Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS FOR ALPHAVIRUS VACCINATION
Document Type and Number:
WIPO Patent Application WO/2018/014008
Kind Code:
A1
Abstract:
Compositions of a recombinant adenovirus based vector vaccine containing one or more alphavirus antigen genes are disclosed herein. Methods for constructing and producing such vaccines and methods of using these vaccines to generate broad based immune responses against alphaviruses are also described. Compositions described herein allow for vaccinations in individuals with preexisting immunity to adenovirus.

Inventors:
JONES FRANK R (US)
BALINT JOSEPH (US)
RICE ADRIAN (US)
LATCHMAN YVETTE (US)
GABITZSCH ELIZABETH (US)
Application Number:
PCT/US2017/042272
Publication Date:
January 18, 2018
Filing Date:
July 14, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ETUBICS CORP (US)
International Classes:
A61K39/12; C07K14/18; C12N15/861
Domestic Patent References:
WO2014093602A12014-06-19
Foreign References:
US20130224144A12013-08-29
Other References:
See also references of EP 3484508A4
Attorney, Agent or Firm:
HOLZAPFEL, Keli, L. et al. (US)
Download PDF:
Claims:
CLAIMS

WHAT IS CLAIMED IS:

1. A composition comprising a replication defective virus vector comprising a sequence encoding an alphavirus target antigen.

2. The composition of claim 1, wherein the sequence encoding the alphavirus target antigen comprises a sequence encoding a plurality of alphavirus target antigens.

3. The composition of claim 2, wherein the sequence encoding a plurality of alphavirus target antigens comprises a plurality of gene inserts each corresponding to a target antigen and wherein each gene insert is separated by a nucleic acid sequence encoding a self-cleaving 2A peptide.

4. The composition of claim 3, wherein the self-cleaving 2A peptide is derived from Porcine teschovirus-l or Thosea asigna virus.

5. The composition of any one of claims 1-4, wherein the replication defective virus vector is an adenovirus vector.

6. The composition of any one of claims 1-5, wherein the replication defective virus vector is an adenovirus 5 (Ad5) vector.

7. The composition of any one of claims 1-6, wherein the replication defective virus vector comprises an adenovirus vector with a deletion in an El gene region, an E2b gene region, an E3 gene region, E4 gene region, or any combination thereof.

8. The composition of claim 7, wherein the deletion in the E2b gene region comprises a plurality of deletions in the E2b region.

9. The composition of any one of claims 7-8, wherein the deletion in the El gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof each comprises at least one base pair.

10. The composition of any one of claims 7-9, wherein the deletion in the El gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof results from a translocation of two or more base pairs.

11. The composition of any one of claims 7-10, wherein the deletion in the El gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof each comprises at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, or at least 150 base pairs.

12. The composition of any one of claims 7-11, wherein the deletion in the El gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof each comprises more than 150, more than 160, more than 170, more than 180, more than 190, more than 200, more than 250, or more than 300 base pairs.

-75-

13. The composition of claims 1-12, wherein the alphavirus target antigen comprises an antigen of a virus selected from the group consisting of Chikungunya virus (CHIKV), o'nyong-nyong virus (ONNV), Ross River virus (RRV), Mayaro fever virus (MAYV), Venezuelan equine encephalitis virus (VEEV), Western equine encephalomyelitis virus (WEEV), and Eastern equine encephalitis virus (EEEV), or any combination thereof.

14. The composition of any of claims 1-13, wherein the alphavirus target antigen comprises an antigen of a virus selected from the group consisting of CHIKV, ONNV, RRV, and MAYV, or any combination thereof.

15. The composition of any one of claims 1-14, wherein the alphavirus target antigen comprises an antigen of CHIKV.

16. The composition of any one of claims 1-15, wherein the alphavirus target antigen comprises an antigen selected from the group consisting of C, E3ALPHA, E2ALPHA, 6K, E IALPHA, nsPl, nsP2, nsP3, and nsP4, or any combination thereof.

17. The composition of any one of claims 1-16, wherein the alphavirus target antigen comprises an antigen selected from the group consisting of C, E3ALPHA, E2ALPHA, and 6K, E IALPHA, or any combination thereof.

18. The composition of any one of claims 1-17, wherein the alphavirus target antigen comprises an antigen selected from the group consisting of E IALPHA and E2ALPHA, or any combination thereof.

19. The composition of any one of claims 1-18, wherein the sequence encoding an alphavirus target antigen comprises at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, and SEQ ID NO: 21, or any combination thereof.

20. The composition of any one of claims 1-19, wherein the sequence encoding an alphavirus target antigen is an amino acid sequence, and wherein the amino acid sequence comprises at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11, and SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 21, or any combination thereof.

-76-

21. The composition of any one of claims 1-19, wherein the sequence encoding an alphavirus target antigen is a nucleotide sequence, and wherein the nucleotide sequence comprises at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 4, SEQ ID NO: 7, SEQ ID NO: 10, SEQ ID NO: 13, SEQ ID NO: 16, and SEQ ID NO: 19, or any combination thereof.

22. The composition of any one of claims 1-19, wherein the sequence encoding an alphavirus target antigen comprises at least 70%, at least 75%, at least 80% , at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3, or any combination thereof.

23. The composition of any one of claims 1-22, wherein the replication defective virus vector further comprises an element to increase an expression of the alphavirus target antigen.

24. The composition of claim 23, wherein the element comprises at least one element, at least 2 elements, at least 3 elements, at least 4 elements, or at least 5 elements.

25. The composition of claim 23 or 24, wherein the element comprises an internal ribosome binding site.

26. The composition of any one of claims 23-25, wherein the element comprises a constitutive promoter.

27. The composition of any one of claims 23-26, wherein the element comprises an inducible promoter.

28. The composition of any one of claims 23-27, wherein the element comprises a transcription enhancer.

29. The composition of any one of claims 28, wherein the transcription enhancer is a Rous sarcoma virus (RSV) enhancer.

30. The composition of any one of claims 23-29, wherein the element does not contain a palindromic sequence.

31. The composition of any one of claims 1-30, wherein the replication defective virus vector further comprises a nucleic acid sequence encoding a protein that increases alphavirus target antigen immunogenicity.

32. The composition of any one of claims 1-31, wherein the replication defective virus vector is not a gutted vector.

33. The composition of any of claims 1-32, wherein the composition or the replication defective virus vector further comprises a sequence encoding a costimulatory molecule or an immunological fusion partner.

-77-

34. The composition of claim 33, wherein the costimulatory molecule comprises B7, ICAM-1, LFA-3, or any combination thereof.

35. A pharmaceutical composition comprising the composition of any one of claims 1-34 and a pharmaceutically acceptable carrier.

36. A cell comprising the composition according to any one of claims 1-34 or the pharmaceutical composition of claim 35.

37. The cell of claim 36, wherein the cell is a host cell.

38. The cell of any one of claims 36-37, wherein the cell is a dendritic cell (DC).

39. A method of preparing a vaccine, comprising preparing a composition of any one of claims 1- 34 or a pharmaceutical composition according to claim 35.

40. A method of generating an immune response against an alphavirus target antigen in a subject, comprising: administering to the subject a composition according to any of claims 1-34 or a pharmaceutical composition of claim 35.

41. The method of claim 40, wherein the subject has not been infected with an alphavirus.

42. The method of any one of claims 40-41, wherein the alphavirus target antigen is from an alphavirus, wherein the alphavirus comprises Chikungunya virus (CHIKV), o'nyong-nyong virus (ONNV), Ross River virus (RRV), Mayaro fever virus (MAYV), Venezuelan equine encephalitis virus (VEEV), Western equine encephalomyelitis virus (WEEV), Eastern equine encephalitis virus (EEEV), or any combination thereof.

43. A method of preventing a Chikungunya virus infection in a subject, the method comprising administering to the subject a composition comprising:

a replication defective virus vector comprising a deletion in an E2b gene region; and a nucleic acid sequence encoding at least one Chikungunya target antigen.

44. The method of any one of claims 40-43, wherein the subject has preexisting immunity to an adenovirus or an adenovirus vector.

45. The method of any one of claims 40-44, wherein the subject is a human or a non-human animal.

46. The method of any of claims 40-45, wherein the administering is intravenously,

subcutaneously, intralymphatically, intratumorally, intradermally, intramuscularly, intraperitoneally, intrarectally, intravaginally, intranasally, orally, via bladder instillation, or via scarification.

47. The method of any one of claims 40-46, wherein the administering of the composition to the subject is at least one time, is repeated at least twice, or is repeated at least three times.

48. The method of any one of claims 40-47, wherein the administering to the subject comprises

1x10 9 to 5x1012 virus particles per dose.

-78-

49. The method of any of claims 40-48, wherein the administering to the subject comprises at least 109 virus particles, at least 1010 virus particles, or at least 1011 virus particles per dose.

50. The method of any one of claims 40-49, wherein the replication defective virus vector is an adenovirus vector.

51. The method of any one of claims 40-50, wherein the replication defective virus vector is an adenovirus 5 (Ad5) vector.

-79-

Description:
COMPOSITIONS AND METHODS FOR ALPHA VIRUS VACCINATION

CROSS REFERENCE

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 62/363,136 filed July 15, 2016, the disclosure of which is herein incorporated by reference in its entirety.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on July 7, 2017, is named 39891 -725_601_SL.txt and is 460, 196 bytes in size.

BACKGROUND

[0003] Vaccines help the body fight disease by training the immune system to recognize and destroy harmful substances and diseased cells.

[0004] Viral vaccines are currently being developed to prevent infectious diseases and treat existing cancers. These viral vaccines work by inducing expression of a small fraction of genes or complete genes associated with a disease within the host's cells, which in turn, enhance the host's immune system to identify and destroy diseased cells. As such, clinical response due to a viral vaccine can depend on the ability of the vaccine to induce a high-level immunogenicity and have sustained long- term expression.

[0005] Therefore, there remains a need to discover novel compositions and methods for enhanced protective or cancer therapeutic responses to complex diseases and especially for newly emerging disease threats.

SUMMARY

[0006] In various aspects, the present disclosure provides composition comprising a replication defective virus vector comprising a sequence encoding an alphavirus target antigen. In some aspects, the sequence encoding the alphavirus target antigen comprises a sequence encoding a plurality of alphavirus target antigens. In some aspects, the sequence encoding a plurality of alphavirus target antigens comprises a plurality of gene inserts each corresponding to a target antigen and wherein each gene insert is separated by a nucleic acid sequence encoding a self-cleaving 2A peptide. In some aspects, the self-cleaving 2A peptide is derived from Porcine teschovirus-1 or Thosea asigna virus.

[0007] In some aspects, the replication defective virus vector is an adenovirus vector. In further aspects, the replication defective virus vector is an adenovirus 5 (Ad5) vector. In some aspects, the replication defective virus vector comprises an adenovirus vector with a deletion in an El gene region, an E2b gene region, an E3 gene region, E4 gene region, or any combination thereof. In further aspects, the deletion in the E2b gene region comprises a plurality of deletions in the E2b region. In some aspects, the deletion in the E 1 gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof each comprises at least one base pair.

[0008] In other aspects, the deletion in the E l gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof results from a translocation of two or more base pairs. In some aspects, the deletion in the E l gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof each comprises at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, or at least 150 base pairs.

[0009] In other aspects, the deletion in the E 1 gene region, the E2b gene region, the E3 gene region, the E4 gene region, or any combination thereof each comprises more than 150, more than 160, more than 170, more than 180, more than 190, more than 200, more than 250, or more than 300 base pairs.

[0010] In some aspects, the alphavirus target antigen comprises an antigen of a virus selected from the group consisting of Chikungunya virus (CHIKV), o'nyong-nyong virus (ONNV), Ross River virus (RRV), Mayaro fever virus (MAYV), Venezuelan equine encephalitis virus (VEEV), Western equine encephalomyelitis virus (WEEV), and Eastern equine encephalitis virus (EEEV), or any combination thereof. In some aspects, the alphavirus target antigen comprises an antigen of a virus selected from the group consisting of CHIKV, ONNV, RRV, and MAYV, or any combination thereof. In further aspects, the alphavirus target antigen comprises an antigen of CHIKV.

[0011] In some aspects, the alphavirus target antigen comprises an antigen selected from the group consisting of C, E3 A LPH A , E2 AL PHA, 6K, E 1 A LPH A , nsPl , nsP2, nsP3, and nsP4, or any combination thereof. In some aspects, the alphavirus target antigen comprises an antigen selected from the group consisting of C, E3 A LPH A , Ε2 .ΡΗ Α , and 6K, E IALPH A , or any combination thereof. In some aspects, the alphavirus target antigen comprises an antigen selected from the group consisting of E I ALPHA and E2 A i_FHA) or an y combination thereof.

[0012] In some aspects, the sequence encoding an alphavirus target antigen comprises at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 1 1 , SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, and SEQ ID NO: 21 , or any combination thereof. [0013] In other aspects, the sequence encoding an alphavirus target antigen is an amino acid sequence, and wherein the amino acid sequence comprises at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 1 1 , and SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 21or any combination thereof.

[0014] In some aspects, the sequence encoding an alphavirus target antigen is a nucleotide sequence, and wherein the nucleotide sequence comprises at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1 , SEQ ID NO: 4, SEQ ID NO: 7, SEQ ID NO: 10, SEQ ID NO: 13, SEQ ID NO: 16, and SEQ ID NO: 19, or any combination thereof. In some aspects, the sequence encoding an alphavirus target antigen comprises at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1 , SEQ ID NO: 2, and SEQ ID NO: 3, or any combination thereof.

[0015] In some aspects, the replication defective virus vector further comprises an element to increase an expression of the alphavirus target antigen. In some aspects, the element comprises at least one element, at least 2 elements, at least 3 elements, at least 4 elements, or at least 5 elements.

[0016] In other aspects, the element comprises an internal ribosome binding site. In still other aspects, the element comprises a constitutive promoter. In some aspects, the element comprises an inducible promoter. In some aspects, the element comprises a transcription enhancer. In further aspects, the transcription enhancer is a Rous sarcoma virus (RSV) enhancer. In some aspects, the element does not contain a palindromic sequence.

[0017] In some aspects, the replication defective virus vector further comprises a nucleic acid sequence encoding a protein that increases alphavirus target antigen immunogenicity. In some aspects, the replication defective virus vector is not a gutted vector. In some aspects, the composition or the replication defective virus vector further comprises a sequence encoding a costimulatory molecule or an immunological fusion partner. In some aspects, the costimulatory molecule comprises B7, ICAM-1 , LFA-3, or any combination thereof.

[0018] In various aspects, the present disclosure provides a pharmaceutical composition comprising the composition of any one of claims 1-34 and a pharmaceutically acceptable carrier. [0019] In various aspects, the present disclosure provides a cell comprising any one of the above compositions. In some aspects, the cell is a host cell. In further aspects, the cell is a dendritic cell (DC).

[0020] In various aspects, the present disclosure provides a method of preparing a vaccine, comprising preparing any one of the above compositions or the above described pharmaceutical composition.

[0021] In various aspects, the present disclosure provides a method of generating an immune response against an alphavirus target antigen in a subject, comprising: administering to the subject any one of the above compositions or the above described pharmaceutical composition. In some aspects, the subject has not been infected with an alphavirus.

[0022] In some aspects, the alphavirus target antigen is from an alphavirus, wherein the alphavirus comprises Chikungunya virus (CHIKV), o'nyong-nyong virus (ONNV), Ross River virus (RRV), Mayaro fever virus (MAYV), Venezuelan equine encephalitis virus (VEEV), Western equine encephalomyelitis virus (WEEV), Eastern equine encephalitis virus (EEEV), or any combination thereof.

[0023] In various aspects, the present disclosure provides a method of preventing a Chikungunya virus infection in a subject, the method comprising administering to the subject a composition comprising: a replication defective virus vector comprising a deletion in an E2b gene region; and a nucleic acid sequence encoding at least one Chikungunya target antigen.

[0024] In some aspects, the subject has preexisting immunity to an adenovirus or an adenovirus vector. In some aspects, the subject is a human or a non-human animal. In some aspects, the administering is intravenously, subcutaneous ly, intralymphatically, intratumorally, intradermally, intramuscularly, intraperitoneally, intrarectally, intravaginally, intranasally, orally, via bladder instillation, or via scarification.

[0025] In some aspects, the administering of the composition to the subject is at least one time, is repeated at least twice, or is repeated at least three times. In some aspects, the administering to the subject comprises l xl 0 9 to 5x10' 2 virus particles per dose. In some aspects, the administering to the subject comprises at least 10 9 virus particles, at least 10 10 virus particles, or at least 10" virus particles per dose. In some aspects, the replication defective virus vector is an adenovirus vector. In further aspects, the replication defective virus vector is an adenovirus 5 (Ad5) vector. INCORPORATION BY REFERENCE

[0026] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 exemplifies one structure of an alphavirus genome.

[0028] FIG. 2 exemplifies Ad5 [E1-, E2b-]-CHIKV str vaccine derived from nucleotide positions 7567 to 1 1313 of SEQ ID NO: 1 that has been generated.

[0029] FIG. 3 exemplifies CHIKV structural protein expression in HEK 293 infected with Ad5 [E 1-, E2b-]-CHIKV str vaccine, or mock infected. CHIKV protein expression was detected by western blot.

[0030] FIG. 4 exemplifies results of a challenge study performed using Ad5 [E1 -, E2b-]-CHIKV str vaccine. Mice were vaccinated 2 times at days -14 and -7 and then challenged on day 0 with a lethal amount of CHIKV injected into the footpad.

[0031] FIG. 4A exemplifies mice vaccinated with Ad5 [E 1-, E2b-]-CHIKV str vaccine survive CHIKV infection.

[0032] FIG. 4B exemplifies mice vaccinated with Ad5 [E 1-, E2b-]-CHIKV S i r vaccine maintain their pre-challenge weight.

[0033] FIG. 4C exemplifies mice vaccinated with Ad5 [E1-, E2b-]-CHIKV str vaccine resolved

CHIKV-induced footpad inflammation faster than the unvaccinated control mice.

[0034] FIG. 5 illustrates exemplary gene constructs for Chikungunya vaccines of the present disclosure.

[0035] FIG. 5A illustrates a schematic representation of a multiple gene construct containing three Chikungunya genes (C, E3, E2, 6K, and El gene (nucleotides 767-1 1313 of SEQ ID NO: 1); NS gene 1 ; NS gene 2) to be used for insertion into Ad5 [E1-, E2b-].

[0036] FIG. 5B illustrates the translation products of the gene construct in FIG. 5A and the stoichiometric abundance of each product.

[0037] FIG. 6 illustrates cell-mediated immune (CMI) responses (IFN-γ) and cytolytic T lymphocyte (CTL) responses and Granzyme B responses in splenocytes from immunized or control mice using an ELISpot assay. C57BL/6 mice were immunized two times at two-week intervals with lxlO 10 virus particles (VPs) Ad5 [E 1-, E2b-]-CHIK vaccine comprising SEQ ID NO: 1 or with lxlO 10 VPs Ad5 [E1 -, E2b-]-null (empty vector control). One week after the final immunization, splenocytes from individual mice were tested for induction of immune responses after exposure of cells to Chikungunya virus peptides. The data show the cumulative number of spot forming cells (SFCs) per 10 6 splenocytes after exposure to three separate pools of Chikungunya virus peptides (peptide numbers for Chikungunya were large enough to merit division into three separate pools to use in assays - CHIKV peptide pool 1 comprised peptides 1- 103, CHIKV peptide pool 2 comprising peptides 104-207, and peptide pool 3 comprising peptides 208-310). Additional splenocytes were separately exposed to an SI V-nef peptide pools as a negative control prior to assay measurements.

[0038] FIG. 6A illustrates CMI responses in Ad5 [E1-, E2b-]-CHIK immunized and control C57BL/6 mice as measured by IFN-γ secreting SFCs using an ELISpot assay.

[0039] FIG. 6B illustrates CTL responses in Ad5 [E1-, E2b-]-CHIK immunized and control C57BL/6 mice as measured by Granzyme B (GR-B) secreting SFCs using an ELISpot assay.

[0040] FIG. 7 illustrates lymphocyte activation in splenocytes from immunized or control C57BL/6 mice as measured by intracellular expression of IFN-γ or IFN-y/TNF-a analyzed by flow cytometry. C57BL/6 mice were immunized two times at two-week intervals with lxlO 10 VPs Ad5 [E1-, E2b-]- CHIK vaccine comprising SEQ ID NO: 1 or with l xlO 10 VPs Ad5 [E 1-, E2b-]-null (empty vector controls). One week after the final immunization, splenocytes from individual mice were exposed to three separate pools of Chikungunya virus peptides (peptide numbers for Chikungunya were large enough to merit division into three separate pools to use in assays - CHIKV peptide pool 1 comprised peptides 1 - 103, CHIKV peptide pool 2 comprising peptides 104-207, and peptide pool 3 comprising peptides 208-310) and analyzed by flow cytometry for induction of intracellular cytokine expression.

[0041] FIG. 7A illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ in CD8+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools).

[0042] FIG. 7B illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ in CD4+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools).

[0043] FIG. 7C illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ and TNF-a in CD8+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools).

[0044] FIG. 7D illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ and TNF-a in CD4+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools).

[0045] FIG. 8 illustrates anti-Chikungunya envelope protein-2 antibody responses in immunized mice as compared to control mice as measured by a quantitative enzyme-linked immunosorbent assay (ELISA). C57BL/6 mice were immunized two times at two-week intervals with lxl O 10 VPs Ad5 [E 1 -, E2b-]-CHIK vaccine comprising SEQ ID NO: 1 or with l xl O 10 VPs Ad5 [E1 -, E2b-]-null (empty vector control). One week after the final immunization, sera from mice were evaluated for induction of antibody responses. Blood was collected by cheek pouch laceration under anesthesia.

DETAILED DESCRIPTION

[0046] The following passages describe different aspects in greater detail. Each aspect can be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous can be combined with any other feature indicated as being preferred or advantageous.

[0047] In certain embodiments, alphavirus antigens such as capsid, E3 A LPHA, E2ALPHA, 6K, and E I ALPHA and nonstructural proteins such as, nsP l , nsP2, nsP3, and nsP4 can be used, for example, in a vaccine composition or a composition comprising an adenovirus vector.

[0048] For example, E2 A LPHA and E I ALPHA antigens can be used. Clinical correlates of protection have not been established for alphavirus vaccines, however there are data supporting a correlation between neutralizing antibody titers and protection. (Smalley, L., et al. Vaccine. (2016): 34(26): 2976-2981 ; Garcia-Arriaza, J. et al. Journal of Virology (2014): 88(6):3527-47).

[0049] Non-structural alphavirus antigens can also be used in certain aspects. Studies have shown that the non-structural proteins involved in replication of the genome contain conserved regions that can provide a wider range of alphavirus protection when used in experimental vaccines, including those employing Ad5 vectors.

[0050] As used herein, unless otherwise indicated, the article "a" means one or more unless explicitly otherwise provided for.

[0051] As used herein, unless otherwise indicated, terms such as "contain," "containing," "include," "including," and the like mean "comprising."

[0052] As used herein, unless otherwise indicated, the term "or" can be conjunctive or disjunctive.

[0053] As used herein, unless otherwise indicated, any embodiment can be combined with any other embodiment.

[0054] As used herein, unless otherwise indicated, some inventive embodiments herein contemplate numerical ranges. A variety of aspects of this invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range as if explicitly written out. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1 , 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range. When ranges are present, the ranges include the range endpoints.

[0055] The term "adenovirus" or "Ad" can refer to a group of non-enveloped DNA viruses from the family Adenoviridae. In addition to human hosts, these viruses can be found in, but are not limited to, avian, bovine, porcine and canine species. The use of any adenovirus from any of the four genera of the family Adenoviridae (e.g., Aviadenovirus, Mastadenovirus, Atadenovirus and Siadenovirus) can be contemplated as the basis of an E2b deleted virus vector, or vector containing other deletions as described herein. In addition, several serotypes are found in each species. Ad also pertains to genetic derivatives of any of these viral serotypes, including but not limited to, genetic mutation, deletion or transposition of homologous or heterologous DNA sequences.

[0056] A "helper adenovirus" or "helper virus" can refer to an Ad that can supply viral functions that a particular host cell cannot (the host can provide Ad gene products such as E l proteins). This virus can be used to supply, in trans, functions (e.g., proteins) that are lacking in a second virus, or helper dependent virus (e.g., a gutted or gutless virus, or a virus deleted for a particular region such as E2b or other region as described herein); the first replication- incompetent virus can be said to "help" the second, helper dependent virus thereby permitting the production of the second viral genome in a cell.

[0057] The term "Adenovirus5 null (Ad5null)," as used herein, can refer to a non-replicating Ad that does not contain any heterologous nucleic acid sequences for expression.

[0058] The term "First Generation adenovirus," as used herein, can refer to an Ad that has the early region 1 (E l ) deleted. In additional cases, the nonessential early region 3 (E3) can also be deleted.

[0059] The term "gutted" or "gutless," as used herein, can refer to an adenovirus vector that has been deleted of all viral coding regions.

[0060] The term "transfection" as used herein can refer to the introduction of foreign nucleic acid into eukaryotic cells. Transfection can be accomplished by a variety of means known to the art including calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, retroviral infection, and biolistics. [0061] The term "stable transfection" or "stably transfected" can refer to the introduction and integration of foreign nucleic acid, DNA or RNA, into the genome of the transfected cell. The term "stable transfectant" can refer to a cell which has stably integrated foreign DNA into the genomic DNA.

[0062] The term "reporter gene" can indicate a nucleotide sequence that encodes a reporter molecule (including an enzyme). A "reporter molecule" can be detectable in any of a variety of detection systems, including, but not limited to enzyme-based detection assays (e.g., ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems.

[0063] In one embodiment, the E. coli β-galactosidase gene (available from Pharmacia Biotech, Pistacataway, N.J.), green fluorescent protein (GFP) (commercially available from Clontech, Palo Alto, Calif), the human placental alkaline phosphatase gene, the chloramphenicol acety transferase (CAT) gene or other reporter genes that are known to the art can be employed.

[0064] As used herein, the terms "nucleic acid molecule encoding," "DNA sequence encoding," and "DNA encoding" can refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides can determine the order of amino acids along the polypeptide (protein) chain. The nucleic acid sequence thus can code for the amino acid sequence.

[0065] The term "heterologous nucleic acid sequence," as used herein, can refer to a nucleotide sequence that is ligated to, or is manipulated to become ligated to, a nucleic acid sequence to which it is not ligated in nature, or to which it is ligated at a different location in nature. Heterologous nucleic acid can include a nucleotide sequence that is naturally found in the cell into which it is introduced or the heterologous nucleic acid can contain some modification relative to the naturally occurring sequence.

[0066] The term "transgene" can refer to any gene coding region, either natural or heterologous nucleic acid sequences or fused homologous or heterologous nucleic acid sequences, introduced into the cells or genome of a test subject. In the current invention, transgenes are carried on any viral vector that is used to introduce the transgenes to the cells of the subject.

[0067] The term "Second Generation Adenovirus," as used herein, can refer to an Ad that has all or parts of the E l, E2, E3, and, in certain embodiments, E4 DNA gene sequences deleted (removed) from the virus.

[0068] The term "subject," or "individual," as used herein, can refer to any animal, e.g., a mammal or marsupial. Subjects include but are not limited to humans, non-human primates (e.g., rhesus or other types of macaques), mice, pigs, horses, donkeys, cows, sheep, rats and fowl of any kind. [0069] In certain aspects, there can be provided compositions and methods for producing a vaccine that generates immune responses against various alphaviruses using an adenovirus vector that allows for vaccinations to generate broadly reactive immune responses against alphaviruses.

[0070] One aspect provides a method of generating an immune response against one or more alphavirus target antigens in an individual comprising administering to the individual an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) nucleic acids encoding one or more alphavirus target antigens; and readministering the adenovirus vector at least once or more to the individual; thereby generating an immune response against the alphavirus target antigens.

[0071] Another aspect provides a method for generating an immune response against several alphavirus target antigens in an individual, wherein the individual has preexisting immunity to adenovirus, comprising: administering to the individual an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) nucleic acids encoding multiple alphavirus target antigens; and readministering the adenovirus vector at least once or more to the individual; thereby generating an immune response against the alphavirus target antigens.

I. Target Antigens

[0072] In certain aspects, the target antigens are comprised of antigens derived from various alphavirus proteins. In this regard, the alphavirus proteins can be derived from any alphavirus, including but not limited to Chikungunya virus (CHIKV), o'nyong-nyong virus (ONNV), Ross River virus (RRV), Mayaro fever virus (MAYV), Venezuelan equine encephalitis virus (VEEV), Western equine encephalomyelitis virus (WEEV), and Eastern equine encephalitis virus (EEEV). In certain embodiments, the at least one alphavirus virus protein can be an alphavirus protein comprising E3 A LPH A , E2 A LPH A , 6K, El ALPH A , nsPl , nsP2, nsP3, or nsP4, or any combination thereof. In certain embodiments, the at least one alphavirus virus protein can comprise structural proteins from the group comprising E3 A LPH A , E2 A LPH A , 6K, or El ALPHA, or any combination thereof. In certain embodiments, the at least one alphavirus virus protein can comprise non-structural proteins from the group comprising nsPl , nsP2, nsP3, or nsP4, or any combination thereof. In certain embodiments, the at least one alphavirus virus protein can comprise structural proteins from the group comprising E3ALPH A , E2 A LPH A , 6K, or El A LPHA, non-structural proteins from the group comprising nsPl , nsP2, nsP3, or nsP4, or combinations thereof. In certain embodiments, the at least one alphavirus virus protein can be an alphavirus protein selected from the group consisting of E3ALPHA, E2 A LPHA, 6K, El A LPH A , nsPl , nsP2, nsP3, and nsP4. In certain embodiments, the at least one alphavirus virus protein can comprise structural proteins selected from the group consisting of E3ALPHA, E2ALPHA, 6K, and E l ALPHA- In certain embodiments, the at least one alphavirus virus protein can comprise nonstructural proteins selected from the group consisting of nsP l , nsP2, nsP3, and nsP4. In certain embodiments, the at least one alphavirus virus protein can comprise structural proteins selected from the group consisting of E3 ALPHA, E2 A LPHA, 6K, or E l ALPHA, non-structural proteins selected from the group consisting of nsP l , nsP2, nsP3, and nsP4, or combinations thereof.

