Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS BASED ON CUPRIC SALTS, CUPRIC SALTS AND THEIR USE FOR CONTROLLING PHYTOPATHOGENS
Document Type and Number:
WIPO Patent Application WO/2003/043971
Kind Code:
A1
Abstract:
Fungicidal compositions are described, containing one or more salts of derivatives of salicylic acid having formula (I): in any molar ratio, with at least one fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I).

Inventors:
FILIPPINI LUCIO (IT)
GUSMEROLI MARILENA (IT)
ELMINI ALEXIA (IT)
GARAVAGLIA CARLO (IT)
MIRENNA LUIGI (IT)
Application Number:
PCT/EP2002/012982
Publication Date:
May 30, 2003
Filing Date:
November 18, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ISAGRO SPA (IT)
FILIPPINI LUCIO (IT)
GUSMEROLI MARILENA (IT)
ELMINI ALEXIA (IT)
GARAVAGLIA CARLO (IT)
MIRENNA LUIGI (IT)
International Classes:
A01N37/06; A01N37/34; A01N37/40; A01N37/44; A01N43/32; A01N43/40; A01N43/50; C07C65/05; A01N43/54; A01N43/653; A01N43/78; A01N43/84; A01N47/04; A01N47/22; A01N47/34; A01N55/00; A01N55/02; A01N59/20; C07C65/10; C07C65/21; C07C69/14; C07C69/63; C07C69/86; (IPC1-7): C07C65/05; C07C65/21; C07C69/017; A01N59/20; A01N37/36; A01N37/00
Domestic Patent References:
WO1997015189A11997-05-01
WO2002039963A12002-05-23
Foreign References:
US5756524A1998-05-26
US3995034A1976-11-30
EP0453922A11991-10-30
FR2140269A11973-01-19
DD299034A51992-03-26
Other References:
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; JHA, RAJ RANJAN ET AL: "Structure and derivatographic study of 3d-series transition metal complexes with salicylic acid", XP002233438, retrieved from STN Database accession no. 107:210893
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; LUCANSKA, B. ET AL: "Antiinflammatory activity of aqua(dihydroxybenzoato)copper(II) complexes", XP002233437, retrieved from STN Database accession no. 116:98099
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MICERA, G. ET AL: "Interaction of metal-ions with humic-like models. Part 8. Manganese(II) cobalt(II), nickel(II), copper(II) and zinc(II) complexes of 2,4-dihydroxybenzoic acid", XP002233439, retrieved from STN Database accession no. 104:14039
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SOKOLIK, JOZEF ET AL: "Anti-inflammatory and antipyretic activities of the aqua(dihydroxybenzoato)copper(II) complexes", XP002233440, retrieved from STN Database accession no. 117:204558
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; CARIATI, F. ET AL: "Interaction of metal ions with humiclike models. Part I. Synthesis, spectroscopic and structural properties of diaquabis(2,6- dihydroxybenzoato)copper(II) and hexaaquaM(II) bis(2,6-dihydroxybenzoate) dihydrate (M = Mn, Fe, Co, Ni, Cu and Zn)", XP002233441, retrieved from STN Database accession no. 99:114939
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; HULKOVA, O. ET AL: "EPR and electronic spectra of cresotatoaquocopper(II) complexes", XP002233442, retrieved from STN Database accession no. 76:92755
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MELNIK, MILAN ET AL: "Crystal structure, spectral and magnetic behavior of copper(II)(5- chlorosalicylato)2(aqua)2", XP002233443, retrieved from STN Database accession no. 136:78871
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SOKOLIK, JOZEF ET AL: "Anti-inflammatory and antipyretic activities of the aqua(dihydroxybenzoato)copper(II) complexes", XP002233445, retrieved from STN Database accession no. 117:204558
DATABASE WPI Section Ch Week 198022, Derwent World Patents Index; Class D22, AN 1980-39596C, XP002233446
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; LIU, ZIRU ET AL: "Thermal Decomposition of cupric benzoate and its derivatives. (II). Mechanism of thermal decomposition of cupric benzoates with two substituents", XP002233444, retrieved from STN Database accession no. 127:348500
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; VERRALL, A. F. ET AL: "Preservative treatments for protecting wood boxes", XP002233436, retrieved from STN Database accession no. 71:60008
THE PLANT CELL, vol. 8, 1996, pages 1809 - 1819
PESTICIDE SCIENCE, vol. 19, 1987, pages 309 - 315
Attorney, Agent or Firm:
De Gregori, Antonella (Milano S.p.A. Via Borgonuovo 10, Milan, IT)
Download PDF:
Claims:
CLAIMS
1. Fungicidal compositions containing one or more salts of salts of derivatives of salicylic acid having formula (I): wherein: Ri represents H, or a COR' acyl group ; R2, the same or different when n is equal to 2, is a hydrogen, a halogen, optionally selected from fluo rine, chlorine, bromine or iodine a C1C9 alkyl group; a C1C9 haloalkyl group; a C1C9 alkoxyl group ; a C1C9 haloalkoxyl group a C1C9 thioalkyl group ; a CiCg ha lothioalkyl group; a C3C9 cycloalkyl group; a C2Clo carboalkoxyl group ; a cyano group ; a phenyl group ; a hydroxyl group ; R' represents a hydrogen; a C1C9 alkyl group; a ClCg haloalkyl group; a C1C9 alkoxyl group; a C1Cg halo alkoxyl group ; a CzCio carboalkoxyl group ; a phenyl group ; n is a number ranging from 0 to 2; X represents an oxygen atom, a nitrogen or sulfur atom; in any molar ratio, with at least one fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I).
2. The compositions according to claim 1, characterized in that the fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I) is selected from inhibitors of ergosterol biosynthesis, inhibitors of mitochondrial respiration, acylanilines, systemic antimildew fungicides, a dipeptide with a fun gicidal activity, cytotropic antimildew fungicides, con tact fungicides, cupric fungicides, inhibitor fungicides of melanin biosynthesis.
3. The compositions according to claim 1, characterized in that the fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I) can be selected from tetraconazole, difenoconazole, my clobutanil, flusilazole, epoxyconazole, fenpropimorf, fenpropidin, azoxystrobin, kresoxym methyl, trifloxystro bin, metalaxyl, benalaxyl in its racemic form or as an optically active R isomer (called IR 6141), iprovalicarb, ethaboxam, cyazofamid, cymoxanyl, mancozeb, clorotalonil, folpet, ditianon, copper hydroxide, copper oxychloride, cuprocalcium oxychloride.
