloroanthraquinone, 2- amylanthraquinone, 2-aminoanthraquinone, benzophenone, p-chlorobenzophenone, p- dimethylaminobenzophenone, benzophenone methyl ether, methylbenzophenone, 4,4- dichlorobenzophenone, 4,4-bisdiethylaminobenzophenone, diphenyl sulfide, tetramethylthiuram disulfide, 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-diethylthioxanthone, 2- chlorothioxanthone, 2-isopropylthioxanthone, 2,2-dimethoxy-2- pheny lacetophenone, . alpha. , . alpha. -dichloro-4-phenoxyacetone, p-tert- butyltrichloroacetophenone, p-tert-butyldichloroacetophenone, 2,2-diethoxyacetophenone, p- dimethylaminoacetophenone, hydroxycyclohexyl phenyl ketone, l-(4-isopropylphenyl)-2- hy droxy-2-methy lpropane- 1 -one, 2,2-dimethoxy- 1 ,2-dipheny lethane- 1 -one, 2,4,6- trimethylbenzoin diphenylphosphine oxide, 2-methyl-l-[4-(methylthio)phenyl]-2- morpholinopropane-l-one, 4-(2-acryloxy)oxyethoxy-phenyl 2-hydroxy-2-propyl ketone, 4-(2- hydroxy)phenyl-(2-hydroxy-2-propyl) ketone, bis(2,6-dimethoxybenzoyl)-2,4,4- trimethylphenylphosphine oxide, etc. Among these, benzophenone, 2-ethylanthraquinone, 2,4- dimethylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-diethylthioxanthone, 2- chlorothioxanthone, 2-isopropylthioxanthone, hydroxycyclohexyl phenyl ketone, 1 -(4- isopropylphenyl)-2-hydroxy-2-methylpropane- 1 -one and 2,2-dimethoxy- 1 ,2-diphenylethane- 1 - one are preferred because of good curability, adhesion and heat resistance. In the practice of the invention, one or two or more of them can be used singly or in combination in the under coating. Component E): Solvent

Any non-aromatic and non-chlorinated solvent may be used in some embodiments of the inventive composition. Exemplary non-aromatic and non-chlorinated solvents include heptane, methyl cyclohexane (MCH), ethyl cyclohexane, methyl ethyl ketone (MEK), ethyl acetate (EA), butyl acetate (BA), and any combination of two or more thereof. In a particular embodiment, the solvent is selected from the group consisting of MCH and heptane.

Specific Embodiments

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the composition further comprises D) at least one photoinitiator.

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the composition further comprises E) one or more non-aromatic and nonchlorinated organic solvents.

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the one or more monomers and/or oligomers, component A), comprises 1,6-hexanediol dimethacrylate (HDD A).

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the one or more monomers and/or oligomers, component A), comprises tripropylene glycol diacrylate (TPGDA). In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the chlorinated olefin- based polymer is a chlorinated ethylene-based polymer.

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the chlorinated olefin- based polymer is a chlorinated propylene-based polymer.

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the functionalized chlorinated olefin-based polymer is a functionalized chlorinated ethylene-based polymer.

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the functionalized chlorinated olefin-based polymer is a functionalized chlorinated propylene-based polymer .

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the one or more one or more styrene-based block copolymer or derivative thereof, component C), is selected from the group consisting of styrene-ethylene/butylene-styrene block copolymer (SEBS),

styrene/butadiene/styrene block copolymer (SBS), and maleic anhydride grafted styrene- ethylene/butylene-styrene block copolymer (SEBS-g-MAH).

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the composition comprises from 0.1-10 wt% combined amount of components A), B), C) and D) and from 99.9 to 90 wt% of the one or more non-aromatic and nonchlorinated organic solvents. All individual values and subranges of the foregoing weight percentage ranges are included and disclosed herein. For example the combined amount of components A), B), C) and D) can range from a lower limit of 0.1, 0.5, 1, 2, 4, 6, or 8 wt% to an upper limit of 0.2, 0.7, 1.5, 3, 5, 7, 9 or 10 wt%. For example, the combined amount of components A), B), C) and D) can be from 0.1 to 10 wt%, or in the alternative, from 0.1 to 5 wt%, or in the alternative, from 5 to 10 wt%, or in the alternative, from 2 to 8 wt%, or in the alternative, from 3 to 7 wt%. Likewise, the amount of component E), the one or more non-aromatic and nonchlorinated organic solvent can range from a lower limit of 90, 92, 94, 96 or 98 wt% to an upper limit of 91, 93, 95, 97, 99, 99.5 or 99.9 wt%. For example, the weight of the solvent can be from 90 to 99.9 wt%, or in the alternative, from 99.9 to 95 wt%, or in the alternative from 95 to 99.9 wt%, or in the alternative, from 93 to 97 wt%, or in the alternative, from 92 to 98 wt%.