[0073] The envelope glycoproteins E l ALPHA and E2ALPHA can form heterodimers that associate to form trimeric spikes on surface of the virion. The alphavirus replicative cycle can begin when the trimeric spikes bind host-cell receptors and can cause the endocytosis of virions. The low pH of the endosomes can induce fusion of the viral and endosomal membranes thereby releasing the viral genome into the cytosol of the cell.

[0074] The genomic R A of alphaviruses can serve as an mRNA which, like cellular mRNAs, can be capped with 7-methylguanosine and can be polyadenylated. The first approximately 7 kB of the genome can encode the non-structural proteins that comprise the viral replicase and transcriptase. The final approximately 5 kB of the genome can encode the structural proteins. The viral replicase proteins, nsP l , nsP2, nsP3, and nsP4, produce anti-genome which then can serve as a template for production of genome and two mRNAs, one for the non-structural proteins and one for the structural proteins.

[0075] The non-structural proteins can be translated as a polyprotein that can be subsequently processed by nsP2. It is believed that differential processing of the polyprotein can be necessary for the switch between anti-genome and genome synthesis/sub-genomic mRNA synthesis.

[0076] The structural proteins can be translated as a polyprotein that can be processed by a combination of a serine protease activity on the capsid protein and cellular enzymes in the secretory system (e.g., signal peptidase and furin). The envelope glycoproteins, E I ALPHA and E2 A LPHA, can transit from the secretory system to the plasma membrane where they can be found in the fully processed, mature form. E l ALPHA and Ε2 ALPHA recruit nucleocapsids (capsid protein shells with genomic RNA inside), and virions can be formed by budding from the plasma membrane.

[0077] Target antigens can include proteins, or variants or fragments thereof, associated with alphaviruses, such as C, E3 ALPHA, E2 A LPHA, 6K, E I ALPHA, nsP l , nsP2, nsP3, and nsP4.

In some embodiments, the at least one target antigen is structural and/or non-structural antigen of an alphavirus. In certain embodiments, the at least one target antigen is any fragment of a protein or a polyprotein of an alphavirus. For example, the at least one target antigen used herein is a CHIKV structural antigen having an amino acid sequence set forth in SEQ ID NO: 2, a CHIKV nonstructural antigen having an amino acid sequence set forth in SEQ ID NO: 3, or a combination thereof. In some embodiments, the at least one target antigen is a CHIKV antigen encoded by the nucleotide sequence set forth in SEQ ID NO: 1. In some embodiments, the nucleic acid sequence in the composition described herein comprises the CHIKV gene (nucleotides 7567-1 1313 of SEQ ID NO: 1) with a gene ID 956308, which has a gene symbol CHIKVgp2 and encodes a polyprotein containing C, E3, E2, 6K, and E l proteins. In some embodiments, the nucleic acid sequence in the composition described herein comprises the CHIKV gene (nucleotides 77-7501 of SEQ ID NO: 1) with a gene ID 953609 which has a gene symbol CHIKVgpl (encoding a polyprotein containing nsp l , nsp2, nsp3, and nsp4 proteins). In some embodiments, the nucleic acid sequence in the composition described herein comprises a nucleic acid sequence encoding a Chikungunya virus structural polyprotein (e.g., NP_690589) or fragments thereof. In some embodiments, the nucleic acid sequence in the composition described herein comprises a nucleic acid sequence encoding a Chikungunya virus nonstructural polyprotein (e.g., NP_690588) or fragments thereof. In some embodiments, the at least one target antigen is a CHIKV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 1. In some embodiments, the at least one target antigen is a CHIKV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 2, SEQ ID NO: 3, or any combination thereof.

[0078] For example, in some embodiments, the at least one target antigen is an ONNV antigen encoded by the nucleotide sequence set forth in SEQ ID NO: 4. In some embodiments, the at least one target antigen used herein is an ONNV structural antigen having an amino acid sequence set forth in SEQ ID NO: 5, an ONNV non-structural antigen having an amino acid sequence set forth in SEQ ID NO: 6, or a combination thereof. In some embodiments, the at least one target antigen is an ONNV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 4. In some embodiments, the at least one target antigen is a ONNV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 5, SEQ ID NO: 6, or any combination thereof. In some embodiments, the at least one target antigen is a MAYV antigen that is encoded by a sequence set forth in SEQ ID NO: 7. In other embodiments, the at least one target antigen used herein is a MAYV structural antigen having an amino acid sequence set forth in SEQ ID NO: 8, a MAYV non-structural antigen having an amino acid sequence set forth in SEQ ID NO: 9, or a combination thereof. In some embodiments, the at least one target antigen is a MAYV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 7. In some embodiments, the at least one target antigen is a MAYV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 8, SEQ ID NO: 9, or any combination thereof. In other embodiments, the at least one target antigen is a RRV antigen that is encoded by a sequence set forth in SEQ ID NO: 10. In some embodiments, the at least one target antigen used herein is a RRV structural antigen having an amino acid sequence set forth in SEQ ID NO: 1 1 , a RRV non-structural antigen having an amino acid sequence set forth in SEQ ID NO: 12, or a combination thereof. In some embodiments, the at least one target antigen is a RRV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 10. In some embodiments, the at least one target antigen is a RRV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 1 1 , SEQ ID NO: 12, or any combination thereof. In other embodiments, the at least one target antigen is a VEEV antigen that is encoded by a sequence set forth in SEQ ID NO: 13. In other embodiments, the at least one target antigen used herein is a VEEV structural antigen having an amino acid sequence set forth in SEQ ID NO: 14, a VEEV non-structural antigen having an amino acid sequence set forth in SEQ ID NO: 15, or a combination thereof. In some embodiments, the at least one target antigen is a VEEV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%), at least 85%, at least 90%, at least 92%o, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 13. In some embodiments, the at least one target antigen is a VEEV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%), or at least 99% sequence identity to SEQ ID NO: 14, SEQ ID NO: 15, or any combination thereof. In other embodiments, the at least one target antigen is an EEEV antigen that is encoded by a sequence set forth in SEQ ID NO: 16. In some embodiments, the at least one target antigen used herein is an EEEV structural antigen having an amino acid sequence set forth in SEQ ID NO: 17, an EEEV non-structural antigen having an amino acid sequence set forth in SEQ ID NO: 18, or a combination thereof. In some embodiments, the at least one target antigen is a EEEV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 16. In some embodiments, the at least one target antigen is a EEEV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 17, SEQ ID NO: 18, or any combination thereof. In some embodiments, the at least one target antigen is a WEEV antigen that is encoded by a sequence set forth in SEQ ID NO: 19. In other embodiments, the at least one target antigen used herein is a WEEV structural antigen having an amino acid sequence set forth in SEQ ID NO: 20, a WEEV non-structural antigen having an amino acid sequence set forth in SEQ ID NO: 21, or a combination thereof. In some embodiments, the at least one target antigen is a WEEV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 19. In some embodiments, the at least one target antigen is a WEEV antigen that is encoded by a sequence that has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity to SEQ ID NO: 20, SEQ ID NO: 21 , or any combination thereof.

II. Adenovirus Vectors

[0079] In certain aspects, adenovirus vectors can be used in compositions and methods for the delivery of alphavirus antigens.

[0080] The recombinant Ad5 [E1 -, E2b-] vector vaccine platform can have additional deletions in the early gene 2b (E2b) region that remove the viral DNA polymerase (pol) and/or the pre-terminal protein (pTP) genes, and can be propagated in the E.C7 human cell line (Amalfitano A, Begy CR, Chamberlain JS Proc Natl Acad Sci U S A. 1996 93:3352-6; Amalfitano A, Chamberlain JS Gene Ther. 1997 4:258-63; Amalfitano A et al. J Virol. 1998 72:926-33; Seregin SS and Amalfitano A Expert Opin Biol Ther. 2009 9: 1521-31). The vector can be an expanded gene-carrying/cloning capacity of up to 12 kb, compared to the 7 kb capacity of current Ad5 [E 1-] vectors, which can be sufficient to allow inclusion of multiple genes (Amalfitano A et al. J Virol. 1998 72:926-33; Seregin SS and Amalfitano A Expert Opin Biol Ther. 2009 9: 1521 -31). Additional deletions of the E2b region can confer advantageous immune properties such as eliciting potent immune responses to specific antigens while minimizing immune responses to Ad5 viral proteins.

[0081] Pre-clinical studies in animals and clinical studies in cancer demonstrate that Ad5 [E1-, E2b- ]-based vectors can induce potent CMI and antibody (Ab) responses against a vectored antigen, even in the presence of Ad5 immunity.

[0082] The advanced recombinant adenovirus serotype 5 (Ad5) vector platforms can give the opportunity to develop a novel broadly cross-reactive vaccine for alphavirus. This vector can be delivered directly by subcutaneous injection for exposure of defined alphavirus antigens to antigen- presenting cells (APCs) that induce potent immune responses. Importantly, the Ad5 recombinant vector can replicate episomally and may not insert the genome into the host cell genome, thereby ensuring that there is no gene integration or disruption of vital cellular gene functions (Imler JL Vaccine. 1995 13: 1 143-51 ; Ertl HC, Xiang Z J Immunol. 1996 156:3579-82; Amalfitano, A Curr Opin Mol Ther. 2003 5:362-6).

[0083] Unfortunately, a major challenge facing current Ad5 -based vectors is the presence of preexisting immunity to Ad5. Most people exhibit neutralizing Abs against Ad5, the most widely used subtype for human vaccines, with two-thirds of people studied having lympho-proliferative responses against Ad5 (Chirmule N et al. Gene Ther. 1999 6: 1574-83). This immunity can prevent the use of current early gene 1 (El) region-deleted Ad5 vectors (Ad5 [El-]) as a platform for an alphavirus vaccine. Ad5 immunity inhibits immunization, and especially re-immunization with recombinant Ad5 vectors, and can preclude immunization of a 15ittere against a second disease antigen as well. Overcoming the problem of pre-existing Ad5 vector immunity has been the subject of intense investigation. However, use of other Ad serotypes or even non-human forms of Ad can lead directly to altered production of important chemokines and cytokines, gene dysregulation, and can have significantly different biodistribution and tissue toxicities (Appledorn DM et al. Gene Ther. 2008 15:885-901 ; Hartman ZC et al. Virus Res. 2008 132: 1- 14). Even if these approaches succeed in an initial immunization, subsequent vaccinations can be problematic due to induced immune responses to the Ad subtype. To help avoid the Ad immunization barrier and circumvent the adverse conditions for current Ad5 [E1-] vectors, an improved Ad5 vector platform was constructed, described above.

[0084] Further, the Ad5 [E 1-, E2b-] vectors can display reduced inflammation during the first 24 to 72 hours after injection compared to current Ad5 [E 1 -] vectors (Nazir SA, Metcalf JP J Investig Med. 2005 53:292-304; Schaack J Proc Natl Acad Sci U S A. 2004 101 :3124-9; Schaack J Viral Immunol. 2005 18:79-88). The lack of Ad5 [E 1 -, E2b-] late gene expression can render infected cells less vulnerable to anti-Ad5 activity and can permit them to produce and express the transgene for extended periods of time (Gabitzsch ES, Jones FR J Clin Cell Immunol. 201 1 S4.001. Doi: 10.4172/2155-9899. S4-001 ; Hodges BL J Gene Med. 2000 2:250-9). Reduced inflammatory responses against Ad5 [E 1-, E2b-] viral proteins and the resulting evasion of pre-existing Ad5 immunity can increase the ability of Ad5 [E1-, E2b-] to infect APC cells, resulting in greater immunization of the inoculee. In addition, increased infection of other cell types can provide the high levels of antigen presentation needed for potent CD4 + and CD8 + T cell responses, leading to memory T cell development. Thus it appears that deletion of the E2b region can confer advantageous immune properties, such as eliciting potent immune responses to specific antigens, while minimizing immune responses to Ad5 proteins even in the presence of pre-existing Ad5 immunity. [0085] Results demonstrated the ability of recombinant Ad5 [E1-, E2b-] platform-based vaccines to overcome pre-existing and/or Ad5 vector-induced immunity and induce significant protective immune responses. These studies established that new Ad5 [E1 -, E2b-] vector-based vaccines 1) can induce significantly higher CMI responses compared to current Ad5 [E1-] vectors, 2) can be utilized for multiple immunization regimens designed to induce potent CMI responses, 3) can induce significant antigen-specific CMI responses in animals with pre-existing Ad5 immunity, and 4) can induce significant anti-tumor responses or protect against infectious disease in animals with high levels of pre-existing Ad5 immunity.

[0086] Certain aspects relate to methods and adenovirus vectors for generating immune responses against alphavirus target antigens. In particular, certain aspects can provide an improved Ad-based vaccine such that multiple vaccinations against more than one antigenic target entity can be achieved. Importantly, vaccination can be performed in the presence of preexisting immunity to the Ad and/or administered to subjects previously immunized multiple times with the adenovirus vector as described herein or other adenovirus vectors. The adenovirus vector can be administered to subjects multiple times to induce an immune response against a variety of alphavirus antigens, including but not limited to, the production of broad based antibody and cell-mediated immune responses against alphaviruses that cause polyarthralgias or encephalitis.

[0087] Certain aspects provide the use of E2b deleted adenovirus vectors, such as those described in U.S. Patent Nos. 6,063,622; 6,451 ,596; 6,057, 158: and 6,083,750 (all incorporated herein in their entirety by reference). As described in the '622 patent, in order to further cripple viral protein expression, and also to decrease the frequency of generating replication competent Ad (RCA), adenovirus vectors containing deletions in the E2b region can be provided in certain aspects. Propagation of these E2b deleted adenovirus vectors requires cell lines that can express the deleted E2b gene products.

[0088] In further aspects, there can be provided packaging cell lines; for example E.C7 (formally called C-7), derived from the HEK-203 cell line (Amalfitano A et al. Proc Natl Acad Sci USA 1996 93:3352-56; Amalfitano A et al. Gene Ther 1997 4:258-63).

[0089] Further, the E2b gene products, DNA polymerase and preterminal protein, can be constitutively expressed in E.C7, or similar cells along with the El gene products. Transfer of gene segments from the Ad genome to the production cell line can have immediate benefits: (1) increased carrying capacity of the recombinant DNA polymerase and preterminal protein-deleted adenovirus vector, since the combined coding sequences of the DNA polymerase and preterminal proteins that can be theoretically deleted approaches 4.6 kb; and, (2) a decreased potential of RCA generation, since two or more independent recombination events would be required to generate RCA. [0090] Therefore, the E l , Ad DNA polymerase and preterminal protein expressing cell lines can enable the propagation of adenovirus vectors with a carrying capacity approaching 13 kb, without the need for a contaminating helper virus (Mitani et al. Proc. Natl. Acad. Sci. USA 1995 92:3854; Hodges et al. J Gene Med 2000 2:250-259; Amalfitano and Parks Curr Gene Ther 2002 2: 1 1 1 - 133).

[0091] In addition, when genes critical to the viral life cycle are deleted (e.g., the E2b genes), a further crippling of Ad to replicate or express other viral gene proteins can occur. This can decrease immune recognition of virally infected cells, and can allow for extended durations of foreign transgene expression.

[0092] Important attributes of E l , DNA polymerase, and preterminal protein deleted vectors, however, include their inability to express the respective proteins from the E l and E2b regions, as well as a predicted lack of expression of most of the viral structural proteins. For example, the major late promoter (MLP) of Ad is responsible for transcription of the late structural proteins LI through L5 (Doerfler, In Adenovirus DNA, The Viral Genome and Its Expression (Martinus Nijhoff Publishing Boston, 1986)). Though the MLP is minimally active prior to Ad genome replication, the highly toxic Ad late genes are primarily transcribed and translated from the MLP only after viral genome replication has occurred (Thomas and Mathews Cell 1980 22:523). This cis-dependent activation of late gene transcription is a feature of DNA viruses in general, such as in the growth of polyoma and SV-40. The DNA polymerase and preterminal proteins are absolutely required for Ad replication (unlike the E4 or protein IX proteins) and thus their deletion is extremely detrimental to adenovirus vector late gene expression, and the toxic effects of that expression in cells such as APCs.

[0093] In certain embodiments, the adenovirus vectors contemplated for use include E2b deleted adenovirus vectors that have a deletion in the E2b region of the Ad genome and the E l region but do not have any other regions of the Ad genome deleted. In another embodiment, the adenovirus vectors contemplated for use can include E2b deleted adenovirus vectors that have a deletion in the E2b region of the Ad genome and deletions in the E l and E3 regions, but no other regions deleted. In a further embodiment, the adenovirus vectors contemplated for use can include adenovirus vectors that have a deletion in the E2b region of the Ad genome and deletions in the E l , E3 and partial or complete removal of the E4 regions but no other deletions.

[0094] In another embodiment, the adenovirus vectors contemplated for use include adenovirus vectors that have a deletion in the E2b region of the Ad genome and deletions in the E l and E4 regions but no other deletions. In an additional embodiment, the adenovirus vectors contemplated for use can include adenovirus vectors that have a deletion in the E2a, E2b, and E4 regions of the Ad genome but no other deletions. [0095] In one embodiment, the adenovirus vectors for use herein comprise vectors having the El and DNA polymerase functions of the E2b region deleted but no other deletions. In a further embodiment, the adenovirus vectors for use herein have the El and the preterminal protein functions of the E2b region deleted and no other deletions.

[0096] In another embodiment, the adenovirus vectors for use herein have the El , DNA polymerase and the preterminal protein functions deleted, and no other deletions. In one particular embodiment, the adenovirus vectors contemplated for use herein are deleted for at least a portion of the E2b region and the El region, but are not "gutted" adenovirus vectors. In this regard, the vectors can be deleted for both the DNA polymerase and the preterminal protein functions of the E2b region.

[0097] The term "E2b deleted," as used herein, can refer to a specific DNA sequence that is mutated in such a way so as to prevent expression and/or function of at least one E2b gene product. Thus, in certain embodiments, "E2b deleted" can refer to a specific DNA sequence that is deleted (removed) from the Ad genome. E2b deleted or "containing a deletion within the E2b region" can refer to a deletion of at least one base pair within the E2b region of the Ad genome. Thus, in certain embodiments, more than one base pair is deleted and in further embodiments, at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 1 10, 120, 130, 140, or 150 base pairs are deleted. In another embodiment, the deletion is of more than 150, 160, 170, 180, 190, 200, 250, or 300 base pairs within the E2b region of the Ad genome. An E2b deletion can be a deletion that prevents expression and/or function of at least one E2b gene product and therefore, can encompass deletions within exons encoding portions of E2b-specific proteins as well as deletions within promoter and leader sequences. In certain embodiments, an E2b deletion is a deletion that prevents expression and/or function of one or both of the DNA polymerase and the preterminal protein of the E2b region. In a further embodiment, "E2b deleted" can refer to one or more point mutations in the DNA sequence of this region of an Ad genome such that one or more encoded proteins is non-functional. Such mutations can include residues that are replaced with a different residue leading to a change in the amino acid sequence that result in a nonfunctional protein.

[0098] As would be understood by the skilled artisan upon reading the present disclosure, other regions of the Ad genome can be deleted. Thus to be "deleted" in a particular region of the Ad genome, as used herein, can refer to a specific DNA sequence that is mutated in such a way so as to prevent expression and/or function of at least one gene product encoded by that region. In certain embodiments, to be "deleted" in a particular region can refer to a specific DNA sequence that is deleted (removed) from the Ad genome in such a way so as to prevent the expression and/or the function encoded by that region (e.g., E2b functions of DNA polymerase or preterminal protein function). "Deleted" or "containing a deletion" within a particular region can refer to a deletion of at least one base pair within that region of the Ad genome. Thus, in certain embodiments, more than one base pair is deleted and in further embodiments, at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 1 10, 120, 130, 140, or 150 base pairs are deleted from a particular region. In another embodiment, the deletion is more than 150, 160, 170, 180, 190, 200, 250, or 300 base pairs within a particular region of the Ad genome. In some embodiments, any one of the above described deletions can also be a result of translocation of two or more base pairs.

[0099] These deletions are such that expression and/or function of the gene product encoded by the region can be prevented. Thus deletions can encompass deletions within exons encoding portions of proteins as well as deletions within promoter and leader sequences. In a further embodiment, "deleted" in a particular region of the Ad genome can refer to one or more point mutations in the DNA sequence of this region of an Ad genome such that one or more encoded proteins is nonfunctional. Such mutations can include residues that are replaced with a different residue leading to a change in the amino acid sequence that result in a nonfunctional protein.

[0100] The adenovirus vectors comprising one or more deletions can be generated using recombinant techniques known in the art (see e.g., Amalfitano et al. J. Virol. 1998 72:926-33; Hodges, et al., J Gene Med 2000 2:250-59). As would be recognized by the skilled artisan, the adenovirus vectors for use can be successfully grown to high titers using an appropriate packaging cell line that constitutively expresses E2b gene products and products of any of the necessary genes that can have been deleted. In certain embodiments, HEK-293-derived cells that not only constitutively express the El and DNA polymerase proteins, but also the Ad-preterminal protein, can be used. In one embodiment, E.C7 cells are used to successfully grow high titer stocks of the adenovirus vectors (see e.g., Amalfitano et al. J. Virol. 1998 72:926-33; Hodges et al. J Gene Med 2000 2:250-59)

[0101] In order to delete critical genes from self-propagating adenovirus vectors, the proteins encoded by the targeted genes have to first be coexpressed in HEK-293 cells, or similar, along with the El proteins. Therefore, only those proteins which are non-toxic when coexpressed constitutively (or toxic proteins inducibly- expressed) can be utilized. Coexpression in HEK-293 cells of the El and E4 genes has been demonstrated (utilizing inducible, not constitutive, promoters) (Yeh et al. J. Virol. 1996 70:559; Wang et al. Gene Therapy 1995 2:775; and Gorziglia et al. J. Virol. 1996 70:4173). The El and protein IX genes (a virion structural protein) have been coexpressed (Caravokyri and Leppard J. Virol. 1995 69:6627), and coexpression of the El , E4, and protein IX genes has also been described (Krougliak and Graham Hum. Gene Ther. 1995 6: 1575). The El and 100k genes have been successfully expressed in transcomplementing cell lines, as have El and protease genes (Oualikene et al. Hum Gene Ther 2000 1 1 : 1341-53; Hodges et al. J. Virol 2001 75:5913-20).

[0102] Cell lines coexpressing E l and E2b gene products for use in growing high titers of E2b deleted Ad particles are described in U.S. Patent No. 6,063,622. The E2b region can encode the viral replication proteins which are absolutely required for Ad genome replication (Doerfler, supra and Pronk et al. Chromosoma 1992 102:S39-S45). Useful cell lines constitutively express the approximately 140 kDa Ad-DNA polymerase and/or the approximately 90 kDa preterminal protein. In particular, cell lines that have high-level, constitutive coexpression of the El , DNA polymerase, and preterminal proteins, without toxicity (e.g., E.C7), can be desirable for use in propagating Ad for use in multiple vaccinations. These cell lines can permit the propagation of adenovirus vectors deleted for the El, DNA polymerase, and preterminal proteins.

[0103] The recombinant Ad can be propagated using techniques known in the art. For example, in certain embodiments, tissue culture plates containing E.C7 cells are infected with the adenovirus vector virus stocks at an appropriate MOI (e.g., 5) and incubated at 37.0°C for 40-96 h. The infected cells can be harvested, resuspended in 10 mM Tris-CI (pH 8.0), and sonicated, and the virus can be purified by two rounds of cesium chloride density centrifugation. In certain techniques, the virus containing band is desalted over a Sephadex CL-6B column (Pharmacia Biotech, Piscataway, N.J.), sucrose or glycerol is added, and aliquots are stored at -80°C. In some embodiments, the virus can be placed in a solution designed to enhance its stability, such as A 195 (Evans et al. J Pharm Sci 2004 93:2458-75). The titer of the stock can be measured (e.g., by measurement of the optical density at 260 nm of an aliquot of the virus after SDS lysis). In another embodiment, plasmid DNA, either linear or circular, encompassing the entire recombinant E2b deleted adenovirus vector can be transfected into E.C7, or similar cells, and can be incubated at 37.0°C until evidence of viral production is present (e.g., the cytopathic effect). The conditioned media from these cells can then be used to infect more E.C7, or similar cells, to expand the amount of virus produced, before purification.

[0104] Purification can be accomplished by two rounds of cesium chloride density centrifugation or selective filtration. In certain embodiments, the virus can be purified by column chromatography, using commercially available products (e.g., Adenopure from Puresyn, Inc., Malvern, PA) or custom made chromatographic columns.

[0105] In certain embodiments, the recombinant Ad can comprise enough of the virus to ensure that the cells to be infected are confronted with a certain number of viruses. Thus, there can be provided a stock of recombinant Ad, particularly, an RCA-free stock of recombinant Ad. The preparation and analysis of Ad stocks is well known in the art. Viral stocks can vary considerably in titer, depending largely on viral genotype and the protocol and cell lines used to prepare them. The viral stocks can have a titer of at least about 10 6 , 10 7 , or 10 8 virus particles (VPs)/ml, and many such stocks can have higher titers, such as at least about 10 9 , 10 10 , lO 1 1 , or 10 12 VPs/ml.

III. Heterologous Nucleic Acids

[0106] In certain embodiments, the adenovirus vectors described herein comprise heterologous nucleic acid sequences that encode one or more target antigens of interest such as alphavirus target antigens, fragments or fusions thereof, against which it is desired to generate an immune response. In some embodiments, the adenovirus vectors comprise heterologous nucleic acid sequences that encode several proteins, fusions thereof or fragments thereof, which can modulate the immune response. Certain aspects provide the Second Generation E2b deleted adenovirus vectors that comprise a heterologous nucleic acid sequence such as an alphavirus target antigen.

[0107] As such, certain aspects provide nucleic acid sequences, which can also be referred to herein as polynucleotides that encode several alphavirus target antigens of interest. As such, certain aspects provide polynucleotides that encode target antigens from any source as described further herein, vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors. The terms "nucleic acid" and "polynucleotide" are used essentially interchangeably herein. As will be also recognized by the skilled artisan, polynucleotides can be single-stranded (coding or antisense) or double-stranded, and can be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules can include hnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences can, but need not, be present within a polynucleotide, and a polynucleotide can, but need not, be linked to other molecules and/or support materials. An isolated polynucleotide, as used herein, can mean that a polynucleotide is substantially away from other coding sequences. For example, an isolated DNA molecule as used herein does not contain large portions of unrelated coding DNA, such as large chromosomal fragments or other functional genes or polypeptide coding regions. Of course, this can refer to the DNA molecule as originally isolated, and does not exclude genes or coding regions later added to the segment recombinantly in the laboratory.

[0108] As will be understood by those skilled in the art, the polynucleotides can include genomic sequences, extra-genomic and plasmid-encoded sequences and smaller engineered gene segments that express, or can be adapted to express target antigens as described herein, fragments of antigens, peptides and the like. Such segments can be naturally isolated, or modified synthetically by the hand of man. [0109] Polynucleotides can comprise a native sequence (i.e., an endogenous sequence that encodes a target antigen polypeptide/protein/epitope or a portion thereof) or can comprise a sequence that encodes a variant or derivative of such a sequence. In certain embodiments, the polynucleotide sequences set forth herein encode target antigen proteins as described herein. In some embodiments, polynucleotides represent a novel gene sequence that has been optimized for expression in specific cell types (i.e., human cell lines) that can substantially vary from the native nucleotide sequence or variant but encode a similar protein antigen.

[0110] In other related embodiments, there can be provided polynucleotide variants having substantial identity to native sequences encoding proteins (e.g., target antigens of interest) as described herein, for example those comprising at least 70% sequence identity, particularly at least 75% up to 99% or higher, sequence identity compared to a native polynucleotide sequence encoding the polypeptides using the methods described herein (e.g., BLAST analysis using standard parameters, as described below). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.

[0111] In certain aspects, polynucleotide variants can contain one or more substitutions, additions, deletions and/or insertions, particularly such that the immunogenicity of the epitope of the polypeptide encoded by the variant polynucleotide or such that the immunogenicity of the heterologous target protein may not be substantially diminished relative to a polypeptide encoded by the native polynucleotide sequence. As described elsewhere herein, the polynucleotide variants can encode a variant of the target antigen, or a fragment (e.g., an epitope) thereof wherein the propensity of the variant polypeptide or fragment (e.g., epitope) thereof to react with antigen-specific antisera and/or T-cell lines or clones may not be substantially diminished relative to the native polypeptide. The term "variants" can also encompass homologous genes of xenogeneic origin.

[0112] Certain aspects provide polynucleotides that comprise or consist of at least about 5 up to a 1000 or more contiguous nucleotides encoding a polypeptide, including target protein antigens, as described herein, as well as all intermediate lengths there between. It will be readily understood that "intermediate lengths," in this context, can mean any length between the quoted values, such as 16, 17, 18, 19, etc.; 21 , 22, 23, etc.; 30, 31, 32, etc.; 50, 51 , 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151 , 152, 153, etc.; including all integers through 200-500; 500-1 ,000, and the like. A polynucleotide sequence as described herein can be extended at one or both ends by additional nucleotides not found in the native sequence encoding a polypeptide as described herein, such as an epitope or heterologous target protein. This additional sequence can consist of 1 up 20 nucleotides or more, at either end of the disclosed sequence or at both ends of the disclosed sequence.

[0113] In certain embodiments, the polynucleotides, or f agments thereof, regardless of the length of the coding sequence itself, can be combined with other DNA sequences, such as promoters, expression control sequences, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length can vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length can be employed, and the total length that can be limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative polynucleotide segments with total lengths of about 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many implementations.

