Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS COMPRISING A QUILLAY EXTRACT AND A BIOPESTICIDE
Document Type and Number:
WIPO Patent Application WO/2014/086856
Kind Code:
A1
Abstract:
The present invention relates to mixtures comprising a Quillay extract and at least one biopesticide as defined in the description, and to compositions comprising these mixtures.

Inventors:
JABS THORSTEN (DE)
GUIMARAES JOAO PAULO VILELA (BR)
CARBONE ROMANO FABRIZIO (BR)
NITSCHE JORGE PEDRO (CL)
Application Number:
PCT/EP2013/075530
Publication Date:
June 12, 2014
Filing Date:
December 04, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF AGRO B V ARNHEM NL (CH)
International Classes:
A01N65/08; A01P3/00; A01P7/04
Domestic Patent References:
WO2006137069A22006-12-28
WO2001060153A22001-08-23
WO2000004781A12000-02-03
WO2007046680A12007-04-26
WO2009126473A12009-10-15
WO2009124707A22009-10-15
WO2003057861A22003-07-17
WO2010085795A22010-07-29
WO2012064527A12012-05-18
WO2010080169A12010-07-15
WO2010080619A22010-07-15
WO2001040441A22001-06-07
WO2011022809A12011-03-03
WO2011109395A22011-09-09
WO2012079073A12012-06-14
WO1998046608A11998-10-22
WO1999014187A11999-03-25
WO1999024413A21999-05-20
WO1999027783A11999-06-10
WO2000029404A12000-05-25
WO2000046148A12000-08-10
WO2000065913A12000-11-09
WO2001054501A22001-08-02
WO2001056358A22001-08-09
WO2002022583A22002-03-21
WO2002040431A22002-05-23
WO2003010149A12003-02-06
WO2003011853A12003-02-13
WO2003014103A12003-02-20
WO2003016286A12003-02-27
WO2003053145A12003-07-03
WO2003061388A12003-07-31
WO2003066609A12003-08-14
WO2003074491A12003-09-12
WO2004049804A22004-06-17
WO2004083193A12004-09-30
WO2005120234A22005-12-22
WO2005123689A12005-12-29
WO2005123690A12005-12-29
WO2005063721A12005-07-14
WO2005087772A12005-09-22
WO2005087773A12005-09-22
WO2006015866A12006-02-16
WO2006087325A12006-08-24
WO2006087343A12006-08-24
WO2007082098A22007-07-19
WO2007090624A22007-08-16
WO2011028657A12011-03-10
WO2012168188A12012-12-13
WO2007006670A12007-01-18
WO2011077514A12011-06-30
WO2013047749A12013-04-04
WO2010069882A12010-06-24
WO2013047441A12013-04-04
WO2003016303A12003-02-27
WO2009090181A22009-07-23
WO2013007767A12013-01-17
WO2013010862A12013-01-24
WO2013127704A12013-09-06
WO2013024009A12013-02-21
WO2013024010A12013-02-21
Foreign References:
US20050074508A12005-04-07
US20110190123A12011-08-04
EP2106698A22009-10-07
US20030162731A12003-08-28
US6406690B12002-06-18
EP0585215B11999-09-15
EP0585215B11999-09-15
US20020031495A12002-03-14
US8221736B22012-07-17
US6994849B22006-02-07
US5248500A1993-09-28
US8206972B22012-06-26
US20130035230A12013-02-07
US5403584A1995-04-04
US5968503A1999-10-19
US20120149571A12012-06-14
US20100260735A12010-10-14
US20120149571A12012-06-14
US8445255B22013-05-21
US7262151B22007-08-28
EP0141317A21985-05-15
EP0152031A21985-08-21
EP0226917A11987-07-01
EP0243970A11987-11-04
EP0256503A21988-02-24
EP0428941A11991-05-29
EP0532022A11993-03-17
EP1028125A12000-08-16
EP1035122A12000-09-13
EP1201648A12002-05-02
EP1122244A12001-08-08
JP2002316902A2002-10-31
DE19650197A11998-06-10
DE10021412A12001-06-21
DE102005009458A12006-09-07
US3296272A1967-01-03
US3325503A1967-06-13
Other References:
"Hoja de datos de seguridad: Producto: QL-Agri 35", March 2010 (2010-03-01), pages 1 - 4, XP055057151, Retrieved from the Internet [retrieved on 20130320]
IOANNIS O GIANNAKOU: "Efficacy of a formulated product containingplant extracts for the control of root-knot nematodes", EUROPEAN JOURNAL OF PLANT PATHOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 130, no. 4, 1 May 2011 (2011-05-01), pages 587 - 596, XP019928484, ISSN: 1573-8469, DOI: 10.1007/S10658-011-9780-8
ELLEN DE GEYTER ET AL: "Triterpene saponins of Quillaja saponaria show strong aphicidal and deterrent activity against the pea aphid Acyrthosiphon pisum", PEST MANAGEMENT SCIENCE, vol. 68, no. 2, 29 June 2011 (2011-06-29), pages 164 - 169, XP055057154, ISSN: 1526-498X, DOI: 10.1002/ps.2235
TASHIRO E: "Plant activator for improving growth of plant in field land, forest and golf course and quality of agricultural products, contains Quillaja-saponaria saponin as active ingredient", WPI/THOMSON, 22 April 2004 (2004-04-22), XP002469403
PELAH D ET AL: "The use of commercial saponin from Quillaja saponaria bark as a natural larvicidal agent against Aedes aegypti and Culex pipiens", MEDICINAL & AROMATIC PLANTS ABSTRACTS, SCIENTIFIC PUBLISHERS, SCIENTIFIC PUBLISHERS, NEW DELHI - INDIA, vol. 24, no. 6, 2002, XP018014687, ISSN: 0250-4367
RONER MICHAEL R ET AL: "Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina)", JOURNAL OF GENERAL VIROLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, SPENCERS WOOD, GB, vol. 88, no. Part 1, 2007, pages 275 - 285, XP002498583, ISSN: 0022-1317, DOI: 10.1099/VIR.0.82321-0
APABLAZA ET AL., FITOPATOLOGIA, vol. 39, 2004, pages 144 - 149
"e-Pesticide Manual", 2008
NATURE, vol. 280, 1979, pages 697 - 699
PROC. 9TH INT. AND 1 ST LATIN AMERICAN PGPR MEETING, 2012, pages 60
EUR. J. SOIL BIOL, vol. 45, no. 1, 2009, pages 28 - 35
PROC. 9TH INT. AND 1 ST LATIN AMERICAN PGPR MEETING, 2012, pages 60
J. MICROBIOL. BIOTECHNOL., vol. 17, no. 2, 2007, pages 280 - 286
J. APPL. MICROBIOL., vol. 100, no. 5, 2006, pages 1063 - 72
PHYTOPARASITICA, vol. 23, no. 3, 1995, pages 231 - 234
BIOLOGICAL CONTROL, vol. 51, 2009, pages 403 - 408
SCIENCE, vol. 257, 1992, pages 1 - 132
BIOLOGICAL CONTROL, vol. 45, 2008, pages 288 - 296
CURR. MICROBIOL., vol. 59, no. 6, 2009, pages 608 - 615
MICROBIOL. RES., vol. 158, pages 107 - 115
BIOLOGICAL CONTROL, vol. 31, no. 2, 2004, pages 145 - 154
MYCOLOGIA, vol. 94, no. 2, 2002, pages 297 - 301
CROP PROTECTION, vol. 27, 2008, pages 352 - 361
J. BACTERIOL., vol. 192, no. 24, 2010, pages 6486 - 6487
ALBERTA, FERTILIZER RES., vol. 39, 1994, pages 97 - 103
J. INVERTEBR. PATHOL., vol. 113, no. 1, 2013, pages 104 - 14
APPL. ENVIRON. MICROBIOL., vol. 44, no. 5, pages 1096 - 1101
NEW PHYTOL, vol. 179, no. 1, 2008, pages 224 - 235
SOIL BIOLOGY & BIOCHEMISTRY, vol. 39, 2007, pages 867 - 876
MOL GEN GENOMICS, vol. 272, 2004, pages 1 - 17
CROP PROTECTION, vol. 25, 2006, pages 468 - 475
INT. J. MICROBIOL. RES., vol. 3, no. 2, 2011, pages 120 - 130
SYSTEM APPL. MICROBIOL, vol. 27, 2004, pages 372 - 379
CAN. J. PLANT SCI., vol. 48, no. 6, 1968, pages 587 - 94
"Technical Monograph No. 2", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
MOLLET; GRUBEMANN: "Formulation technology", 2001, WILEY VCH
KNOWLES: "Agrow Reports DS243", T&F INFORMA, article "New developments in crop protection product formulation"
MCCUTCHEON' S: "Emulsifiers & Detergents, McCutcheon' s Directories", vol. 1, 2008, INTERNATIONAL ED. OR NORTH AMERICAN ED.
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA UK, article "Adjuvants and additives"
COLBY, S. R.: "Calculating synergistic and antagonistic responses of herbicide combinations", WEEDS, vol. 15, 1967, pages 20 - 22, XP001112961
TAMMES, P. M. L.: "Isoboles, a graphic representation of synergism in pesticides", NETHERL. J. PLANT PATHOL., vol. 70, 1964, XP009013480, DOI: doi:10.1007/BF01974412
Attorney, Agent or Firm:
REITSTÖTTER - KINZEBACH (Ludwigshafen, DE)
Download PDF:
Claims:
We claim:

1 . A mixture comprising, as active components: 1 ) a Quillay extract and

2) at least one biopesticide II selected from the groups A) to F'):

A') Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity selected from: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B.

pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C. saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus,

Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f.

catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Lysobacter antibioticus, L. enzymogenes, Metschnikowia fructicola,

Microdochium dimerum, Microsphaeropsis ochracea, Muscodor albus, Paenibacillus polymyxa, Pantoea vagans, Phlebiopsis gigantea,

Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum; mixture of T. harzianum and T. viride; mixture of T. polysporum and T.

harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia and zucchini yellow mosaic virus (avirulent strain);

B') Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant

defense activator activity selected from: chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, potassium or sodium bicarbonate, Reynoutria sachlinensis extract, salicylic acid and tea tree oil;

C) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity selected from: Agrobacterium radiobacter, Bacillus cereus, B. firmus,

B. thuringiensis ssp. aizawai, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, Beauveria bassiana, B. brongniartii, Burkholderia sp.,

Chromobacterium subtsugae, Cydia pomonella granulosis virus, Cryptophlebia leucotreta granulovirus (CrleGV), Isaria fumosorosea, Heterorhabditis bacteriophora, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramose, P. reneformis, P. thornea, P. usgae, Pseudomonas fluorescens, Steinernema carpocapsae, S. feltiae, S. kraussei;

D') Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity selected from: L-carvone, citral, (E,Z)-7,9- dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)-2, 13-octadecadien-1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 -tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1 -yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1 - yl acetate, Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, and Tagetes oil;

E') Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity selected from: Azospirillum amazonense A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. elkanii, B. japonicum, B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseoli, R. I. trifolii, R. I. bv. viciae, R. tropici and Sinorhizobium meliloti;

F') Biochemical pesticides with plant stress reducing, plant growth regulator

and/or plant yield enhancing activity selected from: abscisic acid, aluminium silicate (kaolin), 3-decen-2-one, formononetin, genistein, hesperetin, homobrassinlide, humates, jasmonic acid or salts or derivatives thereof, lysophosphatidyl ethanolamine, naringenin, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract.

The mixture according to claim 1 , wherein component 1 ) and component 2) are present in a synergistically effective amount.

The mixture according to any of the claims 1 to 2, wherein component 1 ) and component 2) are present in a total weight ratio of from 100:1 to 1 :100 wherein the total weight of component 1 ) and component 2) are based on the amount of the solid material (dry matter) of component 1 ) and component 2) provided that component 2) is not an oil.

The mixture according to any of the claims 1 to 3, wherein component 2) is selected from groups A'), C), or E') and wherein component 1 ) and component 2) are present in a total weight ratio of from 100:1 to 1 :100 wherein the total weight of component 1 ) is based on the amount of the solid material (dry matter) of component 1 ) and wherein the total weight of component 2) is calculated on the basis of CFU, wherein 1 x 109 CFU equals one gram of total weight of component 2). The mixture according to any of the claims 1 to 4, wherein component 1 ) is a water-based Quillay extract.

The mixture according to any of the claims 1 to 5, wherein the Quillay extract is obtainable by subjecting chipped or milled wood, branches and/or the bark or flakes from branches and/or the bark of Quillaja saponaria to a solid/liquid extraction process using water as extractant at an extraction temperature of from 20 to 95°C, preferably of from 40 to 90°C, specifically ca. 60°C, for an extraction time of from 0.5 to 5 h, preferably of from 2 to 3 h, and optionally removing undesired products.

The mixture according to any of the claims 1 to 6, wherein component 2) is selected from at least one biopesticide II selected from the groups A') to F'):

A') Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense

activator activity selected from: Ampelomyces quisqualis M-10, Aspergillus flavus NRRL Accession No. 21882, Aureobasidium pullulans DSM 14940, A. pullulans DSM 14941 , Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B.

amyloliquefaciens AP-188 (NRRL B-50615), B. amyloliquefaciens AP-218 (NRRL B- 50618), B. amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP- 295 (NRRL B-50620), B. amyloliquefaciens IT-45 (CNCM I-3800, NCBI 1091041 ), B. mojavensis AP-209 (No. NRRL B-50616), B. pumilus INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. pumilus KFP9F, B. pumilus QST 2808 (NRRL B-30087), B. pumilus GHA 181 , B. simplex ABU 288 (NRRL B-50340), B. solisalsi AP-217 (NRRL B-50617), B. subtilis CX-9060, B. subtilis GB03, B. subtilis GB07, B. subtilis QST-713 (NRRL B-21661 ), B. subtilis MBI600 (NRRL B-50595), B. subtilis var. amyloliquefaciens FZB23, B. subtilis var. amyloliquefaciens FZB24, B. subtilis var. amyloliquefaciens D747, B. subtilis 1430, B. subtilis FB17, Candida oleophila I-82, C. oleophila O, C. saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans CON/M/91 -08,

Cryphonectria parasitica, Cryptococcus albidus, Fusarium oxysporum, Clonostachys rosea f. catenulata J1446 (also named Gliocladium catenulatum), Gliocladium roseum 321 U, Metschnikowia fructicola, Microdochium dimerum, Paenibacillus polymyxa PKB1 (ATCC No. 202127), Pantoea agglomerans c91 , Phlebiopsis gigantea, Pseudozyma flocculosa, Pythium oligandrum DV74, Sphaerodes mycoparasitica IDAC 301008-01 , Streptomyces lydicus WYEC 108, S.

violaceusniger XL-2, S. violaceusniger YCED-9, Talaromyces flavus V1 17b, Trichoderma asperellum T34, T. asperellum SKT-1 , T. atroviride LC52, T. fertile JM41 R, T. gamsii, T. harmatum TH 382, T. harzianum TH-35, T. harzianum T-22, T. harzianum T-39, ; mixture of T. harzianum ICC012 and T. viride ICC080; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens) GL-21 , T. virens G41 , T. viride TV1 , Typhula phacorrhiza 94671 , Ulocladium oudema, U. oudemansii HRU3, Verticillium dahlia, and zucchini yellow mosaic virus (avirulent strain);

B') Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity selected from: chitosan (hydrolysate), laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, Reynoutria sachlinensis extract, salicylic acid, and tea tree oil;

C) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity selected from: Bacillus firmus St 1582, B. thuringiensis ssp. aizawai ABTS- 1857, SAN 401 I, ABG-6305 and ABG-6346, B. t. ssp. galleriae SDS-502, B. t. ssp. kurstaki, in particular Bacillus thuringiensis ssp. kurstaki SB4, ABTS-351 and EG 2348, B. thuringiensis ssp. tenebrionis DSM 2803, NB-125 and NB-176, Beauveria bassiana GHA, B. bassiana H123, B. bassiana DSM 12256, B. bassiana PRPI 5339, Burkholderia sp. A396, Chromobacterium subtsugae PRAA4-1 T, Cydia pomonella granulosis virus isolate V22, Isaria fumosorosea Apopka-97,

Lecanicillium longisporum KV42, L. longisporum KV71 , L. muscarium (for-merly Verticillium lecanii), Metarhizium anisopliae FI-985, M. anisopliae FI-1045, M.

anisopliae F52, M. anisopliae ICIPE 69, M. anisopliae var. acridum IMI 330189, Paecilomyces fumosoroseus FE 9901 , P. lilacinus DSM 15169, P. lilacinus BCP2, Paenibacillus poppiliae Dutky-1940 (NRRL B-2309 = ATCC 14706), P. poppiliae

KLN 3, P. poppiliae Dutky 1 , Pasteuria spp. Ph3, P. nishizawae PN-1 , P. reneformis Pr-3, P. usagae, Pseudomonas fluorescens CL 145A, Steinernema feltiae, and Streptomces galbus;

D') Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity selected from: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13- hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)- 2,13-octadecadien-1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 - tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1 -yl acetate, Z-7-tetradecen-2- one, Z-9-tetradecen-1 -yl acetate, Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, and Tagetes oil;

E') Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity selected from: Azospirillum amazonense BR 1 1 140 (SpY2T), A. brasilense XOH, A. brasilense BR 1 1005 (Sp245), A.

brasilense BR 1 1002, A. lipoferum BR 1 1646 (Sp31 ), A. irakense, A.

halopraeferens, Bradyrhizobium sp. (Vigna), B. japonicum USDA 3, B. japonicum USDA 31 , B. japonicum USDA 76, B. japonicum USDA 1 10, B. japonicum USDA

121 , B. japonicum SEMIA 5079, B. japonicum SEMIA 5080, Glomus intraradices RTI-801 , Paenibacillus alvei NAS6G6, Penicillium bilaiae, Rhizobium

leguminosarum bv. phaseolii, R. I. trifolii, R. I. bv. viciae, and Sinorhizobium meliloti; F') Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity selected from: abscisic acid, aluminium silicate

(kaolin), 3-decen-2-one, homobrassinlide, humates, indole-3-acetic acid, lysophosphatidyl ethanlamine, polymeric polyhydroxy acid, salicylic acid,

Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract.

8. The mixture according to claim 7, wherein component 2) is selected from Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B- 50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. amyloliquefaciens IT-

45 (CNCM I-3800, NCBI 1091041 ), B. mojavensis AP-209 (No. NRRL B-50616), B.

pumilus INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B- 50185)), B. pumilus QST 2808 (NRRL B-30087), B. simplex ABU 288 (NRRL B-50340), B. subtilis QST-713 (NRRL B-21661 ), B. subtilis MBI600 (NRRL B-50595), Paenibacillus alvei NAS6G6, Sphaerodes mycoparasitica IDAC 301008-01 and T. fertile JM41 R.

9. The mixture according to claim 7, wherein component 2) is selected from methyl

jasmonate, extract of grapefruit seeds and pulp, Catnip oil, Neem oil and Tagetes oil. 10. The mixture according to claim 7, wherein component 2) is selected from Azospirillum

brasilense BR 1 1005 (Sp245), Bradyrhizobium sp. (Vigna), B. japonicum USDA 3, B. japonicum USDA 31 , B. japonicum USDA 76, B. japonicum USDA 1 10, B. japonicum USDA 121 , Rhizobium leguminosarum bv. phaseolii, R. I. trifolii, R. I. bv. viciae, and Sinorhizobium meliloti.

