Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITION
Document Type and Number:
WIPO Patent Application WO/2022/122417
Kind Code:
A1
Abstract:
A laundry liquid composition comprising at least 50 % wt. water, an alkyl ether sulphate surfactant and an alcohol ethoxylate surfactant, wherein at least one of the alkyl ether sulphate and alcohol ethoxylate comprises at least 10% weight C16/18 alkyl chains and a dye.

Inventors:
BATCHELOR STEPHEN (GB)
BURNHAM NEIL (GB)
Application Number:
PCT/EP2021/083173
Publication Date:
June 16, 2022
Filing Date:
November 26, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNILEVER IP HOLDINGS B V (NL)
UNILEVER GLOBAL IP LTD (GB)
CONOPCO INC DBA UNILEVER (US)
International Classes:
C11D1/00; C11D1/29; C11D1/72; C11D1/83; C11D3/40; C11D17/00
Domestic Patent References:
WO2018206202A12018-11-15
WO2007147866A12007-12-27
WO2009141172A12009-11-26
WO2009141173A12009-11-26
WO2020023812A12020-01-30
WO2007079850A12007-07-19
WO2016005271A12016-01-14
Foreign References:
US20080064619A12008-03-13
US20190010426A12019-01-10
EP2714878A12014-04-09
US5574179A1996-11-12
US4956447A1990-09-11
US4861512A1989-08-29
US4702857A1987-10-27
Other References:
"Non-ionic Surfactants: Organic Chemistry", 1998, MARCEL DEKKER
KREUTZER, U. R, JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 61, no. 2, pages 343 - 348
SANCHEZ M.A. ET AL., J.CHEM.TECHNOL.BIOTECHNOL, vol. 92, 2017, pages 27 - 92
"Ullmann's Enzyclopaedie der technischen Chemie", vol. 56, 1995, MARCEL DEKKER, pages: 436
GUPTA M.K.: "A Practical Guide to Vegetable Oil Processing", 2017, ACADEMIC PRESS
SAAD M.G. ET AL.: "Algal Biofuels: Current Status and Key Challenges", ENERGIES, vol. 12, 2019, pages 1920
MASRI M.A. ET AL.: "A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents", ENERGY ENVIRON. SCI., vol. 12, 2019, pages 2717
CTFA: "International Buyers Guide", 1992, WILEY-VCH
OPD: "Chemicals Buyers Directory 80th Annual Edition", 1993, SCHNELL PUBLISHING CO
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
BELITZ H.-D.GROSCH W.: "Food Chemistry", SPRINGER
Attorney, Agent or Firm:
BROOIJMANS, Rob, Josephina, Wilhelmus (NL)
Download PDF:
Claims:
- 36 -

Claims

1. A laundry liquid composition comprising at least 50 % wt. water, an alkyl ether sulphate surfactant and an alcohol ethoxylate surfactant, wherein at least one of the alkyl ether sulphate and alcohol ethoxylate comprises at least 10% weight C16/18 alkyl chains and a dye.

2. A composition according to claim 1 , wherein the alcohol ethoxylate or the alkyl ether sulphate surfactant comprises at least 30% wt. of said surfactant respectively C18 alkyl groups.

3. A composition according to claim 1 or claim 2, wherein the composition is packaged in a plastic container and more preferably in a plastic container which is at least in part transparent and even more preferably wherein the container is a bottle.

4. A composition according to any preceding claim, wherein the amount of the alcohol ethoxylate surfactant comprising at least 10 wt.% of C16 and/or C18 alkyl groups is from 1.0 to 40 wt.%, preferably from 2.0 to 30 wt. %, more preferably from 3.5 to 18 wt.% and even more preferably from 4.5 to 10 wt.%.

5. A composition according to any preceding claim, wherein the amount of the alkyl ether sulphate surfactant comprising at least 10 wt.% of C16 and/or C18 alkyl groups is from 1.0 to 40 wt.%, preferably from 2.0 to 30 wt. %, more preferably from 3.5 to 18 wt.% and even more preferably from 4.5 to 10 wt.%.

6. A composition according to any preceding claim, wherein the alkyl chain of the C16/18 surfactant whether an alcohol ethoxylate or an alkyl ether sulphate is preferably obtained from a renewable source and more preferably from a triglyceride.

7. A composition according to any preceding claim, wherein the alcohol ethoxylate surfactant, alkyl ether sulphate surfactant or both have an average degree of ethoxylation of from 5 to 20 and preferably of from 5 to 12.

8. A composition according to any preceding claim, wherein the amount of surfactant comprising C12 alkyl groups or alkyl groups with a lower carbon number is at most 50 wt. %, preferably at most 20 wt. %, still even more preferably at most 10 wt. % and still even more preferably at most 4 wt. %, based on the total weight of the surfactant. - 37 - A composition according to any preceding claim, wherein the dye comprises a dye having an anthraquinone, mono-azo, bis-azo, xanthene, phthalocyanine or phenazine chromophore, preferably an anthraquinone or mono-azo chromophore. A composition according to any preceding claim, wherein the total amount of dye is from 0.00001 to 0.1 wt. % and preferably from 0.0001 to 0.05 wt. %. A composition according to any preceding claim, wherein the dye comprises a shading dye suitable for providing a blue or violet shade to white fabric during a laundry wash, and wherein the dye preferably comprises acid violet 50, solvent violet 13, disperse violet 27, disperse violet 28, an alkoxylated thiophene, or a cationic phenazine. A composition according to claim 10, wherein the shading dye comprises a shading dye of the following structure: wherein Ri and R2 are independently selected from polyoxyalkylene chains having 2 or more repeating units and preferably having 2 to 20 repeating units, preferably wherein the polyoxyalkylene chains include ethylene oxide and more preferably are polyethoxylates. A composition according to any preceding claim, wherein the perfume comprises at least one compound from alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1- dimethylethyl)-, 1 -acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2- phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate. A composition according to any preceding claim, wherein the amount of perfume is from 0.001 to 3.0 wt. %, preferably from 0.01 to 2.0 wt. % and more preferably from 0.1 to 1.0 wt.%. A composition according to any preceding claim, wherein the amount of phosphate builder is less than 1 wt.%

Description:
COMPOSITION

Field of the invention

The present invention relates to laundry liquid compositions with dye that provide unique stain-spread reduction characteristics and have a reduced environmental impact.

Background of the invention

The present invention relates to improved laundry liquid compositions.

Liquid laundry compositions generally contain a variety of actives. One of the most prevalent cleaning actives are surfactants. Surfactants are important for lowering water-tension to ensure the wash-liquor (which is a suitable dilution of the neat liquid laundry composition with water) gets into more effective contact with the surface of the textiles to be cleaned. Surfactants also play a role in suspending/dissolving soils more easily from the textile surfaces into the wash liquor.

Dyes also are present in many liquid laundry compositions. Dyes are used for a variety of purposes. One purpose is to optionally color (e.g. shade) the textiles to be cleaned, as is the case with laundry shading dyes. Many textiles are white but over the lifetime of these textiles the whiteness fades or yellows reducing the aesthetic value of the textile. To counteract this laundry composition manufacturers may incorporate shading dyes into their products. The purpose of the shading dye is typically to counteract the fading or yellowing of white textiles by providing a shade, preferably a blue or violet shade, to the laundered fabrics. Dyes can also be present in the neat laundry liquid to provide an appealing color for the consumer. Perfumes may also be present in the neat laundry compositions to provide an appealing color/smell to the consumers.

Use of liquid laundry compositions have one big drawback which is accidental spilling. Accidental spilling of a neat liquid laundry composition can lead to stains on surfaces by virtue of dye being present. This is problematic for clothing worn during the performance of a laundry wash especially for white or lightly colored nylon elastane textiles (such as white shirts). Indeed, such stains may in some case not be completely removed by rinsing under tap water. Besides stains spills on clothing can also lead to a noticeable detergent perfume smell. One practical factor in preventing worse stains is the time it takes before a spilled drop is absorbed in the textile. If a drop with dye is absorbed into the textile very fast than less time is available to wipe-off/soak-off the drop to reduce the amount of staining and detergent perfume smell. Thus, laundry liquids of which drop-spills absorb slower into the textile cause less staining/smell upon accidental spills in practice and are beneficial for consumers in daily use.

Solving/reducing the above problem is made more complicated by the increasing need for laundry compositions to have a reduced environmental impact. Hence any solution to such problems must involve an active which has (or can be made with) a reduced environmental impact. Furthermore, consumers nowadays desire short ingredient lists.

The object of the invention is thus to provide a liquid laundry composition with dye where accidental spills on textile, in particular nylon elastane textile, are slower to absorb into the spilled area and wherein any active involved in addressing the problem has (or can be made with) a reduced environmental impact and wherein preferably the active involved has a further recognized detergent function so it can replace (in part or whole) another liquid laundry composition active.

Summary of the invention

The above object is achieved by a laundry liquid composition comprising at least 50 % wt. water, an alkyl ether sulphate surfactant and an alcohol ethoxylate surfactant, wherein at least one of the alkyl ether sulphate and alcohol ethoxylate comprises at least 10% weight C16/18 alkyl chains and a dye, and preferably a perfume.