[0114] When comparing polynucleotide sequences, two sequences can be said to be "identical" if the sequence of nucleotides in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences can be performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence can be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

[0115] Optimal alignment of sequences for comparison can be conducted using the Megalign program in the Lasergene suite of bio informatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff MO (1978) A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff MO (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345- 358; Hein J Unified Approach to Alignment and Phylogenes, pp. 626-645 (1990); Methods in Enzymology vol.183, Academic Press, Inc., San Diego, CA; Higgins DG and Sharp PM CABIOS 1989 5: 151 -53; Myers EW and Muller W CABIOS 1988 4: 1 1 -17; Robinson ED Comb. Theor 1971 1 1A 05; Saitou N, Nei M Mol. Biol. Evol. 1987 4:406-25; Sneath PHA and Sokal RR Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA (1973); Wilbur WJ and Lipman DJ Proc. Natl. Acad., Sci. USA 1983 80:726-30).

[0116] Alternatively, optimal alignment of sequences for comparison can be conducted by the local identity algorithm of Smith and Waterman, Add. APL. Math 1981 2:482, by the identity alignment algorithm of Needleman and Wunsch J. Mol. Biol. 1970 48:443, by the search for similarity methods of Pearson and Lipman, Proc. Natl. Acad. Sci. USA 1988 85 :2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wl), or by inspection.

[0117] One example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nucl. Acids Res. 1977 25 :3389-3402, and Altschul et al. J. Mol. Biol. 1990 215 :403-10, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Extension of the word hits in each direction can be halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word length (W) of 1 1 , and expectation I of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 1989 89: 10915) alignments, (B) of 50, expectation I of 10, M=5, N=-4 and a comparison of both strands.

[0118] In certain aspects, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window can comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage can be calculated by determining the number of positions at which the identical nucleic acid bases occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

[0119] It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there can be many nucleotide sequences that encode a particular antigen of interest, or fragment thereof, as described herein. Some of these polynucleotides can bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated in certain aspects. Further, alleles of the genes comprising the polynucleotide sequences provided herein are also contemplated. Alleles can be endogenous genes that can be altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein can, but need not, have an altered structure or function. Alleles can be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

[0120] Therefore, in another embodiment, a mutagenesis approach, such as site-specific mutagenesis, is employed for the preparation of variants and/or derivatives of the target antigen sequences, or fragments thereof, as described herein. By this approach, specific modifications in a polypeptide sequence can be made through mutagenesis of the underlying polynucleotides that encode them. These techniques can provide a straightforward approach to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the polynucleotide.

[0121] Site-specific mutagenesis can allow the production of mutants through the use of specific oligonucleotide sequences which can encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Mutations can be employed in a selected polynucleotide sequence to improve, alter, decrease, modify, or otherwise change the properties of the polynucleotide itself, and/or alter the properties, activity, composition, stability, or primary sequence of the encoded polypeptide.

[0122] Polynucleotide segments or fragments encoding the polypeptides can be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments can be obtained by application of nucleic acid reproduction technology, such as the PCR™ technology of U. S. Patent 4,683,202, by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology (see for example, Current Protocols in Molecular Biology, John Wiley and Sons, NY, NY).

[0123] In order to express a desired target antigen polypeptide or fragment thereof, or fusion protein comprising any of the above, as described herein, the nucleotide sequences encoding the polypeptide, or functional equivalents, can be inserted into an appropriate Ad as described elsewhere herein using recombinant techniques known in the art. The appropriate adenovirus vector can contain the necessary elements for the transcription and translation of the inserted coding sequence and any desired linkers. Methods that are well known to those skilled in the art can be used to construct these adenovirus vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods can include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Amalfitano et al. J. Virol. 1998 72:926-33; Hodges et al. J Gene Med 2000 2:250-259; Sambrook J et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel FM et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York. N.Y.

[0124] A variety of vector/host systems can be utilized to contain and produce polynucleotide sequences. These can include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA vectors; yeast transformed with yeast vectors; insect cell systems infected with virus vectors (e.g., baculovirus); plant cell systems transformed with virus vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.

[0125] The "control elements" or "regulatory sequences" present in an adenovirus vector can be those non-translated regions of the vector— enhancers, promoters, 5' and 3' untranslated regions— which can interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, sequences encoding a polypeptide of interest can be ligated into an Ad transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome can be used to obtain a viable virus that is capable of expressing the polypeptide in infected host cells (Logan J and Shenk T (1984) Proc. Natl. Acad. Sci 1984 87:3655-59). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, can be used to increase expression in mammalian host cells. Transcriptional enhancers can comprise one element, at least two elements, at least three elements, at least four elements, at least five elements, or at least six elements.

[0126] Specific initiation signals can also be used to achieve more efficient translation of sequences encoding a polypeptide of interest. Such signals can include the ATG initiation codon and adjacent sequences. In cases where sequences encoding the polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon can be provided. Furthermore, the initiation codon can be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers that are appropriate for the particular cell system which is used, such as those described in the literature (Scharf D. et al. Results Probl. Cell Differ. 1994 20: 125-62). Specific termination sequences, either for transcription or translation, can also be incorporated in order to achieve efficient translation of the sequence encoding the polypeptide of choice.

[0127] A variety of protocols for detecting and measuring the expression of polynucleotide-encoded products (e.g., target antigens of interest), using either polyclonal or monoclonal antibodies specific for the product are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on a given polypeptide can be used for some applications, but a competitive binding assay can also be employed. These and other assays are described, among other places, in Hampton R et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul. Minn.) and Maddox DE et al. J. Exp. Med. 1983 758: 121 1-16). The adenovirus vectors can comprise nucleic acid sequences encoding several alphavirus antigens of interest.

[0128] In certain embodiments, elements that increase the expression of the desired target antigen are incorporated into the nucleic acid sequence of the adenovirus vectors described herein. Such elements include internal ribosome binding sites (IRES; Wang and Siddiqui Curr. Top. Microbiol. Immunol 1995 203:99; Ehrenfeld and Semler Curr. Top. Microbiol. Immunol. 1995 203:65; Rees et al., Biotechniques 1996 20: 102; Sugimoto et al. Biotechnology 1994 2:694). IRES can increase translation efficiency. Other sequences can also enhance expression. For some genes, sequences especially at the 5 ' end can inhibit transcription and/or translation. These sequences can be palindromes that can form hairpin structures. Any such sequences in the nucleic acid to be delivered can be deleted or not deleted.

[0129] Expression levels of the transcript or translated product can be assayed to confirm or ascertain which sequences affect expression. Transcript levels can be assayed by any known method, including Northern blot hybridization, Rnase probe protection and the like. Protein levels can be assayed by any known method, including ELISA. As would be recognized by the skilled artisan, the adenovirus vectors comprising heterologous nucleic acid sequences can be generated using recombinant techniques known in the art, such as those described in Maione et al. Proc Natl Acad Sci USA 2001 98:5986-91 ; Maione et al. Hum Gene Ther 2000 1 :859-68; Sandig et al. Proc Natl Acad Sci USA, 2000 97: 1002-07; Harui et al. Gene Therapy 2004 1 1 : 1617-26; Parks et al. Proc Natl Acad Sci USA 1996 93: 13565-570; Dello Russo et al. Proc Natl Acad Sci USA 2002 99: 12979-984; Current Protocols in Molecular Biology, John Wiley and Sons, NY, NY). [0130] As noted above, the adenovirus vectors can comprise nucleic acid sequences that can encode several alphavirus target proteins or antigens of interest. In this regard, the vectors can contain nucleic acid encoding 1 to 4 or more different target antigens of interest. The target antigens can be a full length protein or can be a fragment (e.g., an epitope) thereof. The adenovirus vectors can contain nucleic acid sequences encoding multiple fragments or epitopes from one target protein of interest or can contain one or more fragments or epitopes from numerous different target alphavirus antigen proteins of interest.

[0131] In some aspects, the nucleic acid sequences encode a plurality of alphavirus target antigens. The nucleic acid sequence encoding the plurality of alphavirus target antigens can comprise a plurality of gene inserts each corresponding to a target antigen and wherein each gene insert is separated by a nucleic acid sequence encoding a self-cleaving 2A peptide. In some aspects, the self- cleaving 2A peptide (i.e., the cleavable linker) is derived from Porcine teschovirus- 1 or Thosea asigna virus or the like.

[0132] Examples of cleavable linkers can include 2A linkers (e.g., T2A), 2A-like linkers, or functional equivalents thereof and combinations thereof. In some embodiments, the linkers include the picornaviral 2A-like linker, CHYSEL sequences of Porcine teschovirus (P2A), Thosea asigna virus (T2A) or combinations, variants and functional equivalents thereof.

[0133] In certain embodiments, immunogenic fragments bind to an MHC class I or class II molecule. As used herein, an immunogenic fragment can "bind to" an MHC class I or class II molecule if such binding is detectable using any assay known in the art. For example, the ability of a polypeptide to bind to MHC class I can be evaluated indirectly by monitoring the ability to promote incorporation of 125 I labeled p2-microglobulin (β2πι) into MHC class l/p2m/peptide heterotrimeric complexes (see Parker et al., J. Immunol. 752: 163, 1994). Alternatively, functional peptide competition assays that are known in the art can be employed. Immunogenic fragments of polypeptides can generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3 rd ed., 243-247 (Raven Press, 1993) and references cited therein. Representative techniques for identifying immunogenic fragments can include screening polypeptides for the ability to react with antigen-specific antisera and/or T-cell lines or clones. An immunogenic fragment of a particular target polypeptide can be a fragment that can react with such antisera and or T-cells at a level that is not substantially less than the reactivity of the full length target polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). In other words, an immunogenic fragment can react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens can generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988.

[0134] Target antigens can include but are not limited to antigens derived from any of the alphaviruses. Target antigens can include proteins produced by any of the infectious alphaviruses described herein, such as, C, E3 ALPHA, E2ALPH A , 6K, El A LPHA, nsPl , nsP2, nsP3, and nsP4. As used herein, an "infectious agent" can be any species capable of infecting a host. Infectious agents can include, for example, any virus within the alphavirus genus.

[0135] The adenovirus vector can also include nucleic acid sequences that encode proteins that increase the immunogenicity of the target antigen. In this regard, the protein produced following immunization with the adenovirus vector containing such a protein can be a fusion protein comprising the target antigen of interest fused to a protein that increases the immunogenicity of the target antigen of interest.

IV. Combination Therapies

[0136] Certain embodiments provide a combination immunotherapy and vaccine composition for the treatment and prevention infectious diseases. Some embodiments provide combination multi-targeted vaccines, immunotherapies, and methods for enhanced therapeutic response to complex diseases such as infectious diseases. Each component of the combination therapy can be independently included in a vaccine composition for prevention of Chikungunya infection or infection by any alphavirus.

[0137] "Treatment" can refer to administration of a therapeutically effective dose of a vaccine of this disclosure to a subject. The treatment can be administered in a pharmaceutical composition to a subject. The subject can also be healthy and disease free at the time of treatment and, in this case, the treatment can be referred to as a preventative vaccination. The subject can be suffering from a disease condition at the time of treatment and, in this case, the treatment can be referred to as therapeutic vaccination.

[0138] A "subject" can refer to any animal, including, but not limited to, humans, non-human primates (e.g., rhesus or other types of macaques), mice, pigs, horses, donkeys, cows, sheep, rats and fowls. A "subject" can be used herein interchangeably with "individual" or "patient."

[0139] In some aspects, the vector comprises at least one antigen. In some aspects, the vector comprises at least two antigens. In some aspects, the vaccine formulation comprises 1 : 1 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :2 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :3 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :4 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :5 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :6 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :7 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :8 ratio of vector to antigen. In some aspects, the vaccine comprises 1 :9 ratio of vector to antigen. In some aspects, the vaccine comprises 1 : 10 ratio of vector to antigen.

[0140] In some aspects, the vaccine is a combination vaccine, wherein the vaccine comprises at least two vectors each containing at least a single antigen.

[0141] When a mixture of different antigens are simultaneously administered or expressed from a same or different vector in a subject, they can compete with one another. As a result the formulations comprising different concentration and ratios of expressed antigens in a combination immunotherapy or vaccine must be evaluated and tailored to the subject or group of subjects to ensure that effective and sustained immune responses occur after administration.

[0142] Composition that comprises multiple antigens can be present at various ratios. For example, formulations with more than one vector can have various ratios. For example, immunotherapies or vaccines can have two different vectors in a stoichiometry of 1 : 1 , 1 :2, 1 :3, 1 :4, 1 :5, 1 :6, 1 :7, 1 :8, 1 :9, 1 : 10, 1 : 15, 1 :20, 1 :30, 2: 1 , 2:3, 2:4, 2:5, 2:6, 2:7, 2:8, 3 : 1 , 3 :3, 3 :4, 3 :5, 3:6, 3:7, 3 :8, 3 : 1 , 3:3, 3 :4, 3 :5, 3 :6, 3 :7, 3 :8, 4: 1 , 4:3, 4:5, 4:6, 4:7, 4:8, 5 : 1 , 5 :3, 5 :4, 5 :6, 5:7, 5 :8, 6: 1, 6:3, 6:4, 6:5, 6:7, 6: 8, 7: 1 , 7:3, 7:4, 7:5, 7:6, 7:8, 8: 1 , 8:3, 8:4, 8:5, 8:6, or 8:7.

[0143] In some embodiments, at least one of the recombinant nucleic acid vectors is a replication defective virus vector that comprises a replication defective adenovirus 5 vector comprising a first identity value. In some embodiments, the replication defective adenovirus vector comprises a deletion in the E2b gene region. In some embodiments, the replication defective adenovirus vector further comprises a deletion in the E l gene region. In some embodiments, the replication defective adenovirus vector comprises a deletion in an E l gene region, and E2b gene region, an E3 gene region, an E4 gene region, or any combination thereof.

[0144] Specific therapies that can be used in combination with any Ad5 [E 1 -, E2b-] vaccine of the present disclosure are described in further detail below.

A. Costimulatory Molecules

[0145] In addition to the use of a recombinant adenovirus-based vector vaccine containing target antigens such as alphavirus target antigens, particularly Chikungunya antigens, co-stimulatory molecules can be incorporated into said the vaccine to increase immunogenicity.

[0146] Initiation of an immune response can require at least two signals for the activation of I T cells by APCs (Damle, et al. J Immunol 148: 1985-92 ( 1992); Guinan, et al. Blood 84:3261 -82 ( 1994); Hellstrom, et al. Cancer Chemother Pharmacol 38:S40-44 ( 1996); Hodge, et al. Cancer Res 39:5800-07 ( 1999). An antigen specific first signal can be delivered through the T cell receptor (TCR) via the peptide/major histocompatibility complex (MHC) and can cause the T cell to enter the cell cycle. A second, or costimulatory, signal can be delivered for cytokine production and proliferation.

[0147] At least three distinct molecules normally found on the surface of professional antigen presenting cells (APCs) can be capable of providing the second signal critical for T cell activation: B7- 1 (CD80), ICAM-1 (CD54), and LFA-3 (human CD58) (Damle, et al. J Immunol 148 : 1985-92 (1992) ; Guinan, et al. Blood 84 : 3261-82 (1994) ; Wingren, et al. Crit Rev Immunol 15 : 235-53 (1995) ; Parra, et al. Scand. J Immunol 38 : 508-14 (1993) ; Hellstrom, et al. Ann NY Acad Sci 690 : 225-30 (1993) ; Parra, et al. J Immunol 158 : 637-42 (1997) ; Sperling, et al. J Immunol 157 : 3909 -17 (1996) ; Dubey, et al. J Immunol 155: 45-57 (1995); Cavallo, et al. Eur J Immunol 25: 1 154 -62 (1995).

[0148] These costimulatory molecules can have distinct T cell ligands. B7-1 can interact with the CD28 and CTLA-4 molecules, ICAM-1 can interact with the CDl la/CD18 (LFA-^eta-2 integrin) complex, and LFA-3 can interact with the CD2 (LFA-2) molecules. Therefore, in a certain embodiment, it would be desirable to have a recombinant adenovirus vector that contains B7-1 , ICAM-1 , and LFA-3, respectively, that, when combined with a recombinant adenovirus-based vector vaccine containing one or more nucleic acids encoding target antigens such as alphavirus antigens, can further increase/enhance anti-alphavirus immune responses directed to specific target antigens.

V. Immunological Fusion Partners

[0149] The viral vector or composition described herein can further comprise nucleic acid sequences that encode proteins, or an "immunological fusion partner," that can increase the immunogenicity of the target antigen such as Chikungunya virus antigens, or any target antigen of the present disclosure. In this regard, the protein produced following immunization with the viral vector containing such a protein can be a fusion protein comprising the target antigen of interest fused to a protein that increases the immunogenicity of the target antigen of interest. Furthermore, combination therapy with Ad5[E l-, E2b-] vectors encoding for a Chikungunya virus antigen and an immunological fusion partner can result in boosting the immune response, such that the combination of both therapeutic moieties acts to synergistically boost the immune response more than either the Ad5[E l -, E2b-] vector encoding for a Chikungunya virus antigen alone, or the immunological fusion partner alone. For example, combination therapy with an Ad5[El -, E2b-] vector encoding for a Chikungunya virus antigen and an immunological fusion partner can result in synergistic enhancement of stimulation of antigen-specific effector CD4+ and CD8+ T cells, stimulation of NK cell response directed towards killing infected cells, stimulation of neutrophils or monocyte cell responses directed towards killing infected cells via antibody dependent cell-mediated cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) mechanisms, or any combination thereof. This synergistic boost can vastly improve survival outcomes after administration to a subject in need thereof. In certain embodiments, combination therapy with an Ad5[El -, E2b-] vector encoding for a Chikungunya virus antigen and an immunological fusion partner can result in generating an immune response comprises an increase in target antigen-specific CTL activity of about 1.5 to 20, or more fold in a subject administered the adenovirus vectors as compared to a control. In another embodiment, generating an immune response comprises an increase in target-specific CTL activity of about 1.5 to 20, or more fold in a subject administered the Ad5[E l -, E2b-] vector encoding for a Chikungunya virus antigen and an immunological fusion partner as compared to a control. In a further embodiment, generating an immune response that comprises an increase in target antigen-specific cell-mediated immunity activity as measured by ELISpot assays measuring cytokine secretion, such as interferon-gamrna (IFN-γ), interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-a), or other cytokines, of about 1.5 to 20, or more fold as compared to a control. In a further embodiment, generating an immune response comprises an increase in target-specific antibody production of between 1.5 and 5 fold in a subject administered the Ad5[El -, E2b-] vectors encoding for a Chikungunya virus antigen and an immunological fusion partner as described herein as compared to an appropriate control. In another embodiment, generating an immune response comprises an increase in target-specific antibody production of about 1.5 to 20, or more fold in a subject administered the adenovirus vector as compared to a control.

[0150] As an additional example, combination therapy with an Ad5[E l-, E2b-] vector encoding for target epitope antigens and an immunological fusion partner can result in synergistic enhancement of stimulation of antigen-specific effector CD4+ and CD8+ T cells, stimulation of NK cell response directed towards killing infected cells, stimulation of neutrophils or monocyte cell responses directed towards killing infected cells via antibody dependent cell-mediated cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) mechanisms, or any combination thereof. This synergistic boost can vastly improve survival outcomes after administration to a subject in need thereof. In certain embodiments, combination therapy with Ad5[El-, E2b-] vectors encoding for a target epitope antigen and an immunological fusion partner can result in generating an immune response comprises an increase in target antigen-specific CTL activity of about 1.5 to 20, or more fold in a subject administered the adenovirus vectors as compared to a control. In another embodiment, generating an immune response comprises an increase in target-specific CTL activity of about 1.5 to 20, or more fold in a subject administered the Ad5[El -, E2b-] vector encoding for target epitope antigen and an immunological fusion partner as compared to a control. In a further embodiment, generating an immune response that comprises an increase in target antigen-specific cell-mediated immunity activity as measured by ELISpot assays measuring cytokine secretion, such as interferon-gamma (IFN-γ), interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-a), or other cytokines, of about 1.5 to 20, or more fold as compared to a control. In a further embodiment, generating an immune response comprises an increase in target-specific antibody production of between 1.5 and 5 fold in a subject administered the adenovirus vectors as described herein as compared to an appropriate control. In another embodiment, generating an immune response comprises an increase in target- specific antibody production of about 1.5 to 20, or more fold in a subject administered the adenovirus vector as compared to a control.

[0151] In one embodiment, such an immunological fusion partner is derived from a Mycobacterium sp. , such as a Mycobacterium tuberculosis-derived Ral2 fragment. The immunological fusion partner derived from Mycobacterium sp. can be any one of the sequences set forth in SEQ ID NO: 22 - SEQ ID NO: 30 and SEQ ID NO: 93 - SEQ ID NO: 98. Oligonucleotides, Met-His tags, and enterokinase recognition sites, which can be used to construct these Mycobacterium sp. -derived Ral 2 sequences are set forth in any one of SEQ ID NO: 99 - SEQ ID NO: 106 as shown in TABLE 2. Ral2 compositions and methods for their use in enhancing the expression and/or immunogenicity of heterologous polynucleotide/polypeptide sequences are described in U.S. Patent No. 7,009,042, which is herein incorporated by reference in its entirety. Briefly, Ral 2 refers to a polynucleotide region that is a subsequence of a Mycobacterium tuberculosis MTB32A nucleic acid. MTB32A is a serine protease of 32 kDa encoded by a gene in virulent and avirulent strains of M. tuberculosis. The nucleotide sequence and amino acid sequence of MTB32A have been described (see, e.g., U.S. Patent No. 7,009,042; Skeiky et al., Infection and Immun. 67:3998-4007 (1999), incorporated herein by reference in their entirety). C-terminal fragments of the MTB32A coding sequence can be expressed at high levels and remain as soluble polypeptides throughout the purification process. Moreover, Ral 2 can enhance the immunogenicity of heterologous immunogenic polypeptides with which it is fused. A Ral2 fusion polypeptide can comprise a 14 kDa C-teirninal fragment corresponding to amino acid residues 192 to 323 of MTB32A. Other Ral 2 polynucleotides generally can comprise at least about 15, 30, 60, 100, 200, 300, or more nucleotides that encode a portion of a Ral2 polypeptide. Ral2 polynucleotides can comprise a native sequence (i.e., an endogenous sequence that encodes a Ral2 polypeptide or a portion thereof) or can comprise a variant of such a sequence. Ral2 polynucleotide variants can contain one or more substitutions, additions, deletions and/or insertions such that the biological activity of the encoded fusion polypeptide is not substantially diminished, relative to a fusion polypeptide comprising a native Ral2 polypeptide. Variants can have at least about 70%, 80%, or 90% identity, or more, to a polynucleotide sequence that encodes a native Ral2 polypeptide or a portion thereof.

[0152] In certain aspects, an immunological fusion partner can be derived from protein D, a surface protein of the gram-negative bacterium Haemophilus 34ittered34 B. The immunological fusion partner derived from protein D can be the sequence set forth in SEQ ID NO: 31. In some cases, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-1 10 amino acids). A protein D derivative can be 34ittered34. Within certain embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes, which can increase the expression level in E. coli and can function as an expression enhancer. The lipid tail can ensure optimal presentation of the antigen to antigen presenting cells. Other fusion partners can include the non- structural protein from influenza virus, NS 1 (hemagglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes can be used.

[0153] In certain aspects, the immunological fusion partner can be the protein known as LYTA, or a portion thereof (particularly a C-terminal portion). The immunological fusion partner derived from LYTA can the sequence set forth in SEQ ID NO: 32. LYTA is derived from Streptococcus pneumoniae, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein can be responsible for the affinity to the choline or to some choline analogues such as DEAE. This property can be exploited for the development of E. coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus can be employed. Within another embodiment, a repeat portion of LYTA can be incorporated into a fusion polypeptide. A repeat portion can, for example, be found in the C-terminal region starting at residue 178. One particular repeat portion can incorporate residues 188-305.

[0154] In some embodiments, the target antigen is fused to an immunological fusion partner, which can also be referred to herein as an "immunogenic component," comprising a cytokine selected from the group of IFN-γ, TNFa, IL-2, IL-8, IL-12, IL- 18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL- 10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF- 1), IFN-a, IFN-β, IL-l a, IL- Ι β, IL-1RA, IL-1 1, IL- 17A, IL-17F, IL- 19, IL-20, IL-21 , IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31 , IL-33, IL-34, IL-35, Ιί-36α,β,λ, IL-36Ra, IL-37, TSLP, LIF, OSM, LT-a, LT-β, CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF- βΐ , and MIF. The target antigen fusion can produce a protein with substantial identity to one or more of IFN-γ, TNFa IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL- 16, IL-17, IL-23, IL-32, M-CSF (CSF- 1), IFN-a, IFN-β, IL-la, IL-Ιβ, IL-1RA, IL-1 1 , IL-17A, IL- 17F, IL-19, IL-20, IL-21 , IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31 , IL-33, IL-34, IL-35, Ιί-36α,β,λ, IL-36Ra, IL-37, TSLP, LIF, OSM, LT-a, LT-β, CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4- 1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-βΙ , and MIF. The target antigen fusion can encode a nucleic acid encoding a protein with substantial identity to one or more of IFN-γ, TNFa, IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-16, IL- 17, IL-23, IL-32, M-CSF (CSF-1), IFN-a, IFN-β, IL-la, IL-Ι β, IL-1RA, IL- 1 1 , IL- 17A, IL- 17F, IL- 19, IL-20, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31 , IL-33, IL-34, IL-35, Ιί-36α,β,λ, IL-36Ra, IL-37, TSLP, LIF, OSM, LT-a, LT-β, CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-βΙ , and MIF. In some embodiments, the target antigen fusion further comprises one or more immunological fusion partner, which can also be referred to herein as an "immunogenic components," comprising a cytokine selected from the group of IFN-γ, TNFa, IL-2, IL-8, IL-12, IL- 18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL- 10, IL-13, IL-15, IL-16, IL-17, IL-23, IL-32, M-CSF (CSF- 1), IFN-a, IFN-β, IL-la, IL-Ι β, IL-1RA, IL-1 1 , IL-17A, IL-17F, IL-19, IL-20, IL-21 , IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31 , IL-33, IL-34, IL-35, Κ,-36α,β,λ, IL-36Ra, IL- 37, TSLP, LIF, OSM, LT-a, LT-β, CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-1BBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-βΙ , and MIF. The sequence of IFN-γ can be, but is not limited to, a sequence as set forth in SEQ ID NO: 33. The sequence of TNFa can be, but is not limited to, a sequence as set forth in SEQ ID NO: 34. The sequence of IL-2 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 35. The sequence of IL-8 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 36. The sequence of IL-12 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 37. The sequence of IL-18 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 38. The sequence of IL-7 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 39. The sequence of IL-3 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 40. The sequence of IL-4 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 41. The sequence of IL-5 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 42. The sequence of IL-6 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 43. The sequence of IL-9 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 44. The sequence of IL-10 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 45. The sequence of IL-13 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 46. The sequence of IL-15 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 47. The sequence of IL-16 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 74. The sequence of IL- 17 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 75. The sequence of IL-23 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 76. The sequence of IL-32 can be, but is not limited to, a sequence as set forth in SEQ ID NO: 77.

[0155] In some embodiments, the target antigen is fused or linked to an immunological fusion partner, also referred to herein as an "immunogenic component," comprising a cytokine selected from the group of IFN-γ, TNFa IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL-6, IL-9, IL- 10, IL- 13, IL-15, , IL- 16, IL- 17, IL-23, IL-32, M-CSF (CSF- 1), IFN-a, IFN-β, IL-l a, IL-Ι β, IL-IRA, IL-1 1 , IL- 17A, IL-17F, IL-19, IL-20, IL-21 , IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL- 30, IL-31 , IL-33, IL-34, IL-35, Ιί-36α,β,λ, IL-36Ra, IL-37, TSLP, LIF, OSM, LT-a, LT-β, CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-lBBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-β Ι , and MIF. In some embodiments, the target antigen is co-expressed in a cell with an immunological fusion partner, also referred to herein as an "immunogenic component," comprising a cytokine selected from the group of IFN-γ, TNFa IL-2, IL-8, IL-12, IL-18, IL-7, IL-3, IL-4, IL-5, IL- 6, IL-9, IL- 10, IL-13, IL-15, IL- 16, IL-17, IL-23, IL-32, M-CSF (CSF- 1), IFN-a, IFN-β, IL-l a, IL- 1 β, IL- IRA, IL- 1 1 , IL- 17A, IL- 17F, IL-19, IL-20, IL-21 , IL-22, IL-24, IL-25, IL-26, IL-27, IL-28A, B, IL-29, IL-30, IL-31 , IL-33, IL-34, IL-35, Ιί-36α,β,λ, IL-36Ra, IL-37, TSLP, LIF, OSM, LT-a, LT-β, CD40 ligand, Fas ligand, CD27 ligand, CD30 ligand, 4-lBBL, Trail, OPG-L, APRIL, LIGHT, TWEAK, BAFF, TGF-β Ι , and MIF.

[0156] In some embodiments, the target antigen is fused or linked to an immunological fusion partner, comprising CpG ODN (e.g., Class A, B, or C CpG ODNs; non- limiting examples sequences are shown in SEQ ID NO: 108 - SEQ ID NO: 1 19 in which phosphodiester bases are in capital letters, phosphorothioate bases are in lower case letters, and palindromes are underlined and the colon denotes the reflection point), cholera toxin (a non- limiting example sequence is shown in SEQ ID NO: 49), a truncated A subunit coding region derived from a bacterial ADP-ribosylating exotoxin (a non-limiting example sequence is shown in (a non-limiting example sequence is shown in SEQ ID NO: 50), a truncated B subunit coding region derived from a bacterial ADP-ribosylating exotoxin (a non-limiting example sequence is shown in SEQ ID NO: 51), Hp91 (a non-limiting example sequence is shown in SEQ ID NO: 52), CCL20 (a non-limiting example sequence is shown in SEQ ID NO: 53 and SEQ ID NO: 107), CCL3 (a non-limiting example sequence is shown in SEQ ID NO: 54), GM-CSF (a non-limiting example sequence is shown in SEQ ID NO: 55), G-CSF (a non- limiting example sequence is shown in SEQ ID NO: 56), LPS peptide mimic (non-limiting example sequences are shown in SEQ ID NO: 57 - SEQ ID NO: 68), shiga toxin (a non-limiting example sequence is shown in SEQ ID NO: 69), diphtheria toxin (a non-limiting example sequence is shown in SEQ ID NO: 70), or CRM197 (a non-limiting example sequence is shown in SEQ ID NO: 73). [0157] In some embodiments, the target antigen is fused or linked to an immunological fusion partner, comprising an IL-15 superagonist. Interleukin 15 (IL- 15) is a naturally occurring inflammatory cytokine secreted after viral infections. Secreted IL- 15 can carry out its function by signaling via its cognate receptor on effector immune cells, and thus, can lead to overall enhancement of effector immune cell activity.