1 1 . The mixture according to claim 7, wherein component 2) is selected from abscisic acid, aluminium silicate (kaolin), humates, indole-3-acetic acid, Ascophyllum nodosum

(Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract. 12. The mixture according to any of claims 1 to 7, wherein component 2) is selected from

Bacillus subtilis and B. subtilis var. amyloliquefaciens, preferably from B. subtilis CX-9060, B. subtilis GB03, B. subtilis GB07, B. subtilis QST-713 (NRRL B-21661 ), B. subtilis MBI600 (NRRL B-50595), B. subtilis var. amyloliquefaciens FZB23, B. subtilis var.

amyloliquefaciens FZB24, B. subtilis var. amyloliquefaciens D747, B. subtilis 1430 and B. subtilis FB17, and in particular from B. subtilis MBI600.

13. The mixture according to any of claims 1 to 7, wherein component 2) is selected from B. thuringiensis ssp. aizawai, B. t. ssp. galleriae, B. t. ssp. kurstaki and B. t. ssp. tenebrionis, and in particular from B. thuringiensis ssp. aizawai ABTS-1857, B. thuringiensis ssp.

aizawai SAN 401 I, B. thuringiensis ssp. aizawai ABG-6305, B. thuringiensis ssp. aizawai

ABG-6346, B. t. ssp. galleriae SDS-502, B. thuringiensis ssp. kurstaki SB4, B.

thuringiensis ssp. kurstaki ABTS-351 , B. thuringiensis ssp. kurstaki EG 2348, B.

thuringiensis ssp. tenebrionis DSM 2803, B. thuringiensis ssp. tenebrionis NB-125 and B. thuringiensis ssp. tenebrionis NB-176.

The mixture according to claim 13, wherein component 2) is selected from Bacillus thuringiensis ssp. kurstaki, preferably from B. thuringiensis ssp. kurstaki SB4, B.

thuringiensis ssp. kurstaki ABTS-351 and B. thuringiensis ssp. kurstaki EG 2348, and particular from B. thuringiensis ssp. kurstaki SB4.

5. The mixture according to any of claims 1 to 7, wherein component 2) is selected from

Bradyrhizobium, and in particular from Bradyrhizobium sp. (Vigna), B. japonicum USDA 3, B. japonicum USDA 31 , B. japonicum USDA 76, B. japonicum USDA 1 10, B. japonicum USDA 121 , B. japonicum SEMIA 5079 and B. japonicum SEMIA 5080.

6. An agrochemical composition, comprising an auxiliary and a mixture as defined in any one of claims 1 to 15.

7. The agrochemical composition according to claim 16, further comprising as active

component 3) a further active compound.

8. The agrochemical composition according to claim 17, wherein the further active

compound is a compound III selected from groups A) to O):

A) Respiration inhibitors

- Inhibitors of complex III at Q0 site (e.g. strobilurins): azoxystrobin, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, fenoxy- strobin/flufenoxystrobin, fluoxastrobin, kresoxim-methyl, mandestrobin, metomino- strobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, trifloxystrobin, and 2-(2-(3-(2,6-dichlorophenyl)-1 -methyl-allylideneaminooxymethyl)- phenyl)-2-methoxyimino-N-methyl-acetamide, pyribencarb, triclopyricarb/chlorodin- carb, famoxadone, fenamidone;

- inhibitors of complex III at Q, site: cyazofamid, amisulbrom, [(3S,6S,7R,8R)-8-benzyl-3- [(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1 ,5-dioxonan-7- yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[[3-(acetoxymethoxy)-4-methoxy- pyridine-2-carbonyl]amino]-6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[(3-isobutoxycarbonyloxy-4-methoxy-pyridine- 2-carbonyl)amino]-6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate,

[(3S,6S,7R,8R)-8-benzyl-3-[[3-(1 ,3-benzodioxol-5-ylmethoxy)-4-methoxy-pyridine-2- carbonyl]amino]-6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate;

(3S,6S,7R,8R)-3-[[(3-hydroxy-4-methoxy-2-pyridinyl)carbonyl]amino]-6-methyl-4,9- dioxo-8-(phenylmethyl)-1 ,5-dioxonan-7-yl 2-methylpropanoate

- inhibitors of complex II (e. g. carboxamides): benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, N-(4'-trifluoromethylthiobiphenyl-2-yl)-3-difluoromethyl-1 - methyl-1 H-pyrazole-4-carboxamide, N-(2-(1 ,3,3-trimethyl-butyl)-phenyl)-1 ,3-dimethyl- 5-fluoro-1 H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethyl- indan-4-yl)pyrazole-4-carboxamide, 3-(trifluoromethyl)-1 -methyl-N-(1 , 1 ,3-trimethyl- indan-4-yl)pyrazole-4-carboxamide, 1 ,3-dimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole- 4-carboxamide, 3-(trifluoromethyl)-1 ,5-dimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole- 4-carboxamide, 1 ,3,5-trimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide, N-(7-fluoro-1 ,1 ,3-trimethyl-indan-4-yl)-1 ,3-dimethyl-pyrazole-4-carboxamide, N-[2-(2,4- dichlorophenyl)-2-methoxy-1 -methyl-ethyl]-3-(difluoromethyl)-1 -methyl-pyrazole carboxamide;

- other respiration inhibitors (e.g. complex I, uncouplers): diflumetorim, (5,8-difluoro- quinazolin-4-yl)-{2-[2-fluoro-4-(4-trifluoromethylpyridin-2-yloxy)-phenyl]-ethyl}-amine; nitrophenyl derivates: binapacryl, dinobuton, dinocap, fluazinam; ferimzone;

organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; ametoctradin; and silthiofam;

B) Sterol biosynthesis inhibitors (SBI fungicides)

- C14 demethylase inhibitors (DMI fungicides): triazoles: azaconazole, bitertanol,

bromuconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, oxpoconazole,

paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole, 1 -[re/- (2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-5-thiocyanato-1 H- [1 ,2,4]triazole, 2-[re/-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]- 2H-[1 ,2,4]triazole-3-thiol; 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 (1 ,2,4-triazoM - yl)pentan-2-ol, 1 -[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 cyclopropyl-2-

(1 ,2,4-triazol-1 -yl)ethanol, 2-[4-(4-chlorophenoxy)-2-(trifluorometh^yl)phenyl]-1 -(1 ,2,4- triazol-1 -yl)butan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 -(1 ,2,4-triazol-1 - yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1 -(1 ,2,4- triazol-1 -yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)-,phenyl]-1 -(1 ,2,4- triazol-1 -yl)propan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3-methyl-1 -(1 ,2,4- triazol-1 -yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)-,phenyl]-1 -(1 ,2,4- triazol-1 -yl)pentan-2-ol, 2-[4-(4-fluorophenoxy)-2-(trifluoromethyl)-phenyl]-1 -(1 ,2,4- triazol-1 -yl)propan-2-ol;imidazoles: imazalil, pefurazoate, prochloraz, triflumizol;

pyrimidines, pyridines and piperazines: fenarimol, nuarimol, pyrifenox, triforine, [3-(4- chloro-2-fluoro-phenyl)-5-(2,4-difluorophenyl)isoxazol-4-yl]-(3-pyridyl)methanol;

- Delta14-reductase inhibitors: aldimorph, dodemorph, dodemorph-acetate,

fenpropimorph, tridemorph, fenpropidin, piperalin, spiroxamine;

- Inhibitors of 3-keto reductase: fenhexamid;

C) Nucleic acid synthesis inhibitors

- phenylamides or acyl amino acid fungicides: benalaxyl, benalaxyl-M, kiralaxyl,

metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;

- others: hymexazole, octhilinone, oxolinic acid, bupirimate, 5-fluorocytosine, 5-fluoro-2- (p-tolylmethoxy)pyrimidin-4-amine, 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin- 4-amine;

D) Inhibitors of cell division and cytoskeleton

- tubulin inhibitors, such as benzimidazoles, thiophanates: benomyl, carbendazim,

fuberidazole, thiabendazole, thiophanate-methyl; triazolopyrimidines: 5-chloro- 7-(4-methylpiperidin-1 -yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine

- other cell division inhibitors: diethofencarb, ethaboxam, pencycuron, fluopicolide,

zoxamide, metrafenone, pyriofenone; E) Inhibitors of amino acid and protein synthesis

- methionine synthesis inhibitors (anilino-pyrimidines): cyprodinil, mepanipyrim,

pyrimethanil;

- protein synthesis inhibitors: blasticidin-S, kasugamycin, kasugamycin hydrochloride- hydrate, mildiomycin, streptomycin, oxytetracyclin, polyoxine, validamycin A;

F) Signal transduction inhibitors

- MAP / histidine kinase inhibitors: fluoroimid, iprodione, procymidone, vinclozolin,

fenpiclonil, fludioxonil;

- G protein inhibitors: quinoxyfen;

G) Lipid and membrane synthesis inhibitors

- Phospholipid biosynthesis inhibitors: edifenphos, iprobenfos, pyrazophos,

isoprothiolane;

- lipid peroxidation: dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl,

chloroneb, etridiazole;

- phospholipid biosynthesis and cell wall deposition: dimethomorph, flumorph,

mandipropamid, pyrimorph, benthiavalicarb, iprovalicarb, valifenalate and N-(1 -(1 -(4- cyano-phenyl)ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester;

- compounds affecting cell membrane permeability and fatty acides: propamocarb, propamocarb-hydrochlorid

- fatty acid amide hydrolase inhibitors: oxathiapiprolin, 2-{3-[2-(1 -{[3,5- bisid flu-Oromethyl-l H-pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]-4,5-dihydro- 1 ,2 oxazol-5-yl}phenyl methanesulfonate, 2-{3-[2-(1 -{[3,5-bis(difluoromethyl)-1 H- pyrazol-1 -yl]acetyl}piperidin-4-yl) 1 ,3-thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol-5 yl}-3- chlorophenyl methanesulfonate

H) Inhibitors with Multi Site Action

- inorganic active substances: Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur;

- thio- and dithiocarbamates: ferbam, mancozeb, maneb, metam, metiram, propineb, thiram, zineb, ziram;

- organochlorine compounds (e.g. phthalimides, sulfamides, chloronitriles): anilazine, chlorothalonil, captafol, captan, folpet, dichlofluanid, dichlorophen,

hexachlorobenzene, pentachlorphenole and its salts, phthalide, tolylfluanid, N-(4- chloro-2-nitro-phenyl)-N-ethyl-4-methyl-benzenesulfonamide;

- guanidines and others: guanidine, dodine, dodine free base, guazatine, guazatine- acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate), dithianon,

2,6-dimethyl-1 H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetraone;

I) Cell wall synthesis inhibitors

- inhibitors of glucan synthesis: validamycin, polyoxin B; melanin synthesis inhibitors: pyroquilon, tricyclazole, carpropamid, dicyclomet, fenoxanil;

J) Plant defence inducers

- acibenzolar-S-methyl, probenazole, isotianil, tiadinil, prohexadione-calcium;

phosphonates: fosetyl, fosetyl-aluminum, phosphorous acid and its salts;

K) Unknown mode of action

- bronopol, chinomethionat, cyflufenamid, cymoxanil, dazomet, debacarb, diclomezine, difenzoquat, difenzoquat-methylsulfate, diphenylamin, fenpyrazamine, flumetover, flusulfamide, flutianil, methasulfocarb, nitrapyrin, nitrothal-isopropyl, oxathiapiprolin, picarbutrazox, tolprocarb, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2- (prop-2-yn-1 -yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1 - yl]ethanone, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-fluoro-6-(prop-2- yn-1 -yhoxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ^-thi-'azol^-yljpiperidin-l - yl]ethanone, 2 [3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-chloro-6-(prop-2- yn-1 -yhoxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2 yl)piperidin-1 - yl]ethanone, oxin-copper, proquinazid, tebufloquin, tecloftalam, triazoxide, 2-butoxy-6- iodo-3-propylchromen-4-one, N-(cyclopropylmethoxyimino-(6-difluoro-methoxy-2,3-di- fluoro-phenyl)-methyl)-2-phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)- 2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(4-(4-fluoro-3-trifluoromethyl- phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(2-methyl-5- trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, N'-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, 2methoxy-acetic acid 6-tert-butyl-8-fluoro-2,3-dimethyl-quinolin-4-yl ester, 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine, 3-[5-(4-chloro- phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole), N-(6-methoxy-pyridin-3- yl) cyclopropanecarboxylic acid amide, 5-chloro-1 -(4,6-dimethoxy-pyrimidin-2-yl)-2- methyl-1 H-benzoimidazole, 2-(4-chloro-phenyl)-N-[4-(3,4-dimethoxy-phenyl)-isoxazol- 5-yl]-2-prop-2-ynyloxy-acetamide, ethyl (Z) 3 amino-2-cyano-3-phenyl-prop-2-enoate, pentyl N-[6-[[(Z)-[(1 -methyltetra-,zol-5-yl)-phenyl-methylene]amino]oxymethyl]-2- pyridyl]carbamate, 2-[2-[(7,8-di-"fluoro-2-methyl-3-quinolyl)oxy]-6-fluoro-phenyl]propan- 2-ol, 2-[2-fluoro-6-[(8-flu-"oro-2-methyl-3-quinolyl)oxy]phenyl]propan-2-ol, 3-(5-fluoro- 3,3,4,4-tetramethyl-3,4-dihydroiso^quinolin-1 -yl)quinoline, 3-(4,4-difluoro-3,3-dimethyl- S^-dihydrcnisoquinolin-l -yl^quinoline, 3-(4,4,5-trifluoro-3,3-dimethyl-3,4- dihydroisoquinolin-1 -yl)quinoline;

L) Biopesticides

L1 ) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense

activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C.

saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium

catenulatum), Gliocladium roseum, Lysobacter antibioticus, L. enzymogenes, Metschnikowia fructicola, Microdochium dimerum, Microsphaeropsis ochracea, Muscodor albus, Paenibacillus polymyxa, Pantoea vagans, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum; mixture of T. harzia-'num and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);

L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, potassium or sodium bicarbonate, Reynoutria sachlinensis extract, salicylic acid, tea tree oil;

L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thuringiensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp.

kurstaki, B. t. ssp. tenebrionis, Beauveria bassiana, B. brongniartii , Burkholderia sp., Chromobacterium subtsugae, Cydia pomonella granulosis virus, Cryptophlebia leucotreta granulovirus (CrleGV), Isaria fumosorosea, Heterorhabditis

bacteriophora, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae, M. anisopliae var. acridum, Nomuraea rileyi,

Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramose, P. reneformis, P. thornea, P. usgae,

Pseudomonas fluorescens, Steinernema carpocapsae, S. feltiae, S. kraussei;

L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1 - butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)- 2,13-octadecadien-1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 - tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1 -yl acetate, Z-7-tetradecen-2- one, Z-9-tetradecen-1 -yl acetate, Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Quillay extract, Tagetes oil;

L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. elkanii, B. japonicum, B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium

leguminosarum bv. phaseoli, R. I. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium meliloti;

L6) Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2- one, formononetin, genistein, hesperetin, homobrassinlide, humates, jasmonic acid or salts or derivatives thereof, lysophosphatidyl ethanolamine, naringenin, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract; M) Growth regulators

abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dike- gulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid , maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione (prohexadione-calcium), prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate, 2,3,5-tri-iodobenzoic acid , trinexapac-ethyl and uniconazole;

N) Herbicides

- acetamides: acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, flufenacet, mefenacet, metolachlor, metazachlor, napropamide, naproanilide, pethoxamid, pretilachlor, propachlor, thenylchlor;

- amino acid derivatives: bilanafos, glyphosate, glufosinate, sulfosate;

- aryloxyphenoxypropionat.es: clodinafop, cyhalofop-butyl, fenoxaprop, fluazifop,

haloxyfop, metamifop, propaquizafop, quizalofop, quizalofop-P-tefuryl;

- Bipyridyls: diquat, paraquat;

- (thio)carbamates: asulam, butylate, carbetamide, desmedipham, dimepiperate, eptam (EPTC), esprocarb, molinate, orbencarb, phenmedipham, prosulfocarb, pyributicarb, thiobencarb, triallate;

- cyclohexanediones: butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, tralkoxydim;

- dinitroanilines: benfluralin, ethalfluralin, oryzalin, pendimethalin, prodiamine, trifluralin;

- diphenyl ethers: acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen,

lactofen, oxyfluorfen;

- hydroxybenzonitriles: bomoxynil, dichlobenil, ioxynil;

- imidazolinones: imazamethabenz, imazamox, imazapic, imazapyr, imazaquin,

imazethapyr;

- phenoxy acetic acids: clomeprop, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-DB, dichlorprop, MCPA, MCPA-thioethyl, MCPB, Mecoprop;

- pyrazines: chloridazon, flufenpyr-ethyl, fluthiacet, norflurazon, pyridate;

- pyridines: aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr,

picloram, picolinafen, thiazopyr;

- sulfonyl ureas: amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl,

chlorsulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metazosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, 1 -((2-chloro-6-propyl-imidazo[1 ,2-b]pyridazin-3-yl)sulfonyl)-3-(4,6- d i methoxy-pyri m id i n-2-yl) u rea ;

- triazines: ametryn, atrazine, cyanazine, dimethametryn, ethiozin, hexazinone,

metamitron, metribuzin, prometryn, simazine, terbuthylazine, terbutryn, triaziflam;

- ureas: chlorotoluron, daimuron, diuron, fluometuron, isoproturon, linuron, metha- benzthiazuron,tebuthiuron;

- other acetolactate synthase inhibitors: bispyribac-sodium, cloransulam-methyl,

diclosulam, florasulam, flucarbazone, flumetsulam, metosulam, ortho-sulfamuron, penoxsulam, propoxycarbazone, pyribambenz-propyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyroxasulfone, pyroxsulam;

- others: amicarbazone, aminotriazole, anilofos, beflubutamid, benazolin,

bencarbazone,benfluresate, benzofenap, bentazone, benzobicyclon, bicyclopyrone, bromacil, bromobutide, butafenacil, butamifos, cafenstrole, carfentrazone, cinidon- ethyl, chlorthal, cinmethylin, clomazone, cumyluron, cyprosulfamide, dicamba, difenzoquat, diflufenzopyr, Drechslera monoceras, endothal, ethofumesate, etobenzanid, fenoxasulfone, fentrazamide, flumiclorac-pentyl, flumioxazin, flupoxam, flurochloridone, flurtamone, indanofan, isoxaben, isoxaflutole, lenacil, propanil, propyzamide, quinclorac, quinmerac, mesotrione, methyl arsonic acid, naptalam, oxadiargyl, oxadiazon, oxaziclomefone, pentoxazone, pinoxaden, pyraclonil, pyraflufen-ethyl, pyrasulfotole, pyrazoxyfen, pyrazolynate, quinoclamine, saflufenacil, sulcotrione, sulfentrazone, terbacil, tefuryltrione, tembotrione, thiencarbazone, topramezone, (3-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1 -yl)-phenoxy]-pyridin-2-yloxy)-acetic acid ethyl ester, 6-amino-5-chloro- 2-cyclopropyl-pyrimidine-4-carboxylic acid methyl ester, 6-chloro-3-(2-cyclopropyl-6- methyl-phenoxy)-pyridazin-4-ol, 4-amino-3-chloro-6-(4-chloro-phenyl)-5-fluoro- pyridine-2-carboxylic acid, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxy-phenyl)- pyridine-2-carboxylic acid methyl ester, and 4-amino-3-chloro-6-(4-chloro-3- dimethylamino-2-fluoro-phenyl)-pyridine-2-carboxylic acid methyl ester.