It was surprisingly found that use of at least one of the alkyl ether sulphate and alcohol ethoxylate comprising at least 10% weight C16/18 alkyl chains provides drops, which when spilled onto nylon elastane textile take longer to be absorbed into the nylon elastane textile surface when compared to other types of surfactant. Hence it provides more time to prevent absorption of much of the spilled drop by quickly wipe/soaking off the excess which is not yet absorbed into the textile. This is the more surprising as an increase in the time before which a drop is fully absorbed into the textile could already be achieved by use of the inventive surfactants at a low level of 5 wt.%. Furthermore, this finding was the more surprising since it could be achieved with the inventive surfactants which can be made from bio-based sources, such as plant-based triglyceride fats and which can be used to partially or wholly replace conventionally used surfactants.

Detailed description of the invention

Definitions

Weight percentage (wt.%) is based on the total weight of the detergent composition, unless otherwise stated or made apparent from the context. It will be appreciated that the total weight amount of ingredients will not exceed 100 wt.%. Amounts of wt.% enzymes in the aqueous liquid laundry composition refer to wt.% of active protein levels, unless otherwise indicated. Whenever an amount or concentration of a component is quantified herein, unless indicated otherwise, the quantified amount or quantified concentration relates to said component per se, even though it may be common practice to add such a component in the form of a solution or of a blend with one or more other ingredients. It is furthermore to be understood that the verb "to comprise" and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. Finally, reference to an element by the indefinite article "a" or "an" does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article "a" or "an" thus usually means "at least one". Unless otherwise specified all measurements are taken at standard conditions. Whenever a parameter, such as a concentration or a ratio, is said to be less than a certain upper limit it should be understood that in the absence of a specified lower limit the lower limit for said parameter is 0.

C16/C18 Alcohol Ethoxylate Surfactant

The C16/18 alcohol ethoxylate is of the formula:

Ri-O-(CH 2 CH 2 O) q -H where Ri is selected from saturated, monounsaturated and polyunsaturated linear C16 and C18 alkyl chains and where q is from 4 to 20, preferably 5 to 14, more preferably 8 to 12. The mono-unsaturation is preferably in the 9 position of the chain, where the carbons are counted from the ethoxylate bound chain end. The double bond may be in a cis or trans configuration (oleyl or elaidyl), preferably cis. The cis or trans alcohol ethoxylate CH 3 (CH 2 )7-CH=CH-(CH 2 ) 8 O-(OCH 2 CH 2 )nOH, is described as C18:1(A9) alcohol ethoxylate. This follows the nomenclature CX.YfAZ) where X is the number of carbons in the chain, Y is the number of double bonds and AZ the position of the double bond on the chain where the carbons are counted from the OH bound chain end.

Preferably, Ri is selected from saturated C16, saturated C18 or monounsaturated C18. More preferably, the saturated C16 alcohol ethoxylate is at least 90 wt.% of the total C16 linear alcohol ethoxylate. As regards the C18 alcohol ethoxylate content, it is preferred that the predominant C18 moiety is C18: 1 , more preferably C18:1(A9). The proportion of monounsaturated C18 alcohol ethoxylate constitutes at least 50 wt.% of the total C16 and C18 alcohol ethoxylate surfactant. Preferably, the proportion of monounsaturated C18 constitutes at least 40 wt. %, more preferably at least 60 wt.%, even more preferably at least 65 wt.% and still even more preferably at least 75 wt.% of the total C16 and C18 alcohol ethoxylate surfactant.

Preferably the C16 alcohol ethoxylate surfactant comprises at least 2 wt.% and more preferably at least 4 wt.% of the total C16 and C18 alcohol ethoxylate surfactant.

Preferably, the saturated C18 alcohol ethoxylate surfactant comprises up to 20 wt.% and more preferably, up to 11 wt.% of the total C16 and C18 alcohol ethoxylate surfactant. Preferably the saturated C18 content is at least 2 wt.% of the total C16 and C18 alcohol ethoxylate content.

Alcohol ethoxylates are discussed in the Non-ionic Surfactants: Organic Chemistry edited by Nico M. van Os (Marcel Dekker 1998), Surfactant Science Series published by CRC press. Alcohol ethoxylates are commonly referred to as alkyl ethoxylates.

Preferably the weight fraction of C18 alcohol ethoxylate / C16 alcohol ethoxylate is greater than 1 , more preferably from 2 to 100, most preferably 3 to 30. 018 alcohol ethoxylate’ is the sum of all the C18 fractions in the alcohol ethoxylate and 016 alcohol ethoxylate’ is the sum of all the C16 fractions in the alcohol ethoxylate.

Linear saturated or monounsaturated C20 and C22 alcohol ethoxylate may also be present. Preferably the weight fraction of sum of 018 alcohol ethoxylate’ 1020 and C22 alcohol ethoxylate’ is greater than 10.

Preferably the C16/18 alcohol ethoxylate contains less than 15 wt.%, more preferably less than 8 wt.% and most preferably less than 5 wt.% of the polyunsaturated alcohol ethoxylates. A polyunsaturated alcohol ethoxylate contains a hydrocarbon chains with two or more double bonds. C16/18 alcohol ethoxylates may be synthesized by ethoxylation of an alkyl alcohol, via the reaction:

R1-OH + q ethylene oxide - Ri-O-(CH2CH2O) q -H

The alkyl alcohol may be produced by transesterification of the triglyceride to a methyl ester, followed by distillation and hydrogenation to the alcohol. The process is discussed in Journal of the American Oil Chemists' Society. 61 (2): 343-348 by Kreutzer, II. R. Preferred alkyl alcohol for the reaction is oleyl alcohol with an iodine value of 60 to 80, preferably 70 to 75, such alcohol are available from BASF, Cognis, Ecogreen. Production of the fatty alcohol is further discussed in Sanchez M.A. et al J.Chem.Technol.Biotechnol 2017; 92:27-92 and and Ullmann's Enzyclopaedie der technischen Chemie, Verlag Chemie, Weinheim, 4th Edition, Vol. 11 , pages 436 et seq.

Preferably the ethoxylation reactions are base catalyzed using NaOH, KOH, or NaOCHs. Even more preferred are catalyst which provide narrower ethoxy distribution than NaOH, KOH, or NaOCHs. Preferably these narrower distribution catalysts involve a Group II base such as Ba dodecanoate; Group II metal alkoxides; Group II hyrodrotalcite as described in W02007/147866. Lanthanides may also be used. Such narrower distribution alcohol ethoxylates are available from Azo Nobel and Sasol.

Preferably the narrow ethoxy distribution has greater than 70 wt.%, more preferably greater than 80 wt.% of the alcohol ethoxylate R-O-(CH2CH2O) q -H in the range R-O- (CH2CH2O) X -H to R-O-(CH2CH2O) y -H where q is the mole average degree of ethoxylation and x and y are absolute numbers, where x = q-q/2 and y = q+q/2. For example, where q= 10, greater than 70 wt.% of the alcohol ethoxylate should consist of ethoxylate with 5, 6, 7, 8, 9 10, 11 , 12, 13, 14 and 15 ethoxylate groups.

C16 and/or C18 Alcohol ether sulfates

Preferably, the composition comprises C16 and C18 ether sulfate of the formula: R2-O-(CH 2 CH 2 O)pSO3H where R2 is selected from saturated, monounsaturated and polyunsaturated linear C16 and C18 alkyl chains and where p is from 3 to 20, preferably 4 to 12, more preferably 5 to 10. The mono-unsaturation is preferably in the 9 position of the chain, where the carbons are counted from the ethoxylate bound chain end. The double bond may be in a cis or trans configuration (oleyl or elaidyl) but is preferably cis. The cis or trans ether sulfate CH 3 (CH2)7-CH=CH-(CH2)8O-(CH2CH2O)nSO 3 H, is described as C18:1(A9) ether sulfate. This follows the nomenclature CX.YfAZ) where X is the number of carbons in the chain, Y is the number of double bonds and AZ the position of the double bond on the chain where the carbons are counted from the OH bound chain end.

Preferably, R2 is selected from saturated C16, saturated C18 and monounsaturated C18. More preferably, the saturated C16 is at least 90 wt.% of the C16 content linear alkyl. As regards the C18 content, it is preferred that the predominant C18 moiety is C18:1 , more preferably C18:1 (A9). Preferably, the proportion of monounsaturated C18 constitutes at least 50 wt.% of the total C16 and C18 alkyl ether sulphate surfactant.

More preferably the proportion of monounsaturated C18 constitutes at least 40 wt. %, more preferably at least 60 wt.%, even more preferably at least 65 wt.% and still even more preferably at least 75 wt.% of the total C16 and C18 alkyl ether sulphate surfactant.

Preferably the C16 alkyl ether sulphate surfactant comprises at least 2 wt.% and more preferably at least 4 wt.% of the total C16 and C18 alkyl ether sulphate surfactant.

Preferably, the saturated C18 alkyl ether sulphate surfactant comprises up to 20 wt.% and more preferably up to11 wt.% of the total C16 and C18 alkyl ether sulphate surfactant. Preferably the saturated C18 content is at least 2 wt.% of the total C16 and C18 alkyl ether sulphate content.

Where the composition comprises a mixture of the C16/18 sourced material for the alkyl ether sulphate as well as the more traditional C12 alkyl chain length materials it is preferred that the total C16/18 alkyl ether sulphate content should comprise at least 10 wt.% of the total alkyl ether sulphate, more preferably at least 50 wt.%, even more preferably at least 70 wt.%, especially preferably at least 90 wt.% and most preferably at least 95 wt.% of alkyl ether sulphate in the composition.