4. The compositions according to claim 1, characterized in that the compounds having formula (I) are present in hydrated form by the coordination of any number of water molecules.
5. The compositions according to claim 1, characterized in that, in the compounds having formula (I), R2 is se lected from fluorine, chlorine, methyl, trifluoromethyl, hydroxyl.
6. The compositions according to claim 1, characterized in that they are formulated as dry powders, wettable pow ders, emulsifiable concentrates, microemulsions, pastes, granulates, solutions, suspensions, etc.
7. The compositions according to claim 1, characterized in that they contain additives such as adhesion agents, such as gum arabic, polyvinyl alcohol, polyvinylpyrroli done, polyacrylates and/or other compatible active prin ciples such as phytoregulators, antibiotics, herbicides, insecticides, fertilizers.
8. The compositions according to claim 1, characterized in that the concentration of the active substances ranges from 0.1% to 98%, preferably from 0. 5% to 90%.
9. Salts of derivatives of salicylic acid having for mula (I): wherein: Ri represents H, or a COR' acyl group; R2, the same or different when n is equal to 2, is a halogen, optionally selected from fluorine, chlorine, bromine or iodine; a ClCg alkyl group; a C1Cg haloal kyl group; a C1C9 alkoxyl group; a C1C9 haloalkoxyl group ; a ClCg thioalkyl group ; a C1C9 halothioalkyl group ; a C3C9 cycloalkyl group ; a CzCio carboalkoxyl group ; a cyano group; a phenyl group ; a hydroxyl group; R'represents an alkyl group, optionally selected from methyl, propyl, isopropyl ; or the haloalkyl group tri fluoromethyl; or hydrogen; n is a number ranging from 0 to 2 ; X represents an oxygen atom, a nitrogen or a sulfur atom; with the exception, when X is equal to oxygen, of com pounds wherein R1 represents the acyl group COCH3 and R2 is hydrogen or chlorine and compounds wherein Ri repre sents the acyl group CoiPr or COEt and R2 is hydrogen.
10. The salts according to claim 9, characterized in that the compounds having formula (I) are present in hy drated form by the coordination of any number of water molecules.
11. Use of fungicidal compositions containing one or more salts of derivatives of salicylic acid having for mula (I): wherein: Ri represents H, or a COR'acyl group ; R2, the same or different when n is equal to 2, is a hydrogen, a halogen, optionally selected from fluo rine, chlorine, bromine or iodine ; a C1C9 alkyl group ; a ClCg haloalkyl group ; a C1C9 alkoxyl group; a C1C9 haloalkoxyl group; a C1C9 thioalkyl group; a ClCg ha lothioalkyl group; a C3C9 cycloalkyl group a C2C10 carboalkoxyl group ; a cyano group; a phenyl group; a hydroxyl group ; R'represents a hydrogen ; a ClC9 alkyl group; a ClC9 haloalkyl group; a CiCg alkoxyl group ; a C1Cg halo alkoxyl group; a C2Clo carboalkoxyl group; a phenyl group ; n is a number ranging from 0 to 2 ; X represents an oxygen atom, a nitrogen or a sulfur atom ; in any molar ratio, with at least one fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I), for the control of phytopathogens on vegetables or parts thereof.
12. Use of fungicidal compositions according to any of the claims from 2 to 8 for the control of phytopathogens on vegetables or parts thereof.
13. Use of salts of derivatives of salicylic acid having formula (I): wherein: R1 represents H, or a COR'acyl group; R2, the same or different when n is equal to 2, is a halogen, optionally selected from fluorine, chlorine, bromine or iodine; a ClC9 alkyl group; a ClC9 haloal kyl group; a C1C9 alkoxyl group ; a C1C9 haloalkoxyl group ; a C1C9 thioalkyl group; a C1C9 halothioalkyl group ; a C3C9 cycloalkyl group; a C2Clo carboalkoxyl group; a cyano group; a phenyl group ; a hydroxyl group ; R' represents an alkyl group, optionally selected from methyl, propyl, isopropyl ; or the haloalkyl group tri fluoromethyl; or hydrogen; n is a number ranging from 0 to 2; X represents an oxygen atom, a nitrogen or a sulfur atom; for the control of phytopathogens on vegetables or parts thereof.
14. Use of the salts according to claim 10 for the con trol of phytopathogens on vegetables or parts thereof.
15. Use according to one of the claims from 11 to 14 for the control of bacterial and fungal phytopathogens.
16. Use according to one of the claims from 11 to 14 for the control of phytopathogens which have become tolerant to a fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I).
17. Use according to one of the claims from 11 to 14 on genetically modified vegetable varieties.
18. Use according to one of the claims from 11 to 14 in vegetable varieties also genetically modified, for ampli fying the defense systems of the plants.
19. Use according to claim 17, in genetically modified vegetable varieties in which one or more genes expressing fungicidal proteins have been inserted, in response to variations in the content of the same salicylic acid in the tissues.
20. Use according to one of the claims from 11 to 19, characterized in that the phytopathogens controlled are Plasmopara viticola on grapes, Peronospora tabacina on tobacco, Venturia inaequalis on appletrees, Bremia on salads, spinach, Phytophthora spp. on vegetables, Pseudo peronospora cubensis on cucurbitacaea, Pyricularia orizae on rice.
21. A method for fighting fungal infections consisting in applying the fungicidal compositions according to claim 18, on plants, leaves, stems, branches and roots, or on the seeds themselves before sowing, or on the ground in which the plant grows.
22. A method for fighting fungal infections consisting in applying the salts according to claims 9 and 10, on plants, leaves, stems, branches and roots, or on the seeds themselves before sowing, or on the ground in which the plant grows.
Description:
COMPOSITIONS BASED ON CUPRIC SALTS, CUPRIC SALTS AND THEIR USE FOR CONTROLLING PHYTOPATHOGENS The present invention relates to compositions based on cupric salts for controlling phytopathogens.