O) Insecticides

- organo(thio)phosphates: acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidophos, methidathion, methyl-parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, tetrachlorvinphos, terbufos, triazophos, trichlorfon;

- carbamates: alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran,

carbosulfan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodicarb, triazamate;

- pyrethroids: allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfen- valerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, profluthrin, dimefluthrin;

- insect growth regulators: a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, cyramazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen, spirotetramat;

- nicotinic receptor agonists/antagonists compounds: clothianidin, dinotefuran,

flupyradifurone, imidacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, 1 -2- chloro-thiazol-5-ylmethyl)-2-nitrimino-3,5-dimethyl-[1 ,3,5]triazinane;

- GABA antagonist compounds: endosulfan, ethiprole, fipronil, vaniliprole, pyrafluprole, pyriprole, 5-amino-1 -(2,6-dichloro-4-methyl-phenyl)-4-sulfinamoyl-1 H-pyrazole-3- carbothioic acid amide;

- macrocyclic lactone insecticides: abamectin, emamectin, milbemectin, lepimectin, spinosad, spinetoram;

- mitochondrial electron transport inhibitor (METI) I acaricides: fenazaquin, pyridaben, tebufenpyrad, tolfenpyrad, flufenerim;

- METI II and III compounds: acequinocyl, fluacyprim, hydramethylnon;

- Uncouplers: chlorfenapyr;

- oxidative phosphorylation inhibitors: cyhexatin, diafenthiuron, fenbutatin oxide,

propargite;

- moulting disruptor compounds: cryomazine;

- mixed function oxidase inhibitors: piperonyl butoxide;

- sodium channel blockers: indoxacarb, metaflumizone;

- ryanodine receptor inhibitors: chlorantraniliprole, cyantraniliprole, flubendiamide, N

[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2 pyridyl)-5-(trifluoromethyl)pynazole-3-carboxamide; N-[4-chloro-2-[(diethyl-lambda-4- sulfanylidene)carbamoyl]-6 methyl-phenyl]-2-(3-chloro-2-pyridyl)-5- (triflu-Oromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(di-2-propyl-lambda-4- sulfanyl dene)carbamoyl]-6-methyl-phenyl]-2 (3-chloro-2-pyridyl)-5- (trifluoromethyl)pyrazole-3-carboxamide; N-[4,6-dichloro-2 [(di-2-propyl-lambda-4- sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5 (trifluoromethyl)pyrazole-3- carboxamide; N-[4,6-d chloro-2-[(diethyl-lambda-4 sulfanylidene)carbamoyl]-phenyl]- 2-(3-chloro-2-pyridyl)-5-(difluoromethyl)pyr-azole-3-carboxamide; N-[4,6-dibromo-2- [(di-2-propyl-lambda-4 sulfanylidene)carba-,moyl]-phenyl]-2-(3-chloro-2-pyridyl)-5- (trifluoromethyl)pyr-azole-3-carboxamide; N [4-chloro-2-[(di-2-propyl-lambda-4- sulfanylidene)carba-moyl]-6-cyano-phenyl]-2 (3-chloro-2-pyridyl)-5- (trifluoromethyl)pyrazole-3-carbox^amide; N-[4,6-dibromo-2 [(diethyl-lambda-4- sulfanylidene)carbamoyl]-phenyl]-2 (3 chloro-2-pyridyl)-5 (tr fluoromethyl)pyrazole-3- carboxamide;

- others: benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, pymetrozine, sulfur, thiocyclam, cyenopyrafen, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, pyrifluquinazon, l . - S^R^aR.eS.eaS.^R.^aS.^bSH-I^- cyclopropylacetyl)oxy]methyl]-1 ,3,4,4a,5,6,6a,12,12a,12b-decahydro-12-hydroxy- 4,6a, 12b-trimethyl-1 1 -oxo-9-(3-pyridinyl)-2H , 1 1 H-naphtho[2, 1 -b]pyrano[3,4-e]pyran- 3,6-diyl] cyclopropaneacetic acid ester.

A method for controlling phytopathogenic fungi, insects or other pests and/or improving the health of plants and/or regulating plant growth, comprising treating the plants, the plant seed or the soil with an effective amount of the mixture as defined in any one of claims 1 to 15 or of the composition as defined in any of the claims 16 to 18 or with a Quillay extract in combination with at least one biopesticide II as defined in any of claims 1 to 15 and optionally also with at least one active component 3) as defined in any of claims 17 or 18.

20. The use of a mixture as defined in any one of claims 1 to 15 or of a composition as

defined in any of the claims 16 to 18 or of a Quillay extract in combination with at least one biopesticide II as defined in any of claims 1 to 15 and optionally also in combination with at least one active component 3) as defined in any of claims 17 or 18 for controlling phytopathogenic harmful fungi, insects or other pests and/or improving the health of plants and/or regulating plant growth.

21 . A plant propagation material, comprising the mixture as defined in any one of claims 1 to 15 or the composition as defined in any of the claims 16 to 18 in an amount of from 0.01 g to 10000 g per 100 kg of plant propagation material.

Description:
Compositions comprising a Quillay extract and a biopesticide

Description The present invention relates to mixtures comprising as active components a Quillay extract and a biopesticide.

Quillaja saponaria, Molina, the soapbark tree, is an evergreen tree in the family Quillajaceae, native to warm temperate central Chile.

Extracts of the barksoap tree (Quillaja saponaria Mol.) are well-known (CAS-No. 68990-67-0) and safe cosmetic, food and pharmaceutical additives e.g. used as adjuvant in vaccine solutions. Such soapbark tree, also called China bark extract, Murillo bark extract, Panama bark extract, Quillai extract, Quillaia extract or Quillay extract, generally comprises the milled inner bark, wood, small stems, small branches and/or leaves of the soapbark tree and contains saponins, polyphenols and other ingredients.

Quillays biocide activity has been previously described for instance in Apablaza et al (Fitopatologia 39, 2004, 144-149), where experiments are described about the control of cucurbitaceae oidium [Erysiphe cichoracearum DC. ex Merat and Sphaerotheca fuliginea (Schlecht ex Fr.) Poll] with the saponin-containing water-based Quillay extracts QL 1000 and QL 30B; said experiments provided satisfactory results in cucumber and pumpkins.

Quillay extract-based products (e.g. QL Agri 35, BASF SE) have been also applied as nematicides especially indicated for the control of nematodes in vineyards and citric trees.

Further, an acaricidal mixture comprising the Quillay extract QL Agri 35 and sulfur (Acoidal WG) is marketed by BASF SE.

In WO 2007/046680 an organic insecticide blend is described for the control of Aedes aegypti, comprising extracts from Quillaja saponaria, Chrysanthemum cinerariaefolium

(pyrethrins), Azadirachta indica, Azadirachtin, and a garlic waterish extract.

Quillay extracts are commercially available e.g. under the trademark QL Agri 35 produced by Natural Response S.A., Quilpue, Chile, and marketed by Desert King Chile and BASF SE. Usually the water-based extraction step takes place at temperatures between 5°C and 95°C, preferably at 20°C to 90°C, even more preferably at 40°C to 90°C. It contains a minimum of 6 % of saponins, 15 % polyphenols and about 35 °Brix, and has a total solids content of 350 g/l (the total solids content, or dry mass content, containing in general a residual moisture content of at most 5% by weight, preferably at most 2% by weight, based on the total weight of the solids content). The percentages are weight percentages and relative to the volume of the extract. One degree Brix is 1 gram of sucrose in 100 grams of solution and represents the strength of the solution as percentage by weight (% w/w) (strictly speaking, by mass). If the solution contains dissolved solids other than pure sucrose, then the °Brix is only approximate the dissolved solid content. Further suitable Quillay extracts are commercially available (trademarks QL 1000, QP 1000, QL Ultra, QL 30B and Vax Sap, produced by Natural Response S.A.

Quilpue, Chile).

Biopesticides in the sense of the present invention are generally as defined by the US Environmental Protection Agency (EPA)

(http://www.epa.gov/pesticides/biopesticides/whatarebiopesti cides.htm). Biopesticides have been defined as a form of pesticides based on micro-organisms

(bacteria, fungi, viruses, nematodes, etc.) or natural products (compounds or extracts from biological sources).

Biopesticides are typically created by growing and concentrating naturally occurring organisms and/or their metabolites including bacteria and other microbes, fungi, viruses, nematodes, proteins, etc. They are often considered to be important components of integrated pest management (IPM) programmes, and have received much practical attention as

substitutes to synthetic chemical plant protection products (PPPs).

Biopesticides fall into two major classes, microbial and biochemical pesticides:

(1 ) Microbial pesticides consist of bacteria, fungi or viruses (and often include the

metabolites that bacteria and fungi produce). Entomopathogenic nematodes are also classed as microbial pesticides, even though they are multi-cellular.

(2) Biochemical pesticides are naturally occurring substances that control pests or provide other crop protection uses as defined below, but are relatively non-toxic to mammals. Biopesticides for use against crop diseases have already established themselves on a variety of crops. For example, biopesticides already play an important role in controlling downy mildew diseases. Their benefits include: a 0-Day Pre-Harvest Interval, the ability to use under moderate to severe disease pressure, and the ability to use in mixture or in a rotational program with other registered pesticides.

A major growth area for biopesticides is in the area of seed treatments and soil amendments. Biopesticidal seed treatments are e.g. used to control soil borne fungal pathogens that cause seed rots, damping-off, root rot and seedling blights. They can also be used to control internal seed borne fungal pathogens as well as fungal pathogens that are on the surface of the seed. Many biopesticidal products also show capacities to stimulate plant host defenses and other physiological processes that can make treated crops more resistant to a variety of biotic and abiotic stresses.

However, biopesticides under certain conditions can also have disadvantages such as high specificity: which may require an exact identification of the pest/pathogen and the use of multiple products to be used, slow speed of action (thus making them unsuitable if a pest outbreak is an immediate threat to a crop), variable efficacy due to the influences of various biotic and abiotic factors (since biopesticides are usually living organisms, which bring about pest/pathogen control by multiplying within the target insect pest/pathogen) and resistance development.

Practical agricultural experience has shown that the repeated and exclusive application of an individual active component in the control of harmful fungi or insects or other pests leads in many cases to a rapid selection of those fungus strains or pest isolates which have developed natural or adapted resistance against the active component in question. Effective control of these fungi or pests with the active component in question is then no longer possible.

To reduce the risk of the selection of resistant fungus strains or insect isolates, mixtures of different active components are nowadays conventionally employed for controlling harmful fungi or insects or other pests. By combining active compounds and/or biopesticides having different mechanisms of action, it is possible to ensure successful control over a relatively long period of time.

It is an object of the present invention overcome the abovementioned disadvantages and to provide, with a view to effective resistance management and effective control of phytopathogenic harmful fungi, insects or other pests or to effective plant growth regulation, at application rates which are as low as possible, compositions which, at a reduced total amount of active compounds applied, have improved activity against the harmful fungi or pests or improved plant growth regulating activity (synergistic mixtures) and a broadened activity spectrum, in particular for certain indications.

We have accordingly found that this object is achieved by the mixtures and compositions defined herein, comprising a water-based Quillay extract and a biopesticide.

Thus, the present invention relates to mixtures comprising, as active components

1 ) a Quillay extract;

and

2) at least one biopesticide II selected from the groups A') to F'):

A') Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense

activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C.

saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium

catenulatum), Gliocladium roseum, Lysobacter antibioticus, L. enzymogenes, Met- schnikowia fructicola, Microdochium dimerum, Microsphaeropsis ochracea,

Muscodor albus, Paenibacillus polymyxa, Pantoea agglomerans, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum; mixture of T. harzianum and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);

B') Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, potassium or sodium bicarbonate, Reynoutria sachlinensis extract, salicylic acid, tea tree oil;

C) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis ssp. aizawai, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, B. brongniartii, Beauveria bassiana, Burkholderia sp., Chromobacterium subtsugae, Cydia pomonella granulosis virus, Cryptophlebia leucotreta granulovirus (CrleGV), Isaria fumosorosea, Heterorhabditis bacteriophora, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramose, P. reneformis, P. usgae, Pseudomonas fluorescens, Steinernema carpocapsae, S. feltiae, S. kraussei;

D') Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1 - butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)- 2,13-octadecadien-1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 - tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1 -yl acetate, Z-7-tetradecen-2- one, Z-9-tetradecen-1 -yl acetate, Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Tagetes oil;

E') Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. elkanii, B.

japonicum, B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium

leguminosarum bv. phaseoli, R. I. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium meliloti;

F') Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2- one, formononetin, genistein, hesperetin, homobrassinlide, humates, jasmonic acid or salts or derivatives thereof, lysophosphatidyl ethanolamine, naringenin, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract.

In a specific embodiment, the compounds II are selected from

A') Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense

activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C.

saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Metschnikowia fructicola, Microdochium dimerum, Paenibacillus polymyxa, Pantoea agglomerans, Phlebiopsis gigantea, Pseudozyma flocculosa, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum; mixture of T. harzianum and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudema, U. oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);

B') Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, Reynoutria sachlinensis extract, salicylic acid, tea tree oil;

C) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal

activity: Bacillus firmus, B. thuringiensis ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, Beauveria bassiana, Burkholderia sp., Chromobacterium subtsugae, Cydia pomonella granulosis virus, Isaria fumosorosea, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae, M. anisopliae var. acridum, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus poppiliae, Pasteuria spp., P. nishizawae, P. reneformis, P. usagae, Pseudomonas fluorescens, Steinernema feltiae, Streptomces galbus;

D') Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)-2,13-octadecadien- 1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 -tetradecatrienyl acetate, (Z,E)- 9,12-tetradecadien-1 -yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1 -yl acetate, Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Tagetes oil;

E') Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. japonicum, Glomus intraradices, Paenibacillus alvei, Penicillium bilaiae, Rhizobium

leguminosarum bv. phaseolii, R. I. trifolii, R. I. bv. viciae, Sinorhizobium meliloti;

F') Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2- one, homobrassinlide, humates, indole-3-acetic acid, lysophosphatidyl ethanlamine, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract.

The mixture according to the invention or to be used according to the invention is not restricted to a physical mixture of the Quillay extract and at least one biopesticide II, but can be any combination of the Quillay extract and at least one biopesticide II, it not being required for the Quillay extract and the at least one biopesticide II to be present together in the same formulation. In the following, the mixture of the invention is partly also termed "composition".

An example of a "mixture" (more correctly: a composition) according to the invention or to be used according to the invention in which the Quillay extract and the at least one biopesticide II are not present together in the same formulation is a combipack. In a combipack, two or more components of a combipack are packaged separately, i.e., not jointly pre-formulated. As such, combipacks include one or more separate containers such as vials, cans, bottles, pouches, bags or canisters, each container containing a separate component for an agrochemical composition. One example is a two-component combipack. Accordingly the present invention also relates to a two-component combipack, comprising a first component which in turn comprises the Quillay extract, a liquid or solid carrier and, if appropriate, at least one surfactant and/or at least one customary auxiliary, and a second component which in turn comprises at least one biopesticide, a liquid or solid carrier and, if appropriate, at least one surfactant and/or at least one customary auxiliary. More details, e.g. as to suitable liquid and solid carriers, surfactants and customary auxiliaries are described below.

In a specific embodiment, the mixture of the invention is a physical mixture.

The biopesticides from group A') and/or B') may also have insecticidal, acaricidal, molluscidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.

The biopesticides from group C) and/or D') may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.

The biopesticides from group E') and/or P) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.

The biopesticides, their preparation and their biological activity e.g. against harmful fungi, pests is known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-201 1 );

http://www.epa.gov/opp00001/biopesticides/, see product lists therein; http://www.omri.org/omri- lists, see lists therein; Bio-Pesticides Database BPDB http://sitem.herts.ac.uk/aeru/bpdb/, see A to Z link therein).

Many of these biopesticides are registered and/or are commercially available: aluminium silicate (Screen™ Duo from Certis LLC, USA), Agrobacterium radio-'bacter K1026 (e.g.

NoGall® from Becker Underwood Pty Ltd., Australia), A. radiobacter K84 (Nature 280, 697-699, 1979; e.g. GallTroll® from AG Biochem, Inc., C, USA), Ampelomyces quisqualis M-10 (e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany), Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract or filtrate (e.g. ORKA GOLD from Becker Underwood, South Africa; or Goemar® from Laboratoires Goemar, France), Aspergillus flavus NRRL 21882 isolated from a peanut in Georgia in 1991 by the USDA, National Peanut Research Laboratory (e.g. in Afla- Guard® from Syngenta, CH), mixtures of Aureobasidium pullulans DSM14940 and DSM 14941 (e.g. blastospores in Blossom Protect® from bio-ferm GmbH, Germany), Azospirillum

amazonense BR 1 1 140 (SpY2T) (Proc. 9th Int. and 1 st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60, ISBN 978-958-46-0908-3), A. brasilense AZ39 (Eur. J. Soil Biol 45(1 ), 28-35, 2009), A. brasilense XOH (e.g. AZOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), A. brasilense BR 1 1002 (Proc. 9th Int. and 1 st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60, ISBN 978-958- 46-0908-3), A. brasilense BR 1 1005 (SP245; e.g. in GELFIX Gramineas from BASF Agricultural Specialties Ltd., Brazil), A. lipoferum BR 1 1646 (Sp31 ) (Proc. 9th Int. and 1 st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60), B. amyloliquefaciens IN937a (J. Microbiol. Biotechnol. 17(2), 280- 286, 2007; e.g. in BioYield® from Gustafson LLC, TX, USA), B. amyloliquefaciens IT-45 (CNCM I 3800) (e.g. Rhizocell C from ITHEC, France), B.

amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595, deposited at United States Department of Agriculture) (e.g. Integral®, Subtilex® NG from Becker Underwood, USA), B. cereus CNCM 1-1562 (US 6,406,690), B. firmus CNCM 1-1582 (WO 2009/126473, WO 2009/124707, US 6,406,690; Votivo® from Bayer Crop Science LP, USA), B. pumilus GB34 (ATCC 700814; e.g. in YieldShield® from Gustafson LLC, TX, USA), and Bacillus pumilus KFP9F (NRRL B-50754) (e.g. in BAC-UP or FUSION-P from Becker Underwood South Africa), B. pumilus QST 2808 (NRRL B 30087) (e.g. Sonata® and Ballad® Plus from AgraQuest Inc., USA), B. subtilis GB03 (e.g. Kodiak® or BioYield® from Gustafson, Inc., USA; or Companion® from Growth Products, Ltd., White Plains, NY 10603, USA), B. subtilis GB07 (Epic® from Gustafson, Inc., USA), B. subtilis QST-713 (NRRL B 21661 in Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest Inc., USA), B. subtilis var. amylolique-'faciens FZB24 (e.g. Taegro® from Novozyme Biologicals, Inc., USA), B. subtilis var. amyloliquefaciens D747 (e.g. Double Nickel 55 from Certis LLC, USA), B. thuringiensis ssp. aizawai ABTS-1857 (e.g. in XenTari® from BioFa AG, Munsingen, Germany), B. t. ssp. aizawai SAN 401 I, ABG-6305 and ABG-6346, Bacillus t. ssp. israelensis AM65-52 (e.g. in VectoBac® from Valent Biosciences, IL, USA), Bacillus thuringiensis ssp. kurstaki SB4 (NRRL B-50753; e.g. Beta Pro® from Becker Underwood, South Africa), B. t. ssp. kurstaki ABTS-351 identical to HD-1 (ATCC SD-1275; e.g. in Dipel® DF from Valent Biosciences, IL, USA), B. t. ssp. kurstaki EG 2348 (e.g. in Lepinox® or Rapax® from CBC (Europe) S.r.l., Italy), B. t. ssp. tenebrionis DSM 2803 (EP 0 585 215 B1 ; identical to NRRL B-15939; Mycogen Corp.), B. t. ssp. tenebrionis NB-125 (DSM 5526; EP 0 585 215 B1 ; also referred to as SAN 418 I or ABG-6479; former production strain of Novo- Nordisk), B. t. ssp. tenebrionis NB-176 (or NB-176-1 ) a gamma-irridated, induced high-yielding mutant of strain NB-125 (DSM 5480; EP 585 215 B1 ; Novodor® from Valent Biosciences, Switzerland), Beauveria bassiana ATCC 74040 (e.g. in Naturalis® from CBC (Europe) S.r.l., Italy), B. bassiana DSM 12256 (US 200020031495; e.g. BioExpert® SC from Live Sytems Technology S.A., Colombia), B. bassiana GHA (BotaniGard® 22WGP from Laverlam Int. Corp., USA), B. bassiana PPRI 5339 (ARSEF number 5339 in the US DA ARS collection of

entomopathogenic fungal cultures; NRRL 50757) (e.g. BroadBand® from Becker Underwood, South Africa), B. brongniartii (e.g. in Melocont® from Agrifutur, Agrianello, Italy, for control of cockchafer; J. Appl. Microbiol. 100(5), 1063-72, 2006), Bradyrhizobium sp. (e.g. Vault® from Becker Underwood, USA), B. japonicum (e.g. VAULT® from Becker Underwood, USA), Candida oleophila 1-182 (NRRL Y-18846; e.g. Aspire® from Ecogen Inc., USA, Phytoparasitica 23(3), 231 -234, 1995), C. oleophila strain O (NRRL Y-2317; Biological Control 51 , 403- 408, 2009),, Candida saitoana (e.g. Biocure® (in mixture with lysozyme) and BioCoat® from Micro Flo Company, USA (BASF SE) and Arysta), Chitosan (e.g. Armour-Zen® from BotriZen Ltd., NZ), Clonostachys rosea f. catenulata, also named Gliocladium catenulatum (e.g. isolate J 1446: Prestop® from Verdera Oy, Finland), Chromobacterium subtsugae PRAA4-1 isolated from soil under an eastern hemlock (Tsuga canadensis) in the Catoctin Mountain region of central Maryland (e.g. in GRANDEVO from Marrone Bio Innovations, USA), Coniothyrium minitans CON/M/91 -08 (e.g. Contans® WG from Prophyta, Germany), Cryphonectria parasitica (e.g. Endothia parasitica from CNICM, France), Cryptococcus albidus (e.g. YIELD PLUS® from Anchor Bio-Technologies, South Africa), Cryptophlebia leucotreta granulovirus (CrIeGV) (e.g. in CRYPTEX from Adermatt Biocontrol, Switzerland), Cydia pomonella granulovirus (CpGV) V03 (DSM GV-0006; e.g. in MADEX Max from Andermatt Biocontrol, Switzerland), CpGV V22 (DSM GV-0014; e.g. in MADEX Twin from Adermatt Biocontrol, Switzerland), Delftia acidovorans RAY209 (ATCC PTA-4249; WO 2003/57861 ; e.g. in BIOBOOST from Brett Young, Winnipeg, Canada), Dilophosphora alopecuri (Twist Fungus from Becker Underwood, Australia), Ecklonia maxima (kelp) extract (e.g. KELPAK SL from Kelp Products Ltd, South Africa), formononetin (e.g. in MYCONATE from Plant Health Care pic, U.K.), Fusarium oxysporum (e.g. BIOFOX® from S.I.A.P.A., Italy, FUSACLEAN® from Natural Plant Protection, France), Glomus

intraradices (e.g. MYC 4000 from ITHEC, France), Glomus intraradices RTI-801 (e.g. MYKOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), grapefruit seeds and pulp extract (e.g. BC-1000 from Chemie S.A., Chile), harpin (alpha-beta) protein (e.g. MESSENGER or HARP-N-Tek from Plant Health Care pic, U.K.; Science 257, 1- 132, 1992), Heterorhabditis bacteriophaga (e.g. Nemasys® G from Becker Underwood Ltd., UK), Isaria fumosorosea Apopka-97 (ATCC 20874) (PFR-97™ from Certis LLC, USA), cis-jasmone (US 8,221 ,736), laminarin (e.g. in VACCIPLANT from Laboratoires Goemar, St. Malo, France or Stahler SA, Switzerland), Lecanicillium longisporum KV42 and KV71 (e.g. VERTALEC® from Koppert BV, Netherlands), L. muscarium KV01 (formerly Verticillium lecanii) (e.g. MYCOTAL from Koppert BV, Netherlands), Lysobacter antibioticus 13-1 (Biological Control 45, 288-296, 2008), L. antibioticus HS124 (Curr. Microbiol. 59(6), 608-615, 2009), L. enzymogenes 3.1T8 (Microbiol. Res. 158, 107-1 15; Biological Control 31 (2), 145-154, 2004), Metarhizium anisopliae var. acridum IMI 330189 (isolated from Ornithacris cavroisi in Niger; also NRRL 50758) (e.g. GREEN MUSCLE® from Becker Underwood, South Africa), M. a. var. acridum FI-985 (e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia), M. anisopliae FI-1045 (e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia), M. anisopliae F52 (DSM 3884, ATCC 90448; e.g. MET52® Novozymes Biologicals BioAg Group, Canada), M. anisopliae ICIPE 69 (e.g. METATHRI POL from ICIPE, Nairobe, Kenya), Metschnikowia fructicola (NRRL Y-30752; e.g. SHEMER® from Agrogreen, Israel, now distributed by Bayer CropSciences, Germany; US 6,994,849), Microdochium dimerum (e.g. ANTIBOT® from Agrauxine, France),

Microsphaeropsis ochracea P130A (ATCC 74412 isolated from apple leaves from an

abandoned orchard, St-Joseph-du-Lac, Quebec, Canada in 1993; Mycologia 94(2), 297-301 , 2002), Muscodor albus QST 20799 originally isolated from the bark of a cinnamon tree in Honduras (e.g. in development products Muscudor™ or QRD300 from AgraQuest, USA), Neem oil (e.g. TRILOGY®, TRIACT® 70 EC from Certis LLC, USA), Nomuraea rileyi strains SA86101 , GU87401 , SR86151 , CG128 and VA9101 , Paecilomyces fumosoroseus FE 9901 (e.g. NO FLY™ from Natural Industries, Inc., USA), P. lilacinus 251 (e.g. in BioAct®/MeloCon® from Prophyta, Germany; Crop Protection 27, 352-361 , 2008; originally isolated from infected nematode eggs in the Philippines), P. lilacinus DSM 15169 (e.g. NEMATA® SC from Live Systems Technology S.A., Colombia), P. lilacinus BCP2 (NRRL 50756; e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa), mixture of Paenibacillus alvei NAS6G6 (NRRL B-50755), Pantoea vagans (formerly agglomerans) C9-1 (originally isolated in 1994 from apple stem tissue; BlightBan C9-1® from NuFrams America Inc., USA, for control of fire blight in apple; J. Bacteriol. 192(24) 6486- 6487, 2010), Pasteuria spp. ATCC PTA-9643 (WO

2010/085795), Pasteuria spp. ATCC SD-5832 (WO 2012/064527), P. nishizawae (WO

2010/80169), P. penetrans (US 5,248,500), P. ramose (WO 2010/80619), P. thornea (WO 2010/80169), P. usgae (WO 2010/80169), Penicillium bilaiae (e.g. Jump Start® from

Novozymes Biologicals BioAg Group, Canada, originally isolated from soil in southern Alberta; Fertilizer Res. 39, 97-103, 1994), Phlebiopsis gigantea (e.g. RotStop® from Verdera Oy, Finland), Pichia anomala WRL-076 (NRRL Y-30842; US 8,206,972), potassium bicarbonate (e.g. Amicarb® fromm Stahler SA, Switzerland), potassium silicate (e.g. Sil-MATRIX™ from Certis LLC, USA), Pseudozyma flocculosa PF-A22 UL (e.g. Sporodex® from Plant Products Co. Ltd., Canada), Pseudomonas sp. DSM 13134 (WO 2001/40441 , e.g. in PRORADIX from Sourcon Padena GmbH & Co. KG, Hechinger Str. 262, 72072 Tubingen, Germany), P.

chloraphis MA 342 (e.g. in CERALL or CEDEMON from BioAgri AB, Uppsala, Sweden), P. fluorescens CL 145A (e.g. in ZEQUANOX from Marrone Biolnnovations, Davis, CA, USA; J. Invertebr. Pathol. 1 13(1 ): 104-14, 2013), Pythium oligandrum DV 74 (ATCC 38472; e.g.

POLYVERSUM® from Remeslo SSRO, Biopreparaty, Czech Rep. and GOWAN, USA; US 2013/0035230), Reynoutria sachlinensis extract (e.g. REGALIA® SC from Marrone

Biolnnovations, Davis, CA, USA), Rhizobium leguminosarum bv. phaseoli (e.g. RHIZO-STICK from Becker Underwood, USA), R. I. trifolii RP1 13-7 (e.g. DORMAL from Becker Underwood, USA; Appl. Environ. Microbiol. 44(5), 1096-1 101 ), R. I. bv. viciae P1 NP3Cst (also referred to as 1435; New Phytol 179(1 ), 224-235, 2008; e.g. in NODULATOR PL Peat Granule from Becker Underwood, USA; or in NODULATOR XL PL bfrom Becker Underwood, Canada), R. I. bv.

viciae SU303 (e.g. NODULAID Group E from Becker Underwood, Australia), R. I. bv. viciae WSM1455 (e.g. NODULAID Group F from Becker Underwood, Australia), R. tropici SEMIA 4080 (identical to PRF 81 ; Soil Biology & Biochemistry 39, 867- 876, 2007), Sinorhizobium meliloti MSDJ0848 (INRA, France) also referred to as strain 201 1 or RCR201 1 (Mol Gen Genomics (2004) 272: 1- 17; e.g. DORMAL ALFALFA from Becker Underwood, USA;

NITRAGIN® Gold from Novozymes Biologicals BioAg Group, Canada), Sphaerodes

mycoparasitica IDAC 301008-01 (WO 201 1/022809), Steinernema carpocapsae (e.g.

MILLENIUM® from Becker Underwood Ltd., UK), S. feltiae (NEMASHIELD® from BioWorks, Inc., USA; NEMASYS® from Becker Underwood Ltd., UK), S. kraussei L137 (NEMASYS® L from Becker Underwood Ltd., UK), Streptomyces griseoviridis K61 (e.g. MYCOSTOP® from Verdera Oy, Espoo, Finland; Crop Protection 25, 468-475, 2006), S. lydicus WYEC 108 (e.g. Actinovate® from Natural Industries, Inc., USA, US 5,403,584), S. violaceusniger YCED-9 (e.g. DT-9® from Natural Industries, Inc., USA, US 5,968,503), Talaromyces flavus V1 17b (e.g.

PROTUS® from Prophyta, Germany), Trichoderma asperellum SKT-1 (e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan), T. asperellum ICC 012 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro NC, USA, BIO-TAM from AgraQuest, USA), T.

atroviride LC52 (e.g. SENTINEL® from Agrimm Technologies Ltd, NZ), T. atroviride CNCM I- 1237 (e.g. in Esquive WG from Agrauxine S.A., France, e.g. against pruning wound diseases on vine and plant root pathogens), T. fertile JM41 R (NRRL 50759; e.g. RICHPLUS™ from Becker Underwood Bio Ag SA Ltd, South Africa), T. gamsii ICC 080 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro NC, USA, BIO-TAM from AgraQuest, USA), T. harzianum T-22 (e.g. PLANTSHIELD® der Firma BioWorks Inc., USA), T. harzianum TH 35 (e.g. ROOT PRO® from Mycontrol Ltd., Israel), T. harzianum T-39 (e.g. TRICHODEX® and TRICHODERMA 2000® from Mycontrol Ltd., Israel and Makhteshim Ltd., Israel), T. harzianum and T. viride (e.g. TRICHOPEL from Agrimm Technologies Ltd, NZ), T. harzianum ICC012 and T. viride ICC080 (e.g. REMEDIER® WP from Isagro Ricerca, Italy), T. polysporum and T. harzianum (e.g.

BINAB® from BINAB Bio-Innovation AB, Sweden), T. stromaticum (e.g. TRICOVAB® from

C.E.P.L.A.C., Brazil), T. virens GL-21 (also named Gliocladium virens) (e.g. SOILGARD® from Certis LLC, USA), T. viride (e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO- CURE® F from T. Stanes & Co. Ltd., Indien), T. viride TV1 (e.g. T. viride TV1 from Agribiotec srl, Italy) and Ulocladium oudemansii HRU3 (e.g. in BOTRY-ZEN® from Botry-Zen Ltd, NZ). Strains can be sourced from genetic resource and deposition centers: American Type Culture Collection, 10801 University Blvd., Manassas, VA 201 10-2209, USA (strains with ATCC prefic); CABI Europe - International Mycological Institute, Bakeham Lane, Egham, Surrey, TW20 9TYNRRL, UK (strains with prefices CABI and I Ml); Centraalbureau voor

Schimmelcultures, Fungal Biodiversity Centre, Uppsalaan 8, PO Box 85167, 3508 AD Utrecht, Netherlands (strains with prefic CBS); Division of Plant Industry, CSIRO, Canberra, Australia (strains with prefix CC); Collection Nationale de Cultures de Microorganismes, Institut Pasteur, 25 rue du Docteur Roux, F-75724 PARIS Cedex 15 (strains with prefix CNCM); Leibniz-lnstitut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenst^e 7 B, 38124 Braunschweig, Germany (strains with prefix DSM); International Depositary Authority of Canada Collection, Canada (strains with prefix IDAC); Interntional Collection of Micro-orgniasms from Plants, Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1 142, New Zealand (strans with prefix ICMP); IITA, PMB 5320, Ibadan, Nigeria (straisn with prefix IITA); The National Collections of Industrial and Marine Bacteria Ltd., Torry Research Station, P.O. Box 31 , 135 Abbey Road, Aberdeen, AB9 8DG, Scotland (strains with prefix NCIMB); ARS Culture Collection of the National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, USA (strains with prefix NRRL); Department of Scientific and Industrial Research Culture Collection, Applied Biochemistry Division, Palmerston North, New Zealand (strains with prefix NZP); FEPAGRO-Fundagao Estadual de Pesquisa Agropecuaria, Rua Gongalves Dias, 570, Bairro Menino Deus, Porto Alegre/RS, Brazil (strains with prefix SEMIA); SARDI, Adelaide, South Australia (strains with prefix SRDI); U.S. Department of Agriculture, Agricultural Research Service, Soybean and Alfalfa Research Laboratory, BARC-West, 10300 Baltimore Boulevard, Building 01 1 , Room 19-9, Beltsville, MD 20705, USA (strains with prefix USDA: Beltsville Rhizobium Culture Collection Catalog March 1987 USDA-ARS ARS-30:

http://pdf.usaid.gov/pdf_docs/PNAAW891.pdf); and Murdoch University, Perth, Western

Australia (strains with prefix WSM). Further strains may be found at the Global catalogue of Microorganisms: http://gcm.wfcc.info/ and

http://www.landcareresearch.co.nz/resources/collections/i cmp and further references to strain collections and their prefixes at http://refs.wdcm.org/collections.htm.

Bacillus amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) is deposited under accession number NRRL B-50595 with the strain designation Bacillus subtilis 1430 (and identical to NCIMB 1237). Recently, MBI 600 has been re-classified as Bacillus

amyloliquefaciens subsp. plantarum based on polyphasic testing which combines classical microbiological methods relying on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis). Thus, Bacillus subtilis MBI600 (or MBI 600 or MBI-600) is identical to Bacillus amyloliquefaciens subsp.

plantarum MBI600, formerly Bacillus subtilis MBI600. Bacillus amyloliquefaciens MBI600 is known as plant growth-promoting rice seed treatment from Int. J. Microbiol. Res. 3(2) (201 1 ), 120-130 and further described e.g. in US 2012/0149571 A1 . This strain MBI600 is e.g.

commercially available as liquid formulation product INTEGRAL® (Becker-Underwood Inc., USA).

Bacillus subtilis strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This B. subtilis strain promotes plant health (US 2010/0260735 A1 ; WO 201 1/109395 A2). B. subtilis FB17 has also been deposited at ATCC under number PTA-1 1857 on April 26, 201 1 . Bacillus subtilis strain FB17 may be referred elsewhere to as UD1022 or UD10-22.

Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B- 50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B- 50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. japonicum SEMIA 5079 (e.g. Gelfix 5 or Adhere 60 from Nitral Urbana Laoboratories, Brazil, a BASF Company), B. japonicum SEMIA 5080 (e.g. GELFIX 5 or ADHERE 60 from Nitral Urbana Laoboratories, Brazil, a BASF

Company), B. mojavensis AP-209 (NRRL B-50616), B. solisalsi AP-217 (NRRL B-50617), B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B- 50185)), B. simplex ABU 288 (NRRL B-50340) and B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571 , US 8,445,255, WO 2012/079073. Bradyrhizobium japonicum USDA 3 is known from US patent 7,262,151.

Jasmonic acid or salts (jasmonates) or derivatives include without limitation potassi-um jasmonate, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dimethyl-ammonium jasmonate, isopropylammonium jasmonate, diolammonium jasmonate,

diethtriethanolammonium jasmonate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L-isoleucine, L-valine, L-leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coronafacoyl-L-serine, coronafacoyl-L-threonine, methyl esters of 1 -oxo-indanoyl- isoleucine, methyl esters of 1 -oxo-indanoyl-leucine, coronalon (2-[(6-ethyl-l-oxo-indane-4- carbonyl) -amino]-3-methyl -pentanoic acid methyl ester), linoleic acid or derivatives thereof and cis-jasmone, or combinations of any of the above.

Humates are humic and fulvic acids extracted from a form of lignite coal and clay, known as leonardite. Humic acids are organic acids that occur in humus and other organically derived materials such as peat and certain soft coal. They have been shown to increase fertilizer efficiency in phosphate and micro-nutrient uptake by plants as well as aiding in the development of plant root systems.

Moreover, the invention also relates to a method for controlling phytopathogenic harmful fungi, insects or other pests or to a method for regulating plant growth or to a method for improving the health of the plants using mixtures of a Quillay extract and a biopesticide and to the use of the components 1 ) and 2) as defined herein for preparing such mixtures, and to compositions and seed comprising these mixtures.

In a specific embodiment of the invention, the method of the invention does not include a treatment of a human or animal body.

Moreover, we have found that simultaneous, that is joint or separate, application of a Quillay extract and a biopesticide II or successive application of a Quillay extract and a biopesticide II allows better control of harmful fungi than is possible with the individual compounds alone

(synergistic mixtures). Furthermore, synergistic effects in relation with the insecticidal, pesticidal, herbicidal, plant growth regulating and/or plant health improving action have been found with the inventive mixtures. Thus, the invention also relates to the use of a mixture of the invention as defined above or below or of an agricultural composition as defined below or of a Quillay extract in combination with at least one biopesticide II as defined above or below and optionally also in combination with at least one active component 3) as defined below for controlling phytopathogenic harmful insects and/or for controlling phytopathogenic fungi and/or for improving plant health and/or regulating plant growth.

The use of the Quillay extract "in combination with" the at least one biopesticide II on the one hand can be understood as using a physical mixture of Quillay extract and at least one biopesticide II. On the other hand, the combined use may also consist in using the Quillay extract and the at least one biopesticide II separately, but locus- and time-related (i.e. both components are applied to the same "substrate" (plant, part thereof, seed, insect, fungus, habitat of the insect or of the fungus, soil etc.) within a sufficiently short time of one another), so that the desired effect can take place. More detailed illustrations of the combined use can be found in the specifications below.