[0158] Based on IL- 15 's broad ability to stimulate and maintain cellular immune responses, it is believed to be a promising immunotherapeutic drug. However, major limitations in clinical development of IL- 15 can include low production yields in standard mammalian cell expression systems and short serum half-life. Moreover, the IL- 15:IL- 15R<x complex, comprising proteins co- expressed by the same cell, rather than the free IL-15 cytokine, can be responsible for stimulating immune effector cells bearing IL- 15 βγΰ receptor.

[0159] To contend with these shortcomings, a novel IL-15 superagonist mutant (IL-15N72D) was identified that has increased ability to bind IL-15RPyc and enhanced biological activity. Addition of either mouse or human IL-15R and Fc fusion protein (the Fc region of immunoglobulin) to equal molar concentrations of IL- 15N72D can provide a further increase in IL- 15 biologic activity, such that IL-15N72D:IL-15Ra/Fc super-agonist complex exhibits a median effective concentration (EC50) for supporting IL-15 -dependent cell growth that was greater thanlO-fold lower than that of free IL- 15 cytokine.

[0160] In some embodiments, the IL-15 superagonist can be a novel IL- 15 superagonist mutant (IL- 15N72D). In certain embodiments, addition of either mouse or human IL-15Ra and Fc fusion protein (the Fc region of immunoglobulin) to equal molar concentrations of IL-15N72D can provide a further increase in IL-15 biologic activity, such that IL-15N72D:IL-15R /Fc super-agonist complex exhibits a median effective concentration (EC50) for supporting IL-15-dependent cell growth that can be greater than 10-fold lower than that of free IL- 15 cytokine

[0161] Thus, in some embodiments, the present disclosure provides a IL- 15N72D:IL- 15Ra/Fc superagonist complex with an EC50 for supporting IL- 15 -dependent cell growth that is greater than 2-fold lower, greater than 3-fold lower, greater than 4-fold lower, greater than 5-fold lower, greater than 6- fold lower, greater than 7-fold lower, greater than 8-fold lower, greater than 9-fold lower, greater than 10-fold lower, greater than 15-fold lower, greater than 20-fold lower, greater than 25-fold lower, greater than 30-fold lower, greater than 35-fold lower, greater than 40-fold lower, greater than 45- fold lower, greater than 50-fold lower, greater than 55-fold lower, greater than 60-fold lower, greater than 65-fold lower, greater than 70-fold lower, greater than 75-fold lower, greater than 80-fold lower, greater than 85-fold lower, greater than 90-fold lower, greater than 95-fold lower, or greater than 100-fold lower than that of free IL-15 cytokine. [0162] In some embodiments, the IL- 15 super agonist is a biologically active protein complex of two IL- 15N72D molecules and a dimer of soluble IL- 15Ra Fc fusion protein, also known as ALT-803. The composition of ALT-803 and methods of producing and using ALT-803 are described in U.S. Patent Application Publication 2015/0374790, which is herein incorporated by reference. It is known that a soluble IL- 15Ra fragment, containing the so-called "sushi" domain at the N terminus (Su), can bear most of the structural elements responsible for high affinity cytokine binding. A soluble fusion protein can be generated by linking the human IL- 15RaSu domain (amino acids 1 -65 of the mature human IL- 15Ra protein) with the human IgGl CH2-CH3 region containing the Fc domain (232 amino acids). This IL- 15RctSu/IgG l Fc fusion protein can have the advantages of dimer formation through disulfide bonding via IgG l domains and ease of purification using standard Protein A affinity chromatography methods.

[0163] In some embodiments, ALT-803 can have a soluble complex consisting of 2 protein subunits of a human IL- 15 variant associated with high affinity to a dimeric IL- 15Ra sushi domain/human IgGl Fc fusion protein. The IL- 15 variant is a 1 14 amino acid polypeptide comprising the mature human IL- 15 cytokine sequence with an Asn to Asp substitution at position 72 of helix C N72D). The human IL- 15R sushi domain/human IgG l Fc fusion protein comprises the sushi domain of the IL- 15R subunit (amino acids 1 - 65 of the mature human IL- 15Ra protein) linked with the human IgG l CH2-CH3 region containing the Fc domain (232 amino acids). Aside from the N72D substitution, all of the protein sequences are human. Based on the amino acid sequence of the subunits, the calculated molecular weight of the complex comprising two IL- 15N72D polypeptides (an example IL- 15N72D sequence is shown in SEQ ID NO: 71) and a disulfide linked homodimeric IL- 15RaSu/IgG l Fc protein (an example IL- 15RaSu/Fc domain is shown in SEQ ID NO: 72) is 92.4 kDa. In some embodiments, a recombinant vector encoding for a target antigen and for ALT-803 can have any sequence described herein to encode for the target antigen and can have SEQ ID NO: 71 , SEQ ID NO: 71 , SEQ ID NO: 72, and SEQ ID NO: 72, in any order, to encode for ALT-803.

[0164] Each IL- 15N720 polypeptide can have a calculated molecular weight of approximately 12.8 kDa and the IL- 15RaSu/IgG 1 Fc fusion protein can have a calculated molecular weight of approximately 33.4 kDa. Both the IL- 15N72D and IL- 15RaSu/IgG 1 Fc proteins can be glycosylated resulting in an apparent molecular weight of ALT- 803 of approximately 1 14 kDa by size exclusion chromatography. The isoelectric point (pi) determined for ALT-803 can range from approximately 5.6 to 6.5. Thus, the fusion protein can be negatively charged at pH 7.

[0165] Combination therapy with Ad5[E l -, E2b-] vectors encoding for a Chikungunya virus antigen and ALT-803 can result in boosting the immune response, such that the combination of both therapeutic moieties acts to synergistically boost the immune response more than either therapy alone. For example, combination therapy with an Ad5[El-, E2b-] vector encoding for a Chikungunya virus antigen and ALT-803 can result in synergistic enhancement of stimulation of antigen-specific effector CD4+ and CD8+ T cells, stimulation of NK cell response directed towards killing infected cells, stimulation of neutrophils or monocyte cell responses directed towards killing infected cells via antibody dependent cell-mediated cytotoxicity (ADCC), or antibody dependent cellular phagocytosis (ADCP) mechanisms. Combination therapy with an Ad5[El-, E2b-] vector encoding for a Chikungunya virus antigen and ALT-803 can synergistically boost any one of the above responses, or a combination of the above responses, to vastly improve survival outcomes after administration to a subject in need thereof.

[0166] Any of the immunogenicity enhancing agents described herein can be fused or linked to a target antigen by expressing the immunogenicity enhancing agents and the target antigen in the same recombinant vector, using any recombinant vector described herein.

[0167] Nucleic acid sequences that encode for such immunogenicity enhancing agents can be any one of SEQ ID NO: 22 - SEQ ID NO: 47, SEQ ID NO: 49 - SEQ ID NO: 77, and SEQ ID NO: 93 - SEQ ID NO: 1 19 and are summarized in TABLE 1.

TABLE 1 - Sequences of Immunological Fusion Partners

SEQ ID NO Sequence

SQLECMTWNQMNLGATLKGHSTGYESDNHTTPILCGAQYRIHTHGV

FRGIQDVRPvVPGVAPTLVRSASETSEKRPFMCAYSGCNKRYFKLSHL

QMHSRKHTGEKPYQCDFKDCERRFFRSDQLKRHQRRHTGVKPFQCK

TCQRKFSRSDHLKTHTRTHTGEKPFSCRWPSCQKKFARSDELVRHHN

MHQRNMTKLQLAL

SEQ ID NO: 25 MHHHHHHTAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHI

GPTAFLGLGVVDN GNGARVQRVVGSAPAASLGISTGDVITAVDGAP

INSATAMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGPPAEFI

EGRGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKE

CFLNQTDETLSNVEVFMQLIYDSSLCDLF

SEQ ID NO: 26 MHHHHHHTAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHI

GPTAFLGLGVVDN GNGARVQRVVGSAPAASLGISTGDVITAVDGAP

INSATAMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGPPAEF

MVDFGALPPEINSARMYAGPGSASLVAAAQMWDSVASDLFSAASAF

QSVVWGLTVGSWIGSSAGLMVAAASPYVAWMSVTAGQAELTAAQV

RVAAAAYETAYGLTVPPPVIAENRAELMILIATNLLGQNTPAIAVNEA

EYGEMWAQDAAAMFGYAAATATATATLLPFEEAPEMTSAGGLLEQ

AAAVEEASDTAAANQLMN VPQALQQLAQPTQGTTPSSKLGGLWKT

VSPHRSPISNMVSMAN HMSMTNSGVSMTNTLSSMLKGFAPAAAAQ

AVQTAAQNGVRAMSSLGSSLGSSGLGGGVAANLGRAASVGSLSVPQ

AWAAANQAVTPAARALPLTSLTSAAERGPGQMLGGLPVGQMGARA

GGGLSGVLRVPPRPYVMPHSPAAGDIAPPALSQDRFADFPALPLDPSA

MVAQVGPQVVNINTKLGYNNAVGAGTGIVIDPNGVVLTNNHVIAGA

TDINAFSVGSGQTYGVDVVGYDRTQDVAVLQLRGAGGLPSAAIGGG

VAVGEPVVAMGNSGGQGGTPRAVPGRVVALGQTVQASDSLTGAEET

LNGLIQFDAAIQPGDSGGPVV GLGQVVGMNTAAS

SEQ ID NO: 27 TAASDNFQLSQGGQGFAIPIGQAMAIAGQI

SEQ ID NO: 28 TAASDNFQLSQGGQGFAIPIGQAMAIAGQIKLPTVHIGPTAFLGLGVV

DNNGNGARVQRVVGSAPAASLGISTGDVITAVDGAPI SATAMADAL

NGHHPGDVISVTWQTKSGGTRTGNVTLAEGPPA

SEQ ID NO: 29 TAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHIGPTAFLGL

GVVDN GNGARVQRVVGSAPAASLGISTGDVITAVDGAPINSATAM SEQ ID NO Sequence

ADALNGHHPGDVISVTWQTKSGGTRTGNVTLAE

SEQ ID NO: 30 SNSRRRSLRWSWLLSVLAAVGLGLATAPAQAAPPALSQDRFADFP

ALPLDPSAMVAQVGPQVV I TKLGY AVGAGTGIVIDPNGVVLTN

NHVIAGATDI AFSVGSGQTYGVDVVGYDRTQDVAVLQLRGAGGLP

SAAIGGGVAVGEPVVAMGNSGGQGGTPRAVPGRVVALGQTVQASDS

LTGAEETLNGLIQFDAAIQPGDSGGPVV GLGQVVGMNTAASDNFQL

SQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHIGPTAFLGLGVVDN GN

GARVQRVVGSAPAASLGISTGDVITAVDGAPINSATAMADALNGHHP

GDVISVTWQTKSGGTRTGNVTLAEGPPA

SEQ ID NO: 31 MKLKTLALSLLAAGVLAGCSSHSSNMANTQMKSDKIIIAHRGASGYL

PEHTLESKALAFAQQADYLEQDLAMTKDGRLVVIHDHFLDGLTDVA

KKFPHRHRKDGRYYVIDFTLKEIQSLEMTENFETKDGKQAQVYPNRF

PLWKSHFRIHTFEDEIEFIQGLEKSTGKKVGIYPEIKAPWFHHQNGKDI

AAETLKVLKKYGYDKKTDMVYLQTFDFNEL RIKTELLPQMGMDLK

LVQLIAYTDWKETQEKDPKGYWV YNYDWMFKPGAMAEWKYAD

GVGPGWYMLVNKEESKPDNIVYTPLVKELAQYNVEVHPYTVRKDAL

PAFFTDVNQMYDVLLNKSGATGVFTDFPDTGVEFLKGIK

SEQ ID NO: 32 MEINVSKLRTDLPQVGVQPYRQVHAHSTGNPHSTVQNEADYHWRKD

PELGFFSHIVGNGCIMQVGPVDNGAWDVGGGWNAETYAAVELIESH

STKEEFMTDYRLYIELLRNLADEAGLPKTLDTGSLAGIKTHEYCTNNQ

PNNHSDHVDPYPYLAKWGISREQFKHDIENGLTIETGWQKNDTGYW

YVHSDGSYPKJDKFEKINGTWYYFDSSGYMLADRWRKHTDGNWYWF

DNSGEMATGWKKIADK YFNEEGAMKTGWVKYKDTWYYLDAK

EGAMVSNAFIQSADGTGWYYLKPDGTLADRPEFRMSQMA

SEQ ID NO: 33 MKYTSYILAFQLCIVLGSLGCYCQDPYVKEAENLKKYFNAGHSDVAD

NGTLFLGILKNWKEESDRKIMQSQIVSFYFKLFKNFKDDQSIQKSVETI KEDMNVKFFNSNKKKRDDFEKLTNYSVTDLNVQRXAIHELIQVMAE LSPAAKTGKR RSQMLFRGRRASQ

SEQ ID NO: 34 MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFC

LLHFGVIGPQREEFPRDLSLISPLAQAVRSSSRTPSDKPVAHVVANPQA EGQLQWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVLFKGQG CPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEP SEQ ID NO Sequence

IYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL

SEQ ID NO: 35 YRMQLLSCIALSLALVTNSAPTSSSTKKTQLQLEHLLLDLQMILNGI

NNYK PKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQS KNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITF CQSIISTLT

SEQ ID NO: 36 MTSKLAVALLAAFLISAALCEGAVLPRSAKELRCQCIKTYSKPFHPKFI

KELRVIESGPHCANTEIIVKLSDGRELCLDPKENWVQRVVEKFLKRAE NS

SEQ ID NO: 37 MEPLVTWWPLLFLFLLSRQGAACRTSECCFQDPPYPDADSGSASGPR

DLRCYRISSDRYECSWQYEGPTAGVSHFLRCCLSSGRCCYFAAGSAT

RLQFSDQAGVSVLYTVTLWVESWARNQTEKSPEVTLQLYNSVKYEPP

LGDIKVSKLAGQLRMEWETPDNQVGAEVQFRHRTPSSPWKLGDCGP

QDDDTESCLCPLEMNVAQEFQLRRRQLGSQGSSWSKWSSPVCVPPEN

PPQPQVRFSVEQLGQDGRRRLTLKEQPTQLELPEGCQGLAPGTEVTYR

LQLHMLSCPCKAKATRTLHLGKMPYLSGAAYNVAVISSNQFGPGLN

QTWHIPADTHTEPVALNISVGTNGTTMYWPARAQSMTYCIEWQPVG

QDGGLATCSLTAPQDPDPAGMATYSWSRESGAMGQEKCYYITIFASA

HPEKLTLWSTVLSTYHFGGNASAAGTPHHVSVKNHSLDSVSVDWAP

SLLSTCPGVLKEYVVRCRDEDSKQVSEHPVQPTETQVTLSGLRAGVA

YTVQVRADTAWLRGVWSQPQRFSIEVQVSDWLIFFASLGSFLSILLVG

VLGYLGLNRAARHLCPPLPTPCASSAIEFPGGKETWQWTNPVDFQEEA

SLQEALVVEMSWDKGERTEPLEKTELPEGAPELALDTELSLEDGDRC

KAKM

SEQ ID NO: 38 AAEPVEDNCINFVAMKFIDNTLYFIAEDDENLESDYFGKLESKLSVI

RNLNDQVLFIDQGNRPLFEDMTDSDCRDNAPRTIFIISMYKDSQPRGM AVTISVKCEKISTLSCENKIISFKEMNPPDNIKDTKSDIIFFQRSVPGHDN KMQFESSSYEGYFLACEKERDLFKLILKKEDELGDRSIMFTVQNED

SEQ ID NO: 39 MFHVSFRYIFGLPPLILVLLPVASSDCDIEGKDGKQYESVLMVSIDQLL

DSMKEIGSNCLNNEFNFFKRHICDANKEGMFLFRAAJ KLRQFLKMNS TGDFDLHLLKVSEGTTILLNCTGQVKGRKPAALGEAQPTKSLEENKSL KEQKKLNDLCFLKRLLQEIKTCWNKILMGTKEH SEQ ID NO Sequence

SEQ ID NO: 40 MSRLPVLLLLQLLVRPGLQAPMTQTTSLKTSWV CSNMIDEIITHLKQ

PPLPLLDFNNLNGEDQDILMENNLRRPNLEAFNRAVKSLQNASAIESIL K LLPCLPLATAAPTRHPIfflKDGDW EFRRKLTFYLKTLENAQAQQT TLSLAIF

SEQ ID NO: 41 MGLTSQLLPPLFFLLACAGNFVHGHKCDITLQEIIKTLNSLTEQKTLCT

ELTVTDIFAASKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATAQQF HRHKQLIRFLKRLDRNLWGLAGLNSCPVKEANQSTLENFLERLKTIM REKYSKCSS

SEQ ID NO: 42 MRMLLHLSLLALGAAYVYAIPTEIPTSALVKETLALLSTHRTLLIANET

LRIPVPVHK HQLCTEEIFQGIGTLESQTVQGGTVERLFKNLSLIKKYI

DGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWIIES

SEQ ID NO: 43 MNSFSTSAFGPVAFSLGLLLVLPAAFPAPVPPGEDSKDVAAPHRQPLT

SSERIDKQIRYILDGISALRKETCNKSNMCESSKEALAENNLNLPKMA

EKDGCFQSGFNEETCLVKIITGLLEFEVYLEYLQNRFESSEEQARAVQ

MSTKVLIQFLQKKAK LDAITTPDPTTNASLLTKLQAQNQWLQDMTT

HLILRSFKEFLQSSLRALRQM

SEQ ID NO: 44 MVLTSALLLCSVAGQGCPTLAGILDINFLI KMQEDPASKCHCSANVT

SCLCLGIPSDNCTRPCFSERLSQMTNTTMQTRYPLIFSRVKKSVEVLKN NKCPYFSCEQPCNQTTAGNALTFLKSLLEIFQKEKMRGMRGKI

SEQ ID NO: 45 MHSSALLCCLVLLTGVRASPGQGTQSENSCTHFPGNLPNMLRDLRDA

FSRVKTFFQMKDQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEV MPQAENQDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQ VKNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN

SEQ ID NO: 46 MALLLTTVIALTCLGGFASPGPVPPSTALRELIEELVNITQNQKAPLCN

GSMVWSINLTAGMYCAALESLINVSGCSAIEKTQRMLSGFCPHKVSA GQFSSLHVRDTKIEVAQFVKDLLLHLK LFREGQFNRNFESIIICRDRT

SEQ ID NO: 47 MDFQVQIFSFLLISASVIMSRANWVNVISDLKKIEDLIQSMHIDATLYT

ESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILAN SLSS NGNVTESGCKECEELEEK IKEFLQSFVHIVQMFINTS

SEQ ID NO: 49 MIKLKFG VFFT VLLS S A YAHGTPQNITDLC AE YHNTQIYTLNDKIFS YT

ESLAGKREMAnTFKNGAIFQVEVPGSQHIDSQKKAIERMKDTLRIAYL TEAKVEKLCVWN KTPHAIAAISMAN SEQ ID NO Sequence

SEQ ID NO: 50 MVKIIFVFFIFLSSFSYANDDKLYRADSRPPDEIKQSGGLMPRGQNEYF

DRGTQMNI LYDHARGTQTGFVRHDDGYVSTSISLRSAHLVGQTILS

GHSTYYIYVIATAPN FNVNDVLGAYSPHPDEQEVSALGGIPYSQIYG

WYRVHFGVLDEQLHRNRGYRDRYYSNLDIAPAADGYGLAGFPPEHR

AWREEPWIHHAPPGCGNAPRSSMSNTCDEKTQSLGVKFLDEYQSKV

KRQIFSGYQSDIDTHNRIKDEL

SEQ ID NO: 51 MIKLKFGVFFTVLLSSAYAHGTPQNITDLCAEYHNTQIHTLNDKILSYT

ESLAGNREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMK TLRIAY

LTEAKVEKLCVW NKTPHAIAAISMAN

SEQ ID NO: 52 DPNAPKRPPSAFFLFCSE

SEQ ID NO: 53 MCCTKSLLLAALMSVLLLHLCGESEAASNFDCCLGYTDRILHPKFIVG

FTRQLANEGCDINAIIFHTKK LSVCANPKQTWVKYIVRLLSKKVKN

M

SEQ ID NO: 54 MQVSTAALAVLLCTMALCNQFSASLAADTPTACCFSYTSRQIPQNFIA

DYFETSSQCSKPGVIFLTKRSRQVCADPSEEWVQKYVSDLELSA

SEQ ID NO: 55 MWLQSLLLLGTVACSISAPARSPSPSTQPWEHVNAIQEARRLLNLSRD

TAAEMNETVEVISEMFDLQEPTCLQTRLELYKQGLRGSLTKLKGPLT

MMASHYKQHCPPTPETSCATQIITFESFKENLKDFLLVIPFDCWEPVQE

SEQ ID NO: 56 MAGPATQSPMKLMALQLLLWHSALWTVQEATPLGPASSLPQSFLLK

CLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAPLSSC

PSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVAD

FATTIWQQMEELGMAPALQPTQGAMPAFASAFQRRAGGVLVASHLQ

SFLEVSYRVLRHLAQP

SEQ ID NO: 57 QEINSSY

SEQ ID NO: 58 SHPRLSA

SEQ ID NO: 59 SMPNPMV

SEQ ID NO: 60 GLQQVLL

SEQ ID NO: 61 HELSVLL

SEQ ID NO: 62 YAPQRLP

SEQ ID NO: 63 TPRTLPT

SEQ ID NO: 64 APVHSSI

SEQ ID NO: 65 APPHALS SEQ ID NO Sequence

SEQ ID NO: 66 TFSNPvFI

SEQ ID NO: 67 VVPTPPY

SEQ ID NO: 68 ELAPDSP

SEQ ID NO: 69 TPDCVTGKVEYTKYNDDDTFTVKVGDKELFTNRW LQSLLLSAQITG

MTVTIKQNACFTNGGGFSEVIFR

SEQ ID NO: 70 SRKLFASILIGALLGIGAPPSAHAGADDVVDSSKSFVMENFSSYHGT

KPGYVDSIQKGIQKPKSGTQGNYDDDWKGFYSTDNKYDAAGYSVDN

ENPLSGKAGGVVKVTYPGLTKVLALKVDNAETIKKELGLSLTEPLME

QVGTEEFIKRFGDGASRVVLSLPFAEGSSSVEYIN WEQAKALSVELEI

NFETRGKRGQDAMYEYMAQACAGNRVRRSVGSSLSCINLDWDVIRD

KTKTKIESLKEHGPIK KMSESPNKTVSEEKAKQYLEEFHQTALEHPE

LSELKTVTGTNPVFAGANYAAWAVNVAQVIDSETADNLEKTTAALSI

LPGIGSVMGIADGAVHHNTEEIVAQSIALSSLMVAQAIPLVGELVDIGF

AAY FVESIINLFQVVHNSYNRPAYSPGHKTQPFLHDGYAVSWNTVE

DSIIRTGFQGESGHDIKITAENTPLPIAGVLLPTIPGKLDVNKSKTHISVN

GRKIRMRCRAIDGDVTFCRPKSPVYVGNGVHANLHVAFHRSSSEKIH

SNEISSDSIGVLGYQKTVDHTKVNSKLSLFFEIKS

SEQ ID NO: 71 NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQ

VISLESGDASIHDTVENLIILANDSLSSNGNVTESGCKECEELEEK IKE FLQSFVHIVQMFINTS

SEQ ID NO: 72 ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLN

KATNVAHWTTPSLKCIREPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP

KDTLMISRTPEVTCVVVDVSHEDPEV FNWYVDGVEVHNAKTKPRE

EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK

GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE

NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN

HYTQKSLSLSPGK

SEQ ID NO: 73 GADDVVDSSKSFVMENFSSYHGTKPGYVDSIQKGIQKPKSGTQGNYD

DDWKEFYSTDNKYDAAGYSVDNENPLSGKAGGVVKVTYPGLTKVL

ALKVDNAETIKKELGLSLTEPLMEQVGTEEFIKRFGDGASRVVLSLPF

AEGSSSVEYINNWEQA ALSVELEINFETRGKRGQDAMYEYMAQAC

AGNRVRRSVGSSLSCINLDWDVIRDKTKTKIESL EHGPIKN MSESP SEQ ID NO Sequence

NKTVSEEKAKQYLEEFHQTALEHPELSELKTVTGTNPVFAGANYAA

WAVNVAQVIDSETADNLEKTTAALSILPGIGSVMGIADGAVHHNTEEI

VAQSIALSSL VAQAIPLVGELVDIGFAAY FVESIINLFQVVHNSYNR

PAYSPGHKTQPFLHDGYAVSW TVEDSIIRTGFQGESGHDI ITAENTP

LPIAGVLLPTIPGKLDV KSKTHISVNGRKIRMRCRAIDGDVTFCRPKS

PVYVGNGVHANLHVAFHRSSSEKJHSNEISSDSIGVLGYQKTVDHTKV

NSKLSLFFF.TKS

SEQ ID NO: 74 MESHSRAGKSRKSAKFRSISRSLMLCNAKTSDDGSSPDEKYPDPFEISL

AQGKEGIFHSSVQLADTSEAGPSSVPDLALASEAAQLQAAGNDRGKT

CRRIFFMKESSTASSREKPGKLEAQSSNFLFPKACHQRARSNSTSVNPY

CTREIDFPMTKKSAAPTDRQPYSLCSNRKSLSQQLDCPAGKAAGTSRP

TRSLSTAQLVQPSGGLQASVISNIVLMKGQAKGLGFSIVGGKDSIYGPI

GIYVKTIFAGGAAAADGRLQEGDEILELNGESMAGLTHQDALQKFKQ

AKKGLLTLTVRTRLTAPPSLCSHLSPPLCRSLSSSTCITKDSSSFALESPS

APISTAKPNYRIMVEVSLQKEAGVGLGIGLCSVPYFQCISGIFVHTLSP

GSVAHLDGRLRCGDEIVEISDSPVHCLTLNEVYTILSRCDPGPVPIIVSR

HPDPQVSEQQLKEAVAQAVENTKFGKERHQWSLEGVKRLESSWHGR

PTLEKEREK SAPPHRRAQKVMIRSSSDSSYMSGSPGGSPGSGSAEKP

SSDVDISTHSPSLPLAREPVVLSIASSRLPQESPPLPESRDSHPPLRLKKS

FEILVRKPMSSKPKPPPRKYFKSDSDPQKSLEERENSSCSSGHTPPTCG

QEARELLPLLLPQEDTAGRSPSASAGCPGPGIGPQTKSSTEGEPGWRR

ASPVTQTSPIKHPLLKRQARMDYSFDTTAEDPWVRISDCIK LFSPIMS

ENHGHMPLQPNASLNEEEGTQGHPDGTPPKLDTANGTPKVYKSADSS

TVK GPPVAPKPAWFRQSLKGLRNRASDPRGLPDPALSTQPAPASRE

HLGSHIRAS S S SS SIRQRIS SFETFGS SQLPDKG AQRLSLQPS SGEA AKP

LGKHEEGRFSGLLGRGAAPTLVPQQPEQVLSSGSPAASEARDPGVSES

PPPGRQPNQKTLPPGPDPLLRLLSTQAEESQGPVLKMPSQRARSFPLTR

SQSCETKLLDEKTSKLYSISSQVSSAVMKSLLCLPSSISCAQTPCIPKEG

ASPTSSSNEDSAANGSAETSALDTGFSLNLSELREYTEGLTEAKEDDD

GDHSSLQSGQSVISLLSSEELKKLIEEVKVLDEATLKQLDGIHVTILHK

EEGAGLGFSLAGGADLENKVITVHRVFPNGLASQEGTIQKGNEVLSIN

GKSLKGTTHHDALAILRQAREPRQAVIVTRKLTPEAMPDLNSSTDSAA SEQ ID NO Sequence

SASAASDVSVESTEATVCTVTLEKMSAGLGFSLEGGKGSLHGDKPLTI NRIFKGAASEQSETVQPGDEILQLGGTAMQGLTPvFEAWNIIKALPDGP VTIVIRRKSLQSKETTAAGDS

SEQ ID NO: 75 MTPGKTSLVSLLLLLSLEAIVKAGITIPRNPGCPNSEDKNFPRTVMVNL

NIHNRNTNTNPKRSSDYYNRSTSPW LHRNEDPERYPSVIWEAKCRH LGCINADGNVDYHMNSVPIQQEILVLRREPPHCPNSFRLEKILVSVGCT CVTPIVHHVA

SEQ ID NO: 76 RAVPGGSSPAWTQCQQLSQKLCTLAWSAHPLVGHMDLREEGDEETT

NDVPHIQCGDGCDPQGLRDNSQFCLQRIHQGLIFYEKLLGSDIFTGEPS

LLPDSPVGQLHASLLGLSQLLQPEGHHWETQQIPSLSPSQPWQRLLLR

FKILRSLQAFVAVAARVFAHGAATLSPIWELKKDVYVVELDWYPDAP

GEMVVLTCDTPEEDGITWTLDQSSEVLGSGKTLTIQVKEFGDAGQYT

CHKGGEVLSHSLLLLHKKEDGIWSTDILKDQKEPKNKTFLRCEAKNY

SGRFTCWWLTTISTDLTFSVKSSRGSSDPQGVTCGAATLSAERVRGDN

KEYEYSVECQEDSACPAAEESLPIEVMVDAVHKLKYENYTSSFFIRDII

KPDPPKNLQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQGK

SKREKKDRVFTDKTSATVICRKNASISVRAQDRYYSSSWSEWASVPC

S

SEQ ID NO: 77 MCFPKVLSDDMKKLKARMVMLLPTSAQGLGAWVSACDTEDTVGHL

GPWRD DPALWCQLCLSSQHQAIERFYDKMQNAESGRGQVMSSLAE

LEDDFKEGYLETVAAYYEEQHPELTPLLEKERDGLRCRGNRSPVPDV

EDPATEEPGESFCDKVMRWFQAMLQRLQTWWHGVLAWVKEKVVA

LVHAVQALWKQFQSFCCSLSELFMSSFQSYGAPRGDKEELTPQKCSE

PQSSK

SEQ ID NO: 93 GACTACGTTGGTGTAGAAAAATCCTGCCGCCCGGACCCTTAAGGC

TGGGACAATTTCTGATAGCTACCCCGACACAGGAGGTTACGGGAT

GAGCAATTCGCGCCGCCGCTCACTCAGGTGGTCATGGTTGCTGAGC

GTGCTGGCTGCCGTCGGGCTGGGCCTGGCCACGGCGCCGGCCCAG

GCGGCCCCGCCGGCCTTGTCGCAGGACCGGTTCGCCGACTTCCCCG

CGCTGCCCCTCGACCCGTCCGCGATGGTCGCCCAAGTGGGGCCAC

AGGTGGTCAACATCAACACCAAACTGGGCTACAACAACGCCGTGG

GCGCCGGGACCGGCATCGTCATCGATCCCAACGGTGTCGTGCTGA SEQ ID NO Sequence

CCAACAACCACGTGATCGCGGGCGCCACCGACATCAATGCGTTCA

GCGTCGGCTCCGGCCAAACCTACGGCGTCGATGTGGTCGGGTATG

ACCGCACCCAGGATGTCGCGGTGCTGCAGCTGCGCGGTGCCGGTG

GCCTGCCGTCGGCGGCGATCGGTGGCGGCGTCGCGGTTGGTGAGC

CCGTCGTCGCGATGGGCAACAGCGGTGGGCAGGGCGGAACGCCCC

GTGCGGTGCCTGGCAGGGTGGTCGCGCTCGGCCAAACCGTGCAGG

CGTCGGATTCGCTGACCGGTGCCGAAGAGACATTGAACGGGTTGA

TCCAGTTCGATGCCGCGATCCAGCCCGGTGATTCGGGCGGGCCCGT

CGTCAACGGCCTAGGACAGGTGGTCGGTATGAACACGGCCGCGTC

CGATAACTTCCAGCTGTCCCAGGGTGGGCAGGGATTCGCCATTCCG

ATCGGGCAGGCGATGGCGATCGCGGGCCAGATCCGATCGGGTGGG

GGGTCACCCACCGTTCATATCGGGCCTACCGCCTTCCTCGGCTTGG

GTGTTGTCGACAACAACGGCAACGGCGCACGAGTCCAACGCGTGG

TCGGGAGCGCTCCGGCGGCAAGTCTCGGCATCTCCACCGGCGACG

TGATCACCGCGGTCGACGGCGCTCCGATCAACTCGGCCACCGCGA

TGGCGGACGCGCTTAACGGGCATCATCCCGGTGACGTCATCTCGGT

GACCTGGCAAACCAAGTCGGGCGGCACGCGTACAGGGAACGTGAC

ATTGGCCGAGGGACCCCCGGCCTGATTTCGTCGCGGATACCACCC

GCCGGCCGGCCAATTGGATTGGCGCCAGCCGTGATTGCCGCGTGA

GCCCCCGAGTTCCGTCTCCCGTGCGCGTGGCATCGTGGAAGCAATG

AACGAGGCAGAACACAGCGTCGAGCACCCTCCCGTGCAGGGCAGT

CACGTCGAAGGCGGTGTGGTCGAGCATCCGGATGCCAAGGACTTC

GGCAGCGCCGCCGCCCTGCCCGCCGATCCGACCTGGTTTAAGCAC

GCCGTCTTCTACGAGGTGCTGGTCCGGGCGTTCTTCGACGCCAGCG

CGGACGGTTCCGGCGATCTGCGTGGACTCATCGATCGCCTCGACTA

CCTGCAGTGGCTTGGCATCGACTGCATCTGGTTGCCGCCGTTCTAC

GACTCGCCGCTGCGCGACGGCGGTTACGACATTCGCGACTTCTACA

AGGTGCTGCCCGAATTCGGCACCGTCGACGATTTCGTCGCCCTGGT

CGACGCCGCTCACCGGCGAGGTATCCGCATCATCACCGACCTGGT

GATGAATCACACCTCGGAGTCGCACCCCTGGTTTCAGGAGTCCCGC

CGCGACCCAGACGGACCGTACGGTGACTATTACGTGTGGAGCGAC

ACCAGCGAGCGCTACACCGACGCCCGGATCATCTTCGTCGACACC SEQ ID NO Sequence

GAAGAGTCGAACTGGTCATTCGATCCTGTCCGCCGACAGTTCTACT GGCACCGATTCTT

SEQ ID NO: 94 ACGGCCGCGTCCGATAACTTCCAGCTGTCCCAGGGTGGGCAGGGA

TTCGCCATTCCGATCGGGCAGGCGATGGCGATCGCGGGCCAGATC

CGATCGGGTGGGGGGTCACCCACCGTTCATATCGGGCCTACCGCCT

TCCTCGGCTTGGGTGTTGTCGACAACAACGGCAACGGCGCACGAG

TCCAACGCGTGGTCGGGAGCGCTCCGGCGGCAAGTCTCGGCATCT

CCACCGGCGACGTGATCACCGCGGTCGACGGCGCTCCGATCAACT

CGGCCACCGCGATGGCGGACGCGCTTAACGGGCATCATCCCGGTG

ACGTCATCTCGGTGACCTGGCAAACCAAGTCGGGCGGCACGCGTA

CAGGGAACGTGACATTGGCCGAGGGACCCCCGGCC

SEQ ID NO: 95 CATATGCATCACCATCACCATCACACGGCCGCGTCCGATAACTTCC

AGCTGTCCCAGGGTGGGCAGGGATTCGCCATTCCGATCGGGCAGG

CGATGGCGATCGCGGGCCAGATCCGATCGGGTGGGGGGTCACCCA

CCGTTCATATCGGGCCTACCGCCTTCCTCGGCTTGGGTGTTGTCGA

CAACAACGGCAACGGCGCACGAGTCCAACGCGTGGTCGGGAGCGC

TCCGGCGGCAAGTCTCGGCATCTCCACCGGCGACGTGATCACCGC

GGTCGACGGCGCTCCGATCAACTCGGCCACCGCGATGGCGGACGC

GCTTAACGGGCATCATCCCGGTGACGTCATCTCGGTGACCTGGCAA

ACCAAGTCGGGCGGCACGCGTACAGGGAACGTGACATTGGCCGAG

GGACCCCCGGCCGAATTCGACGACGACGACAAGGATCCACCTGAC

CCGCATCAGCCGGACATGACGAAAGGCTATTGCCCGGGTGGCCGA

TGGGGTTTTGGCGACTTGGCCGTGTGCGACGGCGAGAAGTACCCC

GACGGCTCGTTTTGGCACCAGTGGATGCAAACGTGGTTTACCGGCC

CACAGTTTTACTTCGATTGTGTCAGCGGCGGTGAGCCCCTCCCCGG

CCCGCCGCCACCGGGTGGTTGCGGTGGGGCAATTCCGTCCGAGCA

GCCCAACGCTCCCTGAGAATTC

SEQ ID NO: 96 CATATGCATCACCATCACCATCACACGGCCGCGTCCGATAACTTCC

AGCTGTCCCAGGGTGGGCAGGGATTCGCCATTCCGATCGGGCAGG

CGATGGCGATCGCGGGCCAGATCCGATCGGGTGGGGGGTCACCCA

CCGTTCATATCGGGCCTACCGCCTTCCTCGGCTTGGGTGTTGTCGA

CAACAACGGCAACGGCGCACGAGTCCAACGCGTGGTCGGGAGCGC SEQ ID NO Sequence

TCCGGCGGCAAGTCTCGGCATCTCCACCGGCGACGTGATCACCGC

GGTCGACGGCGCTCCGATCAACTCGGCCACCGCGATGGCGGACGC

GCTTAACGGGCATCATCCCGGTGACGTCATCTCGGTGACCTGGCAA

ACCAAGTCGGGCGGCACGCGTACAGGGAACGTGACATTGGCCGAG

GGACCCCCGGCCGAATTCCCGCTGGTGCCGCGCGGCAGCCCGATG

GGCTCCGACGTTCGGGACCTGAACGCACTGCTGCCGGCAGTTCCGT

CCCTGGGTGGTGGTGGTGGTTGCGCACTGCCGGTTAGCGGTGCAG

CACAGTGGGCTCCGGTTCTGGACTTCGCACCGCCGGGTGCATCCGC

ATACGGTTCCCTGGGTGGTCCGGCACCGCCGCCGGCACCGCCGCC

GCCGCCGCCGCCGCCGCCGCACTCCTTCATCAAACAGGAACCGAG

CTGGGGTGGTGCAGAACCGCACGAAGAACAGTGCCTGAGCGCATT

CACCGTTCACTTCTCCGGCCAGTTCACTGGCACAGCCGGAGCCTGT

CGCTACGGGCCCTTCGGTCCTCCTCCGCCCAGCCAGGCGTCATCCG

GCCAGGCCAGGATGTTTCCTAACGCGCCCTACCTGCCCAGCTGCCT

CGAGAGCCAGCCCGCTATTCGCAATCAGGGTTACAGCACGGTCAC

CTTCGACGGGACGCCCAGCTACGGTCACACGCCCTCGCACCATGC

GGCGCAGTTCCCCAACCACTCATTCAAGCATGAGGATCCCATGGG

CCAGCAGGGCTCGCTGGGTGAGCAGCAGTACTCGGTGCCGCCCCC

GGTCTATGGCTGCCACACCCCCACCGACAGCTGCACCGGCAGCCA

GGCTTTGCTGCTGAGGACGCCCTACAGCAGTGACAATTTATACCAA

ATGACATCCCAGCTTGAATGCATGACCTGGAATCAGATGAACTTA

GGAGCCACCTTAAAGGGCCACAGCACAGGGTACGAGAGCGATAA

CCACACAACGCCCATCCTCTGCGGAGCCCAATACAGAATACACAC

GCACGGTGTCTTCAGAGGCATTCAGGATGTGCGACGTGTGCCTGG

AGTAGCCCCGACTCTTGTACGGTCGGCATCTGAGACCAGTGAGAA

ACGCCCCTTCATGTGTGCTTACTCAGGCTGCAATAAGAGATATTTT

AAGCTGTCCCACTTACAGATGCACAGCAGGAAGCACACTGGTGAG

AAACCATACCAGTGTGACTTCAAGGACTGTGAACGAAGGTTTTTTC

GTTCAGACCAGCTCAAAAGACACCAAAGGAGACATACAGGTGTGA

AACCATTCCAGTGTAAAACTTGTCAGCGAAAGTTCTCCCGGTCCGA

CCACCTGAAGACCCACACCAGGACTCATACAGGTGAAAAGCCCTT

CAGCTGTCGGTGGCCAAGTTGTCAGAAAAAGTTTGCCCGGTCAGA SEQ ID NO Sequence

TGAATTAGTCCGCCATCACAACATGCATCAGAGAAACATGACCAA ACTCCAGCTGGCGCTTTGAGAATTC

SEQ ID NO: 97 CATATGCATCACCATCACCATCACACGGCCGCGTCCGATAACTTCC

AGCTGTCCCAGGGTGGGCAGGGATTCGCCATTCCGATCGGGCAGG

CGATGGCGATCGCGGGCCAGATCCGATCGGGTGGGGGGTCACCCA

CCGTTCATATCGGGCCTACCGCCTTCCTCGGCTTGGGTGTTGTCGA

CAACAACGGCAACGGCGCACGAGTCCAACGCGTGGTCGGGAGCGC

TCCGGCGGCAAGTCTCGGCATCTCCACCGGCGACGTGATCACCGC

GGTCGACGGCGCTCCGATCAACTCGGCCACCGCGATGGCGGACGC

GCTTAACGGGCATCATCCCGGTGACGTCATCTCGGTGACCTGGCAA

ACCAAGTCGGGCGGCACGCGTACAGGGAACGTGACATTGGCCGAG

GGACCCCCGGCCGAATTCATCGAGGGAAGGGGCTCTGGCTGCCCC

TTATTGGAGAATGTGATTTCCAAGACAATCAATCCACAAGTGTCTA

AGACTGAATACAAAGAACTTCTTCAAGAGTTCATAGACGACAATG

CCACTACAAATGCCATAGATGAATTGAAGGAATGTTTTCTTAACCA

AACGGATGAAACTCTGAGCAATGTTGAGGTGTTTATGCAATTAAT

ATATGACAGCAGTCTTTGTGATTTATTTTAAGAATTC

SEQ ID NO: 98 ATGCATCACCATCACCATCACACGGCCGCGTCCGATAACTTCCAGC

TGTCCCAGGGTGGGCAGGGATTCGCCATTCCGATCGGGCAGGCGA

TGGCGATCGCGGGCCAGATCCGATCGGGTGGGGGGTCACCCACCG

TTCATATCGGGCCTACCGCCTTCCTCGGCTTGGGTGTTGTCGACAA

CAACGGCAACGGCGCACGAGTCCAACGCGTGGTCGGGAGCGCTCC

GGCGGCAAGTCTCGGCATCTCCACCGGCGACGTGATCACCGCGGT

CGACGGCGCTCCGATCAACTCGGCCACCGCGATGGCGGACGCGCT

TAACGGGCATCATCCCGGTGACGTCATCTCGGTGACCTGGCAAAC

CAAGTCGGGCGGCACGCGTACAGGGAACGTGACATTGGCCGAGGG

ACCCCCGGCCGAATTCATGGTGGATTTCGGGGCGTTACCACCGGA

GATCAACTCCGCGAGGATGTACGCCGGCCCGGGTTCGGCCTCGCT

GGTGGCCGCGGCTCAGATGTGGGACAGCGTGGCGAGTGACCTGTT

TTCGGCCGCGTCGGCGTTTCAGTCGGTGGTCTGGGGTCTGACGGTG

GGGTCGTGGATAGGTTCGTCGGCGGGTCTGATGGTGGCGGCGGCC

TCGCCGTATGTGGCGTGGATGAGCGTCACCGCGGGGCAGGCCGAG SEQ ID NO Sequence

CTGACCGCCGCCCAGGTCCGGGTTGCTGCGGCGGCCTACGAGACG

GCGTATGGGCTGACGGTGCCCCCGCCGGTGATCGCCGAGAACCGT

GCTGAACTGATGATTCTGATAGCGACCAACCTCTTGGGGCAAAAC

ACCCCGGCGATCGCGGTCAACGAGGCCGAATACGGCGAGATGTGG

GCCCAAGACGCCGCCGCGATGTTTGGCTACGCCGCGGCGACGGCG

ACGGCGACGGCGACGTTGCTGCCGTTCGAGGAGGCGCCGGAGATG

ACCAGCGCGGGTGGGCTCCTCGAGCAGGCCGCCGCGGTCGAGGAG

GCCTCCGACACCGCCGCGGCGAACCAGTTGATGAACAATGTGCCC

CAGGCGCTGCAACAGCTGGCCCAGCCCACGCAGGGCACCACGCCT

TCTTCCAAGCTGGGTGGCCTGTGGAAGACGGTCTCGCCGCATCGGT

CGCCGATCAGCAACATGGTGTCGATGGCCAACAACCACATGTCGA

TGACCAACTCGGGTGTGTCGATGACCAACACCTTGAGCTCGATGTT

GAAGGGCTTTGCTCCGGCGGCGGCCGCCCAGGCCGTGCAAACCGC

GGCGCAAAACGGGGTCCGGGCGATGAGCTCGCTGGGCAGCTCGCT

GGGTTCTTCGGGTCTGGGCGGTGGGGTGGCCGCCAACTTGGGTCG

GGCGGCCTCGGTCGGTTCGTTGTCGGTGCCGCAGGCCTGGGCCGC

GGCCAACCAGGCAGTCACCCCGGCGGCGCGGGCGCTGCCGCTGAC

CAGCCTGACCAGCGCCGCGGAAAGAGGGCCCGGGCAGATGCTGG

GCGGGCTGCCGGTGGGGCAGATGGGCGCCAGGGCCGGTGGTGGGC

TCAGTGGTGTGCTGCGTGTTCCGCCGCGACCCTATGTGATGCCGCA

TTCTCCGGCAGCCGGCGATATCGCCCCGCCGGCCTTGTCGCAGGAC

CGGTTCGCCGACTTCCCCGCGCTGCCCCTCGACCCGTCCGCGATGG

TCGCCCAAGTGGGGCCACAGGTGGTCAACATCAACACCAAACTGG

GCTACAACAACGCCGTGGGCGCCGGGACCGGCATCGTCATCGATC

CCAACGGTGTCGTGCTGACCAACAACCACGTGATCGCGGGCGCCA

CCGACATCAATGCGTTCAGCGTCGGCTCCGGCCAAACCTACGGCG

TCGATGTGGTCGGGTATGACCGCACCCAGGATGTCGCGGTGCTGC

AGCTGCGCGGTGCCGGTGGCCTGCCGTCGGCGGCGATCGGTGGCG

GCGTCGCGGTTGGTGAGCCCGTCGTCGCGATGGGCAACAGCGGTG

GGCAGGGCGGAACGCCCCGTGCGGTGCCTGGCAGGGTGGTCGCGC

TCGGCCAAACCGTGCAGGCGTCGGATTCGCTGACCGGTGCCGAAG

AGACATTGAACGGGTTGATCCAGTTCGATGCCGCGATCCAGCCCG SEQ ID NO Sequence

GTGATTCGGGCGGGCCCGTCGTCAACGGCCTAGGACAGGTGGTCG GTATGAACACGGCCGCGTCCTAGG

SEQ ID NO: 107 mcctkslllaalmsvllmlcgeseasnfdcclgytdrilhpkfivgftrqlanegcdmai imtkJ klsvcan pkqtwvkyivrllskkvknm

SEQ ID NO: 108 ggGGTCAACGTTGAgggggg

SEQ ID NO: 109 geGGGACGA:TCGTCeeeeee

SEQ ID NO: 110 eesGACGAC:GTCGTGeeeeee

SEQ ID NO: 111 tccatgacgttcctgatgct

SEQ ID NO: 112 tccatgacgttcctgacgtt

SEQ ID NO: 113 tcgtcgttttgtcgttttgtcgtt

SEQ ID NO: 114 teg teg ttg teg ttt tgt cgt t

SEQ ID NO: 115 teg acg ttc gtc gtt cgt cgt tc

SEQ ID NO: 116 teg cga cgt teg ccc gac gtt egg ta

SEQ ID NO: 117 tcetcettttceecgc: gegece

SEQ ID NO: 118 tcgtcgtcgttcigaacaacettgat

SEQ ID NO: 119 teg cga acg ttc gec gcg ttc gaa cgc gg

TABLE 2 - Tools to construct Mycobacterium sp.-Derived Ral2 Sequences

SEQ ID NO Sequence

SEQ ID NO: 99 CAATTACATATGCATCACCATCACCATCACACGGCCGCGTCCGATA

ACTTC

SEQ ID NO: 100 CTAATCGAATTCGGCCGGGGGTCCCTCGGCCAA

SEQ ID NO: 101 CAATTAGAATTCGACGACGACGACAAGGATCCACCTGACCCGCAT

CAG

SEQ ID NO: 102 CAATTAGAATTCTCAGGGAGCGTTGGGCTGCTC

SEQ ID NO: 103 GCGAAGCTTATGAAGTTGCTGATGGTCCTCATGC

SEQ ID NO: 104 CGGCTCGAGTTAAAATAAATCACAAAGACTGCTGTC

SEQ ID NO: 105 MHHHHHH

SEQ ID NO: 106 DDDK

[0168] In some embodiments, the nucleic acid sequences for the target antigen and the immunological fusion partner are not separated by any nucleic acids. In other embodiments, a nucleic acid sequence that encodes for a linker can be inserted between the nucleic acid sequence encoding for any target antigen described herein and the nucleic acid sequence encoding for any immunological fusion partner described herein. Thus, in certain embodiments, the protein produced following immunization with the viral vector containing a target antigen, a linker, and an immunological fusion partner can be a fusion protein comprising the target antigen of interest followed by the linker and ending with the immunological fusion partner, thus linking the target antigen to an immunological fusion partner that increases the immunogenicity of the target antigen of interest via a linker. In some embodiments, the sequence of linker nucleic acids can be from about 1 to about 150 nucleic acids long, from about 5 to about 100 nucleic acids along, or from about 10 to about 50 nucleic acids in length. In some embodiments, the nucleic acid sequences can encode one or more amino acid residues. In some embodiments, the amino acid sequence of the linker can be from about 1 to about 50, or about 5 to about 25 amino acid residues in length. In some embodiments, the sequence of the linker comprises less than 10 amino acids. In some embodiments, the linker can be a polyalanine linker, a polyglycine linker, or a linker with both alanines and glycines.

[0169] Nucleic acid sequences that encode for such linkers can be any one of SEQ ID NO: 78 - SEQ ID NO: 92 and are summarized in TABLE 3.

TABLE 3 - Sequences of Linkers

VI. Methods of Use

[0170] The adenovirus vectors can be used in a number of vaccine settings for generating an immune response against one or more alphavirus target antigens as described herein, especially chikungunya virus target antigens. The adenovirus vectors are of particular importance because of the finding that they can be used to generate immune responses in subjects who have preexisting immunity to adenovirus or adenovirus vectors and can be used in vaccination regimens that include multiple rounds of immunization using the adenovirus vectors, regimens not possible using previous generation adenovirus vectors.

[0171] Generally, generating an immune response can comprise an induction of a humoral response and/or a cell-mediated response. In certain embodiments, it is desirable to increase an immune response against a target antigen of interest. As such "generating an immune response" or "inducing an immune response" can comprise any statistically significant change, e.g., increase in the number of one or more immune cells (T cells, B cells, antigen-presenting cells, dendritic cells, neutrophils, and the like) or in the activity of one or more of these immune cells (CTL activity, HTL activity, cytokine secretion, change in profile of cytokine secretion, etc.).

[0172] The skilled artisan would readily appreciate that a number of methods for establishing whether an alteration in the immune response has taken place are available. A variety of methods for detecting alterations in an immune response (e.g., cell numbers, cytokine expression, cell activity) are known in the art and are useful in the context of the instant invention. Illustrative methods are described in Current Protocols in Immunology, Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober (2001 John Wiley & Sons, NY, NY) Ausubel et al. (2001 Current Protocols in Molecular Biology, Greene Publ. Assoc. Inc. & John Wiley & Sons, Inc., NY, NY); Sambrook et al. ( 1989 Molecular Cloning, Second Ed., Cold Spring Harbor Laboratory, Plainview, NY); Maniatis et al. (1982 Molecular Cloning, Cold Spring Harbor Laboratory, Plainview, NY) and elsewhere. Illustrative methods useful in this context can include intracellular cytokine staining (ICS), ELISpot, proliferation assays, cytotoxic T cell assays including chromium release or equivalent assays, and gene expression analysis using any number of polymerase chain reaction (PCR) or RT-PCR based assays.

[0173] In certain embodiments, generating an immune response comprises an increase in target antigen-specific CTL activity of about 1.5 to 20 or more fold, at least, about, or at most 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or any range or number derived therefrom in a subject administered the adenovirus vectors as compared to a control. In another embodiment, generating an immune response comprises an increase in target-specific CTL activity of about 1.5 to 20, or more fold in a subject administered the adenovirus vectors as compared to a control. In a further embodiment, generating an immune response that comprises an increase in target antigen- specific cell mediated immunity activity as measured by ELISpot assays measuring cytokine secretion, such as interferon-gamma (IFN-γ), interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF- a), granzyme, or other cytokines, of about 1.5 to 20, or more fold as compared to a control.

[0174] In a further embodiment, generating an immune response comprises an increase in target- specific antibody production of between 1.5 and 5 fold in a subject administered the adenovirus vectors as compared to an appropriate control. In another embodiment, generating an immune response comprises an increase in target-specific antibody production of about 1.5 to 20, or more fold in a subject administered the adenovirus vector as compared to a control.

[0175] Thus, certain aspects can provide methods for generating an immune response against an alphavirus target antigen of interest comprising administering to the subject an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) nucleic acids encoding the target antigen; and readministering the adenovirus vector at least once to the subject; thereby generating an immune response against the target antigen. Certain other aspects can provide methods for generating an immune response against alphavirus target antigens of interest comprising administering to the subject an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) nucleic acids encoding the target antigens; and readministering the adenovirus vector at least once to the subject; thereby generating an immune response against the target antigens. In certain embodiments, there can be provided methods wherein the vector administered is not a gutted vector.

[0176] In further embodiments, methods can be provided for generating an immune response against an alphavirus virus target antigen in a subject, wherein the subject has pre-existing immunity to Ad, by administering to the subject an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) nucleic acids encoding the target antigen; and re-administering the adenovirus vector at least once to the subject; thereby generating an immune response against the alphavirus virus target antigen. In still further embodiments, methods can be provided for generating an immune response against alphavirus virus target antigens in a subject, wherein the individual has pre-existing immunity to Ad, by administering to the subject an adenovirus vector comprising: a) a replication defective adenovirus vector, wherein the adenovirus vector has a deletion in the E2b region, and b) nucleic acids encoding the target antigens; and re-administering the adenovirus vector at least once to the subject; thereby generating an immune response against the alphavirus virus target antigens. [0177] With regard to preexisting immunity to Ad, this can be determined using methods known in the art, such as antibody-based assays to test for the presence of Ad antibodies. Further, in certain embodiments, the methods can include first determining that an individual has preexisting immunity to Ad then administering the E2b deleted adenovirus vectors as described herein.

[0178] In certain aspects, there can be provided methods of generating an immune response against an alphavirus target antigen, such as those described elsewhere herein.

[0179] In particular aspects, there are provided methods of generating an immune response against an alphavirus, such as those described elsewhere herein.

VII. Pharmaceutical Compositions

[0180] As noted elsewhere herein, the adenovirus vector can comprise nucleic acid sequences that encode one or more target antigens of interest from any one or more of the infectious agents against which an immune response is to be generated. For example, a target antigen can include, but is not limited to, viral antigen protein, such as E3ALPHA, E2ALPHA, 6K, E I ALPHA, nsP l , nsP2, nsP3, and nsP4.

[0181] For administration, the adenovirus vector stock can be combined with an appropriate buffer, physiologically acceptable carrier, excipient or the like. In certain embodiments, an appropriate number of adenovirus vector particles are administered in an appropriate buffer, such as, sterile PBS.

[0182] In certain circumstances it can be desirable to deliver the adenovirus vector composition disclosed herein parenterally, intravenously, intramuscularly, or even intraperitoneally. In certain embodiments, solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. In other embodiments, a E2b deleted adenovirus vector can be delivered in pill form, delivered by swallowing or by suppository.

[0183] Illustrative pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (for example, see U. S. Patent 5,466,468). The form can be sterile and can be fluid to the extent that easy syringability exists. It can be stable under the conditions of manufacture and storage and can be preserved against the contaminating action of microorganisms, such as bacteria, molds and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. The prevention of the action of microorganisms can be facilitated by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it can include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

[0184] In one embodiment, for parenteral administration in an aqueous solution, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions can be especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage can be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences' ' 15 th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. Moreover, for human administration, preparations can need to meet sterility, pyrogenicity, and the general safety and purity standards as required by FDA Office of Biology standards.

[0185] The carriers can further comprise any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. The phrase "pharmaceutically-acceptable" can refer to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human.

[0186] Routes and frequency of administration of the therapeutic compositions described herein, as well as dosage, will vary from individual to individual, and from disease to disease, and can be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines can be administered by injection (e.g., intracutaneous, intraperitoneal, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration), in pill form (e.g., swallowing, suppository for vaginal or rectal delivery). In certain embodiments, between 1 and 3 doses can be administered over a 6 week period and further booster vaccinations can be given periodically thereafter.

[0187] In various embodiments, the replication defective adenovirus is administered at a dose that suitable for effecting an immune response as described herein. In some embodiments, the replication defective adenovirus is administered at a dose from about l xl O 8 virus particles to about 5xl 0 13 virus particles per immunization. In some cases, the replication defective adenovirus is administered at a dose that is from about lxl O 9 to about 5x10 12 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about lxl O 8 virus particles to about 5x10 8 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about 5xl 0 8 virus particles to about l xl O 9 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about l xlO 9 virus particles to about 5xl0 9 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about 5xl 0 9 virus particles to about l xl O 10 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about lxlO 10 virus particles to about 5x10 10 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about 5xl 0 10 virus particles to about l xl O 1 1 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about l xl O 1 1 virus particles to about 5x10" virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about 5x10" virus particles to about lxl O 12 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about lxl O 12 virus particles to about 5x10 12 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about 5x l 0 12 virus particles to about lxl O 13 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about l xl O 13 virus particles to about 5xl0 13 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about lxl O 8 virus particles to about 5xl0 10 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about lxl O 10 virus particles to about 5xl 0 12 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about lxl O 1 1 virus particles to about 5xl 0 13 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about l x l O 8 virus particles to about lxl O 10 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about l xlO 10 virus particles to about l xl O 12 virus particles per immunization. In some embodiments, the replication defective adenovirus is administered at a dose from about lxlO 1 1 virus particles to about 5xl0 13 virus particles per immunization. In some cases, the replication defective adenovirus is administered at a dose that is greater than or equal to lxlO 9 , 2 xl O 9 , 3 xl O 9 , 4 xl O 9 , 5 xlO 9 , 6 xlO 9 , 7 xl O 9 , 8 xlO 9 , 9 xl O 9 , lxlO 10 , 2 xlO'°, 3 xlO 10 , 4 xlO 10 , 5 xlO 10 , 6 xlO 10 , 7 xlO 10 , 8 xlO 10 , 9 xlO 10 , 1 xlO 1 1 , 2 xlO", 3 xlO 1 1 , 4 xlO" , 5x10" , 6 xlO 1 1 , 7 xlO 1 1 , 8 xlO 1 1 , 9 xlO 1 1 , lxlO 12 , 1.5 xl O 12 , 2 xlO 12 , 3 xlO 12 , or more virus particles (VP) per immunization. In some cases, the replication defective adenovirus is administered at a dose that is less than or equal to lxlO 9 , 2 xlO 9 , 3 xlO 9 , 4 xlO 9 , 5 xlO 9 , 6 xlO 9 , 7 xlO 9 , 8 xlO 9 , 9 xlO 9 , lxlO 10 , 2 xlO 10 , 3 xlO 10 , 4 xlO 10 , 5 xlO 10 , 6 xlO 10 , 7 xlO 10 , 8 xlO 10 , 9 xl0 10 , 1 xlO 1 1 , 2 xlO 1 1 , 3 xlO 1 1 , 4 xlO 1 1 , 5x10' 6 xlO 1 1 , 7 xlO 1 ', 8 xlO 1 1 , 9 xlO" , lxlO 12 , 1.5 xlO 12 , 2 xl O 12 , 3 xlO 12 , or more virus particles per immunization. In various embodiments, a desired dose described herein is administered in a suitable volume of formulation buffer, for example a volume of about 0.1 -10 mL, 0.2-8mL, 0.3-7mL, 0.4-6 mL, 0.5-5 mL, 0.6-4 mL, 0.7-3 mL, 0.8-2 mL, 0.9-1.5 mL, 0.95-1.2 mL, or 1.0-1.1 mL. Those of skill in the art appreciate that the volume can fall within any range bounded by any of these values (e.g., about 0.5 mL to about 1.1 mL).