The present invention also relates to cupric salts of derivatives of salicylic acid and their application for the control of phytopathogens.

Salicylic acid is a compound naturally present in many vegetables. It is definitely present in extracts of willow bark, used since antiquity as an anti-inflammatory remedy.

Nowadays, salicylic acid is conveniently synthesized on an industrial scale by the condensation of a phenolic salt with carbon dioxide. Many of its derivatives can be easily prepared by exploiting the particular reactivities of the phenolic ring, of the carboxylic group and pheno- lic hydroxyl. In particular, acetylsalicylic acid is uni- versally known as a pharmaceutical product.

It has been demonstrated that salicylic acid is ca-

pable of controlling various phytopathogens through the precocious induction of defense systems naturally present in plants, but activated after infection. The presence of phytopathogens, in fact, causes a series of biochemical signals, among which an accumulation of salicylic acid in the vegetable tissues, which lead, for example, to the synthesis of specific proteins with a fungicidal activ- ity.

It has been shown that an increase in the level of salicylic acid induced previous to fungal infections, causes a much more effective fungicidal response on the part of the plant itself (THE PLANT CELL, Vol. 8 (1996) pages 1809-1819).

To enable a fungicide to be economically acceptable in agronomic practice, it is essential for it to ensure a reliable and prolonged fungicidal action. The use of salicylic acid as such has been described as providing lower protective levels than those of other classical fungicides. For example, it is said that the control of grape mildew by the use of salicylic acid as such, is much lower than that obtained by the use of traditional cupric products.

The applicant has now found that cupric salts of some derivatives of salicylic acid are particularly con- venient, with respect to those described in the state of

the art, for controlling bacterial and fungal phytopatho- gens. The applicant has found, in fact, that cupric salts of some derivatives of salicylic acid, when appropriately formulated, allow a prolonged protective action to be ob- tained on vegetables subjected to treatment, comparable to that of full doses of traditional cupric salts.

The cupric salts of derivatives of salicylic acid, object of the present invention, are moreover more effec- tive than the corresponding non-salified derivative of salicylic acid, or salified with a different metal, in controlling phytopathogens on vegetables or parts thereof. This activity can be attributed to a concomitant induction effect reinforced by the direct action of the cupric ion. The activity registered is, in fact, also higher than that produced using a derivative of non- salified salicylic acid mixed with a traditional cupric fungicide.

An important aspect of the use of salts, object of the present invention, derives from the fact that the de- fense systems of plants activated by derivatives of sali- cylic acid have different action mechanisms and conse- quently allow an immunizing response which minimizes any possible production of resistant strains.

The applicant has also found that these salts form an excellent means of controlling phytopathogens also in

vegetable varieties genetically modified for amplifying the original natural defense systems or in which one or more genes have been inserted, expressing fungicidal pro- teins as a result of variations in the content of sali- cylic acid itself in the tissues.

The applicant has additionally found that the joint application of salts of derivatives of salicylic acid, object of the present invention, with other active prin- ciples gives rise to a positive synergy of biological ef- fects, which enable an excellent control of phytopatho- gens even resistant to said active principles, also on vegetables which have been genetically modified.

The present invention therefore relates to the use of cupric salts of derivatives of salicylic acid mixed with other active principles for the control of phytopa- thogens. Furthermore, the present invention also relates to some cupric salts of derivatives of salicylic acid as such and their use for the control of phytopathogens and the cupric salts themselves.