According to one embodiment, the mixtures comprise component 1 ) and component 2) in a synergistically effective amount.

The active component 1 ) of the mixture can be found on the basis of the soap bark tree (Quillaja saponaria), from wood, branches and the bark of the tree, which are milled. Quillaja can as well be used as an extract of flakes from branches and the bark from the soap bark tree. The extract can be based on pure water extraction or a blend of water and alcohol as a means of extraction. The extract can be used as a liquid product or it can be spray dried. The abovementioned commercially available extracts are also suitable.

According to one embodiment, the mixtures comprise as component 1 ) a water-based Quillay extract. The term "water-based Quillay extract" is to be understood that the extract of the material of the Quillay tree is obtained by solid-liquid extraction wherein the liquid is water or a water-based solution comprising water-soluble solvents (such as alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters) and/or other auxiliaries (such as liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, bactericides, anti-freezing agents, anti- foaming agents, tackifiers and binders).

In some embodiments of the invention, the Quillay extract is obtained by extraction from the Quillay tree by employing water, alcohol or a water/alcohol solution. In some embodiments, the alcohol is ethanol or methanol.

In some embodiments, the extraction is achieved by employing a water/alcohol solution. In some embodiments, the water/alcohol solution has a water/alcohol ratio of from 80:20 to 20:80. In further embodiments, the water/alcohol solution has a water/alcohol ratio of from 60:40 to 40:60. In further embodiments, the water/alcohol solution is 80:20 water/alcohol, 60:40 water/alcohol, 50:50 water/alcohol, 40:60 water/ alcohol ratio or 20:80 water/alcohol. The water/alcohol ratios given are volume/volume. Specifically, the extractant is water.

The extraction time may vary without limitation from 1 to 8 hours, at or above room temperature (20°C-30°C), e.g., above 30°C, 40°C, 50°C or 60°C. In some embodiments, the extraction is carried out at a temperature between 30°C and 70°C.

In some embodiments, the extraction process comprising: treating the Quillay material in a water or water/alcohol solution.

Optionally, the so-extracted material may subsequently be purified by any means known in the art, including: filtration, centrifugation, re-crystallization, distillation, adsorption, chromatographic methods, fractionation, etc.

In some embodiments, the Quillay material is first dried and ground before being treated in the water or water/alcohol solution.

Optionally, the Quillay extract may be concentrated e.g. by evaporating or drying the extract- containing solution to obtain a concentrated liquid extract or a dried extract.

According to a further embodiment, the Quillay extract contains a minimum of 2 % of saponins and 5 % polyphenols and at least 15 °Brix; more preferably a minimum of 4 % of saponins and 10 % polyphenols and at least 25 °Brix. The percentages are weight percentages and relative to the volume of the extract. In an alternative embodiment, the Quillay extract contains a minimum of 5 % by weight of saponins and at least 10 % by weight of polyphenols, relative to the dry mass of the extract, and at least 15 °Brix; e.g. at least 9 % by weight of saponins and at least 20 % by weight of polyphenols, relative to the dry mass of the extract, and at least 15 °Brix; more preferably a minimum of 4 % by weight of saponins and at least 10 % by weight of polyphenols, relative to the dry mass of the extract, and at least 25 °Brix; e.g. at least 10 % by weight of saponins and at least 25 % by weight of polyphenols, relative to the dry mass of the extract, and at least 25 °Brix. The dry mass contains at most 5% by weight, preferably at most 2% by weight of residual liquid components, such as extractants (in general water, possibly also alcohol; mostly however residual moisture), based on the total weight of the dry mass.

In a specific embodiment, the Quillay extract is obtained by a process as described for example in CL 2573-2002. Chipped or milled wood, branches and/or the bark or flakes from branches and/or the bark of Quillaja saponaria are submitted to a solid/liquid extraction process using water as extractant. The extraction temperature may vary between 20 and 95°C (i.e. is of from 20 to 95°C), e.g. 40 to 90°C, but is specifically ca. 60°C (+/- 10°C, preferably +/- 5°C). The extraction time is in inverse proportion to the extraction temperature and is in general of from 0.5 to 5 h. For an extraction temperature of ca. 60°C, it is specifically ca. 2 to 3 h. After extraction, undesired products are generally removed. To this purpose, clarifying (precipitation- inducing) additives, such as albumen, bovine or fish gelatin, polyvinyl pyrrolidone (OVP), polyvinyl polypyrrolidone (PVPP), silica or, in particular, bentonite are added. Filtration of the mixture over suitable means, e.g. over diatomaceous earth or silica pads, is followed by concentration and pasteurization. For preservation purposes, the concentrate is brought to a pH of 3-4, especially 3.5 to 4.5, very especially ca. 3.9 (+/- 0.2). Very specifically, the Quillay extract used is QL Agri® 35. Further details of this product are given above and in the examples (minimum of 6 % of saponins, ca. 15 % polyphenols, about 35 °Brix, ca. 350 g/l of solids content).

According to a further embodiment, the present invention relates to mixtures comprising, as active components

1 ) a Quillay extract;

and

2) at least one biopesticide II selected from the groups A) to F'):

A') Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense

activator activity: Ampelomyces quisqualis M-10, Aspergillus flavus NRRL Accession No. 21882, Aureobasidium pullulans DSM 14940, A. pullulans DSM 14941 , Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B-50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B.

amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP-295 (NRRL B- 50620), B. amyloliquefaciens IT-45 (CNCM I-3800, NCBI 1091041 ), B. mojavensis AP-209 (No. NRRL B-50616), B. pumilus INR-7 (otherwise referred to as BU-F22

(NRRL B-50153) and BU-F33 (NRRL B-50185)), B. pumilus KFP9F, B. pumilus QST 2808 (NRRL B-30087), B. pumilus GHA 181 , B. simplex ABU 288 (NRRL B-50340), B. solisalsi AP-217 (NRRL B-50617), B. subtilis CX-9060, B. subtilis GB03, B.

subtilis GB07, B. subtilis QST-713 (NRRL B-21661 ), B. subtilis MBI600 (NRRL B- 50595), B. subtilis var. amyloliquefaciens FZB23, B. subtilis var. amyloliquefaciens

FZB24, B. subtilis var. amyloliquefaciens D747, B. subtilis 1430, B. subtilis FB17, Candida oleophila I-82, C. oleophila O, C. saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans CON/M/91 -08, Cryphonectria parasitica, Cryptococcus albidus, Fusarium oxysporum, Clonostachys rosea f. catenulata J1446 (also named Gliocladium catenulatum), Gliocladium roseum 321 U,

Metschnikowia fructicola, Microdochium dimerum, Paenibacillus polymyxa PKB1 (ATCC No. 202127), Pantoea agglomerans c91 , Phlebiopsis gigantea, Pseudozyma flocculosa, Pythium oligandrum DV74, Sphaerodes mycoparasitica IDAC 301008- 01 , Streptomyces lydicus WYEC 108, S. violaceusniger XL-2, S. violaceusniger YCED-9, Talaromyces flavus V1 17b, Trichoderma asperellum T34, T. asperellum

SKT-1 , T. atroviride LC52, T. fertile JM41 R, T. gamsii, T. harmatum TH 382, T. harzianum TH-35, T. harzianum T-22, T. harzianum T-39, ; mixture of T. harzianum ICC012 and T. viride ICC080; mixture of T. polysporum and T. harzianum; T.

stromaticum, T. virens (also named Gliocladium virens) GL-21 , T. virens G41 , T. viride TV1 , Typhula phacorrhiza 94671 , Ulocladium oudema, U. oudemansii HRU3,

Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);

B') Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, Reynoutria sachlinensis extract, salicylic acid, tea tree oil;

C) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Bacillus firmus St 1582, B. thuringiensis ssp. aizawai ABTS-1857, SAN 401 I, ABG-6305 and ABG-6346, B. t. ssp. galleriae SDS-502, B. t. ssp. kurstaki, in particular Bacillus thuringiensis ssp. kurstaki SB4, ABTS-351 and EG 2348; B. thuringiensis ssp. tenebrionis DSM 2803, NB-125 and NB-176, Beauveria bassiana

GHA, B. bassiana H123, B. bassiana DSM 12256, B. bassiana PRPI 5339,

Burkholderia sp. A396, Chromobacterium subtsugae PRAA4-1T, Cydia pomonella granulosis virus isolate V22, Isaria fumosorosea Apopka-97, Lecanicillium longisporum KV42, L. longisporum KV71 , L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae FI-985, M. anisopliae FI-1045, M. anisopliae F52,

M. anisopliae ICIPE 69, M. anisopliae var. acridum IMI 330189, Paecilomyces fumosoroseus FE 9901 , P. lilacinus DSM 15169, P. lilacinus BCP2, Paenibacillus poppiliae Dutky-1940 (NRRL B-2309 = ATCC 14706), P. poppiliae KLN 3, P.

poppiliae Dutky 1 , Pasteuria spp. Ph3, P. nishizawae PN-1 , P. reneformis Pr-3, P. usagae, Pseudomonas fluorescens CL 145A, Steinernema feltiae, Streptomces galbus;

D') Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)-2,13-octadecadien- 1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 -tetradecatrienyl acetate, (Z,E)- 9,12-tetradecadien-1 -yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1 -yl acetate,

Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Tagetes oil;

E') Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense BR 1 1 140 (SpY2T), A. brasilense XOH, A. brasilense BR 1 1005 (Sp245), A. brasilense BR

1 1002, A. lipoferum BR 1 1646 (Sp31 ), A. irakense, A. halopraeferens,

Bradyrhizobium sp. (Vigna), B. japonicum USDA 3, B. japonicum USDA 31 , B.

japonicum USDA 76, B. japonicum USDA 1 10, B. japonicum USDA 121 , B. japonicum SEMIA 5079, B. japonicum SEMIA 5080, Glomus intraradices RTI-801 , Paenibacillus alvei NAS6G6, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseolii, R. I. trifolii, R. I. bv. viciae, Sinorhizobium meliloti;

F') Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2- one, homobrassinlide, humates, indole-3-acetic acid, lysophosphatidyl ethanlamine, polymeric polyhydroxy acid, salicylic acid, Ascophyllum nodosum (Norwegian kelp,

Brown kelp) extract and Ecklonia maxima (kelp) extract.

According to a further embodiment, the mixture comprise as component 2) a biopesticide from group A'), preferably selected from Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B-50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. amyloliquefaciens IT-45 (CNCM I-3800, NCBI 1091041 ), B. mojavensis AP-209 (No. NRRL B- 50616), B. pumilus INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. pumilus KFP9F, B. pumilus QST 2808 (NRRL B-30087), B. pumilus GHA 181 , B. simplex ABU 288 (NRRL B-50340), B. solisaisi AP-217 (NRRL B-50617), B. subtilis CX- 9060, B. subtilis GB03, B. subtilis GB07, B. subtilis QST-713 (NRRL B-21661 ), B. subtilis MBI600 (NRRL B-50595), B. subtilis var. amyloliquefaciens FZB23, B. subtilis var.

amyloliquefaciens D747, Paenibacillus alvei NAS6G6, Paenibacillus polymyxa PKB1 (ATCC No. 202127), Sphaerodes mycoparasitica IDAC 301008-01 and Trichoderma fertile JM41 R, even more preferably from Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B.

amyloliquefaciens AP-188 (NRRL B-50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. amyloliquefaciens IT-45 (CNCM I-3800, NCBI 1091041 ), B. mojavensis AP-209 (No. NRRL B- 50616), B. pumilus INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. pumilus QST 2808 (NRRL B-30087), B. simplex ABU 288 (NRRL B- 50340), B. subtilis QST-713 (NRRL B-21661 ), B. subtilis MBI600 (NRRL B-50595), Paenibacillus alvei NAS6G6, Sphaerodes mycoparasitica IDAC 301008-01 and Trichoderma fertile J M41 R.

According to a further embodiment, the mixture comprises as component 2) a biopesticide from group A') selected from Bacillus subtilis and B. subtilis var. amyloliquefaciens, more preferably from B. subtilis CX-9060, B. subtilis GB03, B. subtilis GB07, B. subtilis QST-713

(NRRL B-21661 ), B. subtilis MBI600 (NRRL B-50595), B. subtilis var. amyloliquefaciens FZB23,

B. subtilis var. amyloliquefaciens FZB24, B. subtilis var. amyloliquefaciens D747, B. subtilis

1430 and B. subtilis FB17, and is in particular B. subtilis MBI600.

According to a further embodiment, the mixture comprise as component 2) a biopesticide from group B'), preferably selected from chitosan (hydrolysate), laminarin, Reynoutria sachlinensis extract and tea tree oil.

According to a further embodiment, the mixture comprise as component 2) a biopesticide from group C), preferably selected from Bacillus firmus St 1582, Bacillus thuringiensis ssp. kurstaki SB4, Beauveria bassiana GHA, B. bassiana H123, B. bassiana DSM 12256, B.

bassiana PRPI 5339, Metarhizium anisopliae var. acridum IMI 330189, M. anisopliae FI-985, M. anisopliae FI-1045, M. anisopliae F52, M. anisopliae ICIPE 69, Paecilomyces lilacinus DSM

15169, P. lilacinus BCP2, Paenibacillus poppiliae Dutky-1940 (NRRL B-2309 = ATCC 14706),

P. poppiliae KLN 3 and P. poppiliae Dutky 1 , even more preferably from Bacillus thuringiensis ssp. kurstaki SB4 B. bassiana DSM 12256, B. bassiana PRPI 5339, Metarhizium anisopliae var. acridum IMI 330189, M. anisopliae FI-985, M. anisopliae FI-1045, Paecilomyces lilacinus DSM

15169, P. lilacinus BCP2, Paenibacillus poppiliae Dutky-1940 (NRRL B-2309 = ATCC 14706),

P. poppiliae KLN 3 and P. poppiliae Dutky 1 .

According to a further embodiment, the mixture comprises as component 2) a biopesticide from group C) selected from B. thuringiensis ssp. aizawai, B. t. ssp. galleriae, B. t. ssp. kurstaki and B. t. ssp. tenebrionis, and in particular from B. thuringiensis ssp. aizawai ABTS-1857, B. thuringiensis ssp. aizawai SAN 401 I, B. thuringiensis ssp. aizawai ABG-6305, B. thuringiensis ssp. aizawai ABG-6346, B. t. ssp. galleriae SDS-502, B. thuringiensis ssp. kurstaki SB4, B. thuringiensis ssp. kurstaki ABTS-351 , B. thuringiensis ssp. kurstaki EG 2348, B. thuringiensis ssp. tenebrionis DSM 2803, B. thuringiensis ssp. tenebrionis NB-125 and B. thuringiensis ssp. tenebrionis NB-176. In particular, the mixture comprise as component 2) a biopesticide from group C) selected from Bacillus thuringiensis ssp. kurstaki, preferably from B. thuringiensis ssp. kurstaki SB4, B. thuringiensis ssp. kurstaki ABTS-351 and B. thuringiensis ssp. kurstaki EG

2348, and is especially B. thuringiensis ssp. kurstaki SB4.

According to a further embodiment, the mixture comprise as component 2) a biopesticide from group D'), preferably selected from methyl jasmonate, extract of grapefruit seeds and pulp,

Catnip oil, Neem oil and Tagetes oil.

According to a further embodiment, the mixture comprise as component 2) a biopesticide from group E'), preferably selected from Azospirillum amazonense BR 1 1 140 (SpY2T), A.

brasilense XOH, A. brasilense BR 1 1005 (Sp245), A. brasilense BR 1 1002, A. lipoferum BR

1 1646 (Sp31 ), A. irakense, A. halopraeferens, Bacillus amyloliquefaciens AP-136 (NRRL B-

50614), Bradyrhizobium sp. (Vigna), B. japonicum USDA 3, B. japonicum USDA 31 , B.

japonicum USDA 76, B. japonicum USDA 1 10, B. japonicum USDA 121 , Glomus intraradices

RTI-801 , Paenibacillus alvei NAS6G6, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseolii, R. I. trifolii, R. I. bv. viciae, and Sinorhizobium meliloti, more preferably selected from Azospirillum brasilense BR 1 1005 (Sp245), Bradyrhizobium sp. (Vigna), B. japonicum USDA 3, B. japonicum USDA 31 , B. japonicum USDA 76, B. japonicum USDA 1 10, B. japonicum USDA 121 , Rhizobium leguminosarum bv. phaseolii, R. I. trifolii, R. I. bv. viciae, and Sinorhizobium meliloti.

According to a further embodiment, the mixture comprise as component 2) a biopesticide from group F'), preferably selected from abscisic acid, aluminium silicate (kaolin), humates, indole-3-acetic acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract.

The inverntive mixtures comprising a Quillay extract and microbial pesticide from groups A'), C) and E') may be formulated as an inoculant for a plant. The term "inoculant" means a preparation that includes an isolated culture of a microbial pesticide and optionally a carrier, which may include a biologically acceptable medium.

The abovementioned microbial pesticides may be isolated or substantially purified. The terms "isolated" or "substantially purified" refers to microbial pesticides that have been removed from a natural environment and have been isolated or separated, and are at least 60% free, preferably at least 75% free, and more preferably at least 90% free, even more preferably at least 95% free, and most preferably at least 100% free from other components with which they were naturally associated. An "isolated culture" refers to a culture of the microbial pesticides that does not include significant amounts of other materials such as other materials which normally are found in natural habitat in which the microbial pesticides grows and/or from which the microbial pesticides normally may be obtained. An "isolated culture" may be a culture that does not include any other biological, microorganism, and/or bacterial species in quantities sufficient to interfere with the replication of the "isolated culture." Isolated cultures of microbial pesticides may be combined to prepare a mixed culture of microbial pesticides.

Herein, microbial pesticides may be supplied in any physiological state such as active or dormant. Dormant microbial pesticides may be supplied for example frozen, dried, or lyophilized or partly desiccated (procedures to produce these partly desiccated organisms are given in WO2008/002371 ) or in form of spores.

The invention also relates to a method for controlling phytopathogenic harmful fungi and/or harmful insects using mixtures of a water-based Quillay extract and a water-based Acacia negra extract and to the use of a water-based Quillay extract and a water-based Acacia negra extract for preparing such mixtures, and to compositions comprising these mixtures and seed comprising these mixtures or coated with this this mixture.

The mixtures and compositions thereof according to the invention can, in the use form as fungicides and/or insecticides, also be present together with other active substances, e. g. with herbicides, insecticides, growth regulators, fungicides or else with fertilizers, as pre-mix or, if appropriate, not until immeadiately prior to use (tank mix).

Mixing a water-based Quillay extract and a water-based Acacia negra extract and the compositions comprising them, respectively, in the use form as fungicide with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained.

Mixing a water-based Quillay extract and a water-based Acacia negra extract and the compositions comprising them, respectively, in the use form as insecticide with other

insecticides results in many cases in an expansion of the insecticidal spectrum of activity or in a prevention of insecticide resistance development. Furthermore, in many cases, synergistic effects are obtained.

According to the present invention, it may be preferred that the mixtures comprise besides a Quillay extract and an Acacia negra extract and the compositions comprising them as component 3) a further active compound, preferably in a synergistically effective amount.