[0188] A suitable dose can be an amount of an adenovirus vector that, when administered as described above, is capable of promoting a target antigen immune response as described elsewhere herein. In certain embodiments, the immune response is at least 10-50% above the basal (i.e., untreated) level. Such response can be monitored by measuring the target antigen antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing alphavirus infected cells in vitro, or other methods known in the art for monitoring immune responses.

[0189] In general, an appropriate dosage regimen provides the adenovirus vectors in an amount sufficient to provide prophylactic benefit. Protective immune responses can generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which can be performed using samples obtained from a patient before and after immunization (vaccination).

[0190] While one advantage is the capability to administer multiple vaccinations with the same adenovirus vectors, particularly in individuals with preexisting immunity to Ad, the adenovirus vaccines can also be administered as part of a prime and boost regimen. A mixed modality priming and booster inoculation scheme can result in an enhanced immune response.

[0191] Thus, one aspect is a method of priming a subject with a plasmid vaccine, such as a plasmid vector comprising a target antigen of interest, by administering the plasmid vaccine at least one time, allowing a predetermined length of time to pass, and then boosting by administering the adenovirus vector. Multiple primings, e.g., 1-3, can be employed, although more can be used. The length of time between priming and boost can vary from about six months to a year, but other time frames can be used. VIII. Kits

[0192] A composition, immunotherapy, or vaccine described herein can be supplied in the form of a kit. The kits of the present disclosure can further comprise instructions regarding the dosage and/or administration regimen information.

[0193] In some embodiments, a kit comprises a composition and method for providing a vaccine as described herein. In some embodiments kits can further comprise components useful in administering the kit components and instructions on how to prepare the components. In some embodiments, the kit can further comprise software for conducting monitoring of patients before and after vaccination with appropriate laboratory tests, or communicating results and patient data with medical staff.

[0194] The components of the kit can be in dry or liquid form. If they are in dry form, the kit can include a solution to solubilize the dried material. The kit can also include transfer factor in liquid or dry form. In some embodiments, if the transfer factor is in dry form, the kit includes a solution to solubilize the transfer factor. The kit can also include containers for mixing and preparing the components. The kit can also include instrument for assisting with the administration such as, for example, needles, tubing, applicator, inhalant, syringe, pipette, forceps, measured spoon, eye dropper, or any such medically approved delivery vehicle. The kits or drug delivery systems as described herein also can include a means for containing compositions of the present disclosure in close confinement for commercial sale and distribution.

[0195] The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent application, foreign patents, foreign patent application and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

[0196] Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, application and publications to provide yet further embodiments.

[0197] These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure. EXAMPLES

[0198] The following examples are included to further describe some aspects of the present disclosure, and should not be used to limit the scope of the present disclosure.

EXAMPLE 1

Production of Single-targeted Ad5 [E1-, E2b-]-CHIKV Vaccine

[0199] This example illustrates the results of construction and expression of Ad5 [E1-, E2b-] vectors containing a CHIKV antigen.

[0200] Ad5 [E1 -, E2b-]-CHIKV vaccine is an adenovirus serotype 5 (Ad5) vector that was modified by removal of El , E2b, and E3 gene regions, and insertion of a CHIKV gene.

[0201] In this Example, the nucleic acid sequence encoding a CHIKV structural polyprotein (the amino acid sequence is set forth in SEQ ID NO: 2) including CHIKV structural proteins C, E3, E2, 6K, and E l was cloned into an Ad5 [E 1 -, E2b-]-based platform to produce Ad5 [E1 -, E2b-]- CHIKVs t r using a homologous recombination-based approach.

[0202] Ad5 [E1 -, E2b-]-CHIKV str was produced in E.C7 cells (FIG. 2). The replication-deficient virus was propagated in the E.C7 packaging cell line, purified by ultracentrifugation or ion exchange column purification, and 62ittered. Viral infectious titer was determined as plaque-forming units (PFUs) on an E.C7 cell monolayer. The VP concentration was determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm.

[0203] Infection of E.C7 cells with Ad5 [E1 -, E2b-]-CHIKV str resulted in expression of CHIKV structural proteins. CHIKV structural protein expression was detectable by western blot with an anti- CHIKV antibody (FIG. 3).

EXAMPLE 2

Multiple injections of an Ad5 [E1-, E2b-]- CHIKV str generated protective immunity against

CHIKV-infection

[0204] This example illustrates the results of injection of an Ad5 [E 1-, E2b-]-CHIKV str for generating protective immunity against CHIKV infection.

[0205] Groups of ten ( 10) mice each were immunized two times subcutaneously at weekly intervals with a dose of 10 9 VPs Ad5 [E1-, E2b-]-CHIKV str . Control mice were injected with PBS. Mice were then challenged with a lethal dose of CHIKV by injection of the virus into the footpad. Control mice succumbed to infection within 7 days (FIG. 4A), lost weight (FIG. 4B), and demonstrated prolonged inflammation at the footpad (FIG. 4C). By contrast, vaccinated mice survived CHIKV infection (FIG. 4A), did not lose weight (FIG. 4B), and demonstrated rapid resolution of inflammation of the footpad (FIG. 4C). EXAMPLE 3

Production of a Multi-Targeted Ad5 [E1-, E2b-]-CHIKV Antigen Insert

[0206] This example illustrates construction of an Ad5 [E1-, E2b-] vector containing multiple CHIKV antigens.

[0207] To produce the Ad5 [E1 -, E2b-] containing multiple CHIKV genes, three individual alphavirus antigen gene sequences ((1) C, E3, E2, 6K, and El gene ((nucleotides 7567- 1 1313 of SEQ ID NO: 1); (2) NS gene 1 ; (3) NS gene 2) are separated by "self-c leaving" 2A peptide derived from Porcine teschovir s- 1 and Thosea asigna virus respectively (FIG. 5A) (de Felipe P and Ryan M Traffic 2004 5(8), 616-26; Hoist J et al. Nature Immunol. 2008 9 :658-66 ; Kim JH et al. PloS One, 201 1 6(4), el 8556. Doi : 10.1371/journal.pone.OO 18556). As the 2A peptides are translated on the ribosome, the peptide bond between the final two residues of the 2A peptide is never formed resulting in distinctly expressed proteins in one ribosomal pass (FIG. 5B). The use of two 2A peptide sequences separating the three genes are found in near stoichiometric expression of the three proteins (FIG. 5B).

EXAMPLE 4

Production and Testing of a Single-Targeted Ad5 [E1-, E2b-]-ONNV Vaccine

[0208] This example illustrates the construction of Ad5 [E1-, E2b-] vectors containing an ONNV antigen, and testing for expression and protective immunity by multiple injections of the vectors.

[0209] Ad5 [E1 -, E2b-]-ONNV str vaccine is an adenovirus serotype 5 (Ad5) vector that is modified by removal of El , E2b, and E3 gene regions, and insertion of the nucleic acid sequence encoding an ONNV structural polyprotein (the amino acid sequence is set forth in SEQ ID NO: 5) using a homologous recombination- based approach.

[0210] Ad5 [E1 -, E2b-]-ONNV slr is produced in E.C7 cells. The replication-deficient virus is propagated in the E.C7 packaging cell line, purified by ultracentrifugation or ion exchange column purification, and is 63ittered. Viral infectious titer is determined as plaque- forming units (PFUs) on an E.C7 cell monolayer. The VP concentration is determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm.

[0211] ONNV structural proteins are expressed as a result of infection of E.C7 cells with Ad5 [E1 -, E2b-]-ONNV str . ONNV structural protein expression is detected by western blot with an anti-ONNV antibody.

[0212] Groups of ten (10) mice each are immunized two times subcutaneously at weekly intervals with a dose of 10 9 VPs Ad5 [E1-, E2b-]-ONNV str . Control mice are injected with PBS or 10 9 VPs Ad5-null. Mice are then challenged with a lethal dose of ONNV by injection of the virus. The survival rate, immune response, and weight are compared between the mice injected with the vaccine and the control group.

EXAMPLE 5

Production and Testing of a Single-Targeted Ad5 [E1-, E2b-]-MAYV Vaccine

[0213] This example illustrates the construction of Ad5 [E1-, E2b-] vectors containing an MAYV antigen and testing for expression and protective immunity by multiple injection of the vectors.

[0214] Ad5 [E 1 -, E2b-]-MAYV str vaccine is an adenovirus serotype 5 (Ad5) vector that is modified by removal of El , E2b, and E3 gene regions, and insertion of the nucleic acid sequence encoding an MAYV structural polyprotein (the amino acid sequence is set forth in SEQ ID NO: 8) using a homologous recombination-based approach.

[0215] Ad5 [E 1 -, E2b-]-MAYV str is produced in E.C7 cells. The replication-deficient virus is propagated in the E.C7 packaging cell line, purified by ultracentrifugation or ion exchange column purification, and 64ittered. Viral infectious titer is determined as plaque-forming units (PFUs) on an E.C7 cell monolayer. The VP concentration is determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm.

[0216] MAYV structural proteins are expressed as a result of infection of E.C7 cells with Ad5 [E1 -, E2b-]-MAYV str . MAYV structural protein expression is detected by western blot with an anti- MAYV antibody.

[0217] Groups of ten ( 10) mice each are immunized two times subcutaneously at weekly intervals with a dose of 10 9 VP Ad5 [E1-, E2b-]-MAYV str . Control mice are injected with PBS or 10 9 VPs Ad5-null. Mice are then challenged with a lethal dose of MAYV by injection of the virus. The survival rate, immune response, and weight are compared between the mice injected with the vaccine and the control group.

EXAMPLE 6

Production and Testing of a Single-Targeted Ad5 [E1-, E2b-]-RRV Vaccine

[0218] This example illustrates the construction of Ad5 [E1-, E2b-] vectors containing a RRV antigen and testing for expression and protective immunity by multiple injection of the vectors.

[0219] Ad5 [E1 -, E2b-]-RRV str vaccine is an adenovirus serotype 5 (Ad5) vector that is modified by removal of El , E2b, and E3 gene regions, and insertion of the nucleic acid sequence encoding a RRV structural polyprotein (the amino acid sequence is set forth in SEQ ID NO: 1 1) using a homologous recombination-based approach. [0220] Ad5 [E 1 -, E2b-]-RRV str is produced in E.C7 cells. The replication-deficient virus is propagated in the E.C7 packaging cell line, purified by ultracentrifugation or ion exchange column purification, and 65ittered. Viral infectious titer is determined as plaque-foiming units (PFUs) on an E.C7 cell monolayer. The VP concentration is determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 run and 280 nm.

[0221] R V structural proteins are expressed as a result of infection of E.C7 cells with Ad5 [E1 -, E2b-]-R V slr . RRV structural protein expression is detected by western blot with an anti-RRV antibody.

[0222] Groups of ten (10) mice each are immunized two times subcutaneously at weekly intervals with a dose of 10 9 VP Ad5 [E 1 -, E2b-]-RRV str . Control mice are injected with PBS or 10 9 VPs Ad5- null. Mice are then challenged with a lethal dose of RRV by injection of the virus. The survival rate, immune response, and weight are compared between the mice injected with the vaccine and the control group.

EXAMPLE 7

Production and Testing of a Single-Targeted Ad5 [E1-, E2b-]-VEEV Vaccine

[0223] This example illustrates the construction of Ad5 [E1 -, E2b-] vectors containing a VEEV antigen and testing for expression and protective immunity by multiple injection of the vectors.

[0224] Ad5 [E 1 -, E2b-]-VEEV str vaccine is an adenovirus serotype 5 (Ad5) vector that is modified by removal of E l , E2b, and E3 gene regions, and insertion of the nucleic acid sequence encoding a VEEV structural polyprotein (the amino acid sequence is set forth in SEQ ID NO: 14) using a homologous recombination-based approach.

[0225] Ad5 [E 1 -, E2b-]-VEEV s t r is produced in E.C7 cells. The replication-deficient virus is propagated in the E.C7 packaging cell line, purified by ultracentrifugation or ion exchange column purification, and 65ittered. Viral infectious titer is determined as plaque-forming units (PFUs) on an E.C7 cell monolayer. The VP concentration is determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm.

[0226] VEEV structural proteins are expressed as a result of infection of E.C7 cells with Ad5 [E1-, E2b-]-VEEV str . VEEV structural protein expression is detected by western blot with an anti-VEEV antibody.

[0227] Groups of ten (10) mice each are immunized two times subcutaneously at weekly intervals with a dose of 10 9 VP Ad5 [E1-, E2b-]-VEEV str . Control mice are injected with PBS or 10 9 VPs Ad5-null. Mice are then challenged with a lethal dose of VEEV by injection of the virus. The survival rate, immune response, and weight are compared between the mice injected with the vaccine and the control group. EXAMPLE 8

Production and Testing of a Single-Targeted Ad5 [E1-, E2b-]-EEEV Vaccine

[0228] This example illustrates the construction of Ad5 [E 1 -, E2b-] vectors containing an EEEV antigen and testing for expression and protective immunity by multiple injection of the vectors.

[0229] Ad5 [E1 -, E2b-]-EEEV str vaccine is an adenovirus serotype 5 (Ad5) vector that is modified by removal of El , E2b, and E3 gene regions, and insertion of the nucleic acid sequence encoding an EEEV structural polyprotein (the amino acid sequence is set forth in SEQ ID NO: 17) using a homologous recombination-based approach.

[0230] Ad5 [E1-, E2b-]-EEEV str is produced in E.C7 cells. The replication-deficient virus is propagated in the E.C7 packaging cell line, purified by ultracentrifugation or ion exchange column purification, and 66ittered. Viral infectious titer is determined as plaque-forming units (PFUs) on an E.C7 cell monolayer. The VP concentration is determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm.

[0231] EEEV structural proteins are expressed as a result of infection of E.C7 cells with Ad5 [E1 -, E2b-]-EEEV slr . EEEV structural protein expression is detected by western blot with an anti-EEEV antibody.

[0232] Groups of ten (10) mice each are immunized two times subcutaneously at weekly intervals with a dose of 10 9 VP Ad5 [E1 -, E2b-]-EEEV s(r . Control mice are injected with PBS or 10 9 VPs Ad5-null. Mice are then challenged with a lethal dose of EEEV by injection of the virus. The survival rate, immune response, and weight are compared between the mice injected with the vaccine and the control group.

EXAMPLE 9

Production and Testing of a Single-Targeted Ad5 [E1-, E2b-]-WEEV Vaccine

[0233] This example illustrates the construction of Ad5 [E1-, E2b-] vectors containing a WEEV antigen and testing for expression and protective immunity by multiple injection of the vectors.

[0234] Ad5 [E1 -, E2b-]-WEEV str vaccine is an adenovirus serotype 5 (Ad5) vector that has been modified by removal of El , E2b, and E3 gene regions, and insertion of the nucleic acid sequence encoding a WEEV structural polyprotein (the amino acid sequence is set forth in SEQ ID NO: 20) using a homologous recombination-based approach.

[0235] Ad5 [E 1-, E2b-]-WEEV str is produced in E.C7 cells. The replication-deficient virus is propagated in the E.C7 packaging cell line, purified by ultracentrifugation or ion exchange column purification, and 66ittered. Viral infectious titer is determined as plaque-forming units (PFUs) on an E.C7 cell monolayer. The VP concentration is determined by sodium dodecyl sulfate (SDS) disruption and spectrophotometry at 260 nm and 280 nm.

[0236] WEEV structural proteins are expressed as a result of infection of E.C7 cells with Ad5 [E 1 -, E2b-]-WEEV str . WEEV structural protein expression is detected by western blot with an anti-WEEV antibody.

[0237] Groups of ten (10) mice each are immunized two times subcutaneously at weekly intervals with a dose of 10 9 VPs Ad5 [E 1-, E2b-]-WEEV str . Control mice are injected with PBS or 10 9 VPs Ad5-null. Mice are then challenged with a lethal dose of WEEV by injection of the virus. The survival rate, immune response, and weight are compared between the mice injected with the vaccine and the control group.

EXAMPLE 10

Pre-Clinical Studies of Ad5 [E1-, E2b-]-Chikungunya Vaccines in Mice

[0238] This example illustrates pre-clinical studies of Ad5 [E1 -, E2b-]-Chikungunya vaccines in mice, including assessment of cell mediate immune (CMI) responses, cytolytic T lymphocyte (CTL) responses, intracellular cytokine expression, and antibody secretion. Pre-clinical studies included administration of Ad5 [E1 -, E2b-]-Chikungunya vaccines, a comparison to controls, and an assessment of the immune responses in mice.

Pre-Clinical Assessment of Ad5 [E1-, E2b-]-Chikungunya Vaccines

[0239] CMI and CTL Responses. CMI and CTL responses in mice were evaluated by an enzyme- linked immunospot (ELISPOT) assay. FIG. 6 illustrates CMI responses (IFN-γ) and CTL responses and Granzyme B responses in splenocytes from immunized or control mice using an ELISpot assay. C57BL/6 mice were immunized two times at two-week intervals with lxlO 10 VPs Ad5 [E1-, E2b-]- CHIK vaccine comprising SEQ ID NO: 1 or with 1X10 10 VPs Ad5 [E 1 -, E2b-]-null (empty vector controls). One week after the final immunization, splenocytes from individual mice were tested for induction of immune responses after exposure of cells to Chikungunya virus peptides. The data show the cumulative number of spot forming cells (SFCs) per 10 6 splenocytes after exposure to three separate pools of Chikungunya virus peptides (peptide numbers for Chikungunya were large enough to merit division into three separate pools to use in assays - CHIKV peptide pool 1 comprised peptides 1 -103, CHIKV peptide pool 2 comprising peptides 104-207, and peptide pool 3 comprising peptides 208-310). Additional splenocytes were separately exposed to an SIV-nef peptide pools as a negative control prior to assay measurements. FIG. 6A illustrates CMI responses in Ad5 [E 1-, E2b- ]-CHIK immunized and control C57BL/6 mice as measured by IFN-γ secreting SFCs using an ELISpot assay. Specificity of the response is evidenced by the lack of reactivity of splenocytes to the negative control SIV-nef peptide pool. A high number of IFN-γ secreting SFCs were induced in Ad5 [E1-, E2b-]-CHIK immunized mice as compared to control mice. FIG. 6B illustrates CTL responses in Ad5 [E1 -, E2b-]-CHIK immunized and control C57BL/6 mice as measured by Granzyme B (Gr- B) secreting SFCs using an ELISpot assay. Specificity of the response is evidenced by the lack of reactivity of splenocytes to the negative control SIV-nef peptide pool. A high number of Granzyme B secreting SFCs were induced in Ad5 [E 1 -, E2b-]-CHIK immunized mice as compared to control mice.

[0240] Intracellular Cytokine Expression. Flow cytometry analysis revealed the levels of lymphocyte activation as measured by evaluating intracellular cytokine expression. FIG. 7 illustrates lymphocyte activation in splenocytes from immunized or control C57BL/6 mice as measured by intracellular expression of IFN-γ or IFN-y/TNF-α analyzed by flow cytometry. C57BL/6 mice were immunized two times at two-week intervals with lxlO 10 VPs Ad5 [E1-, E2b-]-CHIK vaccine comprising SEQ ID NO: 1 or with lxlO 10 VPs Ad5 [E1-, E2b-]-null (empty vector controls). One week after the final immunization, splenocytes from individual mice were exposed to three separate pools of Chikungunya virus peptides (peptide numbers for Chikungunya were large enough to merit division into three separate pools to use in assays - CHIKV peptide pool 1 comprised peptides 1 - 103, CHIKV peptide pool 2 comprising peptides 104-207, and peptide pool 3 comprising peptides 208-310) and analyzed by flow cytometry for induction of intracellular cytokine expression. FIG. 7A illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ in CD8+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools). A higher percentage of CD8+ splenocytes from immunized mice expressed intracellular IFN-γ as compared to negative controls. FIG. 7B illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ in CD4+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools). A higher percentage of CD4+ splenocytes from immunized mice expressed intracellular IFN-γ as compared to negative controls. FIG. 7C illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ and TNF-a in CD8+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools). A higher percentage of CD8+ splenocytes from immunized mice expressed intracellular IFN-γ and TNF-a as compared to negative controls. FIG. 7D illustrates lymphocyte activation as measured by flow cytometry analysis of intracellular expression of IFN-γ and TNF-a in CD4+ splenocytes after exposure of splenocytes from immunized mice and control mice to three separate pools of Chikungunya virus peptides and controls (media and SIV-nef peptide pools). A higher percentage of CD4+ splenocytes from immunized mice expressed intracellular IFN- γ and TNF-a as compared to negative controls.

[0241] Antigen-Specific Antibody Production. Chikungunya-specific IgG antibodies were measured in the serum of immunized mice by an enzyme- linked immunosorbent assay (ELISA). FIG. 8 illustrates anti-Chikungunya envelope protein-2 antibody responses in immunized mice as compared to control mice as measured by a quantitative enzyme-linked immunosorbent assay (ELISA). C57BL/6 mice were immunized two times at two-week intervals with l xl O 10 VPs Ad5 [E 1-, E2b-]-CHIK vaccine comprising SEQ ID NO: 1 or with lxl O 10 VPs Ad5 [E 1-, E2b-]-null (empty vector controls). One week after the final immunization, sera from mice were evaluated for induction of antibody responses. Blood was collected by cheek pouch laceration under anesthesia. Anti-Chikungunya specific antibody responses were induced at higher levels in immunized mice as compared to control mice.

EXAMPLE 11

Prevention of Chikungunya Infection with Ad5 [E1-, E2b-]-Chikungunya vaccine

[0242] This example illustrates prevention of Chikungunya infection by prophylaxis with any Ad5 [E1 -, E2b-] -Chikungunya vaccine of this disclosure including an Ad5 [E1 -, E2b-] with any one of, or any combination of, Chikungunya antigens (e.g., SEQ ID NO: 1 - SEQ ID NO: 3) inserted into the adenovirus vector. An Ad5 [E1 -, E2b-] -Chikungunya vaccine is constructed as described in EXAMPLE 1 for a single-targeted Chikungunya vaccine or is constructed as described in EXAMPLE 3 for a multi-targeted Chikungunya vaccine. The Ad5 [E1-, E2b-]-Chikungunya vaccine is administered to a subject subcutaneously, intradermal ly, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against Chikungunya virus and protection against infection by Chikungunya virus is induced after immunization of a subject with the Ad5 [E1-, E2b-] -Chikungunya vaccine. In other words, immunity by prophylaxis with the Ad5 [E1 -, E2b-]-Chikungunya vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal.

EXAMPLE 12

Prevention of Chikungunya Infection with Ad5 [E1-, E2b-]-Chikungunya vaccine and a Co- Stimulatory Molecule

[0243] This example illustrates prevention of Chikungunya infection by prophylaxis with any Ad5 [E 1-, E2b-] -Chikungunya vaccine of this disclosure including an Ad5 [E1 -, E2b-] with any one of, or any combination of, Chikungunya antigens (e.g., SEQ ID NO: 1 - SEQ ID NO: 3) inserted into the adenovirus vector in combination with any co-stimulatory molecule described herein. An Ad5 [E1-, E2b-] -Chikungunya vaccine is constructed as described in EXAMPLE 1 for a single-targeted Chikungunya vaccine or is constructed as described in EXAMPLE 3 for a multi-targeted Chikungunya vaccine. The Ad5 [E1-, E2b-] -Chikungunya vaccine is administered subcutaneously, intradermally, or intramuscularly to a subject once or every two weeks for a total of two immunizations. The Ad vaccine is co-administered with a co-stimulatory molecule, such as a tolllike receptor (TLR) agonist mixed with the vaccine formulation. Cellular and humoral immune responses against Chikungunya virus and protection against infection by Chikungunya virus is induced after immunization of a subject with the combination of Ad5 [E1 -, E2b-]-Chikungunya vaccine and co-stimulatory molecule. In other words, immunity by prophylaxis with the Ad5 [E1-, E2b-]-Chikungunya vaccine and co-stimulatory molecule is conferred to the subject.

EXAMPLE 13

Prevention of Chikungunya Infection with Ad5 [E1-, E2b-]-Chikungunya vaccine and an

Immunological Fusion Partner

[0244] This example illustrates prevention of Chikungunya infection by prophylaxis with any Ad5 [E1-, E2b-]-CHIK vaccine of this disclosure including an Ad5 [E1-, E2b-] with any one of, or any combination of, Chikungunya antigens (e.g., SEQ ID NO: 1 - SEQ ID NO: 3) inserted into the adenovirus vector as well as any immunological fusion partner described herein, also encoded by the adenovirus vector. An Ad5 [E 1 -, E2b-]-CHIK vaccine is constructed as described in EXAMPLE 1 for a single-targeted Chikungunya vaccine or is constructed as described in EXAMPLE 3 for a multi-targeted Chikungunya vaccine with the Ad vector additionally encoding for any immunological fusion partner disclosed herein. The Ad5 [E1-, E2b-]-Chikungunya vaccine is administered subcutaneously, intradermally, or intramuscularly to a subject, once or every two weeks for a total of two immunizations. Vaccines with immunological fusion partners are administered subcutaneously, intradermally, or intramuscularly. Cellular and humoral immune responses against Chikungunya virus and protection against infection by Chikungunya virus is induced after immunization of a subject with Ad5 [E 1-, E2b-] -Chikungunya vaccme-immuno logical fusion partner and co-stimulatory molecule. In other words, immunity by prophylaxis with the Ad5 [E1 -, E2b-J- Chikungunya vaccine-immunological fusion partner is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal. EXAMPLE 14

Prevention of O'Nyong Nyong Virus Infection with Ad5 [E1-, E2b-]-0'Nyong Nyong Virus

(ONNV) Vaccine

[0245] This example illustrates prevention of o'nyong-nyong virus (ONNV) infection by prophylaxis with any Ad5 [E1-, E2b-]- ONNV vaccine of this disclosure including an Ad5 [E 1 -, E2b-] with any one of, or any combination of, ONNV antigens (e.g., SEQ ID NO: 4 - SEQ ID NO: 6) inserted into the adenovirus vector. An Ad5 [E1-, E2b-]-ONNV vaccine is constructed as adapted from EXAMPLE 1 or as described in EXAMPLE 4 for a single-targeted ONNV vaccine or is constructed as adapted from EXAMPLE 3 for a multi-targeted ONNV vaccine. The Ad5 [E1-, E2b- ]-ONNV vaccine is administered to a subject subcutaneously, intradermally, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against ONNV virus and protection against infection by ONNV virus is induced after immunization of a subject with the Ad5 [E 1-, E2b-]- ONNV vaccine. In other words, immunity by prophylaxis with the Ad5 [E1-, E2b-]-ONNV vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal.

EXAMPLE 15

Prevention of Ross River Virus Infection with Ad5 [E1-, E2b-]-Ross River Virus (RRV)

Vaccine

[0246] This example illustrates prevention of Ross River virus (RRV) infection by prophylaxis with any Ad5 [E 1 -, E2b-]-RRV vaccine of this disclosure including an Ad5 [E 1-, E2b-] with any one of, or any combination of, RRV antigens (e.g., SEQ ID NO: 10 - SEQ ID NO: 12) inserted into the adenovirus vector. An Ad5 [E1 -, E2b-]-RRV vaccine is constructed as adapted from EXAMPLE 1 or described in EXAMPLE 6 for a single-targeted RRV vaccine or is constructed as adapted from EXAMPLE 3 for a multi-targeted RRV vaccine. The Ad5 [E1 -, E2b-]-RRV vaccine is administered to a subject subcutaneously, intradermally, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against RRV virus and protection against infection by RRV virus is induced after immunization of a subject with the Ad5 [E1-, E2b-]- RRV vaccine. In other words, immunity by prophylaxis with the Ad5 [E1-, E2b-]-RRV vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal. EXAMPLE 16

Prevention of Mayaro Fever Virus Infection with Ad5 [E1-, E2b-]-Mayaro Fever Virus

(MAYV) Vaccine

[0247] This example illustrates prevention of Marayo fever virus (MAYV) infection by prophylaxis with any Ad5 [E1 -, E2b-]-MAYV vaccine of this disclosure including an Ad5 [E 1 -, E2b-] with any one of, or any combination of, MAYV antigens (e.g., SEQ ID NO: 7 - SEQ ID NO: 9) inserted into the adenovirus vector. An Ad5 [E1 -, E2b-]-MAYV vaccine is constructed as adapted from EXAMPLE 1 or described in EXAMPLE 5 for a single-targeted MAYV vaccine or is constructed as adapted from EXAMPLE 3 for a multi-targeted MAYV vaccine. The Ad5 [E 1-, E2b-]-MAYV vaccine is administered to a subject subcutaneously, intradermally, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against MAYV virus and protection against infection by MAYV virus is induced after immunization of a subject with the Ad5 [E 1 -, E2b-]-MAYV vaccine. In other words, immunity by prophylaxis with the Ad5 [E 1-, E2b-]-MAYV vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal.