Ether sulfates are discussed in the Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1995), Surfactant Science Series published by CRC press.

Linear saturated or monounsaturated C20 and C22 ether sulfate may also be present. Preferably the weight fraction of sum of 018 ether sulfate’ 1 20 and C22 ether sulfate’ is greater than 10. Preferably the C16 and C18 ether sulfate contains less than 15 wt.%, more preferably less than 8 wt.%, even more preferably less than 4 wt.% and most preferably less than 2 wt.% of the polyunsaturated ether sulfate. A polyunsaturated ether sulfate contains a hydrocarbon chains with two or more double bonds.

Ether sulfate may be synthesized by the sulfonation of the corresponding alcohol ethoxylate. The alcohol ethoxylate may be produced by ethoxylation of an alkyl alcohol. The alkyl alcohol used to produce the alcohol ethoxylate may be produced by transesterification of the triglyceride to a methyl ester, followed by distillation and hydrogenation to the alcohol. The process is discussed in Journal of the American Oil Chemists' Society. 61 (2): 343-348 by Kreutzer, II. R. Preferred alkyl alcohol for the reaction is oleyl alcohol with an iodine value of 60 to 80, preferably 70 to 75, such alcohol is available from BASF, Cognis, Ecogreen. The degree of polyunsaturation in the surfactant may be controlled by hydrogenation of the triglyceride as described in: A Practical Guide to Vegetable Oil Processing (Gupta M.K. Academic Press 2017). Distillation and other purification techniques may be used.

Ethoxylation reactions are described in Non-lonic Surfactant Organic Chemistry (N. M. van Os ed), Surfactant Science Series Volume 72, CRC Press.

Preferably the ethoxylation reactions are base catalyzed using NaOH, KOH, or NaOCHs. Even more preferred are catalyst which provide narrower ethoxy distribution than NaOH, KOH, or NaOCHs. Preferably these narrower distribution catalysts involve a Group II base such as Ba dodecanoate; Group II metal alkoxides; Group II hyrodrotalcite as described in W02007/147866. Lanthanides may also be used. Such narrower distribution alcohol ethoxylates are available from Azo Nobel and Sasol.

Preferably the narrow ethoxy distribution has greater than 70 wt.%, more preferably greater than 80 wt.% of the ether sulfate R2-O-(CH2CH2O) P SO3H in the range R2-O- (CH2CH2O)ZSO3H to R2-O-(CH2CH2O)WSO3H where q is the mole average degree of ethoxylation and x and y are absolute numbers, where z = p-p/2 and w = p+p/2. For example, when p=6 than greater than 70 wt.% of the ether sulfate should consist of ether sulfate with 3, 4, 5, 6, 7, 8, 9 ethoxylate groups.

The ether sulfate surfactant weight is calculated as the protonated form: R2-O- (CH2CH2O) P SO3H. In the formulation it will be present as the ionic form R2-O- (CH2CH2O)pSO3~ with a corresponding counter ion, preferred counter ions are group I and II metals, amines, most preferably sodium. Source of alkyl chains

The alkyl chain of C16/18 surfactant whether an alcohol ethoxylate or an alkyl ether sulphate is preferably obtained from a renewable source, preferably from a triglyceride. A renewable source is one where the material is produced by natural ecological cycle of a living species, preferably by a plant, algae, fungi, yeast or bacteria, more preferably plants, algae or yeasts.

Preferred plant sources of oils are rapeseed, sunflower, maze, soy, cottonseed, olive oil and trees. The oil from trees is called tall oil. Most preferably Palm and Rapeseed oils are the source.

Algal oils are discussed in Energies 2019, 12, 1920 Algal Biofuels: Current Status and Key Challenges by Saad M.G. et al. A process for the production of triglycerides from biomass using yeasts is described in Energy Environ. Sci. , 2019,12, 2717 A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents by Masri M.A. et al.

Non edible plant oils may be used and are preferably selected from the fruit and seeds of Jatropha curcas, Calophyllum inophyllum, Sterculia feotida, Madhuca indica (mahua), Pongamia glabra (koroch seed), Linseed, Pongamia pinnata (karanja), Hevea brasiliensis (Rubber seed), Azadirachta indica (neem), Camelina sativa, Lesquerella fendleri, Nicotiana tabacum (tobacco), Deccan hemp, Ricinus communis L.(castor), Simmondsia chinensis (Jojoba), Eruca sativa. L., Cerbera odollam (Sea mango), Coriander (Coriandrum sativum L.), Croton megalocarpus, Pilu, Crambe, syringa, Scheleichera triguga (kusum), Stillingia, Shorea robusta (sal), Terminalia belerica roxb, Cuphea, Camellia, Champaca, Simarouba glauca, Garcinia indica, Rice bran, Hingan (balanites), Desert date, Cardoon, Asclepias syriaca (Milkweed), Guizotia abyssinica, Radish Ethiopian mustard, Syagrus, Tung, Idesia polycarpa var. vestita, Alagae, Argemone mexicana L. (Mexican prickly poppy, Putranjiva roxburghii (Lucky bean tree), Sapindus mukorossi (Soapnut), M. azedarach (syringe), Thevettia peruviana (yellow oleander), Copaiba, Milk bush, Laurel, Cumaru, Andiroba, Piqui, B. napus, Zanthoxylum bungeanum.

Further non-ionic

Preferably, the composition comprises a non-ionic surfactant in addition to the surfactants described above. Preferably the composition comprises from 5 to 20% wt. non-ionic surfactant based on the total weight of composition including the C16/18 non- ionic surfactants and any other nonionic surfactants, for example, polyoxyalkylene compounds, i.e. the reaction product of alkylene oxides (such as ethylene oxide or propylene oxide or mixtures thereof) with starter molecules having a hydrophobic group and a reactive hydrogen atom which is reactive with the alkylene oxide. Such starter molecules include alcohols, acids, amides or alkyl phenols. Where the starter molecule is an alcohol, the reaction product is known as an alcohol alkoxylate. The polyoxyalkylene compounds can have a variety of block and heteric (random) structures. For example, they can comprise a single block of alkylene oxide, or they can be diblock alkoxylates or triblock alkoxylates. Within the block structures, the blocks can be all ethylene oxide or all propylene oxide, or the blocks can contain a heteric mixture of alkylene oxides. Examples of such materials include Cs to C22 alkyl phenol ethoxylates with an average of from 5 to 25 moles of ethylene oxide per mole of alkyl phenol; and aliphatic alcohol ethoxylates such as Cs to Cis primary or secondary linear or branched alcohol ethoxylates with an average of from 2 to 40 moles of ethylene oxide per mole of alcohol.

A preferred class of additional nonionic surfactant for use in the invention includes aliphatic C12 to C15 primary linear alcohol ethoxylates with an average of from 3 to 20, more preferably from 5 to 10 moles of ethylene oxide per mole of alcohol.

The alcohol ethoxylate may be provided in a single raw material component or by way of a mixture of components.

Where the composition comprises a mixture of the C16/18 sourced material for the alcohol ethoxylate as well as the more traditional C12 alkyl chain length materials it is preferred that the total C16/18 alcohol ethoxylate content should comprise at least 10% wt. total alcohol ethoxylate, more preferably at least 50%, even more preferably at least 70%, especially preferably at least 90% and most preferably at least 95% of the alcohol ethoxylate in the composition.

A further class of non-ionic surfactants include the alkyl poly glycosides. Rhamnolipids are another preferred additional surfactant.

Preferably, the weight ratio of total non-ionic surfactant to total alkyl ether sulphate surfactant (wt. non-ionic I wt. alkyl ether sulphate) is from 0.5 to 2, preferably from 0.7 to 1.5, most preferably 0.9 to 1.1. Preferably, the weight ratio of total C16/18 non-ionic surfactant, to total alkyl ether sulphate surfactant (wt. non-ionic I wt. alkyl ether sulphate) is from 0.5 to 2, preferably from 0.7 to 1.5, most preferably 0.9 to 1.1.

Preferably, the weight ratio of total non-ionic surfactant to total C16/18 alkyl ether sulphate surfactant (wt. non-ionic I wt. alkyl ether sulphate) is from 0.5 to 2, preferably from 0.7 to 1.5, most preferably 0.9 to 1.1.

Preferably, the weight ratio of total C18:1 non-ionic surfactant to total C18:1 alkyl ether sulphate surfactant (wt. non-ionic I wt. alkyl ether sulphate) is from 0.5 to 2, preferably from 0.7 to 1.5, most preferably 0.9 to 1.1.

Preferably, the weight ratio of total non-ionic surfactant to linear alkyl benzene sulphonate, where present, (wt. non-ionic/ wt. linear alkyl benzene sulphonate) is from 0.1 to 2, preferably 0.3 to 1, most preferably 0.45 to 0.85.

Preferably, the weight ratio of total C16/18 non-ionic surfactant to linear alkyl benzene sulphonate, where present, (wt. non-ionic/ wt. linear alkyl benzene sulphonate) is from 0.1 to 2, preferably 0.3 to 1, most preferably 0.45 to 0.85.