An object of the present invention consequently re- lates to fungicidal compositions containing one or more salts of derivatives of salicylic acid having formula (I):

wherein: - R1 represents H, or a CO-R'acyl group; - R2, the same or different when n is equal to 2, is a hydrogen, a halogen, optionally selected from fluo- rine, chlorine, bromine or iodine ; a Cl-Cg alkyl group ; a Cl-Cg haloalkyl group; a C1-C9 alkoxyl group; a C1-C9 haloalkoxyl group ; a C1-C9 thioalkyl group ; a Cl-Cg ha- lothioalkyl group ; a C3-C9 cycloalkyl group ; a C2-C10 carboalkoxyl group ; a cyano group ; a phenyl group ; a hydroxyl group ; - R' represents a hydrogen; a Ci-C9 alkyl group ; a Cl-Cg haloalkyl group a Ci-C9 alkoxyl group; a C1-C9 halo- alkoxyl group; a C2-C10 carboalkoxy group; a phenyl group ; - n is a number ranging from 0 to 2; - X represents an oxygen atom, a nitrogen or a sulfur atom ; in any molar ratio, with at least one fungicidal compound not corresponding to a salt of derivatives of salicylic

acid having formula (I).

The compounds having formula (I) can also be present in a hydrated form by the coordination of any number of water molecules.

A further object of the present invention relates to salts of derivatives of salicylic acid having formula (I): wherein: - Ri represents H, or a CO-R'acyl group; - R2, the same or different when n is equal to 2, is a halogen, optionally selected from fluorine, chlorine, bromine or iodine ; a C1-C9 alkyl group a C1-C9 haloal- kyl group; a C1-C9 alkoxyl group; a C1-C9 haloalkoxyl group a C1-C9 thioalkyl group; a C1-Cg halothioalkyl group ; a C3-C9 cycloalkyl group ; a C2-Clo carboalkoxyl group ; a cyano group ; a phenyl group ; a hydroxyl group ; - represents an alkyl group, optionally selected from methyl, propyl, isopropyl ; or the haloalkyl group tri-

fluoromethyl; or hydrogen; - n is a number ranging from 0 to 2 ; - X represents an oxygen atom, a nitrogen or a sulfur atom; with the exception, when X is equal to oxygen, of com- pounds wherein Ri represents the acyl group COCH3 and R2 is hydrogen or chlorine and compounds wherein R1 repre- sents the acyl group COiPr or COEt and R2 is hydrogen.

The compounds having formula (I) can also be present in hydrated form by the coordination of any number of wa- ter molecules.

A further object of the present invention relates to the use of derivatives of salicylic acid having formula (I): wherein: - Ri represents H, or a CO-R'acyl group; - R2, the same or different when n is equal to 2, is a halogen, optionally selected from fluorine, chlorine, bromine or iodine; a C1-C9 alkyl group ; a Cl-C9 haloal-

kyl group ; a Cl-C9 alkoxyl group ; a Cl-Cg haloalkoxyl group; a Cl-C9 thioalkyl group ; a Cl-Cg halothioalkyl group; a C3-C9 cycloalkyl group ; a C2-Clo carboalkoxyl group ; a cyano group ; a phenyl group ; a hydroxyl group; - represents an alkyl group, optionally selected from methyl, propyl, isopropyl ; or the haloalkyl group tri- fluoromethyl; or hydrogen ; - n is a number ranging from 0 to 2; - X represents an oxygen atom, a nitrogen or a sulfur atom ; for the control of phytopathogens on vegetables or parts thereof.

The compounds having formula (I) can also be present in hydrated form by the coordination of any number of wa- ter molecules.

The compositions according to the present invention which comprise one or more salts of derivatives of sali- cylic acid (I) associated with at least one other fungi- cidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I), are therefore ad- vantageously characterized by inducing natural defense together with the direct effect of the cupric ion, form- ing an excellent control system of phytopathogens which exerts a synergic action with many active principles,

representing an optimum instrument for anti-resistance strategies.

In particular, the fungicidal compound not corre- sponding to a salt of derivatives of salicylic acid hav- ing formula (I) can be selected from inhibitors of ergos- terol biosynthesis, inhibitors of mitochondrial respira- tion, acylanilines, systemic anti-mildew fungicides, a dipeptide with a fungicidal activity, cytotropic anti- mildew fungicides, contact fungicides, cupric fungicides, inhibitor fungicides of melanin biosynthesis.

A fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I) is pref- erably selected from tetraconazole, difenoconazole, my- clobutanil, flusilazole, epoxyconazole, fenpropimorf, fenpropidin, azoxystrobin, kresoxym methyl, trifloxystro- bin, metalaxyl, benalaxyl in its racemic form or as an optically active R isomer (called IR 6141), iprovalicarb, ethaboxam, cyazofamid, cymoxanyl, mancozeb, clorotalonil, folpet, ditianon, copper hydroxide, copper oxychloride, cuprocalcium oxychloride.

For these preferred compositions, as can be observed in the experimental examples, an extremely important syn- ergic effect has been identified.

In the above formulae, Cl-C9 alkyl group refers to a linear or branched C1-C9 alkyl group, optionally substi-

tuted by one or more substituents, the same or different from each other.

Examples of this group are: methyl, ethyl, propyl, isopropyl, butyl, isobutyl, terbutyl.

C1-C9 haloalkyl group refers to a linear or branched alkyl group substituted by one or more halogen atoms, the same or different, optionally selected from fluorine, chlorine, bromine, iodine.