EXAMPLE 17

Prevention of Venezuelan Equine Encephalitis Virus Infection with Ad5 [E1-, E2b-]- Venezuelan Equine Encephalitis Virus (VEEV) Vaccine

[0248] This example illustrates prevention of Venezuelan equine encephalitis virus (VEEV) infection by prophylaxis with any Ad5 [E1 -, E2b-]-VEEV vaccine of this disclosure including an Ad5 [E1 -, E2b-] with any one of, or any combination of, VEEV antigens (e.g., SEQ ID NO: 13 - SEQ ID NO: 15) inserted into the adenovirus vector. An Ad5 [E1 -, E2b-]-VEEV vaccine is constructed as adapted from EXAMPLE 1 or described in EXAMPLE 7 for a single-targeted VEEV vaccine or is constructed as adapted from EXAMPLE 3 for a multi-targeted VEEV vaccine. The Ad5 [E1 -, E2b-]-VEEV vaccine is administered to a subject subcutaneously, intradermally, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against VEEV virus and protection against infection by VEEV virus is induced after immunization of a subject with the Ad5 [E1 -, E2b-]-VEEV vaccine. . In other words, immunity by prophylaxis with the Ad5 [E 1-, E2b-]-VEEV vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal. EXAMPLE 18

Prevention of Western Equine Encephalomyelitis Virus Infection with Ad5 [E1-, E2b-]- Western Equine Encephalomyelitis Virus (WEEV) Vaccine

[0249] This example illustrates prevention of Western equine encephalomyelitis virus (WEEV) infection by prophylaxis with any Ad5 [E1 -, E2b-]-WEEV vaccine of this disclosure including an Ad5 [E 1 -, E2b-] with any one of, or any combination of, WEEV antigens (e.g., SEQ ID NO: 19 - SEQ ID NO: 21) inserted into the adenovirus vector. An Ad5 [E1 -, E2b-]-WEEV vaccine is constructed as adapted from EXAMPLE 1 or described in EXAMPLE 9 for a single-targeted WEEV vaccine or is constructed as adapted from EXAMPLE 3 for a multi-targeted WEEV vaccine. The Ad5 [E1 -, E2b-]-WEEV vaccine is administered to a subject subcutaneously, intradermally, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against WEEV virus and protection against infection by WEEV virus is induced after immunization of a subject with the Ad5 [E 1-, E2b-]-WEEV vaccine. In other words, immunity by prophylaxis with the Ad5 [E1 -, E2b-]-WEEV vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal.

EXAMPLE 19

Prevention of Eastern Equine Encephalitis Virus Infection with Ad5 [E1-, E2b-]-Eastern

Equine Encephalitis Virus (EEEV) Vaccine

[0250] This example illustrates prevention of Eastern equine encephalitis virus (EEEV) infection by prophylaxis with any Ad5 [E1-, E2b-]-EEEV vaccine of this disclosure including an Ad5 [E1 -, E2b-] with any one of, or any combination of, EEEV antigens (e.g., SEQ ID NO: 16 - SEQ ID NO: 18) inserted into the adenovirus vector. An Ad5 [E1 -, E2b-]-EEEV vaccine is constructed as adapted from EXAMPLE 1 or described in EXAMPLE 8 for a single-targeted EEEV vaccine or is constructed as adapted from EXAMPLE 3 for a multi-targeted EEEV vaccine. The Ad5 [E1 -, E2b-]- EEEV vaccine is administered to a subject subcutaneously, intradermally, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against EEEV virus and protection against infection by EEEV virus is induced after immunization of a subject with the Ad5 [E1-, E2b-]- EEEV vaccine. In other words, immunity by prophylaxis with the Ad5 [E1 -, E2b-]-EEEV vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal. EXAMPLE 20

Prevention of Alphavirus Infections with Ad5 [E1-, E2b-]-Alphavirus Vaccine

[0251] This example illustrates prevention of alphavirus infections by prophylaxis with any Ad5 [E 1-, E2b-]-alphavirus vaccine. The Ad5 [E 1-, E2b-]-alphavirus vaccine is comprised of any of combination of: single-targeted or multi-targeted Ad5 [El, E2b]-ON V vector as described in EXAMPLE 15, single-targeted or multi-targeted Ad5 [El , E2b]-CHIK vector as described in EXAMPLE 11, single-targeted or multi-targeted Ad5 [El, E2b]-RRV vector as described in EXAMPLE 16, single-targeted or multi-targeted Ad5 [El , E2b]-MAYV vector as described in EXAMPLE 17, single-targeted or multi-targeted Ad5 [El , E2b]-VEEV vector as described in EXAMPLE 18, single-targeted or multi-targeted Ad5 [El , E2b]-WEEV vector as described in EXAMPLE 19, an single-targeted or multi-targeted Ad5 [El , E2b]-R V vector as described in EXAMPLE 20. Alternatively, the Ad5 [E 1-, E2b-]-alphavirus vaccine is comprised of an Ad5 [E1-, E2b-] with any combination of at least two antigens from different alphaviruses inserted into the adenovirus vector. For example, the at least two antigens is comprised of any combination of an ONNV antigen (e.g., any one of SEQ ID NO: 4 - SEQ ID NO: 6), a CHIK antigen (e.g., any one of SEQ ID NO: 1 - SEQ ID NO: 3), an EEEV antigen (e.g., any one of SEQ ID NO: 16 - SEQ ID NO: 18), a WEEV antigen (e.g., any one of SEQ ID NO: 19 - SEQ ID NO: 21), a VEEV antigen (e.g., any one of SEQ ID NO: 13 - SEQ ID NO: 15), a MAYV antigen (e.g., any one of SEQ ID NO: 7 - SEQ ID NO: 9), and/or a R V antigen (e.g., any one of SEQ ID NO: 10 - SEQ ID NO: 12). The Ad5 [E1 -, E2b-] -alphavirus vaccine is administered to a subject subcutaneously, intradermally, or intramuscularly, once or every two weeks for a total of two immunizations. Cellular and humoral immune responses against alphaviruses and protection against infection by alphavirus is induced after immunization of a subject with the Ad5 [E 1-, E2b-]-alphavirus vaccine. In other words, immunity by prophylaxis with the Ad5 [E1 -, E2b-]-alphavirus vaccine is conferred to the subject. The subject is any animal including a human, a non-human primate, or any other non-human animal.

[0252] While preferred embodiments of the present invention have been shown and described herein, it will be apparent to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein can be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. SEQUENCES