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the composition comprises from 0.1 to 90 wt% component A), from 1 to 90 wt% component B), from 1 to 90 wt%

component C) and from 0.1 to 10 wt% component D), each based on the total weight of components A), B), C) and D) combined. All individual values and subranges of the foregoing weight percentage ranges are included and disclosed herein. For example, the amount of component A) based on the total weight of components A), B), C) and D) combined can range from a lower limit of 0.1, 1, 10, 20, 30, 40, 50, 60, 70, or 80 wt% to an upper limit of 0.5, 1.5, 15, 25, 35, 45, 55, 65, 75, 85 or 90 wt%. For example, the amount of component A) based on the total weight of components A), B), C) and D) combined can be from 0.1 to 90 wt%, or in the alternative, from 50 to 90 wt%, or in the alternative, from 0.1 to 50 wt%, or in the alternative, from 25 to 75 wt%. The amount of component B) can range from a lower limit of 1, 10, 20, 30, 40, 50, 60, 70, or 80 wt% to an upper limit of 5, 15, 25, 355, 45, 55, 65, 75, 85 or 90 wt%. For example, the amount of component B) can be from 1 to 90 wt%, or in the alternative, from 45 to 90 wt%, or in the alternative, from 1 to 55 wt%, or in the alternative, from 25 to 75 wt%, or in the alternative, from 30 to 70 wt%. The amount of component C) based on the total weight of components A), B), C) and D) combined can range from a lower limit of 1, 10, 20, 30, 40, 50, 60, 70, or 80 wt% to an upper limit of 5, 15, 25, 355, 45, 55, 65, 75, 85 or 90 wt%. For example, the amount of component C) can be from 1 to 90 wt%, or in the alternative, from 45 to 90 wt%, or in the alternative, from 1 to 55 wt%, or in the alternative, from 25 to 75 wt%, or in the alternative, from 30 to 70 wt%. The amount of component D) based on the total weight of components A), B), C) and D) combined can range from a lower limit of 0.1, 0.5, 1, 3, 5, 7 or 9 wt% to an upper limit of 0.2, 0.7, 2, 4, 6, 8 or 10 wt%. For example, the amount of component D) can be from 0.1 to 10 wt%, or in the alternative, from 0.1 to 5 wt%, or in the alternative, from 4 to 10 wt%, or in the alternative, from 2 to 8 wt%, or in the alternative, from 0.5 to 2.5 wt%.

In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the article of manufacture is selected from the group consisting of footwear. Exemplary footwear includes sports shoes, water shoes, boots, safety footwear, and sandals. In one embodiment, the invention provides the composition and article of manufacture in accordance with any of the embodiments disclosed herein except that the component of the article of manufacture which comprises the composition is an adhesive primer for a midsole.

EXAMPLES

Materials used in preparing the examples:

EVA 7360M: ethylene-vinyl acetate copolymer, density 0.941 g/cm 3 (ASTM D792), MI 2.5 g/lOmin (ASTM D 1238, at 190 °C/2.16 kg), Shore A = 86 (ASTM D2240), 21 wt% vinyl acetate content (commercially available from Formosa Plastics Corporation (Mialiao Village, Taiwan).

ENGAGE 8450: ethylene-octene copolymer, density 0.902 g/cm 3 (ASTM D792), MI 3 g/lOmin (ASTM D 1238, at 190 °C/2.16 kg), Shore A = 90 (ASTM D2240) (commercially available from The Dow Chemical Company).

ENGAGE 8452: ethylene-octene copolymer, density 0.875 g/cm 3 (ASTM D792), MI 3 g/lOmin (ASTM D 1238, at 190 °C/2.16 kg), Shore A = 74 (ASTM D2240) (commercially available from The Dow Chemical Company).