Examples of this group are: fluoromethyl, difluo- romethyl, trifluoromethyl, trichloromethyl, 2,2, 2- trifluoroethyl, 2,2, 2-trichloroethyl, 2,2, 3,3- tetrafluoropropyl, 2,2, 3,3, 3-pentafluoropropyl.

CI-Cg alkoxyl group refers to a Cl-C9 alkoxyl group, wherein the aliphatic portion is a C1-C9 alkyl group, as defined above.

Examples of this group are: methoxy, ethoxyl.

Ci-Cg haloalkoxyl group refers to a C1-C9 haloalkoxyl group, wherein the aliphatic portion is a C1-C9 haloalkyl group, as defined above.

Examples of this group are: trifluoromethoxyl, 1,1, 2,2-tetrafluoroethyoxyl, 1,1, 2,3, 3,3-hexafluoroprop- yloxyl.

C1-C9 thioalkyl group refers to a Ci-C9 thioalkyl group, wherein the aliphatic portion is a C1-Cg alkyl group, as defined above. Examples of this group'are :

thiomethyl, thioethyl.

Ci-C9 halothioalkyl group refers to a C1-Cg halothio- alkyl group, wherein the aliphatic portion is a C1-C9 ha- loalkyl group, as defined above.

Examples of this group are: trifluorothiomethoxyl, 1,1, 2,2-tetrafluorothioethoxyl.

C3-C9 cycloalkyl group refers to a cycloalkyl group whose ring consists of 3-6 carbon atoms, optionally sub- stituted by one or more substituents, the same or differ- ent to each other.

Examples of this group are: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl.

Cs-Cio carboalkoxyl group refers to a carboalkoxyl group, wherein the aliphatic portion is a Cl-Cg alkyl group, as defined above.

Examples of this group are: carboxymethyl, car- boxyethyl, carboxypropyl.

Optionally substituted refers to one or more sub- stituents, the same or different, selected from the fol- lowing groups: halogen atoms, alkyls, alkoxyls, al- kylthio, cyano, hydroxy, aminocarbonyls, carboalkoxyls.

R2 is preferably selected from fluorine, chlorine, methyl, trifluoromethyl, hydroxyl.

Some further examples of fungicides which can be used in the compositions according to the present inven-

tion are listed below. Among others, one or more of the following fungicides can therefore be selected: 1. as inhibitors of ergosterol biosynthesis, for example, triazole, imidazole, pyrimidine and pyridine fungi- cides and/or derivatives of morpholine or piperidine; 2. as inhibitors of mitochondrial respiration, for exam- ple, analogous synthetic products of strobilurine, or fenamidone, famoxadone, ethaboxam, fluazinam or cyazofamid; 3. among acylanilines, metalaxyl or benalaxyl, in their racemic form or as optically active R isomers, oxa- dixyl and/or ofurace ; 4. as systemic anti-mildew fungicides, iprovalicarb, di- methomorph, flumetover, the Chinese product SYP-L- 190, a dipeptide with a fungicidal activity, propamo- carb and/or zoxamide ; 5. as cytotropic anti-mildew fungicides, cymoxanyl; 6. as contact fungicides, chlorothalonil, folpet, thi- ram, propineb, maneb, zineb, dichlofluanide, tolil- fluanide, captan, folpet and/or dithianon; 7. as cupric fungicide, copper hydroxide Cu (OH) 2, copper oxychloride (3Cu (OH) Cu (Cl) , cuprocalcium oxy- chloride (3Cu (OH) 2'Ca (C1) 2), and/or tribasic copper sulfate (3Cu (OH) 2' CU (S04)) ; 8. as inhibitor fungicide of melanin biosynthesis, tri-

cycloazole and/or carpropamid.

Examples of triazole fungicides are: tetraconazole, epoxyconazole, difenoconazole, etc.

Examples of pyrimidine fungicides are: nuarimol, fenarimil, etc.

Examples of derivatives of morpholine are: fenpropi- morf, fenpropidin, spiroxamina.

Examples of analogous products of strobilurine are: azoxystrobin, kresoxim methyl, pyraclostrobin, etc.

Fungicidal compounds not corresponding to a salt of derivatives of salicylic acid having formula (I) are com- mercial compounds or products about to be commercialized.

Their description can be easily fund in technical litera- ture, for example in"The pesticide manual", 2000, XII edition, British Crop Protection Council Ed.

Dipeptide derivative with a fungicidal activity re- fers to one of the compounds among those claimed in pat- ent application EP 1028125.

The compounds having formula (I) can be easily ob- tained by means of numerous synthetic methods. For illus- trative but non-limiting purposes, for example, the fol- lowing preparation for compounds having formula (I), wherein X has the meaning of oxygen and R1 is a-CO-R' acyl group, is provided (Scheme A): Scheme A

R'-COCI O m O /OH/I OH /\1OH Cppte vox (R2) OH qoplire (R2) n OH OH (R'--CO) 20 0 OV) OR' tu) o'o' 1) Base OH/I p Cu ) OAR' ) O O O''R' OR' 2 OAR' (Vp O>R'2 ! The acid having formula (II) is acylated with an acyl chloride having formula (III) in an organic solvent such as dichloromethane, or 1,2-dichloroethane, or ethyl acetate in the presence of an organic base, such as pyri- dine or triethylamine, or inorganic, such as sodium or potassium bicarbonate, or the acid having formula (II) is acylated with the anhydride (IV) under similar condi- tions, or also using the same anhydride (IV) as solvent.