Additional anionic surfactants

The composition preferably comprises an anionic surfactant in addition to any C16/18 alkyl ether sulphate as described above. Non-soap anionic surfactants for use in the invention are typically salts of organic sulfates and sulfonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term “alkyl” being used to include the alkyl portion of higher acyl radicals. Examples of such materials include alkyl sulfates, C12-C14 alkyl ether sulfates, alkaryl sulfonates, alpha-olefin sulfonates and mixtures thereof. The alkyl radicals preferably contain from 10 to 18 carbon atoms and may be unsaturated. The C12-C14 alkyl ether sulfates may contain from one to ten ethylene oxide or propylene oxide units per molecule, and preferably contain one to three ethylene oxide units per molecule. Alkyl ether sulfates are also called alcohol ether sulfates. Anionic surfactants are described in anionic surfactants, volume 56 of the Surfactant Science Seried (H.W. Stache editor) Dekker 1995.

Commonly used in laundry liquid compositions are C12-C14 alkyl ether sulfates having a straight or branched chain alkyl group having 12 to 14 carbon atoms and containing an average of 1 to 3EO units per molecule. A preferred example is sodium lauryl ether sulfate (SLES) in which the predominantly C12 lauryl alkyl group has been ethoxylated with an average of 3EO units per molecule.

The C12-C14 alkyl ether sulphate may be provided in a single raw material component or by way of a mixture of components.

The counterion for any of the anionic surfactants used in the compositions described herein is generally an alkali metal such as sodium or potassium; or an ammoniacal counterion such as ammonium, monoethanolamine, (MEA) diethanolamine (DEA) or triethanolamine (TEA). Mixtures of such counterions may also be employed.

The compositions according to the invention may preferably include alkylbenzene sulfonates, particularly linear alkylbenzene sulfonates (LAS) with an alkyl chain length of from 10 to 18 carbon atoms. Commercial LAS is a mixture of closely related isomers and homologues alkyl chain homologues, each containing an aromatic ring sulfonated at the “para” position and attached to a linear alkyl chain at any position except the terminal carbons. The linear alkyl chain typically has a chain length of from 11 to 15 carbon atoms, with the predominant materials having a chain length of about C12. Each alkyl chain homologue consists of a mixture of all the possible sulfophenyl isomers except for the 1 -phenyl isomer. LAS is normally formulated into compositions in acid (i.e. HLAS) form and then at least partially neutralized in-situ.

Some alkyl sulfate surfactant may be used, such as non-ethoxylated primary and secondary alkyl sulphates with an alkyl chain length of from 10 to 18.

Mixtures of any of the above described materials may also be used.

Preferably, linear alkyl benzene sulphonate surfactant is present at from 1 to 20% wt., more preferably from 2 to 15% wt. of the composition, most preferably 8 to 12 wt.%.

Weight ratios are calculated for the protonated form of the surfactant.

Preferably, the composition comprises C16/18 alcohol ethoxylate and C16/18 alkyl ether sulphate.

Preferably, the composition has a pH of 5 to 10, more preferably 6 to 8, most preferably 6.1 to 7.0. Amounts of surfactant

Preferably the composition of the invention comprises a total surfactant amount of from 0.5 to 70 wt.%, more preferably of from 1.0 to 60 wt. % and even more preferably of from 3.0 to 50 wt.% and still even more preferably of from 4 to 30 wt.%.

The amount of the alcohol ethoxylate surfactant comprising at least 10 wt.% of C16 and/or C18 alkyl groups is in order of increasing preference: from 1.0 to 40 wt. %, from

1.5 to 35 wt. %, from 2.0 to 30 wt. %, from 2.5 to 25 wt. %, from 3.0 to 20 wt. %, from

3.5 to 18 wt. %, from 4.0 to 15 wt.% and most advantageously from 4.5 to 10 wt.%.

The amount of the alkyl ether sulphate surfactant comprising at least 10 wt.% of C16 and/or C18 alkyl groups is in order of increasing preference: from 1.0 to 40 wt. %, from

1.5 to 35 wt. %, from 2.0 to 30 wt. %, from 2.5 to 25 wt. %, from 3.0 to 20 wt. %, from

3.5 to 18 wt. %, from 4.0 to 15 wt.% and most advantageously from 4.5 to 10 wt.%.

It is advantageous that the selection and amount of surfactant is such that the composition and the diluted mixture are isotropic in nature.

Preferably the laundry composition according to the invention comprises an amount of surfactant comprising C12 alkyl groups or alkyl groups with a lower carbon number of (in increasing order of preference) at most 50 wt. %, at most 40 wt. %, at most 30 wt. %, at most 20 wt. %, at most 10 wt. %, at most 5 wt. %, at most 4 wt. %, at most 3 wt. %, at most 2 wt.% and still even more preferably at most 1 wt. %, based on the total weight of the surfactant.

In alternative preferred embodiment the amount of C16/18 alcohol ethoxylate and/or C16/18 alkyl ether sulphate as combined from at least 80 wt.%, more preferably at least 95 wt. % of the total weight of the surfactants present in the laundry composition.

Dye

Dyes are described in Industrial Dyes edited by K. Hunger 2003 Wiley-VCH ISBN 3-527 -30426-6. Dyes for use in the current invention are selected from cationic, anionic and non-ionic dyes and preferably are selected from anionic and non-ionic dyes. Anionic dyes are negatively charged in an aqueous medium at pH 7. Examples of anionic dyes are found in the classes of acid and direct dyes in the Color Index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists). Anionic dyes preferably contain at least one sulphonate or carboxylate groups. Non-ionic dyes are uncharged in an aqueous medium at pH 7, examples are found in the class of disperse dyes in the Color Index.

The dye may be any color, preferable the dye is blue, violet, green or red. Most preferably the dye is blue or violet. The dyes may be alkoxylated. Alkoxylated dyes are preferably of the following generic form: Dye-NRiR2. The NR1R2 group is attached to an aromatic ring of the dye. R1 and R2 are independently selected from polyoxyalkylene chains having 2 or more repeating units and preferably having 2 to 20 repeating units. Examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.

A preferred polyoxyalkylene chain is [(CH2CR3HO) x (CH2CR4HO) y R5) in which x+y

< 5 wherein y > 1 and z = 0 to 5, R3 is selected from: H; CH3; CH2O(CH2CH2O) Z H and mixtures thereof; R4 is selected from: H; CH2O(CH2CH2O) Z H and mixtures thereof; and, R5 is selected from: H and CH3. A preferred alkoxylated dye for use in the invention is:

Preferably the dye is selected from acid dyes; disperse dyes and alkoxylated dyes. Most preferably the dye is a non-ionic dye. Preferably the dye is selected from those having: anthraquinone; mono-azo; bis-azo; xanthene; phthalocyanine; and, phenazine chromophores. More preferably the dye is selected from those having: phenazine, anthraquinone and, mono-azo chromophores.

Preferably the dye is selected from: acid blue 80, acid blue 62, acid violet 43, acid green 25, direct blue 86, acid blue 59, acid blue 98, direct violet 9, direct violet 99, direct violet 35, direct violet 51 , acid violet 50, acid yellow 3, acid red 94, acid red 51 , acid red 95, acid red 92, acid red 98, acid red 87, acid yellow 73, acid red 50, 5 acid violet 9, acid red 52, food black 1 , food black 2, acid red 163, acid black 1 , acid orange 24, acid yellow 23, acid yellow 40, acid yellow 11 , acid red 180, acid red 155, acid red 1 , acid red 33, acid red 41, acid red 19, acid orange 10, acid red 27, acid red 26, acid orange 20, acid orange 6, sulphonated Al and Zn phthalocyanines, solvent violet 13, disperse violet 26, disperse violet 28, solvent 10 green 3, solvent blue 63, disperse blue 56, disperse violet 27, solvent yellow 33, disperse blue 79: 1.

The dye is preferably a shading dye for imparting a perception of whiteness to a laundry textile, preferably acid violet 50, solvent violet 13, disperse violet 27, disperse violet 28, an alkoxylated thiophene, or a cationic phenazine as described in WO 2009/141172 and WO 2009/141173. When a shading dye is present, preferably a further green dye is present to shift the color from violet to blue-green. The dye may be covalently bound to polymeric species. Leuco based shading dyes as described in WO2020/023812, most preferably a triphenyl methane leuco colourant are contemplated as well. Such leuco dyes are included by the term shading dyes, although preferably the shading dyes according to the invention are non-leuco shading dyes.

A combination of dyes may be used.

Shading dyes provide a shade to white fabric and preferably provide a blue or violet shade to white fabric. In this regard the shading dye gives a blue or violet color to a white cloth with a hue angle of 240 to 330, more preferably 260 to 320, most preferably 265 to 300. The white cloth used is bleached non-mercerised woven cotton sheeting. Preferably a 10 cm by 10 cm piece of white bleached non-mercerised woven cotton cloth is agitated in an aqueous solution (6° French Hard water, liquor 298K: cloth 30:1) 2g/L of a base detergent (10 wt.% linear alkyl benzene sulfonate, 5 wt.% primary alcohol ethoxylate (C12-15, with 7 moles of ethoxy groups), pH=8) for 30 minutes at room temperature. The cloths are removed, rinsed and tumble dried. The experiment is repeated with and without the addition of shading dye. The color of the cloth is measured using a reflectometer and expressed as the CIE L*a*b* values. The experiment was repeated with the addition of 0.001 wt.% of the dye to the formulation.

The total color added to the cloth was calculated as the AE value, such that AE = (AL 2 + Aa 2 + Ab 2 ) 05 where AL = L(control)-L(dye); Aa = a(control)-a(dye); Ab = b(control)-b(dye) The actual color of the cloth is calculated as the hue angle, which for the current range of colors is given by: Hue angle = 270+180/TT X atan(-Aa/Ab). A hue angle of 360/0 is red, 270 is blue and 180 is green.