Another embodiment relates to mixtures wherein the component 3) is an active compound III selected from groups A) to O):

The following list of active substances, in conjunction with which the compounds according to the invention can be used, is intended to illustrate the possible combinations but does not limit them:

A) Respiration inhibitors

- Inhibitors of complex III at Q 0 site (e.g. strobilurins): azoxystrobin, coumethoxystrobin,

coumoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, fenoxystrobin/flufenoxystrobin, fluoxastrobin, kresoxim-methyl, mandestrobin, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, trifloxystrobin, 2-(2-(3-(2,6-dichlorophenyl)-

1 - methyl-allylideneaminooxymethyl)-phenyl)-2-methoxyimino-N-me thyl-acetamide, pyribencarb, triclopyricarb/chlorodincarb, famoxadone, fenamidone;

- inhibitors of complex III at Q, site: cyazofamid, amisulbrom, [(3S,6S,7R,8R)-8-benzyl-3-[(3- acetoxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-di oxo-1 ,5-dioxonan-7-yl]

2- methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[[3-(acetoxymethoxy)-4-methoxy-pyr idine-

2- carbonyl]amino]-6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate,

[(3S,6S,7R,8R)-8-benzyl-3-[(3-isobutoxycarbonyloxy-4-methoxy -pyridine-2-carbonyl)amino]- 6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[[3- (1 ,3-benzodioxol-5-ylmethoxy)-4-methoxy-pyridine-2-carbonyl]am ino]-6-methyl-4,9-dioxo- 1 ,5-dioxonan-7-yl] 2-methylpropanoate; (3S,6S,7R,8R)-3-[[(3-hydroxy-4-methoxy-2- pyridinyl)carbonyl]amino]-6-methyl-4,9-dioxo-8-(phenylmethyl )-1 ,5-dioxonan-7-yl 2- methylpropanoate

- inhibitors of complex II (e. g. carboxamides): benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, N-(4'- trifluoromethylthiobiphenyl-2-yl)-3-difluoromethyl-1-methyl- 1 H-pyrazole-4-carboxamide, N-(2- (1 ,3,3-trimethyl-butyl)-phenyl)-1 ,3-dimethyl-5-fluoro-1 H-pyrazole-4-carboxamide,

3-(difluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide,

3- (trifluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 1 ,3- dimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 3-(trifluoromethyl)-1 ,5- dimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 1 ,3,5-trimethyl-N-(1 ,1 ,3- trimethylindan-4-yl)pyrazole-4-carboxamide, N-(7-fluoro-1 ,1 ,3-trimethyl-indan-4-yl)-1 ,3- dimethyl-pyrazole-4-carboxamide, N-[2-(2,4-dichlorophenyl)-2-methoxy-1 -methyl-ethyl]-3- (difluoromethyl)-1 -methyl-pyrazole-4-carboxamide;

- other respiration inhibitors (e.g. complex I, uncouplers): diflumetorim, (5,8-difluoroquinazolin-

4- yl)-{2-[2-fluoro-4-(4-trifluoromethylpyridin-2-yloxy)-phenyl ]-ethyl}-amine; nitrophenyl derivates: binapacryl, dinobuton, dinocap, fluazinam; ferimzone; organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; ametoctradin; and silthiofam;

B) Sterol biosynthesis inhibitors (SBI fungicides)

- C14 demethylase inhibitors (DMI fungicides): triazoles: azaconazole, bitertanol,

bromuconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M,

epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole,

1 -[rel-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxir anylmethyl]-5-thiocyanato-1 H- [1 ,2,4]triazole, 2-[rel-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxi ranylmethyl]- 2H-[1 ,2,4]triazole-3-thiol; 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 (1 ,2,4-triazoM -yl)pentan- 2-ol, 1 -[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 cyclopropyl-2-(1 ,2,4-triazol-1 - yl)ethanol, 2-[4-(4-chlorophenoxy)-2-(trifluorometh- , yl)phenyl]-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[4-(4- chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[4-(4- chlorophenoxy)-2-(trifluoromethyl)-"phenyl]-1 -(1 ,2,4-triazol-1 -yl)propan-2-ol, 2-[2-chloro-4-(4- chlorophenoxy)phenyl]-3-methyl-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2- (trifluoromethyl^pheny -l -il ,2,4-triazol-1 -yl)pentan-2-ol, 2-[4-(4-fluorophenoxy)-2- (trifluoromethyl)-phenyl]-1 -(1 ,2,4-triazol-1 -yl)propan-2-ol; imidazoles: imazalil, pefurazoate, prochloraz, triflumizol; pyrimidines, pyridines and piperazines: fenarimol, nuarimol, pyrifenox, triforine, [3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluorophenyl)isoxazol -4-yl]-(3- pyridyl)methanol;

- Delta14-reductase inhibitors: aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tridemorph, fenpropidin, piperalin, spiroxamine;

- Inhibitors of 3-keto reductase: fenhexamid;

C) Nucleic acid synthesis inhibitors

- phenylamides or acyl amino acid fungicides: benalaxyl, benalaxyl-M, kiralaxyl, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;

- others: hymexazole, octhilinone, oxolinic acid, bupirimate, 5-fluorocytosine, 5-fluoro-2-(p- tolylmethoxy)pyrimidin-4-amine, 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine;

D) Inhibitors of cell division and cytoskeleton

- tubulin inhibitors, such as benzimidazoles, thiophanates: benomyl, carbendazim,

fuberidazole, thiabendazole, thiophanate-methyl; triazolopyrimidines: 5-chloro-7-(4-methyl- piperidin-1 -yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine

- other cell division inhibitors: diethofencarb, ethaboxam, pencycuron, fluopicolide, zoxamide, metrafenone, pyriofenone;

E) Inhibitors of amino acid and protein synthesis

- methionine synthesis inhibitors (anilino-pyrimidines): cyprodinil, mepanipyrim, pyrimethanil; - protein synthesis inhibitors: blasticidin-S, kasugamycin, kasugamycin hydrochloride-hydrate, mildiomycin, streptomycin, oxytetracyclin, polyoxine, validamycin A;

F) Signal transduction inhibitors

- MAP / histidine kinase inhibitors: fluoroimid, iprodione, procymidone, vinclozolin, fenpiclonil, fludioxonil; - G protein inhibitors: quinoxyfen;

G) Lipid and membrane synthesis inhibitors

- Phospholipid biosynthesis inhibitors: edifenphos, iprobenfos, pyrazophos, isoprothiolane;

- lipid peroxidation: dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;

- phospholipid biosynthesis and cell wall deposition: dimethomorph, flumorph,

mandipropamid, pyrimorph, benthiavalicarb, iprovalicarb, valifenalate and N-(1 -(1 -(4-cyano- phenyl)ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester;

- compounds affecting cell membrane permeability and fatty acides: propamocarb, propamo- carb-hydrochlorid

- fatty acid amide hydrolase inhibitors: oxathiapiprolin, 2-{3-[2-(1 -{[3,5-bis(di -, flu -, oromethyl- 1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]-4,5-dihydro-1 ,2 oxazol-5-yl}phenyl methanesulfonate, 2-{3-[2-(1 -{[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl) 1 ,3-thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol-5 yl}-3-chlorophenyl methanesulfonate

H) Inhibitors with Multi Site Action

- inorganic active substances: Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur;

- thio- and dithiocarbamates: ferbam, mancozeb, maneb, metam, metiram, propineb, thiram, zineb, ziram;

- organochlorine compounds (e.g. phthalimides, sulfamides, chloronitriles): anilazine,

chlorothalonil, captafol, captan, folpet, dichlofluanid, dichlorophen, hexachlorobenzene, pentachlorphenole and its salts, phthalide, tolylfluanid, N-(4-chloro-2-nitro-phenyl)-N-ethyl-4- methyl-benzenesulfonamide;

- guanidines and others: guanidine, dodine, dodine free base, guazatine, guazatine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate), dithianon, 2,6-dimethyl-

1 H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetraone;

I) Cell wall synthesis inhibitors

- inhibitors of glucan synthesis: validamycin, polyoxin B; melanin synthesis inhibitors:

pyroquilon, tricyclazole, carpropamid, dicyclomet, fenoxanil;

J) Plant defence inducers

- acibenzolar-S-methyl, probenazole, isotianil, tiadinil, prohexadione-calcium; phosphonates: fosetyl, fosetyl-aluminum, phosphorous acid and its salts;

K) Unknown mode of action

- bronopol, chinomethionat, cyflufenamid, cymoxanil, dazomet, debacarb, diclomezine,

difenzoquat, difenzoquat-methylsulfate, diphenylamin, fenpyrazamine, flumetover, flusulfamide, flutianil, methasulfocarb, nitrapyrin, nitrothal-isopropyl, oxathiapiprolin, picarbutrazox, tolprocarb, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-(prop-2-yn- 1 -yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1 -yl]ethanone, 2-[3,5- bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-fluoro-6-(prop-2-yn-1 -yhoxy)phenyl]-4,5- dihydro-1 ,2-oxazol-3-yl}-1 ,3-th azol-2-yl)piperidin-1 -yl]ethanone, 2 [3,5-bis(difluoromethyl)- 1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-chloro-6-(prop-2-yn-1 -yhoxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3- yl}-1 ,3-thiazol-2 yl)piperidin-1 -yl]ethanone, oxin-copper, proquinazid, tebufloquin, tecloftalam, triazoxide, 2-butoxy-6-iodo-3-propylchromen-4-one, N-(cyclopropylmethoxyimino-(6-difluoro- methoxy-2,3-difluoro-phenyl)-methyl)-2-phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl- phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(4-(4-fluoro-3-trifluoro- methyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(2-methyl-5- trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-eth yl-N-methyl formamidine, N'-(5- difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-pheny l)-N-ethyl-N-methyl

formamidine, 2methoxy-acetic acid 6-tert-butyl-8-fluoro-2,3-dimethyl-quinolin-4-yl ester, 3-[5- (4-methylphenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine, 3-[5-(4-chloro-phenyl)-2,3- dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole),

N-(6-methoxy-pyridin-3-yl) cyclopropanecarboxylic acid amide, 5-chloro-1 -(4,6-dimethoxy- pyrimidin-2-yl)-2-methyl-1 H-benzoimidazole, 2-(4-chloro-phenyl)- N-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy- acetamide, ethyl (Z) 3 amino-2- cyano-3-phenyl-prop-2-enoate, pentyl N-[6-[[(Z)-[(1 -methyltetra-"zol-5-yl)-phenyl- methylene]amino]oxymethyl]-2-pyridyl]carbamate, 2-[2-[(7,8-di -, fluoro-2-methyl-3- quinolyl)oxy]-6-fluoro-phenyl]propan-2-ol, 2-[2-fluoro-6-[(8-flu-Oro-2-methyl-3- quinolyl)oxy]phenyl]propan-2-ol, 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroiso^quinolin-1 - yl)quinoline, 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydro -, isoquinolin-1 -yl)-"quinoline, 3-(4,4,5- trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1 -yl)quinoline;

L) Biopesticides

L1 ) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C. saitoana, Clavibacter michiganensis

(bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Lysobacter antibioticus, L.

enzymogenes, Metschnikowia fructicola, Microdochium dimerum, Microsphaeropsis ochracea, Muscodor albus, Paenibacillus polymyxa, Pantoea vagans, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum; mixture of T. harzia^num and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);

L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, potassium or sodium bicarbonate, Reynoutria sachlinensis extract, salicylic acid, tea tree oil;

L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity:

Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thuringiensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, Beauveria bassiana, B. brongniartii , Burkholderia sp., Chromobacterium subtsugae, Cydia pomonella granulosis virus, Cryptophlebia leucotreta granulovirus (CrleGV), Isaria fumosorosea, Heterorhabditis bacteriophora, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramose, P. reneformis, P. thornea, P. usgae, Pseudomonas fluorescens, Steinernema carpocapsae, S. feltiae, S. kraussei;

L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or

nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)- 2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)-2,13-octadecadien-1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 -tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1 -yl acetate, Z- 7-tetradecen-2-one, Z-9-tetradecen-1 -yl acetate, Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Quillay extract, Tagetes oil;

L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth

promoting and/or yield enhancing activity: Azospirillum amazonense A. brasilense, A.

lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. elkanii, B. japonicum, B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseoli, R. I. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium meliloti;

L6) Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2-one, formononetin, genistein, hesperetin, homobrassinlide, humates, jasmonic acid or salts or derivatives thereof, lysophosphatidyl ethanolamine, naringenin, polymeric polyhydroxy acid,

Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract;

M) Growth regulators

abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet,

forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid , maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione (prohexadione-calcium), prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate, 2,3,5-tri-iodobenzoic acid , trinexapac-ethyl and uniconazole;

N) Herbicides

- acetamides: acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, flufenacet,

mefenacet, metolachlor, metazachlor, napropamide, naproanilide, pethoxamid, pretilachlor, propachlor, thenylchlor;

- amino acid derivatives: bilanafos, glyphosate, glufosinate, sulfosate;

- aryloxyphenoxypropionat.es: clodinafop, cyhalofop-butyl, fenoxaprop, fluazifop, haloxyfop, metamifop, propaquizafop, quizalofop, quizalofop-P-tefuryl;

- Bipyridyls: diquat, paraquat;

- (thio)carbamates: asulam, butylate, carbetamide, desmedipham, dimepiperate, eptam

(EPTC), esprocarb, molinate, orbencarb, phenmedipham, prosulfocarb, pyributicarb, thiobencarb, triallate;

cyclohexanediones: butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, tralkoxydim;

dinitroanilines: benfluralin, ethalfluralin, oryzalin, pendimethalin, prodiamine, trifluralin; diphenyl ethers: acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen, lactofen, oxyfluorfen;

hydroxybenzonitriles: bomoxynil, dichlobenil, ioxynil;

imidazolinones: imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr; phenoxy acetic acids: clomeprop, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-DB, dichlorprop, MCPA, MCPA-thioethyl, MCPB, Mecoprop;

pyrazines: chloridazon, flufenpyr-ethyl, fluthiacet, norflurazon, pyridate;

pyridines: aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr, picloram, picolinafen, thiazopyr;

sulfonyl ureas: amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metazosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron,

trifloxysulfuron, triflusulfuron, tritosulfuron, 1 -((2-chloro-6-propyl-imidazo[1 ,2-b]pyridazin-3- yl)sulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)urea;

triazines: ametryn, atrazine, cyanazine, dimethametryn, ethiozin, hexazinone, metamitron, metribuzin, prometryn, simazine, terbuthylazine, terbutryn, triaziflam;

ureas: chlorotoluron, daimuron, diuron, fluometuron, isoproturon, linuron, metha- benzthiazuron,tebuthiuron;

other acetolactate synthase inhibitors: bispyribac-sodium, cloransulam-methyl, diclosulam, florasulam, flucarbazone, flumetsulam, metosulam, ortho-sulfamuron, penoxsulam, propoxycarbazone, pyribambenz-propyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyroxasulfone, pyroxsulam;

others: amicarbazone, aminotriazole, anilofos, beflubutamid, benazolin,

bencarbazone,benfluresate, benzofenap, bentazone, benzobicyclon, bicyclopyrone, bromacil, bromobutide, butafenacil, butamifos, cafenstrole, carfentrazone, cinidon-ethyl, chlorthal, cinmethylin, clomazone, cumyluron, cyprosulfamide, dicamba, difenzoquat, diflufenzopyr, Drechslera monoceras, endothal, ethofumesate, etobenzanid, fenoxasulfone, fentrazamide, flumiclorac-pentyl, flumioxazin, flupoxam, flurochloridone, flurtamone, indanofan, isoxaben, isoxaflutole, lenacil, propanil, propyzamide, quinclorac, quinmerac, mesotrione, methyl arsonic acid, naptalam, oxadiargyl, oxadiazon, oxaziclomefone, pentoxazone, pinoxaden, pyraclonil, pyraf I uf en-ethyl, pyrasulfotole, pyrazoxyfen, pyrazolynate, quinoclamine, saflufenacil, sulcotrione, sulfentrazone, terbacil, tefuryltrione, tembotrione, thiencarbazone, topramezone, (3-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro-2H-pyrimidin-1 -yl)-phenoxy]-pyridin-2-yloxy)-acetic acid ethyl ester, 6-amino-5-chloro-2-cyclopropyl-pyrimidine-4-carboxylic acid methyl ester, 6-chloro-3- (2-cyclopropyl-6-methyl-phenoxy)-pyridazin-4-ol, 4-amino-3-chloro-6-(4-chloro-phenyl)-5- fluoro-pyridine-2-carboxylic acid, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxy-phenyl)- pyridine-2-carboxylic acid methyl ester, and 4-amino-3-chloro-6-(4-chloro-3-dimethylamino- 2-fluoro-phenyl)-pyridine-2-carboxylic acid methyl ester.

O) Insecticides

- organo(thio)phosphates: acephate, azamethiphos, azinphos-methyl, chlorpyrifos,

chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidophos,

methidathion, methyl-parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos- methyl, profenofos, prothiofos, sulprophos, tetrachlorvinphos, terbufos, triazophos, trichlorfon;

- carbamates: alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosulfan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodicarb, triazamate;

- pyrethroids: allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha- cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, profluthrin, dimefluthrin;

- insect growth regulators: a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron,

cyramazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors:

spirodiclofen, spiromesifen, spirotetramat;

- nicotinic receptor agonists/antagonists compounds: clothianidin, dinotefuran, flupyradifurone, imidacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, 1 -2-chloro-thiazol-5- ylmethyl)-2-nitrimino-3,5-dimethyl-[1 ,3,5]triazinane;

- GABA antagonist compounds: endosulfan, ethiprole, fipronil, vaniliprole, pyrafluprole,

pyriprole, 5-amino-1 -(2,6-dichloro-4-methyl-phenyl)-4-sulfinamoyl-1 H-pyrazole-3-carbothioic acid amide;

- macrocyclic lactone insecticides: abamectin, emamectin, milbemectin, lepimectin, spinosad, spinetoram;

- mitochondrial electron transport inhibitor (METI) I acaricides: fenazaquin, pyridaben,

tebufenpyrad, tolfenpyrad, flufenerim;

- METI II and III compounds: acequinocyl, fluacyprim, hydramethylnon;

- Uncouplers: chlorfenapyr;

- oxidative phosphorylation inhibitors: cyhexatin, diafenthiuron, fenbutatin oxide, propargite;

- moulting disruptor compounds: cryomazine;

- mixed function oxidase inhibitors: piperonyl butoxide;

- sodium channel blockers: indoxacarb, metaflumizone;

- ryanodine receptor inhibitors: chlorantraniliprole, cyantraniliprole, flubendiamide, N [4,6- dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-pheny l]-2-(3-chloro-2 pyridyl)-5- (trifluoromethyl)pynazole-3-carboxamide; N-[4-chloro-2-[(diethyl-lambda-4- sulfanylidene)carbamoyl]-6 methyl-phenyl]-2-(3-chloro-2-pyridyl)-5- (triflu-Oromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(di-2-propyl-lambda-4- sulfanyl dene)carbamoyl]-6-methyl-phenyl]-2 (3-chloro-2-pyridyl)-5- (trifluoromethyl)pyrazole-3-carboxamide; N-[4,6-dichloro-2 [(di-2-propyl-lambda-4- sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5 (trifluoromethyl)pyrazole-3- carboxamide; N-[4,6-d chloro-2-[(diethyl-lambda-4 sulfanylidene)carbamoyl]-phenyl]-2-(3- chloro-2-pyridyl)-5-(difluoromethyl)pyr-azole-3-carboxamide; N-[4,6-dibromo-2-[(di-2-propyl- lambda-4 sulfanylidene)carba^moyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-( trifluoromethyl)pyr- azole-3-carboxamide; N [4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carba-moyl] -6- cyano-phenyl]-2 (S-chloro^-pyridy -S-itrifluoromethy pyrazole-S-carbox-'amide; N-[4,6- dibromo-2 [(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2 (3 chloro-2-pyridyl)-5 (tr fluoromethyl)pyrazole-3-carboxamide;

- others: benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, pymetrozine, sulfur, thiocyclam, cyenopyrafen, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron,

pyrifluquinazon, and l .l'- S^R^aR.eS.eaS.^R.^aS.^bSH-I^- cyclopropylacetyl)oxy]methyl]-1 ,3,4,4a,5,6,6a,12,12a,12b-decahydro-12-hydroxy-4,6a,12b- trimethyl-1 1 -oxo-

9-(3-pyridinyl)-2H,1 1 H-naphtho[2,1 -b]pyrano[3,4-e]pyran-3,6-diyl] cyclopropaneacetic acid ester.