The acid derivative having formula (V) is then dissolved in water by means of an organic base, such as sodium or

potassium bicarbonate, sodium or potassium hydroxide, and the copper salt (IV) is added to the resulting solution, wherein X can be a halogen, such as chlorine or bromine, or the sulfate ion, or perchlorate, dissolved in water, obtaining a compound having formula (I). Alternatively, it is possible to use copper hydroxide or carbonate in the presence of the acid form (V), with or without an ad- ditional base, such as an organic amine, for example tri- ethylamine, as catalyst.

For the preparation of the compounds having formula (I), wherein X has the meaning of nitrogen and sulfur, the same procedure is adopted as described above, using the corresponding acids having formula (II).

The salts having formula (I) wherein Ri has the meaning of hydrogen are analogously obtained from the compound (II) operating according to the procedure de- scribed for the transformation of the intermediate (V) into the salt (I).

The salts derivatives of salicylic acid having for- mula (I) alone or in compositions with at least one other active principle are capable of controlling many fungal and bacterial phytopathogens, also with a reduced sensi- tivity towards other fungicides.

For purely illustrative and without any limiting purposes, some examples are listed below, of phytopatho-

gens controlled by compounds having formula (I) alone or in a mixture, together with examples of possible applica- tion crops: Plasmopara viticola on grapes ; Peronospora tabacina on tobacco ; Venturia inaequalis on apple-trees; Bremia on salads, spinach ; Phytophthora spp. on vegetables ; Pseudoperonospora cubensis on cucurbitaceae; Pyricularia orizae on rice.

Both compositions containing one or more salts of derivatives of salicylic acid having formula (I), and salts of derivatives of salicylic acid having formula (I), object of the present invention, are capable of ex- erting a high fungicidal action of both a curative and preventive nature and additionally have a low or absence of phytotoxicity.

A further object of the present invention therefore relates to a method for controlling phytopathogen fungi in agricultural crops by the application of the compounds having formula (I) or mixtures of these associated with at least one other fungicidal compound not corresponding to a salt of derivatives of salicylic acid having formula (I).

More specifically, an object of the present inven-

tion relates to a method which can be applied to agricul- tural crops for controlling phytopathogens sensitive or tolerant to fungicides not corresponding to a salt of a derivative of salicylic acid having formula (I).

The quantity of compound to be applied for obtaining the desired effect can vary in relation to various fac- tors such as, for example, the crop to be preserved, the type of pathogen, the degree of infection, the climatic conditions, the formulation adopted.

Doses of compound ranging from 10 g to 5 Kg per hec- tare generally provide sufficient control.

For practical use in agriculture, it is often con- venient to adopt fungicidal compositions containing one or more compounds having general formula (I) or mixtures of these with at least one fungicidal compound not corre- sponding to a salt having formula (I).

The application of the compositions, object of the present invention, can take place on any part of the plant, for example on the leaves, stems, branches and roots or on the seeds themselves before sowing, or also on the ground in which the plant grows.

Compositions can be used, in the form of dry pow- ders, wettable powders, emulsifiable concentrates, micro- emulsions, pastes, granulates, solutions, suspensions, etc.: the selection of the type of composition depends on

the specific use.

The compositions are prepared according to the known methods, for example by diluting or dissolving the active substance with a solvent and/or solid diluent medium, op- tionally in the presence of surface-active agents.

Silica, kaolin, bentonite, talc, fossil flour, dolo- mite, calcium carbonate, magnesia, chalk, clays, syn- thetic silicates, attapulgite, sepiolite, can be used as solid inert diluents, or carriers.

In addition to water, various solvents such as aro- matic solvents (xylols, mixtures of alkylbenzols) ; paraf- fins (petroleum fractions) ; alcohols (methanol, propanol, butanol, octanol, glycerin); amines; amides (N, N- dimethylformamide, N-methylpyrrolidone) ; ketones (cyclo- hexanone, acetone, acetophenone, isophorone, ethylamylke- tone); esters (isobutyl acetate, methyl esters of fatty acids obtained for example by the transesterification of vegetable oils), can be used as liquid diluents.

Sodium, calcium, triethanolamine salts, or trieth- ylamine salts of alkylsulfonates, alkylarylsulfonates, or polyethoxylated alkylphenols, or fatty alcohols condensed with ethylene oxide, or polyoxyethylated fatty acids, or polyoxyethylated esters of sorbitol, or ligninsulfonates, can be used as surface-active agents.

The compositions can also contain special additives

for particular purposes such as, for example, adhesion agents, such as gum arabic, polyvinyl alcohol, polyvinyl- pyrrolidone, polyacrylates.

In the above compositions, the concentration of ac- tive substances varies from 0. 1% to 98%, preferably from 0. 5% to 90%.

If desired, it is possible to also add other com- patible active principles to the compositions, object of the present invention, such as phytoregulators, antibiot- ics, herbicides, insecticides, fertilizers.

The following examples are provided for illustrative purposes only and do not limit the scope of the present invention.