A shading dye according to the invention is a shading dye which means it is able to deposit onto textile during domestic wash conditions in the presence of a wash liquor comprising surfactant. This may be assessed using the above test, where a shading dye will give a non-zero AE value.

The total amount of dye in the laundry composition according to the invention preferably is from 0.00001 to 0.1 wt. % more preferably from 0.0001 to 0.05 wt. %.

Perfume

The composition preferably comprises a perfume. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.

Most advantageously, the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3- ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1 -dimethylethyl)-, 1-acetate; delta- damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; betacaryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate.

In perfume mixtures preferably 15 to 25 wt.% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred topnotes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. The International Fragrance Association has published a list of fragrance ingredients (perfumes) in 2011. (http://www.ifraorg.Org/en-us/ingredients#.U7Z4hPldWzk) The Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.

The preferred amount of perfume is from 0.001 to 3.0 wt. %, more preferably from 0.01 to 2.0 wt. % and even more preferably from 0.1 to 1 .0 wt.%.

It is preferred that a laundry detergent composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.

Liquid laundry detergents

The term “laundry detergent” in the context of this invention denotes formulated compositions intended for and capable of wetting and cleaning domestic laundry such as clothing, linens and other household textiles. The object of the invention is to provide a composition which on dilution is capable of forming a liquid laundry detergent composition and in the manner now described.

The term “linen” is often used to describe certain types of laundry items including bed sheets, pillow cases, towels, tablecloths, table napkins and uniforms. Textiles can include woven fabrics, non-woven fabrics, and knitted fabrics; and can include natural or synthetic fibres such as silk fibres, linen fibres, cotton fibres, polyester fibres, polyamide fibres such as nylon, acrylic fibres, acetate fibres, and blends thereof including cotton and polyester blends.

Examples of liquid laundry detergents include heavy-duty liquid laundry detergents for use in the wash cycle of automatic washing machines, as well as liquid fine wash and liquid colour care detergents such as those suitable for washing delicate garments (e.g. those made of silk or wool) either by hand or in the wash cycle of automatic washing machines.

The term “liquid” in the context of this invention denotes that a continuous phase or predominant part of the composition is liquid and that the composition is flowable at 15°C and above. Accordingly, the term “liquid” may encompass emulsions, suspensions, and compositions having flowable yet stiffer consistency, known as gels or pastes. The viscosity of the composition is preferably from 200 to about 10,000 mPa.s at 25°C at a shear rate of 21 sec 1 . This shear rate is the shear rate that is usually exerted on the liquid when poured from a bottle. Pourable liquid detergent compositions preferably have a viscosity of from 200 to 1 ,500 mPa.s, preferably from 200 to 700 mPa.s.

A composition according to the invention may suitably have an aqueous continuous phase. By “aqueous continuous phase” is meant a continuous phase which has water as its basis. Preferably, the composition comprises at least 60% wt. water and more preferably at least 70% wt. water.

A composition of the invention suitably comprises from 5 to 60% and preferably from 10 to 40% (by weight based on the total weight of the composition) of one or more detersive surfactants.

The term “detersive surfactant” in the context of this invention denotes a surfactant which provides a detersive (i.e. cleaning) effect to laundry treated as part of a domestic laundering process.

Non-soap anionic surfactants other than the C16/18 materials described above for use in the invention are typically salts of organic sulfates and sulfonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term “alkyl” being used to include the alkyl portion of higher acyl radicals. Examples of such materials include alkyl sulfates, alkyl ether sulfates, alkaryl sulfonates, alpha-olefin sulfonates and mixtures thereof. The alkyl radicals preferably contain from 10 to 18 carbon atoms and may be unsaturated. The alkyl ether sulfates may contain from one to ten ethylene oxide or propylene oxide units per molecule, and preferably contain one to three ethylene oxide units per molecule. The counterion for anionic surfactants is generally an alkali metal such as sodium or potassium; or an ammoniacal counterion such as monoethanolamine, (MEA) diethanolamine (DEA) or triethanolamine (TEA). Mixtures of such counterions may also be employed. Sodium and potassium are preferred.

The compositions according to the invention include alkylbenzene sulfonates, particularly linear alkylbenzene sulfonates (LAS) with an alkyl chain length of from 10 to 18 carbon atoms. Commercial LAS is a mixture of closely related isomers and homologues alkyl chain homologues, each containing an aromatic ring sulfonated at the “para” position and attached to a linear alkyl chain at any position except the terminal carbons. The linear alkyl chain typically has a chain length of from 11 to 15 carbon atoms, with the predominant materials having a chain length of about C12. Each alkyl chain homologue consists of a mixture of all the possible sulfophenyl isomers except for the 1 -phenyl isomer. LAS is normally formulated into compositions in acid (i.e. HLAS) form and then at least partially neutralized in-situ.

Some alkyl sulfate surfactant (PAS) may be used, such as non-ethoxylated primary and secondary alkyl sulphates with an alkyl chain length of from 10 to 18.

Mixtures of any of the above described materials may also be used.

Also commonly used in laundry liquid compositions are alkyl ether sulfates having a straight or branched chain alkyl group having 10 to 18, more preferably 12 to 14 carbon atoms and containing an average of 1 to 3EO units per molecule. A preferred example is sodium lauryl ether sulfate (SLES) in which the predominantly C12 lauryl alkyl group has been ethoxylated with an average of 3EO units per molecule.

The alkyl ether sulphate may be provided in a single raw material component or by way of a mixture of components.

Where the composition comprises a mixture of the C16/18 sourced material for the alkyl ether sulphate as well as the more traditional C12 alkyl chain length materials it is preferred that the C16/18 alkyl ether sulphate should comprise at least 10% wt. of the total alkyl ether sulphate, more preferably at least 50%, even more preferably at least 70%, especially preferably at least 90% and most preferably at least 95% of alkyl ether sulphate in the composition.

Preferably, the composition comprises from 5 to 20% wt. non-ionic surfactant based on the total weight of composition. Other than the C16/18 non-ionic surfactants described above, the composition may comprise other nonionic surfactants, for example, polyoxyalkylene compounds, i.e. the reaction product of alkylene oxides (such as ethylene oxide or propylene oxide or mixtures thereof) with starter molecules having a hydrophobic group and a reactive hydrogen atom which is reactive with the alkylene oxide. Such starter molecules include alcohols, acids, amides or alkyl phenols. Where the starter molecule is an alcohol, the reaction product is known as an alcohol alkoxylate. The polyoxyalkylene compounds can have a variety of block and heteric (random) structures. For example, they can comprise a single block of alkylene oxide, or they can be diblock alkoxylates or triblock alkoxylates. Within the block structures, the blocks can be all ethylene oxide or all propylene oxide, or the blocks can contain a heteric mixture of alkylene oxides. Examples of such materials include Cs to C22 alkyl phenol ethoxylates with an average of from 5 to 25 moles of ethylene oxide per mole of alkyl phenol; and aliphatic alcohol ethoxylates such as Cs to C primary or secondary linear or branched alcohol ethoxylates with an average of from 2 to 40 moles of ethylene oxide per mole of alcohol.

A preferred class of nonionic surfactant for use in the invention includes aliphatic Cs to C , more preferably C12 to C15 primary linear alcohol ethoxylates with an average of from 3 to 20, more preferably from 5 to 10 moles of ethylene oxide per mole of alcohol.

The alcohol ethoxylate may be provided in a single raw material component or by way of a mixture of components.

Where the composition comprises a mixture of the C16/18 sourced material for the alcohol ethoxylate as well as the more traditional C12 alkyl chain length materials it is preferred that the C16/18 alcohol ethoxylate should comprise at least 10% wt. total alcohol ethoxylate, more preferably at least 50%, even more preferably at least 70%, especially preferably at least 90% and most preferably at least 95% of the alcohol ethoxylate in the composition.

A further class of non-ionic surfactants include the alkyl poly glycosides and rhamnolipids.

Mixtures of any of the above described materials may also be used.

Preferably, the selection and amount of surfactant is such that the composition and the diluted mixture are isotropic in nature.

Anti-foam

The composition may also comprise an anti-foam but it is preferred that it does not. Anti-foam materials are well known in the art and include silicones and fatty acid.

Preferably, fatty acid soap is present at from 0 to 0.5% wt. of the composition (as measured with reference to the acid added to the composition), more preferably from 0 to 0.1% wt. and most preferably zero.

Suitable fatty acids in the context of this invention include aliphatic carboxylic acids of formula RCOOH, where R is a linear or branched alkyl or alkenyl chain containing from 6 to 24, more preferably 10 to 22, most preferably from 12 to 18 carbon atoms and 0 or 1 double bond. Preferred examples of such materials include saturated C12-18 fatty acids such as lauric acid, myristic acid, palmitic acid or stearic acid; and fatty acid mixtures in which 50 to 100% (by weight based on the total weight of the mixture) consists of saturated C12-18 fatty acids. Such mixtures may typically be derived from natural fats and/or optionally hydrogenated natural oils (such as coconut oil, palm kernel oil or tallow).

The fatty acids may be present in the form of their sodium, potassium or ammonium salts and/or in the form of soluble salts of organic bases, such as mono-, di- or triethanolamine.

Mixtures of any of the above described materials may also be used.

For formula accounting purposes, in the formulation, fatty acids and/or their salts (as defined above) are not included in the level of surfactant or in the level of builder.