INFUSE 9530: olefin block copolymer, density 0.885 g/cm 3 (ASTM D792), MI 5 g/lOmin (ASTM D 1238, at 190 °C/2.16 kg), Shore A = 83 (ASTM D2240) (commercially available from The Dow Chemical Company).

INFUSE 9107: olefin block copolymer, density 0.866 g/cm 3 (ASTM D792), MI 1 g/lOmin (ASTM D 1238, at 190 °C/2.16 kg), Shore A = 83 (ASTM D2240) (commercially available from The Dow Chemical Company).

LUPEROX DC40P: dicumyl peroxide from Arkema with active peroxide content around 40 wt% (commercially available from Arkema Inc.).

LUPEROX DC40P-SP2: Scorch protected dicumyl peroxide from Arkema with active peroxide content around 40 wt% (commercially available from Arkema Inc.).

AC9000: Azodicabonamide type blowing (available from Kum Yang (Korea) company).

ZnO: Zinc oxide, local grade

ZnSt: Zinc stearate, local grade

ATOMITE Calcium carbonate (available from Imerys Pigments (Roswell, GA, USA))

The formulations used for each of the examples (foams) are shown in Table 1. Table 1: Olefin-based Polymer Foams Formulations

Foam preparation

Compounding

Polymer pellets were added to a 1.5 liter, Banbury mixer. Then, ZnO, ZnSt and CaC03 were added, after the polymer had melted (around 5 minutes). The blowing agent and peroxide were added last, after the fillers were uniformly dispersed, and the contents mixed for another 3 to 5 minutes for a total mixing time of 15 minutes. The batch temperature was checked by using a thermo probe detector right after the compounds were discharged. The composition actual temperature was generally 10 to 15°C higher than the displayed temperature on the equipment (composition temperature was around 100°C). Hence, during the compounding process, it is better to maintain a lower displayed equipment temperature to ensure the compound temperature does not exceed the decomposition temperature of the curing agent and the decomposition temperature blowing agent. The compounded formulation was placed between two roll mills (maintained at a temperature of about 100C), and the compounded formulation was formed into a sheet (or roll milled blanket) of about 5 mm in thickness. Bun Foam Preparation

Roll milled blankets were cut into squares (three or four "6 inch x 6 inch"), and placed inside a pre-heated bun foam mold of dimensions around 49 square inches. The surface of the chase was sprayed with mold releasing agent, to avoid sticking of the foam to the chase during de-molding. Two compression molding processes were involved: first a preheating process to eliminate air pockets inside the sample and between the stacked blanket layers prior to curing, and then curing/foaming process. The preheating was conducted for 8 minutes at 110°C (low melting polymer like ENGAGE) or 120°C (high melting polymer like INFUSE), and pressed at 10 tons, for 4 minutes, to form a solid mass in the mold before foaming. The preheated mass was transferred to the foaming press, and held for 8 minutes at 100 kg/cm 2 and 180°C. Once the pressure was released, the bun foam was removed quickly from the tray, and placed in a vent hood on several non-stick sheets, and the top side length was measured as soon as possible. The foam surfaces needed to be insulated from the bench top, using something like the cardboard boxes. Insulating the surfaces of the newly made bun foam will prevent uneven cooling on the top and bottom surface. The foams cool in the hood for 40 minutes then they were transferred to a storage container, and allowed to cool for 24 hours.

Primer composition preparation

To make the primer formulation, several pre-solutions were first prepared, including the following. Each wt% based on the weight of the final solution.

To make the primer formulation, several pre-solutions were first prepared, including a. 5 wt% MAH-g-CPO (HARDLEN F-2P from Toyo Kasei) in methyl cyclohexane (MCH) by heating reflux the solution in three neck flask at 80 degC for 30 minutes with magnetic stirring. A chlorinated olefin-based polymer is also useful in the primer compositions below.

b. 10 wt% SEBS 1652 (KRATON Gl 652) in MCH by heating reflux the solution in three neck flask at 80 degC for 30 minutes with magnetic stirring.

c. 10 wt% photo initiator 184 (DOUBLECURE 184, supplied by Double Bond Chemical Ind.) directly dissolved in methyl-ethyl-ketone (MEK) at room temperature.

d. 10% HDDA (DOUBLEMER HDDA supplied by Double Bond Chemical Ind.) dissolved in a solvent mixture of MEK/MCH (1/1), by weight. e. 10% TPGDA(Doublemer TPGDA supplied by Double Bond Chemical Ind.) dissolved in a solvent mixture of MEK/MCH (1/1), by weight.