The compounds III of chemical nature described by common names, their preparation and their biological activity e.g. against harmful fungi, pests or weed is known (e.g.

http://www.alanwood.net/pesticides/, e-Pesticide Manual V5.2 (ISBN 978 1 901396 85 0) (2008- 201 1 )); many of these substances are commercially available.

The compounds III described by lUPAC nomenclature, their preparation and their pesticidal activity is also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP A 141 317; EP-A 152 031 ; EP-A 226 917; EP A 243 970; EP A 256 503; EP-A 428 941 ; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP A 1 201 648; EP A 1 122 244, JP 2002316902; DE 19650197; DE

10021412; DE 102005009458; US 3,296,272; US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501 ; WO 01/56358; WO 02/22583; WO 02/40431 ; WO 03/10149; WO 03/1 1853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491 ; WO 04/49804; WO

04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721 ; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 1 1/028657, WO2012/168188, WO 2007/006670, WO 1 1/77514; WO13/047749, WO

10/069882, WO 13/047441 , WO 03/16303, WO 09/90181 , WO 13/007767, WO 13/010862, WO 13/127704, WO 13/024009 and WO 13/024010).

As regards the biopesticides from group L) of pesticides III, reference is made to what has been said above to groups A) to F').

It is preferred that the mixtures comprise as compounds III fungicidal compounds that are independently of each other selected from the groups A), C), D), E), F), G), I), J) and K), more preferably in combination with an organic acid such as citric acid, lactic acid or ascorbic acid.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group C) and particularly selected from metalaxyl, (metalaxyl-M) mefenoxam, ofurace.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group D) and particularly selected from benomyl, carbendazim, thiophanate-methyl, ethaboxam, fluopicolide, zoxamide, metrafenone, pyriofenone.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group E) and particularly selected from cyprodinil, mepanipyrim, pyrimethanil.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group F) and particularly selected from iprodione, fludioxonil, vinclozolin, quinoxyfen.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group G) and particularly selected from dimethomorph, flumorph, iprovalicarb, benthiavalicarb, mandipropamid, propamocarb.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group I) and particularly selected from carpropamid and fenoxanil.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group J) and particularly selected from acibenzolar-S-methyl, probenazole, tiadinil, fosetyl, fosetyl-aluminium, H3PO3 and salts thereof.

Preference is also given to mixtures comprise as compound III (component 3) at least one active substance selected from group K) and particularly selected from cymoxanil, proquinazid and A/-methyl-2-{1 -[(5-methyl-3-trifluoromethyl-1 H-pyrazol-1 -yl)-acetyl]-piperidin-4-yl}-A/-[(1 R)- 1 ,2,3,4-tetrahydronaphthalen-1 -yl]-4-thiazolecarboxamide.

The mixtures and compositions according to the invention are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the

Plasmodiophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes,

Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.

The mixtures and compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants. Preferably the inventive mixtures and compositions are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.

The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g.

potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil.

These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.

Preferably, treatment of plant propagation materials with the inventive combination of the Quillay extract and compounds II and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.

The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-transtional modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.

The inventive mixtures and compositions are particularly suitable for controlling the following plant diseases:

Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Altemaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A.

alternata), tomatoes (e. g. A. solani or A. alternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.) on corn (e. g. D. maydis), cereals (e. g. B. sorokiniana: spot blotch), rice (e. g. B. oryzae) and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce;

Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn, rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H.

oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C.

gossypii), corn (e. g. C. graminicola), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindemuthianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. liriodendri, teleomorph: Neonectria liriodendri Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn.

Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea,

Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum),

Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (£. pyri), soft fruits (£. veneta: anthracnose) and vines (£. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (£. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E.

cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium

(teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani on soybeans and F. verticillioides on corn; Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans;

Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P.

parasitica), onions (e. g. P. destructor), tobacco (P. tabacina) and soybeans (e. g. P.

manshurica); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans;

Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; Phomopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broad-leaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plasmopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili on hop; Pseudopezicula tracheiphila (red fire disease or , rotbrenner' , anamorph: Phialophora) on vines; Puccinia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, and asparagus (e. g. P. asparagi); Pyrenophora (anamorph:

Drechslera) tritici-repentis (tan spot) on wheat or P. feres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphani- dermatum); Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. S. sclerotiorum) and soybeans (e. g. S. rolfsii or S. sclerotiorum); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum

(Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph:

Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp.

(common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U. occulta (stem smut) on rye; Uromyces spp. (rust) on vegetables, such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae); Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.

Bacteria pathogenic for plants are responsible for devastating losses in agriculture. The use of antibiotics to control such infections is restricted in many countries due to worries over the evolution and transmission of antibiotic resistance.

The mixtures and compositions according to the invention are also suitable as bactericides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic bacteria, including soil-borne bacteria, which derive especially from the genera of Agrobacterium, Clavibacter, Corynebacterium, Erwinia, Leifsonia, Pectobacterium,

Pseudomonas, Ralstonia, Xanthomonas (e.g. Xanthomonas oryzae causing bacterial blight on rice) and Xylella; preferably Erwinia; even more preferably Erwinia amylovora causing fire blight on apples, pears and other memb er of the family Rosaceae.

In particular, the mixtures and compositions of the present invention are effective against plant pathogens in speciality crops such as vine, fruits, hop, vegetables and tabacco.

The mixtures according to the present inventino and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullu- lans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.;

Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Deuteromycetes such as

Aspergillus spp., Cladosporium spp., Penicillium spp., Trichorma spp., Alternaria spp.,

Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.

The mixtures and compositions according to the invention are particularly important in the control of a multitude of phytopathogenic insects or other pests (e.g. lepidopterans, beetles, dipterans, thrips, heteropterans, hemiptera, homoptera, termites, orthopterans, arachnids, and nematodes) on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins;

vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.

Preferably the inventive mixtures and compositions are used for controlling a multitude of pests on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.

The inventive mixtures and the compositions thereof, respectively, are particularly suitable for controlling the following harmful insects from the order of the

lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis, beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata,

Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Diabrotica speciosa, Diabrotica 12- punctata, Diabrotica virgifera, Diloboderus abderus, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Oryazophagus oryzae, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllotreta chrysocephala, Phyllophaga sp., Phyllophaga cuyabana, Phyllophaga triticophaga, Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sitophilus granaria,

dipterans (Diptera), for example Aedes aegypti, Aedes vexans, Anastrepha ludens,

Anopheles maculipennis, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Contarinia sorghicola, Cordylobia anthropophaga, Culex pipiens, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Fannia canicularis, Gasterophilus intestinalis, Glossina morsitans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Musca domestica, Muscina stabulans, Oestrus ovis, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula oleracea and Tipula paludosa,

thrips (Thysanoptera), e.g. Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips pa Imi and Thrips tabaci,

hymenopterans (Hymenoptera), e.g. Acromyrmex ambuguus, Acromyrmex crassispinus, Acromyrmex heiery, Acromyrmex landolti, Acromyrmex subterraneus, Athalia rosae, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana,

Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaonis, Solenopsis geminata and Solenopsis invicta,

heteropterans (Heteroptera), e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dichelops furcatus, Dysdercus cingulatus, Dysdercus intermedius, Euchistos heros, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Piezodorus guildini, Solubea insularis and Thyanta perditor,

Hemiptera and Homoptera, e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Diaphorina citri, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps,

Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis , Thyanta perditor, Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum,

Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosiphum avenae,

Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius,

Metopolophium dirhodum, Myzodes persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mail, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mail, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum, Toxoptera aurantiiand, Viteus vitifolii, Cimex lectularius, Cimex hemipterus, Reduvius senilis, Triatoma spp., and Aril us critatus,

termites (Isoptera), e.g. Calotermes flavicollis, Cornitermes cumulans, Heterotermes tenuis, Leucotermes flavipes, Neocapritemes opacus, Procomitermes triacifer; Reticulitermes lucifugus, Syntermes molestus, and Termes natalensis,

orthopterans (Orthoptera), e.g. Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus,

Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana,

Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynamorus, Arachnoidea, such as arachnids, e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus pallidus and

Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and

Oligonychus pratensis.

In particular, the inventive mixtures are suitable for combating pests of the orders Coleoptera, Lepidoptera, Thysanoptera, Homoptera, Isoptera, and Orthoptera.

They are also suitable for controlling the following plant parasitic nematodes such as root- knot nematodes, Meloidogyne arenaria, Meloidogyne chitwoodi, Meloidogyne exigua,

Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica and other Meloidogyne species; cyst nematodes, Globodera rostochiensis, Globodera pallida, Globodera tabacum and other Globodera species, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; seed gall nematodes, Anguina funesta, Anguina tritici and other Anguina species; stem and foliar nematodes, Aphelenchoides besseyi, Aphelenchoides fragariae, Aphelenchoides ritzemabosi and other Aphelenchoides species; sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; pine

nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; ring nematodes, Criconema species, Criconemella species, Criconemoides species, and Mesocriconema species; stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and other Ditylenchus species; awl nematodes, Dolichodorus species; spiral nematodes, Helicotylenchus dihystera, Helicotylenchus multicinctus and other Helicotylenchus species, Rotylenchus robustus and other Rotylenchus species; sheath nematodes,

Hemicycliophora species and Hemicriconemoides species; Hirshmanniella species; lance nematodes, Hoplolaimus columbus, Hoplolaimus galeatus and other Hoplolaimus species; false root-knot nematodes, Nacobbus aberrans and other Nacobbus species; needle nematodes, Longidorus elongates and other Longidorus species; pin nematodes, Paratylenchus species; lesion nematodes, Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus curvitatus, Pratylenchus goodeyi, Pratylencus neglectus, Pratylenchus penetrans, Pratylenchus scribneri, Pratylenchus vulnus, Pratylenchus zeae and other Pratylenchus species; Radinaphelenchus cocophilus and other Radinaphelenchus species; burrowing nematodes, Radopholus similis and other Radopholus species; reniform nematodes, Rotylenchulus reniformis and other

Rotylenchulus species; Scutellonema species; stubby root nematodes, Trichodorus primitivus and other Trichodorus species; Paratrichodorus minor and other Paratrichodorus species; stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus species and Merlinius species; citrus nematodes, Tylenchulus semipenetrans and other Tylenchulus species; dagger nematodes, Xiphinema americanum, Xiphinema index, Xiphinema diversicaudatum and other Xiphinema species; and other plant parasitic nematode species Plant propagation materials may be treated with the mixtures and compositions of the invention prophylactically either at or before planting or transplanting.

The invention also relates to agrochemical compositions comprising an auxiliary and at least a water-based Quillay extract and a water-based Acacia negra extract according to the invention.

An agrochemical composition comprises a fungicidally or insecticidally effective amount of a water-based Quillay extract and a water-based Acacia negra extract. The term "effective amount" denotes an amount of the composition or of the water-based Quillay extract and the Acacia negra extract, which is sufficient for controlling harmful fungi or harmful pests on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal or pest species to be controlled, the treated cultivated plant or material, the climatic conditions.

The mixtures comprising a water-based Quillay extract and a water-based Acacia negra extract and the compositions thereof, respectively, are also particularly suitable for controlling the following harmful insects from the order of the

lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bou liana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha,

Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis, beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata,

Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Diabrotica speciosa, Diabrotica 12- punctata, Diabrotica virgifera, Diloboderus abderus, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Oryazophagus oryzae, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllotreta chrysocephala, Phyllophaga sp., Phyllophaga cuyabana, Phyllophaga triticophaga, Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sitophilus granaria,

dipterans (Diptera), for example Aedes aegypti, Aedes vexans, Anastrepha ludens,

Anopheles maculipennis, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Contarinia sorghicola, Cordylobia anthropophaga, Culex pipiens, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Fannia canicularis, Gasterophilus intestinalis, Glossina morsitans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Musca domestica, Muscina stabulans, Oestrus ovis, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula oleracea and Tipula paludosa,

thrips (Thysanoptera), e.g. Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips pa Imi and Thrips tabaci,

hymenopterans (Hymenoptera), e.g. Acromyrmex ambuguus, Acromyrmex crassispinus, Acromyrmex heiery, Acromyrmex landolti, Acromyrmex subterraneus, Athalia rosae, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana,

Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaonis, Solenopsis geminata and Solenopsis invicta,

heteropterans (Heteroptera), e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dichelops furcatus, Dysdercus cingulatus, Dysdercus intermedius, Euchistos heros, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Piezodorus guildini, Solubea insularis and Thyanta perditor,

Hemiptera and Homoptera, e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Diaphorina citri, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps,

Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis , Thyanta perditor, Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum,

Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosiphum avenae,

Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius,

Metopolophium dirhodum, Myzodes persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mail, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mail, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum, Toxoptera aurantiiand, Viteus vitifolii, Cimex lectularius, Cimex hemipterus, Reduvius senilis, Triatoma spp., and Aril us critatus, termites (Isoptera), e.g. Calotermes flavicollis, Comitermes cumulans, Heterotermes tenuis, Leucotermes flavipes, Neocapritemes opacus, Procomitermes triacifer; Reticulitermes lucifugus, Syntermes molestus, and Termes natalensis,

orthopterans (Orthoptera), e.g. Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus,

Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana,

Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynamorus,

Arachnoidea, such as arachnids, e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini,

Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus pallidus and

Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus,

Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and

Oligonychus pratensis.

In particular, the inventive mixtures are suitable for combating pests of the orders Coleoptera, Lepidoptera, Thysanoptera, Homoptera, Isoptera, and Orthoptera.

The inventive mixtures are also suitable for controlling the following plant parasitic

nematodes such as Meloidogyne, Globodera, Heterodera, Radopholus, Rotylenchulus,

Pratylenchus and other genera. The inventive mixtures are particularly suitable for controlling the following plant parasitic nematodes such as root-knot nematodes Meloidogyne arenaria, Meloidogyne chitwoodi, Meloidogyne exigua, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica and other Meloidogyne species; cyst nematodes, Globodera

rostochiensis, Globodera pallida, Globodera tabacum and other Globodera species, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; seed gall nematodes, Anguina funesta, Anguina tritici and other Anguina species; stem and foliar nematodes, Aphelenchoides besseyi, Aphelenchoides fragariae, Aphelenchoides ritzemabosi and other Aphelenchoides species; sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; ring nematodes, Criconema species, Criconemella species,

Criconemoides species, and Mesocriconema species; stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and other Ditylenchus species; awl nematodes, Dolichodorus species; spiral nematodes, Helicotylenchus dihystera,

Helicotylenchus multicinctus and other Helicotylenchus species, Rotylenchus robustus and other Rotylenchus species; sheath nematodes, Hemicycliophora species and

Hemicriconemoides species; Hirshmanniella species; lance nematodes, Hoplolaimus columbus, Hoplolaimus galeatus and other Hoplolaimus species; false root-knot nematodes, Nacobbus aberrans and other Nacobbus species; needle nematodes, Longidorus elongates and other Longidorus species; pin nematodes, Paratylenchus species; lesion nematodes, Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus curvitatus, Pratylenchus goodeyi, Pratylencus neglectus, Pratylenchus penetrans, Pratylenchus scribneri, Pratylenchus vulnus, Pratylenchus zeae and other Pratylenchus species; Radinaphelenchus cocophilus and other

Radinaphelenchus species; burrowing nematodes, Radopholus similis and other Radopholus species; reniform nematodes, Rotylenchulus reniformis and other Rotylenchulus species;

Scutellonema species; stubby root nematodes, Trichodorus primitivus and other Trichodorus species; Paratrichodorus minor and other Paratrichodorus species; stunt nematodes,

Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus species and Merlinius species; citrus nematodes, Tylenchulus semipenetrans and other Tylenchulus species; dagger nematodes, Xiphinema americanum, Xiphinema index, Xiphinema

diversicaudatum and other Xiphinema species; and other plant parasitic nematode species.

In an equally preferred embodiment, the present invention relates to a method for controlling animal pests (insects, acarids or nematodes), wherein the animal pests (insects, acarids or nematodes), their habitat, breeding grounds, their locus or the plants to be protected against animal pest (insects, acarids or nematodes) attack are treated with an effective amount of an inventive mixture comprising the Quillay extract and biopesticide II.

In an equally preferred embodiment, the present invention relates to a method for improving the health of plants, wherein the plants are treated with an effective amount of an inventive mixture.

In general, "pesticidally effective amount" means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various mixtures / compositions used in the invention. A pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.

The term "plant health effective amount" denotes an amount of the inventive mixtures, which is sufficient for achieving plant health effects as defined herein below. More exemplary information about amounts, ways of application and suitable ratios to be used is given below. Anyway, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic conditions.

Healthier plants are desirable since they result among others in better yields and/or a better quality of the plants or crops, specifically better quality of the harvested plant parts. Healthier plants also better resist to biotic and/or abiotic stress. A high resistance against biotic stresses in turn allows the person skilled in the art to reduce the quantity of pesticides applied and consequently to slow down the development of resistances against the respective pesticides.

It was therefore an object of the present invention to provide a pesticidal composition which solves the problems outlined above, and which should, in particular, improve the health of plants, in particular the yield of plants.

The term "health of a plant" or "plant health" is defined as a condition of the plant and/or its products which is determined by several aspects alone or in combination with each other such as increased yield, plant vigor, quality of harvested plant parts and tolerance to abiotic and/or biotic stress. It has to be emphasized that the above mentioned effects of the inventive mixtures, i.e. enhanced health of the plant, are also present when the plant is not under biotic stress and in particular when the plant is not under pest pressure.

For seed treatment e.g. as inoculant and/or foliar application forms, it is evident that a plant suffering from fungal or insecticidal attack produces a smaller biomass and leads to a reduced yield as compared to a plant which has been subjected to curative or preventive treatment against the pathogenic fungus or any other relevant pest and which can grow without the damage caused by the biotic stress factor. However, the methods according to the invention lead to an enhanced plant health even in the absence of any biotic stress. This means that the positive effects of the mixtures of the invention cannot be explained just by the pesticidal activities of the compounds (I) and (II), but are based on further activity profiles. Accordingly, the application of the inventive mixtures can also be carried out in the absence of pest pressure.

Each plant health indicator listed below, which is selected from the groups consisting of yield, plant vigor, quality and tolerance of the plant to abiotic and/or biotic stress, is to be understood as a preferred embodiment of the present invention either each on its own or preferably in combination with each other.

According to the present invention, "increased yield" of a plant means that the yield of a product of the respective plant is increased by a measurable amount over the yield of the same product of the plant produced under the same conditions, but without the application of the inventive mixture.

For seed treatment e.g. as inoculant and/or foliar application forms, increased yield can be characterized, among others, by the following improved properties of the plant: increased plant weight; and/or increased plant height; and/or increased biomass such as higher overall fresh weight (FW); and/or increased number of flowers per plant; and/or higher grain and/or fruit yield ; and/or more tillers or side shoots (branches); and/or larger leaves; and/or increased shoot growth; and/or increased protein content; and/or increased oil content; and/or increased starch content; and/or increased pigment content; and/or increased chlorophyll content (chlorophyll content has a positive correlation with the plant' s photosynthesis rate and accordingly, the higher the chlorophyll content the higher the yield of a plant) and/or increased quality of a plant.