EXAMPLE 1 Preparation of the copper salt of acetylsalicylic acid (Compound Nr. 1) 3 g of acetylsalicylic acid are added to a solution of 1.39 g of sodium bicarbonate in 15 cm3 of water. When the acid is completely dissolved, a solution of 2.07 g of cupric sulfate in 15 cm3 of water are slowly added drop- wise. After 3 hours, the precipitate thus obtained is filtered and washed with hexane, obtaining, after drying in air, 3.4 g of compound Nr. 1 (yield: 48. 4%). The ana- lytical composition of compound Nr. 1 is indicated in Ta- ble 1.

EXAMPLE 2 The following compounds, whose analytical composi- tion is indicated in Table 1, were prepared analogously to the procedure described in Example 1: # copper salt of salicylic acid (Compound Nr. 2) copper salt of 5-chlorosalicylic acid (Compound Nr. 3) 'copper salt of 5-chloroacetylsalicylic acid (Compound Nr. 4) 'copper salt of 5-hydroxysalicylic acid (Compound Nr. 5) copper salt of 6-hydroxysalicylic acid (Compound Nr. 6) copper salt of 3-methylsalicylic acid (Compound Nr. 7) copper salt of 4-methoxysalicylic acid (Compound Nr. 8) Table 1 Compound Ri R2 %C(a,c) %H(a,c) %Cu(b, 1 COCH3 H 49. 41 3. 32 16. 04 (51.2) (3.28) (15.06) 2 OH H 46. 72 3. 21 19. 23 (49.7) (2.96) (18.81) 3 OH 5-Cl 39. 98 2. 45 16. 56 (41.31) (1.97) (15. 63) 4 COCH3 5-Cl 42. 09 2. 95 13. 51 (44.01) (2.44) (12.95) 5 OH 5-OH 42. 87 3. 15 19. 46 (45.43) (2.70) (17. 18), 6 OH 6-OH 43.67 3.94 18.62 (45.43) (2. 70) (17.18) 7 OH 3-CH3 56. 71 3. 98 19. 79 (57. 59) (4.19) (19.04) 8 OH 4-OCH3 54. 36 4. 02 16. 67 (52.55) (3.83) (17. 38)

Notes: a) values obtained by elemental analysis ; b) values obtained by gravimetric analysis ; c) the expected values are indicated in brackets.

EXAMPLE 3 Efficacy of compound Nr. 1 mixed with another fungicidal compound in the control of Venturia inaequalis on apple- tree in preventive leaf application (greenhouse test) Ta- ble 2.

Leaves of wild-type apple-tree, cultivated in vases, in a conditioned environment (24 1°C, 70% relative hu- midity) are treated by spraying both sides of the leaves with compound Nr. 1 mixed with another fungicide dis- persed in a hydroacetone solution at 20% by volume of acetone containing 0. 3% of tween 20.

After remaining 48 hours in a conditioned environ- ment, the plants are infected on the lower and higher sides with an aqueous suspension of spores of Venturia inaequalis (200,000 spores per cm3).

The plants are kept in a humidity saturated environ- ment, at 21°C, for the incubation period of the fungus and, at the end of this period (14 days), the fungicidal activity is evaluated according to a percentage evalua- tion scale from 100 (healthy plant) to 0 (completely in- fected plant).

From the data indicated in Table 2, the synergic ef- fect of the mixtures, consisting of compound Nr. 1 and another fungicide belonging to the various groups cited above, can be observed, compared with the efficacy calcu- lated using the Limpel formula ("Pesticide Science" (1987), vol. 19, pages 309-315: E = x + y-(xy/100) wherein: - E is the expected fungicidal activity, without syner- gic effects, from a mixture obtained by mixing g-x of the compound X with g-y of the compound Y; - x is the activity of the compound X when used alone at a dose of g-x; - y is the activity of the compound Y when used alone at a dose of g. y ; When the fungicidal activity experimentally evalu- ated is greater than the value of E, this activity should be considered as a synergic effect.

Table 2 The preventive activity after a day on Venturia inaequalis of compound Nr. 1 at 125 ppm (g. x) is 95 (x)

Fungicide Dosage Activity Activity of mixture Experimental Synergy according to mixture factor Limpel (E) activity Tetraconazole 60 38 96. 9 100 1. 03 Difenoconazole 100 36 96. 8 97 1. 00 Myclobutanil 200 35 96. 75 98 1. 01 Flusilazole 170 34 96. 7 97 1. 00 Epoxyconazole 80 30 96. 5 97 1. 00 Fenpropimorf 300 33 96. 65 98 1. 01 Fenpropidin 400 37 96. 85 99 1. 02 Azoxystrobin 0. 11 35 96. 75 98 1. 01 Kresoxym methyl 0. 45 35 96. 75 98 1. 01 Trifloxystrobin 1. 8 40 97. 0 100 1. 03 EXAMPLE 4 Efficacy of compound Nr. 1 mixed with another fungicidal compound in the control of Plasmopara viticola on grapes in preventive leaf application (greenhouse test) Table 3.

Leaves of cultivar Dolcetto grape vines, cultivated in vases, in a conditioned environment (20 1°C, 70% relative humidity) are treated by spraying both sides of the leaves with compound Nr. 1 mixed with another fungi- cide dispersed in a hydroacetone solution at 10% by vol- ume of acetone containing 0. 3% of tween 20.