Then the pre-solutions (a ~ e) were carefully weighed according to the calculated weight in order to make the final primer compositions, each with the weight ratio as shown below. Each wt% is based on the weight of the primer solution.

Comparative Example (CE) -1 utilized a commercial UV primer.

CE-2 utilized a primer composition as follows: (no SEBS): HDDA/TPGD A/F2P/184 (40/40/20/6.4) dissolved in MCH/MEK solvent mixture (solid level around 2.5 wt%).

CE-3 utilized a primer composition as follows: (no SEBS): HDD A/TPGD A/F2P/ 184 (30/30/40/4.8) dissolved in MCH/MEK solvent mixture (solid level around 2.5 wt%).

Inventive Example (IE)-l utilized a primer composition as follows:

HDD A/TPGD A/F2P/SEBS/184 (40/40/20//30/6.4) dissolved in MCH/MEK solvent mixture (solid level around 2.5 wt%).

IE-2 utilized a primer composition as follows: HDD A/TPGD A/F2P/SEBS/184

(30/30/40//10/4.8) dissolved in MCH/MEK solvent mixture (solid level around 2.5 wt%).

IE-3 utilized a primer composition as follows: HDD A/TPGD A/F2P/SEBS/184

(30/30/40//20/4.8) dissolved in MCH/MEK solvent mixture (solid level around 2.5 wt%).

Bonding procedure description

The olefin-based polymer foam slabs were cut into "15 cm (L)* 2.5 cm (W) * 0.5 cm (T)" test substrate foams for the bonding test (T-Peel).

The test sample for the T-Peel adhesion test is shown in Figure 1 (cross-section schematic). The test sample preparation is outlined in Figure 2.

Each primer composition (about a coating weight of 5-10 g solid per one square meter of one substrate) was applied onto the skin side of two test substrate foams, and the primed foams were thermally treated to remove solvent (see Figure 2) . Then a polyurethane (PU) adhesive (NP200 available from Nanpao) was applied on each primed olefin-based foam skin. The PU was applied onto the primed surface. Finally the two PU coated foam skin were adhered

2

together at 70°C, and under a pressure of 3 kgf/cm . The PU adhesive on both sides of the foam skin surface reacted to form a "PU adhesive layer" located between the two olefin-based foam substrates. The resulted bonded test sample was as follows: a sandwich structure POE foam/Primer/ PU Adhesive/Primer/POE foam. A "1 inch" portion of the test sample was un-adhered, in order to easily separate the two POE foam for insertion into the clamps of the T-Peel test instron. The adhered potion of the test sample was around "5 inch" in length and around "1 inch (2.5 cm)" in width. The test sample provided a good representation of the bonded foams in a footwear component.

The T-peel test was conducted in an INSTRON 5566. The un-adhered ends of the bonded sample were clamped in the top and bottom clamps, respectively, of the instron. The initial clamp distance was 1 inch. The bonded sample was peeled at a crosshead speed of 100 mm/min. The Peel force was recorded and average peel force was calculated. Peel strength (N/mm) was calculated as follows: average peel force (N)/sample width (mm).

Figure 3 shows the bonding performance of different examples, using the 50 wt% POE based foam. As shown in Figure 3, the foams bonded with the inventive primer compositions had significantly higher average peel strengths, as compared to the foams primed with the comparative primer compositions.

Figure 4 is similar to Figure 3, except the POE loading in the foam is further increased to 70 wt%. Similarly the inventive examples are still better than the comparative examples, and could also provide acceptable bonding strength for even 70 wt% POE loading foam.

As shown in Figure 5, the same inventive primer composition was used on different foam substrates: 100% POE foam, and 50% OBC foam. The corresponding peel strength is lower than 3 N/mm, but it is still significantly higher than the corresponding comparative examples shown in this figure.