Preferably, the composition comprises 0.2 to 10wt% of the composition cleaning polymer.

Preferably, the cleaning polymer is selected from alkoxylate polyethylene imines, polyester soil release polymers and co-polymer of PEG/vinyl acetate.

Preservative

Food preservatives are discussed In Food Chemistry (Belitz H.-D., Grosch W., Schieberle), 4th edition Springer.

The formulation contains a preservative or a mixture of preservatives, selected from benzoic acid and salts thereof, alkylesters of p-hydroxybenzoic acid and salts thereof, sorbic acid, diethyl pyrocarbonate, dimethyl pyrocarbonate, preferably benzoic acid and salts thereof, most preferably sodium benzoate. The preservative is present at 0.1 to 3wt%, preferably 0.3wt% to 1.5w%. Weights are calculated for the protonated form.

Polymeric cleaning boosters

Anti-redeposition polymers stabilise the soil in the wash solution thus preventing redeposition of the soil. Suitable soil release polymers for use in the invention include alkoxylated polyethyleneimines. Polyethyleneimines are materials composed of ethylene imine units -CH2CH2NH- and, where branched, the hydrogen on the nitrogen is replaced by another chain of ethylene imine units. Preferred alkoxylated polyethyleneimines for use in the invention have a polyethyleneimine backbone of about 300 to about 10000 weight average molecular weight (M w ). The polyethyleneimine backbone may be linear or branched. It may be branched to the extent that it is a dendrimer. The alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25 alkoxy groups per modification. A preferred material is ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30, preferably from 15 to 25 ethoxy groups per ethoxylated nitrogen atom in the polyethyleneimine backbone.

Mixtures of any of the above described materials may also be used.

A composition of the invention will preferably comprise from 0.025 to 8% wt. of one or more anti-redeposition polymers such as, for example, the alkoxylated polyethyleneimines which are described above.

Soil release polymers

Soil release polymers help to improve the detachment of soils from fabric by modifying the fabric surface during washing. The adsorption of a SRP over the fabric surface is promoted by an affinity between the chemical structure of the SRP and the target fibre. SRPs for use in the invention may include a variety of charged (e.g. anionic) as well as non-charged monomer units and structures may be linear, branched or star-shaped. The SRP structure may also include capping groups to control molecular weight or to alter polymer properties such as surface activity. The weight average molecular weight (M w ) of the SRP may suitably range from about 1000 to about 20,000 and preferably ranges from about 1500 to about 10,000.

SRPs for use in the invention may suitably be selected from copolyesters of dicarboxylic acids (for example adipic acid, phthalic acid or terephthalic acid), diols (for example ethylene glycol or propylene glycol) and polydiols (for example polyethylene glycol or polypropylene glycol). The copolyester may also include monomeric units substituted with anionic groups, such as for example sulfonated isophthaloyl units. Examples of such materials include oligomeric esters produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, dimethyl terephthalate (“DMT”), propylene glycol (“PG”) and poly(ethyleneglycol) (“PEG”); partly- and fully-anionic-end-capped oligomeric esters such as oligomers from ethylene glycol (“EG”), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; nonionic-capped block polyester oligomeric compounds such as those produced from DMT, Me-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na- dimethyl-5-sulfoisophthalate, and copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate. Other types of SRP for use in the invention include cellulosic derivatives such as hydroxyether cellulosic polymers, C1-C4 alkylcelluloses and C4 hydroxyalkyl celluloses; polymers with poly(vinyl ester) hydrophobic segments such as graft copolymers of poly(vinyl ester), for example Ci-Ce vinyl esters (such as poly(vinyl acetate)) grafted onto polyalkylene oxide backbones; poly(vinyl caprolactam) and related co-polymers with monomers such as vinyl pyrrolidone and/or dimethylaminoethyl methacrylate; and polyester-polyamide polymers prepared by condensing adipic acid, caprolactam, and polyethylene glycol.

Preferred SRPs for use in the invention include copolyesters formed by condensation of terephthalic acid ester and diol, preferably 1 ,2 propanediol, and further comprising an end cap formed from repeat units of alkylene oxide capped with an alkyl group. Examples of such materials have a structure corresponding to general formula (I): in which R 1 and R 2 independently of one another are X-(OC2H4)n-(OC3H6)m ; in which X is C1.4 alkyl and preferably methyl; n is a number from 12 to 120, preferably from 40 to 50; m is a number from 1 to 10, preferably from 1 to 7; and a is a number from 4 to 9.

Because they are averages, m, n and a are not necessarily whole numbers for the polymer in bulk.

Mixtures of any of the above described materials may also be used.

The overall level of SRP, when included, may range from 0.1 to 10%, depending on the level of polymer intended for use in the final diluted composition and which is desirably from 0.3 to 7%, more preferably from 0.5 to 5% (by weight based on the total weight of the diluted composition). Suitable soil release polymers are described in greater detail in II. S. Patent Nos. 5,574,179; 4,956,447; 4,861 ,512; 4,702,857, WO 2007/079850 and W02016/005271. If employed, soil release polymers will typically be incorporated into the liquid laundry detergent compositions herein in concentrations ranging from 0.01 percent to 10 percent, more preferably from 0.1 percent to 5 percent, by weight of the composition.

Hydrotropes

A composition of the invention may incorporate non-aqueous carriers such as hydrotropes, co-solvents and phase stabilizers. Such materials are typically low molecular weight, water-soluble or water-miscible organic liquids such as C1 to C5 monohydric alcohols (such as ethanol and n- or i-propanol); C2 to C6 diols (such as monopropylene glycol and dipropylene glycol); C3 to C9 triols (such as glycerol); polyethylene glycols having a weight average molecular weight (M w ) ranging from about 200 to 600; C1 to C3 alkanolamines such as mono-, di- and triethanolamines; and alkyl aryl sulfonates having up to 3 carbon atoms in the lower alkyl group (such as the sodium and potassium xylene, toluene, ethylbenzene and isopropyl benzene (cumene) sulfonates). Mixtures of any of the above described materials may also be used.

Non-aqueous carriers, when included, may be present in an amount ranging from 0.1 to 20%, preferably from 2 to 15%, and more preferably from 10 to 14% (by weight based on the total weight of the composition). The level of hydrotrope used is linked to the level of surfactant and it is desirable to use hydrotrope level to manage the viscosity in such compositions. The preferred hydrotropes are monopropylene glycol and glycerol.

Preferably the formulation contains less than 2 wt.% ethanol, more preferably less than 0.5 wt.% ethanol, preferably it is devoid of ethanol.

Cosurfactants

A composition of the invention may contain one or more cosurfactants (such as amphoteric (zwitterionic) and/or cationic surfactants) in addition to the non-soap anionic and/or nonionic detersive surfactants described above.

Specific cationic surfactants include C8 to C18 alkyl dimethyl ammonium halides and derivatives thereof in which one or two hydroxyethyl groups replace one or two of the methyl groups, and mixtures thereof. Cationic surfactant, when included, may be present in an amount ranging from 0.1 to 5% (by weight based on the total weight of the composition).

Specific amphoteric (zwitterionic) surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulfobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, having alkyl radicals containing from about 8 to about 22 carbon atoms preferably selected from C12, C14, C16 ,C18 and C18:1 , the term “alkyl” being used to include the alkyl portion of higher acyl radicals. Amphoteric (zwitterionic) surfactant, when included, may be present in an amount ranging from 0.1 to 5% (by weight based on the total weight of the composition).

Mixtures of any of the above described materials may also be used.

Builders and sequestrants

The detergent compositions may also optionally contain relatively low levels of organic detergent builder or sequestrant material. Examples include the alkali metal, citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates. Specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid. Other examples are DEQUEST™, organic phosphonate type sequestering agents sold by Monsanto and alkanehydroxy phosphonates.

Other suitable organic builders include the higher molecular weight polymers and copolymers known to have builder properties. For example, such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic acid copolymers and their salts, for example those sold by BASF under the name SOKALAN™. If utilized, the organic builder materials may comprise from about 0.5 percent to 20 wt percent, preferably from 1 wt percent to 10 wt percent, of the composition. The preferred builder level is less than 10 wt percent and preferably less than 5 wt percent of the composition. More preferably the liquid laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e. , contains less than 1 wt.% of phosphate. Most preferably the laundry detergent formulation is not built i.e. contain less than 1 wt.% of builder. A preferred sequestrant is HEDP (1 -Hydroxyethylidene -1 ,1 ,-diphosphonic acid), for example sold as Dequest 2010. Also suitable but less preferred as it gives inferior cleaning results is Dequest(R) 2066 (Diethylenetriamine penta(methylene phosphonic acid or Heptasodium DTPMP). Polymeric thickeners

A composition of the invention may comprise one or more polymeric thickeners.