"Grain" and "fruit" are to be understood as any plant product which is further utilized after harvesting, e.g. fruits in the proper sense, vegetables, nuts, grains, seeds, wood (e.g. in the case of silviculture plants), flowers (e.g. in the case of gardening plants, ornamentals) etc., that is anything of economic value that is produced by the plant.

According to the present invention, the yield is increased by at least 4%. In general, the yield increase may even be higher, for example 5 to 10 %, more preferable by 10 to 20 %, or even 20 to 30 %

According to the present invention, the yield - if measured in the absence of pest pressure - is increased by at least 2 % In general, the yield increase may even be higher, for example until 4% to 5% or even more.

Another indicator for the condition of the plant is the plant vigor. The plant vigor becomes manifest in several aspects such as the general visual appearance.

For foliar applications, improved plant vigor can be characterized, among others, by the following improved properties of the plant: improved vitality of the plant; and/or improved plant growth; and/or improved plant development; and/or improved visual appearance; and/or improved plant stand (less plant verse/lodging and/or bigger leaf blade; and/or bigger size; and/or increased plant height; and/or increased tiller number; and/or increased number of side shoots; and/or increased number of flowers per plant; and/or increased shoot growth; and/or enhanced photosynthetic activity (e.g. based on increased stomatal conductance and/or increased CO2 assimilation rate)); and/or earlier flowering; and/or earlier fruiting; and/or earlier grain maturity; and/or less non-productive tillers; and/or less dead basal leaves; and/or less input needed (such as fertilizers or water); and/or greener leaves; and/or complete maturation under shortened vegetation periods; and/or easier harvesting; and/or faster and more uniform ripening; and/or longer shelf-life; and/or longer panicles; and/or delay of senescence ; and/or stronger and/or more productive tillers; and/or better extractability of ingredients; and/or improved quality of seeds (for being seeded in the following seasons for seed production);

and/or reduced production of ethylene and/or the inhibition of its reception by the plant.

Another indicator for the condition of the plant is the "quality" of a plant and/or its products. According to the present invention, enhanced quality means that certain plant characteristics such as the content or composition of certain ingredients are increased or improved by a measurable or noticeable amount over the same factor of the plant produced under the same conditions, but without the application of the mixtures of the present invention. Enhanced quality can be characterized, among others, by following improved properties of the plant or its product: increased nutrient content; and/or increased protein content; and/or increased oil content;

and/or increased starch content; and/or increased content of fatty acids; and/or increased metabolite content; and/or increased carotenoid content; and/or increased sugar content; and/or increased amount of essential amino acids; and/or improved nutrient composition; and/or improved protein composition; and/or improved composition of fatty acids; and/or improved metabolite composition; and/or improved carotenoid composition; and/or improved sugar composition; and/or improved amino acids composition ; and/or improved or optimal fruit color; and/or improved leaf color; and/or higher storage capacity; and/or better processability of the harvested products.

Another indicator for the condition of the plant is the plant's tolerance or resistance to biotic and/or abiotic stress factors. Biotic and abiotic stress, especially over longer terms, can have harmful effects on plants.

Biotic stress is caused by living organisms while abiotic stress is caused for example by environmental extremes. According to the present invention, "enhanced tolerance or resistance to biotic and/or abiotic stress factors" means (1.) that certain negative factors caused by biotic and/or abiotic stress are diminished in a measurable or noticeable amount as compared to plants exposed to the same conditions, but without being treated with an inventive mixture and (2.) that the negative effects are not diminished by a direct action of the inventive mixture on the stress factors, e.g. by its fungicidal or insecticidal action which directly destroys the

microorganisms or pests, but rather by a stimulation of the plants' own defensive reactions against said stress factors.

Negative factors caused by biotic stress such as pathogens and pests are widely known and are caused by living organisms, such as competing plants (for example weeds), microorganisms (such as phythopathogenic fungi and/or bacteria) and/or viruses.

Negative factors caused by abiotic stress are also well-known and can often be observed as reduced plant vigor (see above), for example: less yield and/or less vigor, for both effects examples can be burned leaves, less flowers, pre-mature ripening, later crop maturity, reduced nutritional value amongst others.

Abiotic stress can be caused for example by: extremes in temperature such as heat or cold (heat stress / cold stress); and/or strong variations in temperature; and/or temperatures unusual for the specific season; and/or drought (drought stress); and/or extreme wetness; and/or high salinity (salt stress); and/or radiation (for example by increased UV radiation due to the decreasing ozone layer); and/or increased ozone levels (ozone stress); and/or organic pollution (for example by phythotoxic amounts of pesticides); and/or inorganic pollution (for example by heavy metal contaminants).

As a result of biotic and/or abiotic stress factors, the quantity and the quality of the stressed plants decrease. As far as quality (as defined above) is concerned, reproductive development is usually severely affected with consequences on the crops which are important for fruits or seeds. Synthesis, accumulation and storage of proteins are mostly affected by temperature; growth is slowed by almost all types of stress; polysaccharide synthesis, both structural and storage is reduced or modified: these effects result in a decrease in biomass (yield) and in changes in the nutritional value of the product.

As pointed out above, the above identified indicators for the health condition of a plant may be interdependent and may result from each other. For example, an increased resistance to biotic and/or abiotic stress may lead to a better plant vigor, e.g. to better and bigger crops, and thus to an increased yield. Inversely, a more developed root system may result in an increased resistance to biotic and/or abiotic stress. However, these interdependencies and interactions are neither all known nor fully understood and therefore the different indicators are described separately.

In one embodiment the inventive mixtures effectuate an increased yield of a plant or its product. In another embodiment the inventive mixtures effectuate an increased vigor of a plant or its product. In another embodiment the inventive mixtures effectuate in an increased quality of a plant or its product. In yet another embodiment the inventive mixtures effectuate an increased tolerance and/or resistance of a plant or its product against biotic stress. In yet another embodiment the inventive mixtures effectuate an increased tolerance and/or resistance of a plant or its product against abiotic stress.

The Quillay extract and the Acacia negra extract can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical

Monograph No. 2, 6 th Ed. May 2008, CropLife International.

The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New

developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.

Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.

Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin,

tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.

Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.

Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon' s, Vol.1 : Emulsifiers & Detergents, McCutcheon' s Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).

Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated

arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and

tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.

Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.

Examples of N-subsititued fatty acid amides are fatty acid glucamides or fatty acid

alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate. Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.

Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the active ingredient on the target. Examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.

Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.

Suitable bactericides are bronopol and isothiazolinone derivatives such as alkyliso- thiazolinones and benzisothiazolinones. Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants). Suitable tackifiers or binders are polyvinylpyrrolidone, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.

Microbial pesticides comprising (entomopathogenic) nematodes can be mass prepared as for use as biopesticides using in vivo or in vitro methods (Shapiro-Nan and Gaugler 2002). In vivo production (culture in live insect hosts) requires a low level of technology, has low startup costs, and resulting nematode quality is generally high, yet cost efficiency is low. The approach can be considered ideal for small markets. In vivo production may be improved through innovations in mechanization and streamlining. A novel alternative approach to in vivo methodology is production and application of nematodes in infected host cadavers; the cadavers (with nematodes developing inside) are distributed directly to the target site and pest suppression is subsequently achieved by the infective juveniles that emerge. In vitro solid culture, i.e., growing the nematodes on crumbled polyurethane foam, offers an intermediate level of technology and costs. In vitro liquid culture is the most cost- efficient production method but requires the largest startup capital. Liquid culture may be improved through progress in media development, nematode recovery, and bioreactor design. A variety of formulations have been developed to facilitate nematode storage and application including activated charcoal, alginate and polyacrylamide gels, baits, clay, paste, peat, polyurethane sponge, vermiculite, and water-dispersible granules. Depending on the formulation and nematode species, successful storage under refrigeration ranges from one to seven months. Optimum storage temperature for formulated nematodes varies according to species; generally, steinernematids tend to store best at 4-8 °C whereas heterorhabditids persist better at 10-15 °C. Nematodes are formulated and applied as infective juveniles, the only free-living and therefore environmentally tolerant stage. Infective juveniles range from 0.4 to 1.5 mm in length and can be observed with a hand lens or microscope after separation from formulation materials. Disturbed nematodes move actively, however sedentary ambusher species (e.g. Steinemema carpocapsae, S. scapterisci) in water soon revert to a characteristic "J"-shaped resting position. Low temperature or oxygen levels will inhibit movement of even active cruiser species (e.g., S. glaseri, Heterorhabditis bacteriophora). In short, lack of movement is not always a sign of mortality; nematodes may have to be stimulated (e.g., probes, acetic acid, gentle heat) to move before assessing viability. Good quality nematodes tend to possess high lipid levels that provide a dense appearance, whereas nearly transparent nematodes are often active but possess low powers of infection. Infective juveniles are compatible with most but not all agricultural chemicals under field conditions. Compatibility has been tested with well over 100 different chemical pesticides. Entomopathogenic nematodes are compatible (e.g., may be tank-mixed) with most chemical herbicides and fungicides as well as many insecticides (such as bacterial or fungal products) (Koppenhofer and Grewal, 2005).

According to the invention, the solid material (dry matter) of the Quillay extract and the biopesticides (with the exception of oils such as Neem oil, Tagetes oil, etc.) are considered as active components (e.g. to be obtained after drying or evaporation of the extraction medium or the suspension medium in case of liquid formulations of the microbial pesticides).

In accordance with the present invention, the weight ratios and percentages used herein for the Quillay extract and/or other biological extracts are based on the total weight of the dry content (solid material) of the respective extract(s). For microbial pesticides II selected from groups A'), C) and E'), weight ratios and/or percentages refer to the total weight of a preparation of the respective biopesticide II with at least 1 x 10 6 CFU/g ("colony forming units per gram total weight"), preferably with at least 1 x 10 8 CFU/g, even more preferably from 1 x 10 8 to 1 x 10 12 CFU/g dry matter. Colony forming unit is measure of viable microbial cells, in particular fungal and bacterial cells. In addition, here CFU may also be understood as number of (juvenile) individual nematodes in case of (entomopathogenic) nematode biopesticides, such as Steinemema feltiae.

The total weight ratios of compositions wherein component 2) is selected from groups A), C), or E') can be determined based on the total weight of the solid material (dry matter) of component 1 ) and using the amount of CFU of component 2) to calclulate the total weight of component 2) with the following equation that 1 x 10 9 CFU equals one gram of total weight of component 2):

The agrochemical compositions generally are characterized in that they contain an effective quantity of the active components as defined above. Generally, they contain between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active components.

According to one embodiment, the compositions, wherein component 2) is selected from groups A'), C) and E'), comprise between 0.01 and 90% (w/w) of dry matter (solid material) of component 1 ) and from 1 x 10 5 CFU to 1 x 10 12 CFU of component 2) per gram total weight of the composition.

According to another embodiment, the compositions, wherein component 2) is selected from groups A'), C) and E'), comprise between 5 and 70% (w/w) of dry matter (solid material) of component 1 ) and from 1 x 10 6 CFU to 1 x 10 10 CFU of component 2) per gram total weight of the composition. According to another embodiment, the compositions, wherein component 2) is selected from groups A'), C) and E'), comprise between 25 and 70% (w/w) of dry matter (solid material) of component 1 ) and from 1 x 10 7 CFU to 1 x 10 9 CFU of component 2) per gram total weight of the composition.

Solutions for seed treatment (LS), suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water- soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active components concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations.

Application can be carried out before or during sowing. Methods for applying or treating with the Quillay extract and biopesticide II and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, the Quillay extract and biopesticide II or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.

When employed in plant protection, the total amounts of active components applied are, depending on the kind of effect desired, from 0.001 to 10 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, in particular from 0.1 to 0.75 kg per ha. In the case of microbial pesticides II, the application rates preferably range from about 1 x 10 6 to 5 x 10 15 (or more) CFU/ha. Preferably, the spore concentration is about 1 x 10 7 to about 1 x 10 11 CFU/ha. In the case of (entomopathogenic) nematodes as microbial pesticides (e.g.

Steinernema feltiae), the application rates preferably range inform about 1 x 10 5 to 1 x 10 12 (or more), more preferably from 1 x 10 8 to 1 x 10 11 , even more preferably from 5 x 10 8 to 1 x 10 10 individuals (e.g. in the form of eggs, juvenile or any other live stages, preferably in an infetive juvenile stage) per ha.

When employed in plant protection by seed treatment, the amount of the inventive mixtures (based on total weight of active components) is in the range from 0.01 -10 kg, preferably from 0.1 -1000 g, more preferably from 1 -100 g per 100 kilogram of plant propagation material

(preferably seeds). In the case of microbial pesticides II, the application rates with respect to plant propagation material preferably range from about 1 x 10 6 to 1 x 10 12 (or more) CFU/seed. Preferably, the spore concentration is about 1 x 10 6 to about 1 x 10 11 CFU/seed. In the case of microbial pesticides II, the application rates with respect to plant propagation material also preferably range from about 1 x 10 7 to 1 x 10 14 (or more) CFU per 100 kg of seed, preferably from 1 x 10 9 to about 1 x 10 11 CFU per 100 kg of seed.

When used in the protection of materials or stored products, the amount of active

components applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active components per cubic meter of treated material.

Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.

According to one embodiment, a polyether polymethylsiloxane copolymer may be added to the composition accoding to the invention, preferably in a weight ratio of 1 :100 to 100:1 , more preferably in a weight ratio of 1 :10 to 10:1 , in particular in a weight ratio of 1 :5 to 5:1 based on the total weight of the component 1 ) and the component 2).

According to a further embodiment, a mineral oil or a vegetable oil may be added to the composition according to the invention, preferably in a weight ratio of 1 :100 to 100:1 , more preferably in a weight ratio of 1 :10 to 10:1 , in particular in a weight ratio of 1 :5 to 5:1 based on the total weight of the dry content of Quillay extract and Acacia negra extract together.

The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.

According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.

In the binary mixtures and compositions according to the invention the weight ratio of the component 1 ) and the component 2) generally depends from the properties of the active components used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 , even more preferably in the range of from 1 :4 to 4:1 and in particular in the range of from 1 :2 to 2:1.

According to further embodiments of the binary mixtures and compositions, the weight ratio of the component 1 ) and the component 2) usually is in the range of from 100:1 to 1 :1 , regularly in the range of from 50:1 to 1 :1 , preferably in the range of from 20:1 to 1 :1 , more preferably in the range of from 10:1 to 1 :1 , even more preferably in the range of from 4:1 to 1 :1 and in particular in the range of from 2:1 to 1 :1.

According to further embodiments of the binary mixtures and compositions, the weight ratio of the component 1 ) and the component 2) usually is in the range of from 1 :1 to 1 :100, regularly in the range of from 1 :1 to 1 :50, preferably in the range of from 1 :1 to 1 :20, more preferably in the range of from 1 :1 to 1 :10, even more preferably in the range of from 1 :1 to 1 :4 and in particular in the range of from 1 :1 to 1 :2.

Preferably, however, the Quillay extract is used in excess as compared to the biopesticide II, i.e. the weight ratio of the component 1 ) and the component 2) usually is in the range of from 100:1 to 1 :1 , regularly in the range of from 50:1 to 1 :1 , preferably in the range of from 20:1 to 1 :1 , more preferably in the range of from 10:1 to 1 :1 , even more preferably in the range of from 4:1 to 1 :1 , e.g. of from 3:1 to 1 :1 , and in particular in the range of from 2:1 to 1 :1.

In the above weight ratios, the amount of Quillay extract is based on the amount of the solid material (dry matter). The solid material may contain at most 5% by weight, preferably at most 2% by weight, based on the total weight of the solid material, of residual liquid components, such as extractants (in general water, possibly also alcohol; mostly however residual moisture). As regards component 2), reference is made to the above remarks. In the ternary mixtures, i.e. compositions according to the invention comprising the component 1 ) and component 2) and a compound III (component 3), the weight ratio of component 1 ) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :4 to 4:1 , and the weight ratio of component 1 ) and component 3) usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :4 to 4: 1 .

Any further active components are, if desired, added in a ratio of from 20:1 to 1 :20 to the component 1 ).

In the mixtures and compositions, uses and methods of the present invention, the compound ratios are advantageously chosen so as to produce a synergistic effect. This means that the relative amount, i.e. the weight ratio of the Quillay extract and the at least one component 2) in the mixture or composition provides for an increased insecticidal efficacy on at least one harmful insect and/or for an increased fungicidal efficacy on at least one harmful fungus and/or an increased efficacy on plant health improvement and/or plant growth regulating effect which exceeds the additive efficacy of the components of the mixture or composition as calculated from the efficacy of the individual components at a given application rate.

The term "synergstic effect" is understood to refer in particular to that defined by Colby's formula (Colby, S. R., "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds, 15, pp. 20-22, 1967).

The term "synergistic effect" is also understood to refer to that defined by application of the Tammes method, (Tammes, P. M. L, "Isoboles, a graphic representation of synergism in pesticides", Netherl. J. Plant Pathol. 70, 1964).

The components can be used individually or already partially or completely mixed with one another to prepare the composition according to the invention. It is also possible for them to be packaged and used as combination such as a kit of parts. Examples

1 . Activity of Quillay extract in combination with Bacillus thuringensis kurstaki against codling moth (Cydia pomonella) in apple

The experiments were carried out in Requinoa VI Region (100 km South to Santiago). For the experiments 12 year old apple trees var. Braueburn in an orchard standing at a distance 3,5 meters over the row and 4 meters between the rows were used. Before application, all plots for every treatment were marked and the fruits with Cydia pomonella damage were recolected. The design was a randomized complete block with an experimental unit (plot) of four trees; repetition with four replications by treatment. In February 2012 the plants were either treated with a Quillay extract alone (used in form of the commercial product QL Agri® 35 from BASF; a soluble concentrate containing 35% by weight of solid matter, relative to the total weight of the concentrate; application rate: 315 g of solid matter per ha), or with Bacillus thuringensis kurstaki alone (used in form of the commercial product BETK-03 WP from Bionativa, Chile, a wettable powder containing 1 .8% by weight of three different Bacillus thuringiensis kurstaki strains; application rate: 16.2 g/ha) or with a combination of Quillay extract and Bacillus thuringensis kurstakis (315 g of solid matter per ha + 16.2 g/ha). A part of the plants remained untreated (control). For application, a 240 liters sprayer with a constant operation pressure and coverage of 1800 liters of water per hectare was used. 7, 15, 21 and 28 days after spraying a

representative sample of 25 fruits by plot was taken and the number of fruit with damage was counted. For determinating the efficacy control of the different treatments the Abbot formula was used.

Efficacy degree % = (infestation in untreated - infestation in treated) x 100

infestation in untreated

The results are compiled in table 1.

Table 1

1 QL: Quillay extract QL Agri® 35

3 B.t.k.: BETK-03 WP from Bionativa

3 DAA: Days after treatment

4 Eff. = relative efficacy according to the Abbot formula

5 Calc. eff. = efficacy calculated according to the Colby formula (S. R. Colby (1967) "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, p. 22ff.), the value E, which is expected if the activity of the individual active compounds is only additive, is calculated as follows:

E = X + Y - (X Y/100)

where

X = percent activity using active compound A at an application rate a;

Y = percent activity using active compound B at an application rate b;

E = expected activity (in %) by A + B at application rates a + b.)