After remaining 24 hours in a conditioned environ- ment, the plants are infected on the lower side with an aqueous suspension of spores of Plasmopara viticola

(200,000 spores per cm3).

The plants are kept in a humidity saturated environ- ment, at 21°C, for the incubation period of the fungus and, at the end of this period (7 days), the fungicidal activity is evaluated according to a percentage evalua- tion scale from 100 (healthy plant) to 0 (completely in- fected plant).

From the data indicated in Table 3, the synergic ef- fect of the mixtures, consisting of compound Nr. 1 and another fungicide belonging to the various groups cited above, can be observed, compared with the efficacy calcu- lated using the Limpel formula ("Pesticide Science" (1987), vol. 19, pages 309-315: E = x + y- (xy/100) wherein: - E is the expected fungicidal activity, without syner- gic effects, from a mixture obtained by mixing g-x of the compound X with g-y of the compound Y; - x is the activity of the compound X when used alone at a dose of g-x ; - y is the activity of the compound Y when used alone at a dose of g-y ; When the fungicidal activity experimentally evalu- ated is greater than the value of E, this activity should be considered as a synergic effect.

Table 3 The preventive activity after a day on Plasmopara viticola of compound Nr. 1 at 30 ppm (g-x) is 53 (x)

Fungicide Dosage Activity Activity of mixture Experimental Synergy according to mixture factor Limpel (E) activity Metalaxyl 0. 05 34 68. 98 77 1. 12 Metalaxyi * 0. 05 12 58. 64 73 1. 24 Benalaxyl 0. 05 42 72. 74 84 1. 15 IR 6141 0. 025 40 71. 8 86 1. 20 Iprovalicarb 0. 45 38 70. 86 87 1. 23 Ethaboxam 12 33 68. 51 77 1. 12 IR 5885 0. 22 39 71. 33 87 1. 22 Cyazofamid 4 31 67. 57 76 1. 12 Cymozanyl 7. 5 34 68. 98 74 1. 03 Mancozeb 250 36 69. 92 74 1. 06 Clorotalonil 100 32 68. 04 76 1. 12 Folpet 50 30 67. 1 77 1. 15 Dithianon 37 37 70. 39 83 1. 18 Copper hydroxide 150 35 69. 45 74 1. 07 Copper oxychloride 200 34 68. 98 73 1. 06 Cuprocalcium 250 36 69. 92 76 1. 09 oxyclhoride * Test effected on an isolated portion of the phytopatho- gen with a reduced sensitivity.

EXAMPLE 5 Fungicidal efficacy of compounds having formula (I) in the control of Plasmopara viticola on grapes (field test) Table 4, Table 5 and Table 6.

The efficacy field tests for the control of Plasmo- para viticola are carried out using an experimental

scheme with randomized blocks which comprise 4 replica- tions and 6-8 plants by repetition.

The grape plants, Barbera variety, are treated by spraying both sides of the leaves either with a compound having formula (I) or with a mixture containing one or more salts having formula (I) and another fungicide, ob- ject of the present invention, formulated as wettable powder WP50.

The tests are carried out by treatment at a fixed period of 7 days for the mixtures of a compound of for- mula (I) with IR6141 and at a fixed period of 10 days for the mixtures of a compound of formula (I) with IR 5885.

The measurements, made when the presence of the pathogen is observed on the non-treated blank plot, are effected on both the leaves and the cluster.

The measurement on the leaves is effected by count- ing 100 grape leaves per plot (total 400 leaves) and marking the leaf surface percentage struck by the dis- ease.

The measurement on the clusters, on the other hand, is effected by analyzing all the clusters and considering the percentage of surface damaged.

The data relating to the field tests of compounds Nr. 2-4 compared with Mancozeb and copper oxychloride, are provided in Table 4.

Table 4

Product Dosage Leaf disease Cluster disease gap/hl % reduction % reduction Blank 100 * 98. 86 * Compound nr. 2 128 89.47 91.52 Compound nr. 3 150 90.40 92.00 Compound nr. 4 50 90.10 90.80 Copper 800 82. 00 87. 02 Chloride Mancozeb 2000 88.50 88. 50 (gpa/hl) = grams of active principle per hectoliter * = incidence of the disease.

The data relating to the field tests of compounds Nr. 1-4, mixed with IR6141 are provided in Table 5, the data relating to the field tests of compounds Nr. 1, 2,4 and 8, mixed with IR5885 are provided in Table 6.

Table 5 Product Dosage Leaf disease Cluster disease gap/hl % reduction % reduction Blank 99 * 95 * Compound nr. 1 + 80 + 10 97 94 IR 6141 Compound nr. 2 + 80+10 96 94 IR 6141 Compound nr. 3 + 85 + 10 99 97 IR 6141 Compound nr. 4 + 40 + 10 95 95 IR 6141 IR 6141 + 10 + 110 93 90 Copper hydroxide (gpa/hl) = grams of active principle per hectoliter' * = incidence of the disease.

Table 6 Product Dosage Leaf disease Cluster disease gap/hl % reduction % reduction Blank 99* 95* Compound nr. 1 + 100+12 99 98 IR 5885 Compound nr. 2 + 100+12 98 97 IR 5885 Compound nr. 4 + 40 + 12 99 98 IR 5885 Compound nr. 8 + 100 + 12 97 96 IR 5885

(gpa/hl) = grams of active principle per hectoliter * = incidence of the disease.