Suitable polymeric thickeners for use in the invention include hydrophobically modified alkali swellable emulsion (HASE) copolymers. Exemplary HASE copolymers for use in the invention include linear or crosslinked copolymers that are prepared by the addition polymerization of a monomer mixture including at least one acidic vinyl monomer, such as (meth)acrylic acid (i.e. methacrylic acid and/or acrylic acid); and at least one associative monomer. The term “associative monomer” in the context of this invention denotes a monomer having an ethylenically unsaturated section (for addition polymerization with the other monomers in the mixture) and a hydrophobic section. A preferred type of associative monomer includes a polyoxyalkylene section between the ethylenically unsaturated section and the hydrophobic section. Preferred HASE copolymers for use in the invention include linear or crosslinked copolymers that are prepared by the addition polymerization of (meth)acrylic acid with (i) at least one associative monomer selected from linear or branched C8-C40 alkyl (preferably linear C12-C22 alkyl) polyethoxylated (meth)acrylates; and (ii) at least one further monomer selected from C1-C4 alkyl (meth) acrylates, polyacidic vinyl monomers (such as maleic acid, maleic anhydride and/or salts thereof) and mixtures thereof. The polyethoxylated portion of the associative monomer (i) generally comprises about 5 to about 100, preferably about 10 to about 80, and more preferably about 15 to about 60 oxyethylene repeating units.

Mixtures of any of the above described materials may also be used.

When included, a composition of the invention will preferably comprise from 0.01 to 5% wt. of the composition but depending on the amount intended for use in the final diluted product and which is desirably from 0.1 to 3% wt. by weight based on the total weight of the diluted composition.

Fluorescent agents

It may be advantageous to include fluorescer in the compositions. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.5 wt % the composition. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal ® CBS- X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra, Tinopal 5BMGX, and Blankophor® HRH, and Pyrazoline compounds, e.g. Blankophor SN.

Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino}stilbene-2-2' disulfonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5- triazin-2-yl)]amino} stilbene-2-2' disulfonate, and disodium 4,4'-bis(2- sulfoslyryl)biphenyl.

Most preferably the fluoescer is a di-styryl biphenyl compound, preferably sodium 2,2'- ([1 ,1'-biphenyl]-4,4'-diylbis(ethene-2,1-diyl))dibenzenesulfona te (CAS-No 27344-41-8).

External Structurants

Compositions of the invention may have their rheology further modified by use of one or more external structurants which form a structuring network within the composition. Examples of such materials include hydrogenated castor oil, microfibrous cellulose and citrus pulp fibre. The presence of an external structurant may provide shear thinning rheology and may also enable materials such as encapsulates and visual cues to be suspended stably in the liquid.

Enzymes

A composition of the invention may comprise an effective amount of one or more enzyme selected from the group comprising, pectate lyase, protease, amylase, cellulase, lipase, mannanase and mixtures thereof. The enzymes are preferably present with corresponding enzyme stabilizers.

Microcapsules

One type of microparticle suitable for use in the invention is a microcapsule. Microencapsulation may be defined as the process of surrounding or enveloping one substance within another substance on a very small scale, yielding capsules ranging from less than one micron to several hundred microns in size. The material that is encapsulated may be called the core, the active ingredient or agent, fill, payload, nucleus, or internal phase. The material encapsulating the core may be referred to as the coating, membrane, shell, or wall material.

Microcapsules typically have at least one generally spherical continuous shell surrounding the core. The shell may contain pores, vacancies or interstitial openings depending on the materials and encapsulation techniques employed. Multiple shells may be made of the same or different encapsulating materials, and may be arranged in strata of varying thicknesses around the core. Alternatively, the microcapsules may be asymmetrically and variably shaped with a quantity of smaller droplets of core material embedded throughout the microcapsule.

The shell may have a barrier function protecting the core material from the environment external to the microcapsule, but it may also act as a means of modulating the release of core materials such as fragrance. Thus, a shell may be water soluble or water swellable and fragrance release may be actuated in response to exposure of the microcapsules to a moist environment. Similarly, if a shell is temperature sensitive, a microcapsule might release fragrance in response to elevated temperatures. Microcapsules may also release fragrance in response to shear forces applied to the surface of the microcapsules.

A preferred type of polymeric microparticle suitable for use in the invention is a polymeric core-shell microcapsule in which at least one generally spherical continuous shell of polymeric material surrounds a core containing the fragrance formulation (f2). The shell will typically comprise at most 20% by weight based on the total weight of the microcapsule. The fragrance formulation (f2) will typically comprise from about 10 to about 60% and preferably from about 20 to about 40% by weight based on the total weight of the microcapsule. The amount of fragrance (f2) may be measured by taking a slurry of the microcapsules, extracting into ethanol and measuring by liquid chromatography.

Polymeric core-shell microcapsules for use in the invention may be prepared using methods known to those skilled in the art such as coacervation, interfacial polymerization, and polycondensation.

The process of coacervation typically involves encapsulation of a generally waterinsoluble core material by the precipitation of colloidal material(s) onto the surface of droplets of the material. Coacervation may be simple e.g. using one colloid such as gelatin, or complex where two or possibly more colloids of opposite charge, such as gelatin and gum arabic or gelatin and carboxymethyl cellulose, are used under carefully controlled conditions of pH, temperature and concentration.

Interfacial polymerisation typically proceeds with the formation of a fine dispersion of oil droplets (the oil droplets containing the core material) in an aqueous continuous phase. The dispersed droplets form the core of the future microcapsule and the dimensions of the dispersed droplets directly determine the size of the subsequent microcapsules. Microcapsule shell-forming materials (monomers or oligomers) are contained in both the dispersed phase (oil droplets) and the aqueous continuous phase and they react together at the phase interface to build a polymeric wall around the oil droplets thereby to encapsulate the droplets and form core-shell microcapsules. An example of a coreshell microcapsule produced by this method is a polyurea microcapsule with a shell formed by reaction of diisocyanates or polyisocyanates with diamines or polyamines.

Polycondensation involves forming a dispersion or emulsion of the core material in an aqueous solution of precondensate of polymeric materials under appropriate conditions of agitation to produce capsules of a desired size, and adjusting the reaction conditions to cause condensation of the precondensate by acid catalysis, resulting in the condensate separating from solution and surrounding the dispersed core material to produce a coherent film and the desired microcapsules. An example of a core-shell microcapsule produced by this method is an aminoplast microcapsule with a shell formed from the polycondensation product of melamine (2,4,6-triamino-1 ,3,5-triazine) or urea with formaldehyde. Suitable cross-linking agents (e.g. toluene diisocyanate, divinyl benzene, butanediol diacrylate) may also be used and secondary wall polymers may also be used as appropriate, e.g. anhydrides and their derivatives, particularly polymers and co-polymers of maleic anhydride.

One example of a preferred polymeric core-shell microcapsule for use in the invention is an aminoplast microcapsule with an aminoplast shell surrounding a core containing the fragrance formulation (f2). More preferably such an aminoplast shell is formed from the polycondensation product of melamine with formaldehyde.

Polymeric microparticles suitable for use in the invention will generally have an average particle size between 100 nanometers and 50 microns. Particles larger than this are entering the visible range. Examples of particles in the sub-micron range include latexes and mini-emulsions with a typical size range of 100 to 600 nanometers. The preferred particle size range is in the micron range. Examples of particles in the micron range include polymeric core-shell microcapsules (such as those further described above) with a typical size range of 1 to 50 microns, preferably 5 to 30 microns. The average particle size can be determined by light scattering using a Malvern Mastersizer with the average particle size being taken as the median particle size D (0.5) value. The particle size distribution can be narrow, broad or multimodal. If necessary, the microcapsules as initially produced may be filtered or screened to produce a product of greater size uniformity.

Polymeric microparticles suitable for use in the invention may be provided with a deposition aid at the outer surface of the microparticle. Deposition aids serve to modify the properties of the exterior of the microparticle, for example to make the microparticle more substantive to a desired substrate. Desired substrates include cellulosics (including cotton) and polyesters (including those employed in the manufacture of polyester fabrics).

The deposition aid may suitably be provided at the outer surface of the microparticle by means of covalent bonding, entanglement or strong adsorption. Examples include polymeric core-shell microcapsules (such as those further described above) in which a deposition aid is attached to the outside of the shell, preferably by means of covalent bonding. While it is preferred that the deposition aid is attached directly to the outside of the shell, it may also be attached via a linking species.

Deposition aids for use in the invention may suitably be selected from polysaccharides having an affinity for cellulose. Such polysaccharides may be naturally occurring or synthetic and may have an intrinsic affinity for cellulose or may have been derivatised or otherwise modified to have an affinity for cellulose. Suitable polysaccharides have a 1-4 linked p glycan (generalised sugar) backbone structure with at least 4, and preferably at least 10 backbone residues which are pi -4 linked, such as a glucan backbone (consisting of pi -4 linked glucose residues), a mannan backbone (consisting of pi -4 linked mannose residues) or a xylan backbone (consisting of pi -4 linked xylose residues). Examples of such pi -4 linked polysaccharides include xyloglucans, glucomannans, mannans, galactomannans, P(1 -3),(1 -4) glucan and the xylan family incorporating glucurono-, arabino- and glucuronoarabinoxylans. Preferred pi -4 linked polysaccharides for use in the invention may be selected from xyloglucans of plant origin, such as pea xyloglucan and tamarind seed xyloglucan (TXG) (which has a pi -4 linked glucan backbone with side chains of a-D xylopyranose and p-D- galactopyranosyl-(1-2)-a-D-xylo-pyranose, both 1-6 linked to the backbone); and galactomannans of plant origin such as loc ust bean gum (LBG) (which has a mannan backbone of pi -4 linked mannose residues, with single unit galactose side chains linked a1 -6 to the backbone). Also suitable are polysaccharides which may gain an affinity for cellulose upon hydrolysis, such as cellulose mono-acetate; or modified polysaccharides with an affinity for cellulose such as hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxypropyl guar, hydroxyethyl ethylcellulose and methylcellulose.

Deposition aids for use in the invention may also be selected from phthalate containing polymers having an affinity for polyester. Such phthalate containing polymers may have one or more nonionic hydrophilic segments comprising oxyalkylene groups (such as oxyethylene, polyoxyethylene, oxypropylene or polyoxypropylene groups), and one or more hydrophobic segments comprising terephthalate groups. Typically, the oxyalkylene groups will have a degree of polymerization of from 1 to about 400, preferably from 100 to about 350, more preferably from 200 to about 300. A suitable example of a phthalate containing polymer of this type is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide terephthalate.

Mixtures of any of the above described materials may also be suitable.

Deposition aids for use in the invention will generally have a weight average molecular weight (M w ) in the range of from about 5 kDa to about 500 kDa, preferably from about 10 kDa to about 500 kDa and more preferably from about 20 kDa to about 300 kDa.

One example of a particularly preferred polymeric core-shell microcapsule for use in the invention is an aminoplast microcapsule with a shell formed by the polycondensation of melamine with formaldehyde; surrounding a core containing the fragrance formulation (f2); in which a deposition aid is attached to the outside of the shell by means of covalent bonding. The preferred deposition aid is selected from (31-4 linked polysaccharides, and in particular the xyloglucans of plant origin, as are further described above.

The present inventors have surprisingly observed that it is possible to reduce the total level of fragrance included in the composition of the invention without sacrificing the overall fragrance experience delivered to the consumer at key stages in the laundry process. A reduction in the total level of fragrance is advantageous for cost and environmental reasons.

Accordingly, the total amount of fragrance formulation (f1) and fragrance formulation (f2) in the composition of the invention suitably ranges from 0.5 to 1.4%, preferably from 0.5 to 1.2%, more preferably from 0.5 to 1% and most preferably from 0.6 to 0.9% (by weight based on the total weight of the composition).

The weight ratio of fragrance formulation (f1) to fragrance formulation (f2) in the composition of the invention preferably ranges from 60:40 to 45:55. Particularly good results have been obtained at a weight ratio of fragrance formulation (f1) to fragrance formulation (f2) of around 50:50.

The fragrance (f1) and fragrance (f2) are typically incorporated at different stages of formation of the composition of the invention. Typically, the discrete polymeric microparticles (e.g. microcapsules) entrapping fragrance formulation (f2) are added in the form of a slurry to a warmed base formulation comprising other components of the composition (such as surfactants and solvents). Fragrance (f1) is typically post-dosed later after the base formulation has cooled.

Further optional ingredients

A composition of the invention may contain further optional ingredients to enhance performance and/or consumer acceptability. Examples of such ingredients include foam boosting agents, preservatives (e.g. bactericides), polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, colorants, pearlisers and/or opacifiers, and shading dye. Each of these ingredients will be present in an amount effective to accomplish its purpose. Generally, these optional ingredients are included individually at an amount of up to 5% (by weight based on the total weight of the diluted composition) and so adjusted depending on the dilution ratio with water.

Many of the ingredients used in embodiments of the invention may be obtained from so called black carbon sources or a more sustainable green source. The following provides a list of alternative sources for several of these ingredients and how they can be made into raw materials described herein.

SLES and PAS

SLES and other such alkali metal alkyl ether sulphate anionic surfactants are typically obtainable by sulphating alcohol ethoxylates. These alcohol ethoxylates are typically obtainable by ethoxylating linear alcohols. Similarly, primary alkyl sulphate surfactants (PAS) can be obtained from linear alcohols directly by sulphating the linear alcohol. Accordingly, forming the linear alcohol is a central step in obtaining both PAS and alkali-metal alkyl ether sulphate surfactants. The linear alcohols which are suitable as an intermediate step in the manufacture of alcohol ethoxylates and therefore anionic surfactants such as sodium lauryl ether sulphate ca be obtained from many different sustainable sources. These include:

Primary sugars

Primary sugars are obtained from cane sugar or sugar beet, etc., and may be fermented to form bioethanol. The bioethanol is then dehydrated to form bio-ethylene which then undergoes olefin methathesis to form alkenes. These alkenes are then processed into linear alcohols either by hydroformylation or oxidation.

An alternative process also using primary sugars to form linear alcohols can be used and where the primary sugar undergoes microbial conversion by algae to form triglycerides. These triglycerides are then hydrolysed to linear fatty acids and which are then reduced to form the linear alcohols.

Biomass

Biomass, for example forestry products, rice husks and straw to name a few may be processed into syngas by gasification. Through a Fischer Tropsch reaction these are processed into alkanes, which in turn are dehydrogenated to form olefins. These olefins may be processed in the same manner as the alkenes described above [primary sugars].

An alternative process turns the same biomass into polysaccharides by steam explosion which may be enzymatically degraded into secondary sugars. These secondary sugars are then fermented to form bioethanol which in turn is dehydrated to form bio-ethylene. This bio-ethylene is then processed into linear alcohols as described above [primary sugars].

Waste Plastics

Waste plastic is pyrolyzed to form pyrolysed oils. This is then fractioned to form linear alkanes which are dehydrogenated to form alkenes. These alkenes are processed as described above [primary sugars].

Alternatively, the pyrolyzed oils are cracked to form ethylene which is then processed to form the required alkenes by olefin metathesis. These are then processed into linear alcohols as described above [primary sugars].

Municipal Solid Waste

MSW is turned into syngas by gasification. From syngas it may be processed as described above [primary sugars] or it may be turned into ethanol by enzymatic processes before being dehydrogenated into ethylene. The ethylene may then be turned into linear alcohols by the Ziegler Process.

The MSW may also be turned into pyrolysis oil by gasification and then fractioned to form alkanes. These alkanes are then dehydrogenated to form olefins and then linear alcohols.

Marine Carbon

There are various carbon sources from marine flora such as seaweed and kelp. From such marine flora the triglycerides can be separated from the source and which is then hydrolysed to form the fatty acids which are reduced to linear alcohols in the usual manner.

Alternatively, the raw material can be separated into polysaccharides which are enzymatically degraded to form secondary sugars. These may be fermented to form bio-ethanol and then processed as described above [Primary Sugars],

Waste Oils

Waste oils such as used cooking oil can be physically separated into the triglycerides which are split to form linear fatty acids and then linear alcohols as described above. Alternatively, the used cooking oil may be subjected to the Neste Process whereby the oil is catalytically cracked to form bio-ethylene. This is then processed as described above.

Methane Capture

Methane capture methods capture methane from landfill sites or from fossil fuel production. The methane may be formed into syngas by gasification. The syngas may be processed as described above whereby the syngas is turned into methanol (Fischer Tropsch reaction) and then olefins before being turned into linear alcohols by hydroformylation oxidation.

Alternatively, the syngas may be turned into alkanes and then olefins by Fischer Tropsch and then dehydrogenation.

Carbon Capture

Carbon dioxide may be captured by any of a variety of processes which are all well known. The carbon dioxide may be turned into carbon monoxide by a reverse water gas shift reaction and which in turn may be turned into syngas using hydrogen gas in an electrolytic reaction. The syngas is then processed as described above and is either turned into methanol and/or alkanes before being reacted to form olefins. Alternatively, the captured carbon dioxide is mixed with hydrogen gas before being enzymatically processed to form ethanol. This is a process which has been developed by Lanzatech. From here the ethanol is turned into ethylene and then processed into olefins and then linear alcohols as described above.

The above processes may also be used to obtain the C16/18 chains of the C16/18 alcohol ethoxylate and/or the C16/18 ether sulfates.

LAS

One of the other main surfactants commonly used in cleaning compositions, in particular laundry compositions is LAS (linear alkyl benzene sulphonate).

The key intermediate compound in the manufacture of LAS is the relevant alkene. These alkenes (olefins) may be produced by any of the methods described above and may be formed from primary sugars, biomass, waste plastic, MSW, carbon capture, methane capture, marine carbon to name a few.

Whereas in the processed described above the olefin is processed to form linear alcohols by hydroformylation and oxidation instead, the olefin is reacted with benzene and then sulphonate to form the LAS.

Detergent packaging

The liquid laundry composition is preferably packaged in a plastic container, advantageously a bottle, having an internal volume of from 0.1 to 10 L, preferably from 0.2 to 5 L and more preferably of from 0.5 to 2 L. The container is preferably in part transparent to make it possible to visually observe the liquid level. Advantageously the container has a pouring neck with a resealable screw top where the maximum dimension of the pouring neck of the container is at least 3 times smaller than the maximum dimension of the container. Preferably the container has a minimum width at it base, of 3 cm, more preferably 4 cm. The width is measured parallel to the flat surface on which the container stands in an upright position. On initial sale the container should be filled to greater than 95% of the container capacity by weight.

The detergent composition according to the invention can be manufactured using conventional processes known in the art.

The invention is now illustrated by the following non-limiting examples. Examples

Several 5 wt.% solutions of surfactant were made in demineralized water, which varied according to the type of surfactant used (See Table 1). The dye Acid Green 25 was added in an amount to obtain a coloring easily observable by eye. Next a drop of the mixture was place onto clean dry knitted nylon elastane by using a pipette and the time for the drop to absorb (e.g. disappear) into the fabric measured. The following result were obtained.

It was thus observed that use of only 5 wt.% of a surfactant according to the invention already resulted in a marked delay in time before a spilled drop is soaked into the nylon elastane textile when compared to a surfactant having a different alkyl-chain profile.