-81- SEQ ID NO Sequence

AATCCGCCCTGCCTGCCCATACAAAATTGCAGTCATAGGAGTCTTC

GGAGTACCAGGATCTGGCAAGTCAGCTATTATCAAGAACCTAGTTA

CCAGGCAAGACCTGGTGACTAGCGGAAAGAAAGAAAACTGCCAAG

AAATCACCACCGACGTGATGAGACAGAGAGGTCTAGAGATATCTG

CACGTACGGTTGACTCGCTGCTCTTGAATGGATGTAACAGACCAGT

CGACGTGTTGTACGTAGACGAGGCGTTTGCGTGCCACTCTGGAACG

TTACTTGCATTGATCGCCTTGGTGAGACCAAGACAGAAAGTTGTAC

TTTGTGGTGACCCGAAGCAGTGCGGCTTCTTCAATATGATGCAGAT

GAAAGTCAACTATAATCACAACATCTGCACCCAAGTGTACCACAAA

AGTATCTCCAGGCGGTGTACACTGCCTGTGACTGCCATTGTGTCATC

GTTGCATTACGAAGGCAAAATGCGCACTACGAATGAGTACAACAA

GCCGATTGTAGTGGACACTACAGGCTCAACAAAACCTGACCCTGGA

GATCTCGTGTTAACGTGCTTCAGAGGATGGGTTAAACAACTGCAAA

TTGACTATCGTGGACACGAGGTCATGACAGCAGCCGCATCCCAAGG

GTTAACCAGAAAAGGAGTTTACGCAGTTAGGCAAAAAGTTAACGA

AAACCCGCTTTATGCATCAACGTCAGAGCACGTCAACGTACTCCTA

ACGCGTACGGAAGGTAAACTGGTATGGAAGACACTCTCCGGTGACC

CGTGGATAAAGACGCTGCAGAACCCACCGAAAGGAAACTTCAAAG

CAACTATTAAGGAGTGGGAGGTGGAGCATGCATCAATAATGGCGG

GCATCTGCAGTCACCAAATGACCTTTGATACATTCCAAAACAAAGC

CAACGTTTGTTGGGCTAAGAGTTTGGTCCCTATCCTCGAAACAGCG

GGGATAAAACTAAACGACAGGCAGTGGTCCCAGATAATTCAAGCC

TTCAAAGAAGACAAAGCATATTCACCCGAAGTAGCCCTGAATGAA

ATATGCACGCGCATGTATGGGGTGGATCTAGACAGCGGGCTATTTT

CTAAACCGTTGGTGTCTGTGTATTACGCGGATAACCACTGGGATAA

TAGGCCTGGAGGGAAGATGTTCGGATTCAACCCCGAGGCAGCATCC

ATTCTAGAAAGAAAGTATCCATTTACAAAAGGGAAGTGGAACATC

AACAAGCAGATCTGCGTGACTACCAGGAGGATAGAAGACTTCAAC

CCTACCACCAACATTATACCGGCCAACAGGAGACTACCACACTCAT

TAGTGGCCGAACACCGCCCAGTAAAAGGGGAAAGAATGGAATGGC

TGGTTAACAAGATAAACGGCCACCACGTGCTCCTGGTCAGTGGCTG

TAGCCTTGCACTGCCTACTAAGAGAGTCACTTGGGTAGCGCCACTA

GGTGTCCGCGGAGCGGACTATACATACAACCTAGAGTTGGGTCTGC

CAGCAACGCTTGGTAGGTATGACCTAGTGGTCATAAACATCCACAC

ACCTTTTCGCATACACCATTATCAACAGTGCGTAGACCACGCAATG

AAACTGCAAATGCTCGGGGGTGACTCATTGAGACTGCTCAAACCGG

GTGGCTCTCTATTGATCAGAGCATATGGTTACGCAGATAGAACCAG

TGAACGAGTCATCTGCGTATTGGGACGCAAGTTTAGATCATCTAGA

GCGTTGAAACCACCATGTGTCACCAGCAACACTGAGATGTTTTTTCT

ATTCAGCAACTTTGACAATGGCAGAAGGAATTTCACAACTCATGTC

ATGAACAATCAACTGAATGCAGCCTTTGTAGGACAGGCCACCCGAG

CAGGATGTGCACCGTCGTACCGGGTAAAACGCATGGATATCGCGAA

GAACGATGAAGAGTGCGTAGTCAACGCCGCCAACCCTCGCGGGTTA

CCAGGTGACGGTGTTTGCAAGGCAGTATACAAAAAATGGCCGGAG

TCCTTTAAGAACAGTGCAACACCAGTGGGAACCGCAAAAACAGTC

ATGTGCGGTACGTATCCAGTAATCCACGCCGTTGGACCAAACTTCT

CTAATTATTCGGAGTCTGAAGGGGACCGAGAATTGGCGGCTGCCTA

TCGAGAAGTCGCAAAGGAGGTAACTAGACTGGGAGTAAATAGTGT

AGCTATACCTCTCCTCTCCACAGGTGTATACTCAGGAGGGAAAGAC

-82- SEQ ID NO Sequence

AGGCTGACCCAGTCACTGAACCACCTCTTTACAGCCATGGACTCGA

CGGATGCAGACGTGGTCATCTACTGCCGCGACAAAGAATGGGAGA

AGAAAATATCTGAGGCCATACAGATGCGGACCCAAGTGGAGCTGC

TGGATGAGCACATCTCCATAGACTGCGATGTTGTTCGCGTGCACCC

TGACAGCAGCTTGGCAGGCAGAAAAGGATACAGCACCACGGAAGG

CGCACTGTACTCATATCTAGAAGGGACCCGTTTTCACCAAACGGCA

GTGGATATGGCAGAGATATATACTATGTGGCCAAAGCAAACAGAG

GCCAACGAGCAAGTTTGCCTATATGCCCTGGGGGAAAGTATTGAAT

CGATCAGGCAGAAATGCCCGGTGGATGATGCAGATGCATCATCTCC

CCCGAAAACTGTCCCGTGCCTCTGCCGTTACGCCATGACACCAGAA

CGCGTTACCCGACTTCGCATGAACCATGTCACAAGCATAATTGTGT

GTTCTTCGTTTCCCCTTCCAAAGTACAAAATAGAAGGAGTGCAAAA

AGTCAAATGCTCCAAGGTAATGCTATTTGACCACAACGTGCCATCG

CGCGTAAGTCCAAGGGAATACAGACCTTCCCAGGAGTCTGTACAGG

AAGCGAGTACGACCACGTCACTGACGCATAGCCAATTCGATCTAAG

CGTTGACGGCAAGATACTGCCCGTCCCGTCAGACCTGGATGCTGAC

GCCCCAGCCCTAGAACCAGCCCTTGACGACGGGGCGATACACACGT

TGCCATCTGCAACCGGAAACCTTGCGGCCGTGTCTGACTGGGTAAT

GAGCACCGTACCTGTCGCGCCGCCCAGAAGAAGGCGAGGGAGAAA

CCTGACTGTGACATGCGACGAGAGAGAAGGGAATATAACACCCAT

GGCTAGCGTCCGATTCTTTAGGGCAGAGCTGTGTCCAGTCGTACAA

GAAACAGCGGAGACGCGTGACACAGCTATGTCTCTTCAGGCACCGC

CGAGTACCGCCACGGAACTGAGTCACCCGCCGATCTCCTTCGGTGC

ACCAAGCGAGACGTTCCCCATCACATTTGGGGACTTCAACGAAGGA

GAAATCGAAAGCTTGTCTTCTGAGCTACTAACTTTCGGAGACTTCCT

ACCCGGAGAAGTGGATGATTTGACAGATAGCGACTGGTCCACGTGC

TCAGACACGGACGACGAGTTACGACTAGACAGGGCAGGTGGGTAT

ATATTCTCGTCGGACACTGGTCCAGGTCATTTACAACAGAAGTCAG

TACGCCAGTCAGTGCTGCCGGTGAACACCCTGGAGGAAGTCCACGA

GGAGAAGTGTTACCCACCTAAGCTGGATGAAGCAAAGGAGCAACT

ACTACTTAAGAAACTCCAGGAGAGTGCATCCATGGCCAACAGAAG

CAGGTATCAGTCGCGCAAAGTAGAAAACATGAAAGCAACAATCAT

CCAGAGACTAAAGAGAGGCTGTAGATTATACTTAATGTCAGAGACC

CCAAAAGTCCCTACCTACCGGACCACATATCCGGCGCCTGTGTACT

CGCCTCCGATTAACGTCCGACTGTCCAACCCCGAGTCCGCAGTGGC

AGCATGCAATGAGTTCTTGGCTAGAAACTATCCAACTGTTTCATCAT

ACCAAATCACCGACGAGTATGATGCATATCTAGACATGGTGGACGG

GTCGGAGAGTTGTCTGGACCGAGCGACATTCAATCCGTCAAAACTT

AGGAGCTACCCAAAACAGCACGCTTACCACGCGCCCTCCATCAGAA

GCGCTGTACCGTCCCCATTCCAGAACACACTACAGAATGTACTGGC

AGCAGCCACGAAAAGAAACTGCAACGTCACACAGATGAGGGAATT

ACCCACTTTGGACTCAGCAGTATTCAACGTGGAGTGTTTCAAAAAA

TTCGCATGCAACCAAGAATACTGGGAAGAATTTGCTGCCAGCCCTA

TCAGGATAACAACTGAGAATTTAACAACCTATGTTACTAAACTAAA

GGGGCCAAAAGCAGCAGCGCTATTTGCAAAAACCCATAATCTGCTG

CCACTGCAGGAAGTGCCAATGGATAGGTTCACAGTAGACATGAAA

AGGGATGTGAAGGTGACTCCTGGTACAAAGCACACAGAGGAAAGA

CCTAAGGTACAGGTTATACAGGCGGCTGAACCCTTGGCAACAGCAT

ACCTATGTGGGATTCACAGAGAGCTGGTTAGGAGGCTGAACGCCGT

-83- SEQ ID NO Sequence

CCTCCTACCCAATGTACATACACTATTTGACATGTCTGCCGAGGATT

TCGATGCCATCATAGCCGCACACTTTAAGCCAGGAGACACTGTTTT

AGAAACGGACATAGCCTCCTTTGATAAGAGCCAAGATGATTCACTT

GCGCTTACTGCTTTAATGCTGTTAGAGGATTTAGGGGTGGATCACTC

CCTGTTGGACTTGATAGAGGCTGCTTTCGGAGAGATTTCCAGCTGTC

ATCTACCGACAGGTACGCGCTTCAAGTTCGGCGCCATGATGAAATC

TGGTATGTTCCTAACTCTGTTCGTCAACACACTGCTAAATATCACCA

TCGCCAGCCGAGTGCTGGAAGATCGTCTGACAAAATCCGCGTGCGC

AGCCTTCATCGGCGACGACAACATAATACATGGAGTCGTCTCCGAT

GAATTGATGGCAGCCAGATGCGCCACTTGGATGAACATGGAAGTG

AAGATCATAGATGCAGTTGTATCCCAGAAAGCCCCTTACTTTTGTG

GAGGGTTTATACTGCACGATATCGTGACAGGAACAGCTTGCAGAGT

GGCAGACCCGCTAAAAAGGCTATTTAAACTGGGCAAACCGCTAGC

GGCAGGTGACGAACAAGATGAGGATAGAAGACGAGCGCTGGCTGA

CGAAGTGGTCAGATGGCAACGAACAGGGCTAATTGATGAGTTGGA

GAAAGCGGTATACTCTAGGTATGAAGTGCAGGGTATATCAGTTGTG

GTAATGTCCATGGCCACCTTTGCAAGCTCCAGATCCAACTTCGAGA

AGCTCAGAGGACCCGTCGTAACTTTGTACGGCGGTCCTAAATAGGT

ACGCACTACAGCTACCTATTTTGCAGAAGCCGACAGTAAGTACCTA

AACACTAATCAGCTACAATGGAGTTCATCCCAACCCAAACTTTTTA

CAACAGGAGGTACCAGCCTCGACCCTGGACTCCGCGCCCTACTATC

CAAGTCATCAGGCCCAGACCGCGCCCGCAGAGGCAAGCTGGGCAA

CTTGCCCAGCTGATCTCAGCAGTTAATAAACTGACAATGCGCGCGG

TACCCCAACAGAAGCCACGCAAGAATCGGAAGAATAAGAAGCAAA

AGCAAAAGCAGCAGGCGCCACAAAACAACACAAACCAAAAGAAG

CAGCCACCTAAAAAGAAACCAGCTCAAAAGAAAAAGAAGCCGGGC

CGCAGAGAGAGGATGTGCATGAAAATCGAAAATGACTGTATTTTCG

AAGTCAAGCACGAAGGTAAGGTAACAGGTTACGCGTGCTTGGTGG

GGGACAAAGTAATGAAACCAGCACACGTAAAGGGGACCATCGATA

ACGCGGACCTGGCCAAATTGGCCTTTAAGCGGTCATCTAAGTACGA

CCTTGAATGCGCGCAGATACCCGTGCACATGAAGTCCGACGCTTCG

AAGTTCACCCATGAGAAACCGGAGGGGTACTACAACTGGCACCAC

GGAGCAGTACAGTACTCAGGAGGCCGGTTCACCATCCCTACAGGTG

CGGGCAAACCAGGGGACAGCGGTAGACCGATCTTCGACAACAAGG

GACGCGTGGTGGCCATAGTCTTAGGAGGAGCTAATGAAGGAGCCC

GTACAGCCCTCTCAGTGGTGACCTGGAATAAAGACATTGTCACTAA

AATCACCCCTGAGGGAGCCGAAGAGTGGAGTCTTGCCATCCCAGTT

ATGTGCCTGTTGGCAAATACCACGTTCCCCTGCTCCCAGCCCCCTTG

CATACCCTGCTGCTACGAAAAGGAACCGGAGGAAACCCTACGCAT

GCTTGAGGACAACGTCATGAGACCTGGGTACTATCAGCTGCTACAA

GCATCATTAACATGTTCTCCCCACCGCCAGCGACGCAGCACCAAGG

ACAACTTCAATGTCTATAAAGCCACAAGACCATACCTAGCTCACTG

TCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCACTA

GAACGCATCAGAAATGAAGCGACAGACGGGACGCTGAAAATCCAG

GTCTCCTTGCAAATTGGAATAGGGACGGATGATAGCCATGATTGGA

CCAAGCTGCGTTACATGGACAATCACATACCAGCAGACGCAGGGA

GGGCCGGGCTATTTGTAAGAACATCAGCACCATGCACGATTACTGG

AACAATGGGACACTTCATCCTGGCCCGATGTCCGAAAGGAGAAACT

CTGACGGTGGGATTCACTGACAGTAGGAAGATTAGTCACTCATGTA

-84- SEQ ID NO Sequence

CGCACCCATTTCACCACGACCCTCCTGTGATAGGCCGGGAAAAATT

CCATTCCCGACCGCAGCACGGTAAAGAGCTACCTTGCAGCACGTAC

GTGCAGAGCAACGCCGCAACTGCCGAGGAGATAGAGGTACACATG

CCCCCAGACACCCCTGATCGCACATTGCTGTCACAACAGTCCGGCA

ACGTAAAGATCACAGTCAATAGTCAGACGGTGCGGTATAAGTGTAA

TTGCGGTGGCTCAAATGAAGGACTAATAACTACAGATAAAGTGATT

AATAACTGCAAGGTTGATCAATGTCATGCCGCGGTCACCAATCACA

AAAAGTGGCAGTATAACTCCCCTCTGGTCCCGCGTAACGCTGAACT

CGGGGACCGAAAAGGAAAAATTCACATCCCGTTTCCGCTGGCAAAT

GTAACATGCATGGTGCCTAAAGCAAGGAACCCCACCGTGACGTACG

GGAAAAACCAAGTCATCATGCTACTGTATCCTGACCACCCAACACT

CCTGTCCTACCGGAGTATGGGAGAAGAACCAAACTATCAAGAAGA

GTGGGTGACGCACAAGAAGGAGGTCGTGCTAACCGTGCCGACTGA

AGGGCTCGAGGTTACGTGGGGCAACAACGAGCCGTATAAGTATTG

GCCGCAGTTATCTGCAAACGGTACAGCCCACGGCCACCCGCATGAG

ATAATCTTGTACTATTATGAGCTGTACCCTACTATGACTGTAGTAGT

TGTGTCAGTGGCCTCGTTCATACTCCTGTCGATGGTGGGTATGGCAG

TGGGGATGTGCATGTGTGCACGACGCAGATGCATCACACCATACGA

ACTGACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCT

GCATCAGAACAGCTAAAGCGGCCACATACCAAGAGGCTGCGGTAT

ACCTGTGGAACGAGCAGCAACCTTTGTTTTGGCTACAAGCCCTTATT

CCGCTGGCAGCCCTGATTGTCCTATGCAACTGTCTGAGACTCTTACC

ATGCTGTTGTAAAACGTTGGCTTTTTTAGCCGTAATGAGCATCGGTG

CCCACACTGTGAGCGCGTACGAACACGTAACAGTGATCCCGAACAC

GGTGGGAGTACCGTATAAGACTCTAGTCAACAGACCGGGCTACAGC

CCCATGGTACTGGAGATGGAGCTACTGTCAGTCACTTTGGAGCCAA

CGCTATCGCTTGATTACATCACGTGCGAATACAAAACCGTCATCCC

GTCTCCGTACGTGAAATGCTGCGGTACAGCAGAGTGCAAGGACAA

AAACCTACCTGACTACAGCTGTAAGGTCTTCACCGGCGTCTACCCA

TTTATGTGGGGCGGCGCCTACTGCTTCTGCGACGCTGAAAACACGC

AATTGAGCGAAGCACATGTGGAGAAGTCCGAATCATGCAAAACAG

AATTTGCATCAGCATACAGGGCTCATACCGCATCCGCATCAGCTAA

GCTCCGCGTCCTTTACCAAGGAAATAACATCACTGTAACTGCCTAT

GCAAACGGCGACCATGCCGTCACAGTTAAGGACGCCAAATTCATTG

TGGGGCCAATGTCTTCAGCCTGGACACCTTTTGACAACAAAATCGT

GGTGTACAAAGGTGACGTTTACAACATGGACTACCCGCCCTTTGGC

GCAGGAAGACCAGGACAATTTGGCGATATCCAAAGTCGCACGCCT

GAGAGCAAAGACGTCTATGCTAACACACAACTGGTACTGCAGAGA

CCGGCTGCGGGTACGGTACACGTGCCATACTCTCAGGCACCATCTG

GCTTTAAGTATTGGTTAAAAGAACGAGGGGCGTCGCTACAGCACAC

AGCACCATTTGGCTGCCAAATAGCAACAAACCCGGTAAGAGCGAT

GAACTGCGCCGTAGGGAACATGCCCATCTCCATCGACATACCGGAT

GCGGCCTTCACTAGGGTCGTCGACGCGCCCTCTTTAACGGACATGT

CATGCGAGGTACCAGCCTGCACCCATTCCTCAGACTTTGGGGGCGT

CGCCATTATTAAATATGCAGTCAGCAAGAAAGGCAAGTGTGCGGTG

CATTCGATGACCAACGCCGTCACTATCCGGGAAGCTGAGATAGAAG

TTGAAGGGAATTCTCAGCTGCAAATCTCTTTCTCGACGGCCTTGGCC

AGCGCCGAATTCCGCGTACAAGTCTGTTCTACACAAGTACACTGTG

CAGCCGAGTGCCACCCTCCGAAGGACCACATAGTCAACTACCCGGC

-85- SEQ ID NO Sequence

GTCACATACCACCCTCGGGGTCCAGGACATTTCCGCTACGGCGATG

TCATGGGTGCAGAAGATCACGGGAGGTGTGGGACTGGTTGTCGCTG

TTGCAGCACTGATTCTAATCGTGGTGCTATGCGTGTCGTTCAGCAGG

CACTAACTTGACGACTAAGCATGAAGGTATATGTGTCCCCTAAGAG

ACACACCGTATATAGCTAATAATCTGTAGATCAAAGGGCTATATAA

CCCCTGAATAGTAACAAAATACAAAATCACTAAAAATTATAAAAA

AAAAAAAAAAAAAACAGAAAAATATATAAATAGGTATACGTGTCC

CCTAAGAGACACATTGTATGTAGGTGATAAGTATAGATCAAAGGGC

CGAACAACCCCTGAATAGTAACAAAATATAAAAATTAATAAAAAT

CATAAAATAGAAAAACCATAAACAGAAGTAGTTCAAAGGGCTATA

AAAACCCCTGAATAGTAACAAAACATAAAACTAATAAAAATCAAA

TGAATACCATAATTGGCAAACGGAAGAGATGTAGGTACTTAAGCTT

CCTAAAAGCAGCCGAACTCACTTTGAGATGTAGGCATAGCATACCG

AACTCTTCCACGATTCTCCGAACCCACAGGGACGTAGGAGATGTTA

TTTTGTTTTTAATATTTC

SEQ ID NO: 2 MEFIPTQTFYNRRYQPRPWTPRPTIQVIRPRPRPQRQAGQLAQLISAV

KLTMRAVPQQKPRKNRK KKQKQKQQAPQN TNQKKQPPKKKPAQ

KKKKPGRRERMCMKIENDCIFEVKHEGKVTGYACLVGDKVMKPAHV

KGTIDNADLAKLAFKRSSKYDLECAQIPVHMKSDASKFTHEKPEGYYN

WHHGAVQYSGGRFTIPTGAGKPGDSGRPIFDNKGRVVAIVLGGANEG

ARTALSVVTWNKDIVTKITPEGAEEWSLAIPVMCLLANTTFPCSQPPCI

PCCYEKEPEETLRMLEDNVMRPGYYQLLQASLTCSPHRQRRSTKDNF

NVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQI

GIGTDDSHDWTKLRYMDNHIPADAGRAGLFVRTSAPCTITGTMGHFIL

ARCPKGETLTVGFTDSRKISHSCTHPFHHDPPVIGREKFHSRPQHGKEL

PCSTYVQSNAATAEEIEVHMPPDTPDRTLLSQQSGNVKITVNSQTVRY

KCNCGGSNEGLITTDKVIN CKVDQCHAAVTNHKKWQYNSPLVPRN

AELGDRKGKIHIPFPLANVTCMVPKARNPTVTYGKNQVIMLLYPDHPT

LLSYRSMGEEPNYQEE THKKEVVLTVPTEGLEVTWGN EPYKYW

PQLSANGTAHGHPHEIILYYYELYPTMTVVWSVASFILLSMVGMAVG

MCMCARRRCITPYELTPGATVPFLLSLICCIRTAKAATYQEAAVYLWN

EQQPLFWLQALIPLAALIVLCNCLRLLPCCCKTLAFLAVMSIGAHTVSA

YEHVTVIPNTVGVPYKTLV RPGYSPMVLEMELLSVTLEPTLSLDYITC

EYKTVIPSPYVKCCGTAECKDK LPDYSCKVFTGVYPFMWGGAYCFC

DAENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLRVLYQGNNITV

TAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVY MDYP

PFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPS

GFKYWLKERGASLQHTAPFGCQIATNPVRAMNCAVGNMPISIDIPDAA

FTRVVDAPSLTDMSCEVPACTHSSDFGGVAIIKYAVSKKGKCAVHSMT

NAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAECHPP

KDHIVNYPASHTTLGVQDISATAMSWVQKITGGVGLVVAVAALILIW

LCVSFSRH

-86- SEQ ID NO Sequence

SEQ ID NO: 3 MDPVYVDIDADSAFLKALQRAYPMFEVEPRQVTPNDHANARAFSHLA

IKLIEQEIDPDSTILDIGSAPARRMMSDRKYHCVCPMRSAEDPERLANY

ARKLASAAGKVLDRNISGKIGDLQAVMAVPDTETPTFCLHTDVSCRQR

ADVAIYQDVYAVHAPTSLYHQAIKGVRLAYWVGFDTTPFMY AMAG

AYPSYSTNWADEQVLKAKNIGLCSTDLTEGRRGKLSIMRGKKLEPCDR

VLFSVGSTLYPESRKLLKSWHLPSVFHLKGKLSFTCRCDTVVSCEGYV

VKRITMSPGLYGKTTGYAVTHHADGFLMCKTTDTVDGERVSFSVCTY

VPATICDQMTGILATEVTPEDAQKLLVGLNQRIVVNGRTQRNTNTMK

NYMIPVVAQAFSKWAKECRKDMEDEKLLGVRERTLTCCCLWAFKKQ

KTHTVYKRPDTOSIQKVQAEFDSFVVPSLWSSGLSIPLRTRIKWLLSKV

PKTDLTPYSGDAQEARDAEKEAEEEREAELTLEALPPLQAAQEDVQVE

IDVEQLEDRAGAGIIETPRGAIKVTAQPTDHWGEYLVLSPQTVLRSQK

LSLIHALAEQVKTCTHSGRAGRYAVEAYDGRVLVPSGYAISPEDFQSL

SESAT VYNEREFVNRKLHHIAMHGPALNTDEESYELVRAERTEHEY

VYDVDQRRCCKKEEAAGLVLVGDLTNPPYHEFAYEGLKIRPACPYKIA

VIGVFGVPGSGKSAIIKNLVTRQDLVTSGKKENCQEITTDVMRQRGLEI

SARTVDSLLLNGCNRPVDVLYVDEAFACHSGTLLALIALVRPRQKVVL

CGDPKQCGFFNM QMKVNYNHNICTQVYHKSISRRCTLPVTAIVSSL

HYEGKMRTTNEY KPIVVDTTGSTKPDPGDLVLTCFRGWVKQLQIDY

RGHEVMTAAASQGLTRKGVYAVRQKVNENPLYASTSEHVNVLLTRT

EGKLVWKTLSGDPWIKTLQNPPKGNFKATIKEWEVEHASIMAGICSHQ

MTFDTFQNKANVCWAKSLVPILETAGIKLNDRQWSQIIQAFKEDKAYS

PEVALNEICTRMYGVDLDSGLFSKPLVSVYYADNHWDNRPGGKMFGF

NPEAASILERKYPFTKGKW INKQICVTTRRIEDFNPTTNIIPANRRLPH

SLVAEHRPVKGERMEWLVNKINGHHVLLVSGCSLALPTKRVTWVAPL

GVRGADYTYNLELGLPATLGRYDLVVINIHTPFRIHHYQQCVDHAMK

LQMLGGDSLRLLKPGGSLLIRAYGYADRTSERVICVLGRKFRSSRALK

PPCVTSNTEMFFLFSNFDNGRRNFTTHVMNNQLNAAFVGQATRAGCA

PSYRVKRMDIAKNDEECVVNAANPRGLPGDGVCKAVYKKWPESFKN

SATPVGTAKTVMCGTYPVIHAVGPNFSNYSESEGDRELAAAYREVAK

EVTRLGV SVAIPLLSTGVYSGGKDRLTQSLNHLFTAMDSTDADVVIY

CRDKEWEKKISEAIQMRTQVELLDEHISIDCDVVRVHPDSSLAGRKGY

STTEGALYSYLEGTRFHQTAVDMAEIYTMWPKQTEANEQVCLYALGE

SIESIRQKCPVDDADASSPPKTVPCLCRYAMTPERVTRLRMNHVTSIIV

CSSFPLPKYKIEGVQKVKCSKVMLFDHNVPSRVSPREYRPSQESVQEA

STTTSLTHSQFDLSVDGKILPVPSDLDADAPALEPALDDGAIHTLPSAT

GNLAAVSDWVMSTVPVAPPRRRRGRNLTVTCDEREGNITPMASVRFF

RAELCPVVQETAETRDTAMSLQAPPSTATELSHPPISFGAPSETFPITFG

DFNEGEIESLSSELLTFGDFLPGEVDDLTDSDWSTCSDTDDELRLDRAG

GYIFSSDTGPGHLQQKSVRQSVLPVNTLEEVHEEKCYPPKLDEAKEQL

LLKKLQESASMANRSRYQSRKVENMKATIIQRLKRGCRLYLMSETPK

VPTYRTTYPAPVYSPPINVRLSNPESAVAACNEFLARNYPTVSSYQITD

EYDAYLDMVDGSESCLDRATFNPSKLRSYPKQHAYHAPSIRSAVPSPF

QNTLQNVLAAATKRNCNVTQMRELPTLDSAVFNVECFKKFACNQEY

WEEFAASPIRITTENLTTYVTKLKGPKAAALFAKTHNLLPLQEVPMDR

FTVDMKRDVKVTPGTKHTEERPKVQVIQAAEPLATAYLCGIHRELVRR

LNAVLLPNVHTLFDMSAEDFDAIIAAHFKPGDTVLETDIASFDKSQDDS

LALTAL LLEDLGVDHSLLDLIEAAFGEISSCHLPTGTRFKFGAMMKS

GMFLTLFVNTLLNITIASRVLEDRLTKSACAAFIGDDNIIHGWSDELM

-87- SEQ ID NO Sequence

AARCATWMNMEVKIIDAVVSQKAPYFCGGFILHDIVTGTACRVADPL

KRLFKLGKPLAAGDEQDEDRRRALADEVVRWQRTGLIDELEKAVYSR

YEVQGISVVVMSMATFASSRSNFEKLRGPVVTLYGGPK

SEQ ID NO: 4 ATGGCTGCGTGAGACACACGTAGCCTACCAGTTTCTTACTGCTCTAC

TCTGCTTAGCAAGAGACTTGAGAACCCATCATGGATCCCGTGTACG

TGGACATAGACGCCGACAGCGCCTTTTTAAAGGCCCTGCAGCGTGC

GTACCCCATGTTTGAGGTGGAACCAAGGCAGGTCACACCGAATGAC

CATGCCAATGCTAGAGCATTCTCGCATCTAGCTATAAAACTAATAG

AGCAGGAAATTGATCCCGACTCAACCATCCTGGACATAGGCAGCGC

GCCAGCAAGGAGGATGATGTCGGATAGGAAGTACCACTGCGTTTGC

CCTATGCGCAGCGCAGAAGACCCTGAGAGACTCGCCAACTACGCG

AGAAAACTAGCATCTGCCGCAGGAAAAGTCTTGGACAGAAACATC

TCCGAAAAAATTGGAGATCTACAAGCAGTAATGGCTGTACCAGACG

CAGAAACGCCCACATTCTGCTTGCACACTGACGTCTCATGTAGACA

AAGGGCGGACGTCGCTATATACCAGGATGTCTACGCCGTGCATGCA

CCAACATCGCTGTACCACCAGGCGATTAAAGGAGTCCGTGTAGCAT

ACTGGATAGGGTTTGATACAACCCCGTTCATGTATAATGCCATGGC

AGGTGCATACCCCTCGTACTCGACAAACTGGGCAGATGAGCAGGTG

CTGAAGGCAAAGAACATAGGATTATGTTCAACAGACCTGACGGAA

GGTAGACGAGGTAAATTGTCTATCATGAGAGGAAAAAAGATGAAG

CCATGTGACCGCGTACTGTTCTCAGTCGGGTCAACGCTTTACCCGG

AGAGCCGTAAGCTTCTTAAGAGTTGGCACTTACCTTCAGTGTTCCAT

CTAAAAGGGAAGCTCAGCTTCACGTGCCGCTGTGATACAGTGGTTT

CGTGTGAAGGCTATGTCGTTAAGAGAATAACGATTAGCCCGGGCCT

CTACGGTAAAACCACAGGGTACGCAGTAACCCACCATGCAGACGG

ATTCCTAATGTGCAAAACAACCGATACGGTAGATGGCGAGAGAGT

GTCATTTTCGGTATGCACGTACGTACCCGCAACCATTTGTGATCAAA

TGACAGGTATTCTTGCCACGGAGGTTACACCGGAGGATGCACAGAA

GCTGCTGGTGGGACTGAACCAGAGGATAGTGGTCAATGGCAGAAC

GCAGAGGAACACGAACACAATGAAGAATTACTTGCTTCCTGTAGTT

GCCCAAGCCTTCAGTAAGTGGGCAAAGGAATGCCGGAAAGATATG

GAAGATGAAAAACTTTTGGGCATCAGAGAAAGGACACTGACATGC

TGCTGCCTTTGGGCGTTCAAGAAGCAGAAGACACACACGGTCTACA

AGAGGCCTGACACTCAGTCAATTCAGAAAGTCCCAGCCGAATTTGA

CAGCTTTGTGGTACCAAGTCTGTGGTCATCTGGACTGTCGATCCCGC

TACGGACCAGAATCAAGTGGCTGCTAAGCAAAGTGCCAAAGACTG

ATTTGATCCCTTACAGCGGTGACGCCAAAGAAGCCCGCGACGCTGA

AAAAGAAGCAGAAGAAGAACGAGAAGCGGAGCTAACTCGCGAGG

CACTACCACCACTACAGGCGGCACAGGACGACGTCCAGGTCGAAA

TTGACGTGGAACAGCTCGAAGACAGAGCTGGGGCAGGAATAATTG

AAACTCCAAGAGGAGCTATCAAAGTCACTGCCCAACCAACAGACC

ACGTCGTGGGAGAGTACTTGGTACTTTCCCCGCAGACCGTGTTACG

AAGCCAGAAGCTCAGCCTGATCCACGCATTGGCGGAACAAGTGAA

GACATGCACACACAGCGGACGGGCAGGAAGGTACGCGGTCGAAGC

-88- SEQ ID NO Sequence

ATATGACGGCAGAATCCTTGTGCCCTCAGGCTATGCAATATCACCT

GAAGACTTCCAGAGCCTGAGCGAAAGTGCGACGATGGTGTACAAC

GAAAGGGAGTTCGTAAATAGGAAATTACACCATATCGCGTTGCACG

GACCAGCCCTGAACACTGACGAGGAGTCGTACGAGCTGGTAAGGG

CAGAAAGGACAGAGCATGAGTACGTCTATGATGTGGACCAAAGAA

GGTGCTGCAAGAAAGAGGAGGCAGCCGGGCTGGTACTGGTCGGCG

ACTTGACCAACCCGCCCTACCATGAGTTCGCATATGAAGGGCTGAG

AATCCGCCCCGCCTGCCCATACAAGACCGCAGTAATAGGGGTCTTT

GGAGTGCCAGGATCCGGCAAATCAGCAATCATTAAGAACCTAGTTA

CCAGGCAAGACCTAGTGACCAGTGGAAAGAAAGAAAACTGCCAAG

AAATCTCCACCGACGTGATGCGACAGAGGAACCTGGAGATATCTGC

ACGCACGGTCGACTCACTGCTCTTGAACGGATGCAATAGACCAGTC

GACGTGTTGTACGTCGACGAAGCTTTTGCGTGCCATTCTGGCACGCT

ACTTGCTCTGATAGCCTTGGTGAGACCGAGGCAGAAAGTCGTGCTA

TGCGGTGATCCGAAACAGTGCGGCTTCTTCAATATGATGCAGATGA

AAGTTAACTACAACCATAACATCTGCACCCAAGTGTACCATAAAAG

TATTTCCAGGCGGTGTACACTGCCTGTGACTGCCATTGTGTCCTCGT

TGCATTACGAAGGCAAAATGCGCACAACAAATGAGTACAACAAGC

CAATTGTAGTGGATACTACAGGCTCGACAAAACCCGACCCCGGAGA

CCTTGTGCTAACATGTTTCAGAGGGTGGGTTAAGCAACTGCAAATT

GACTATCGTGGACACGAGGTCATGACAGCAGCTGCATCTCAGGGGC

TAACCAGAAAAGGGGTCTATGCCGTCAGGCAAAAAGTTAATGAAA

ACCCCCTTTACGCATCAACATCAGAGCACGTGAACGTGCTACTGAC

GCGTACGGAAGGCAAACTAGTATGGAAGACACTTTCTGGAGACCC

ATGGATAAAGACACTGCAGAACCCGCCGAAAGGAAATTTTAAAGC

AACAATTAAGGAATGGGAAGTGGAACATGCTTCAATAATGGCGGG

TATCTGTAACCACCAAGTGACCTTTGACACGTTCCAGAATAAAGCC

AATGTCTGCTGGGCGAAGAGCTTAGTCCCCATCCTAGAAACAGCAG

GGATAAAATTAAACGACAGGCAGTGGTCCCAGATAATCCAGGCTTT

TAAAGAAGACAGAGCATACTCACCCGAGGTGGCCCTGAATGAGAT

ATGCACGCGCATGTACGGGGTAGACCTGGACAGCGGACTGTTCTCT

AAACCACTGGTGTCCGTGCATTATGCGGATAATCACTGGGACAACA

GGCCGGGAGGGAAGATGTTCGGATTCAACCCCGAAGCGGCGTCCA

TACTGGAGAGGAAATACCCGTTTACAAAAGGGAAGTGGAATACCA

ACAAGCAAATCTGTGTGACTACTAGGAGGATTGAAGATTTTAACCC

GAACACCAACATTATACCTGCCAACAGGAGATTACCGCATTCATTG

GTGGCCGAACATCGCCCGGTAAAAGGGGAGAGGATGGAATGGTTG

GTCAACAAAATAAATGGCCACCATGTGCTCCTGGTCAGCGGCTACA

ACCTCGTTCTGCCCACTAAGAGAGTCACCTGGGTGGCGCCGCTGGG

CATTCGGGGAGCTGACTACACATACAACCTAGAGTTAGGCCTACCA

GCAACGCTCGGTAGATATGACCTAGTGATTATAAACATCCACACAC

CCTTTCGCATACATCATTACCAACAGTGCGTGGATCACGCAATGAA

GCTGCAGATGCTCGGAGGAGACTCCCTGAGACTGCTCAAGCCGGGT

GGTTCATTACTGATCAGGGCATACGGCTACGCAGACAGAACAAGCG

AACGAGTAGTCTGCGTATTGGGACGCAAGTTTCGATCATCCAGAGC

GTTGAAACCGCCGTGCGTCACTAGCAACACCGAGATGTTTTTCTTGT

TCAGCAACTTTGATAACGGCAGAAGGAACTTTACGACGCACGTAAT

GAACAACCAGCTGAATGCTGCTTTTGTTGGTCAGGCCACCCGAGCA

GGGTGCGCACCGTCGTACCGGGTTAAACGCATGGACATCGCAAAG

-89- SEQ ID NO Sequence

AACGATGAAGAGTGTGTAGTCAACGCCGCCAACCCTCGTGGGCTAC

CAGGCGATGGCGTCTGTAAAGCAGTATACAAAAAATGGCCGGAGT

CCTTCAAGAACAGTGCAACACCAGTGGGAACCGCAAAGACAGTCA

TGTGCGGTACATACCCGGTAATCCATGCAGTAGGACCTAATTTCTC

AAATTACTCTGAGTCCGAAGGAGACCGGGAATTGGCAGCTGCTTAC

CGAGAAGTCGCTAAGGAGGTGACTAGACTAGGAGTAAACAGCGTA

GCTATACCGCTCCTTTCCACCGGTGTGTACTCTGGAGGGAAAGACA

GGCTGACTCAGTCACTAAACCACCTTTTTACAGCATTAGACTCAACT

GATGCAGATGTGGTTATCTACTGCCGCGACAAGGAGTGGGAGAAG

AAAATAGCTGAGGCCATACAAATGAGGACCCAAGTGGAATTACTA

GACGAACACATCTCTGTAGACTGCGATATCATCCGAGTGCACCCTG

ACAGCAGTTTGGCAGGTAGAAAAGGGTACAGCACTACAGAAGGTT

CACTGTACTCCTACTTGGAAGGGACACGGTTCCATCAGACGGCAGT

GGACATGGCAGAAGTATACACCATGTGGCCAAAGCAGACGGAGGC

TAATGAACAAGTTTGCTTGTACGCATTGGGGGAAAGTATAGAATCA

ATCAGGCAAAAGTGCCCAGTGGATGACGCAGATGCATCGTCGCCCC

CAAAAACCGTCCCGTGCCTCTGCCGTTATGCCATGACACCCGAACG

AGTCACCAGGCTTCGTATGAACCATGTCACAAGCATAATAGTATGC

TCATCATTCCCCCTTCCAAAGTATAAAATAGAAGGAGTGCAGAAAG

TCAAGTGTTCTAAAGTGATGCTGTTCGACCATAACGTGCCATCACG

CGTTAGTCCAAGGGAATATAAATCGCCTCAGGAGACCGCACAAGA

AGTAAGTTCGACCACGTCACTGACGCACAGCCAATTCGACCTTAGC

GTTGACGGTGAGGAACTGCCCGCTCCGTCTGACTTGGAAGCTGACG

CTCCGATTCCGGAACCAACACCAGACGACAGAGCGGTACTTACTTT

GCCTCCCACGATTGATAATTTTTCGGCTGTGTCAGACTGGGTAATGA

ATACCGCGCCAGTCGCACCACCCAGAAGAAGACGTGGGAAAAACT

TGAATGTCACCTGCGACGAGAGAGAAGGGAACGTACTTCCCATGGC

TAGCGTTCGGTTCTTCAGAGCGGATCTGCACTCCATCGTACAGGAA

ACGGCAGAGATACGCGATACGGCCGCGTCCCTCCAGGCGCCCCTGA

GTGTCGCTACAGAACCGAATCAACTGCCGATCTCATTTGGAGCACC

AAACGAGACTTTCCCCATAACGTTCGGGGATTTTGATGAAGGGGAG

ATTGAAAGCTTGTCCTCTGAGTTACTGACCTTTGGGGACTTCTCGCC

GGGCGAAGTGGATGACCTGACAGACAGCGACTGGTCCACGTGTTCA

GACACGGACGACGAATTATGACTAGATAGGGCAGGTGGGTACATA

TTCTCATCTGACACCGGCCCCGGCCACCTGCAACAGAGGTCTGTCC

GTCAGACAGTACTGCCGGTAAATACCTTGGAGGAAGTTCAGGAGG

AGAAATGTTACCCACCTAAGTTGGATGAAGTGAAAGAGCAGTTGTT

ACTTAAGAAACTCCAGGAAAGTGCGTCCATGGCTAACAGAAGCAG

GTACCAATCCCGCAAAGTAGAGAACATGAAAGCAACAATAGTCCA

AAGGCTGAAGGGTGGTTGCAAACTTTATTTAATGTCGGAGACCCCG

AAAGTTCCTACCTACCGAACTACATATCCGGCACCAGTGTACTCAC

CCCCAATCAATATCCGACTGTCCAACCCCGAGTCTGCTGTGGCAGC

GTGCAATGAGTTCCTAGCAAGGAACTATCCGACAGTTGCGTCGTAC

CAAATCACCGATGAGTACGATGCATACCTAGACATGGTGGACGGGT

CGGAAAGTTGCCTTGACCGGGCGACGTTCAACCCATCAAAGCTTAG

AAGTTATCCAAAACAGCACTCCTACCATGCACCCACAATCAGAAGT

GCCGTACCTTCCCCGTTCCAGAACACGCTGCAGAACGTACTGGCTG

CTGCCACGAAAAGAAATTGCAACGTCACACAGATGAGAGAACTGC

CTACTTTGGATTCAGCGGTATTTAATGTTGAGTGCTTTAAAAAATTT

-90- SEQ ID NO Sequence

GCGTGCAATCAAGAATACTGGAAGGAATTTGCCGCCAGCCCTATTA

GGATAACGACTGAGAACTTGACAACTTATGTCACAAAACTAAAAG

GACCAAAAGCAGCAGCACTGTTTGCCAAGACACATAACCTGCTACC

ACTGCAGGAGGTGCCGATGGACAGGTTTACTGTAGACATGAAAAG

GGACGTGAAGGTGACTCCGGGGACGAAGCACACTGAGGAAAGACC

TAAAGTGCAGGTCATACAGGCAGCCGAACCTTTGGCAACAGCATAT

CTGTGTGGGATCCACAGAGAGTTGGTCAGAAGGCTGAATGCAGTCC

TTCTACCTAATGTACACACGCTGTTTGACATGTCTGCCGAGGACTTT

GACGCCATTATTGCCGCGCACTTCAAGCCGGGGGACGCCGTATTGG

AAACCGATATAGCCTCCTTTGACAAGAGCCAAGACGACTCATTGGC

GCTCACTGCTCTAATGTTGCTAGAGGATTTGGGGGTGGATCATCCC

CTGTTGGACTTGATAGAGGCTGCCTTCGGGGAGATCTCCAGCTGCC

ACCTACCGACGGGCACCCGTTTTAAGTTCGGCGCCATGATGAAGTC

TGGTATGTTCCTAACCCTGTTCGTCAACACACTGCTAAACATCACCA

TAGCCAGCCGAGTGCTGGAGGACCGCTTGACAAGGTCTGCGTGCGC

GGCCTTCATCGGCGACGACAATATAATACATGGGGTTGTCTCTGAC

GAACTGATGGCAGCAAGGTGTGCTACATGGATGAACATGGAAGTG

AAGATCATAGATGCGGTCGTGTCTCAGAAAGCCCCGTACTTCTGCG

GAGGGTTTATACTGTATGACACAGTAGCAGGCACGGCCTGCAGAGT

GGCAGACCCGCTAAAGCGGCTGTTCAAGCTGGGCAAACCGCTGGC

AGCGGGAGATGAACAAGACGACGACAGAAGACGTGCACTGGCTGA

CGAAGTGGTTAGATGGCAACGAACAGGACTAACTGATGAGCTAGA

AAAAGCGGTACACTCCAGGTATGAAGTGCAGGGCATATCTGTCGTG

GTAATGTCTATGGCCACCTTTGCAAGCTCTAGATCTAACTTTGAGAA

GCTCAGAGGACCCGTCGTAACCCTGTACGGTGGTCCTAAATAGGTA

CGCACTACAGCTACCTATTTCGTCAGAAACCAATCGCAGCTACTTG

CATACCTACCAGCTACAATGGAGTTCATCCCGACGCAAACTTTCTA

TAACAGAAGGTACCAACCCCGACCCTGGGCCCCACGCCCTACAATT

CAAGTAATTAGACCTAGACCACGTCCACAGAGGCAGGCTGGGCAA

CTCGCCCAGCTGATCTCCGCAGTCAACAAATTGACCATGCGCGCGG

TACCTCAACAGAAGCCTCGCAGAAATCGGAAAAACAAGAAGCAAA

GGCAGAAGAAGCAGGCGCCGCAAAACGACCCAAAGCAAAAGAAG

CAACCACCACAAAAGAAGCCGGCTCAAAAGAAGAAGAAACCAGGC

CGTAGGGAGAGAATGTGCATGAAAATTGAAAATGATTGCATCTTCG

AAGTCAAGCATGAAGGCAAAGTGATGGGCTACGCATGCCTGGTGG

GGGATAAAGTAATGAAACCAGCACATGTGAAGGGAACTATCGACA

ATGCCGATCTGGCTAAACTGGCCTTTAAGCGGTCGTCTAAATACGA

TCTTGAATGTGCACAGATACCGGTGCACATGAAGTCTGATGCCTCG

AAGTTTACCCACGAGAAACCCGAGGGGTACTATAACTGGCATCACG

GAGCAGTGCAGTATTCAGGAGGCCGGTTCACTATCCCGACGGGTGC

AGGCAAGCCGGGAGACAGCGGCAGACCGATCTTCGACAACAAAGG

ACGGGTGGTGGCCATCGTCCTAGGAGGGGCCAACGAAGGTGCCCG

CACGGCCCTCTCCGTGGTGACGTGGAACAAAGACATCGTCACAAAA

ATTACCCCTGAGGGAGCCGAAGAGTGGAGCCTCGCCCTCCCGGTCT

TGTGCCTGTTGGCAAACACTACATTCCCCTGCTCTCAGCCGCCTTGC

ACACCCTGCTGCTACGAAAAGGAACCGGAAAGCACCTTGCGCATGC

TTGAGGACAACGTGATGAGACCCGGATACTACCAGCTACTAAAAGC

ATCGCTGACTTGCTCTCCCCACCGCCAAAGACGCAGTACTAAGGAC

AATTTTAATGTCTATAAAGCCACAAGACCATATCTAGCTCATTGTCC

-91- SEQ ID NO Sequence

TGACTGCGGAGAAGGGCATTCGTGCCACAGCCCTATCGCATTGGAG

CGCATCAGAAATGAAGCAACGGACGGAACGCTGAAAATCCAGGTC

TCTTTGCAGATCGGGATAAAGACAGATGACAGCCACGATTGGACCA

AGCTGCGCTATATGGATAGCCATACGCCAGCGGACGCGGAGCGAG

CCGGATTGCTTGTAAGGACTTCAGCACCGTGCACGATCACCGGGAC

CATGGGACACTTTATTCTCGCCCGATGCCCGAAAGGAGAGACGCTG

ACAGTGGGATTTACGGACAGCAGAAAGATCAGCCACACATGCACA

CACCCGTTCCATCATGAACCACCTGTGATAGGTAGGGAGAGGTTCC

ACTCTCGACCACAACATGGTAAAGAGTTACCTTGCAGCACGTACGT

GCAGAGCACCGCTGCCACTGCTGAGGAGATAGAGGTGCATATGCCC

CCAGATACTCCTGACCGCACGCTGATGACGCAGCAGTCTGGCAACG

TGAAGATCACAGTTAATGGGCAGACGGTGCGGTACAAGTGCAACT

GCGGTGGCTCAAACGAGGGACTGACAACCACAGACAAAGTGATCA

ATAACTGCAAAATTGATCAGTGCCATGCTGCAGTCACTAATCACAA

GAATTGGCAATACAACTCCCCTTTAGTCCCGCGCAACGCTGAACTC

GGGGACCGTAAAGGAAAGATCCACATCCCATTCCCATTGGCAAACG

TGACTTGCAGAGTGCCAAAAGCAAGAAACCCTACAGTAACTTACGG

AAAAAACCAAGTCACCATGCTGCTGTATCCTGACCATCCGACACTC

TTGTCTTACCGTAACATGGGACAGGAACCAAATTACCACGAGGAGT

GGGTGACACACAAGAAGGAGGTTACCTTGACCGTGCCTACTGAGG

GTCTGGAGGTCACTTGGGGCAACAACGAACCATACAAGTACTGGCC

GCAGATGTCTACGAACGGTACTGCTCATGGTCACCCACATGAGATA

ATCTTGTACTATTATGAGCTGTACCCCACTATGACTGTAGTCATTGT

GTCGGTGGCCTCGTTCGTGCTTCTGTCGATGGTGGGCACAGCAGTG

GGAATGTGTGTGTGCGCACGGCGCAGATGCATTACACCATATGAAT

TAACACCAGGAGCCACTGTTCCCTTCCTGCTCAGCCTGCTATGCTGC

GTCAGAACGACCAAGGCGGCCACATATTACGAGGCTGCGGCATATC

TATGGAACGAACAGCAGCCCCTGTTCTGGTTGCAGGCTCTTATCCC

GCTGGCCGCCTTGATCGTCCTGTGCAACTGTCTGAAACTCTTGCCAT

GCTGCTGTAAGACCCTGGCTTTTTTAGCCGTAATGAGCATCGGTGCC

CACACTGTGAGCGCGTACGAACACGTAACAGTGATCCCGAACACG

GTGGGAGTACCGTATAAGACTCTTGTCAACAGACCGGGTTACAGCC

CCATGGTGTTGGAGATGGAGCTACAATCAGTCACCTTGGAACCAAC

ACTGTCACTTGACTACATCACGTGCGAGTACAAAACTGTCATCCCC

TCCCCGTACGTGAAGTGCTGTGGTACAGCAGAGTGCAAGGACAAG

AGCCTACCAGACTACAGCTGCAAGGTCTTTACTGGAGTCTACCCAT

TTATGTGGGGCGGCGCCTACTGCTTTTGCGACGCCGAAAATACGCA

ATTGAGCGAGGCACATGTAGAGAAATCTGAATCTTGCAAAACAGA

GTTTGCATCGGCCTACAGAGCCCACACCGCATCGGCGTCGGCGAAG

CTCCGCGTCCTTTACCAAGGAAACAACATTACCGTAGCTGCCTACG

CTAACGGTGACCATGCCGTCACAGTAAAGGACGCCAAGTTTGTCGT

GGGCCCAATGTCCTCCGCCTGGACACCTTTTGACAACAAAATCGTG

GTGTACAAAGGCGACGTCTACAACATGGACTACCCACCTTTTGGCG

CAGGAAGACCAGGACAATTTGGTGACATTCAAAGTCGTACACCGG

AAAGTAAAGACGTTTATGCCAACACTCAGTTGGTACTACAGAGGCC

AGCAGCAGGCACGGTACATGTACCATACTCTCAGGCACCATCTGGC

TTCAAGTATTGGCTGAAGGAACGAGGAGCATCGCTACAGCACACG

GCACCGTTCGGTTGCCAGATTGCGACAAACCCGGTAAGAGCTGTAA

ATTGCGCTGTGGGGAACATACCAATTTCCATCGACATACCGGATGC

-92- SEQ ID NO Sequence

GGCCTTTACTAGGGTTGTCGATGCACCCTCTGTAACGGACATGTCAT

GCGAAGTACCAGCCTGCACTCACTCCTCCGACTTTGGGGGCGTCGC

CATCATCAAATACACAGCTAGCAAGAAAGGTAAATGTGCAGTACAT

TCGATGACCAACGCCGTTACCATTCGAGAAGCCGACGTAGAAGTAG

AGGGGAACTCCCAGCTGCAAATATCCTTCTCAACAGCCCTGGCAAG

CGCCGAGTTTCGCGTGCAAGTGTGCTCCACACAAGTACACTGCGCA

GCCGCATGCCACCCTCCAAAGGACCACATAGTCAATTACCCAGCAT

CACACACCACCCTTGGGGTCCAGGATATATCCACAACGGCAATGTC

TTGGGTGCAGAAGATTACGGGAGGAGTAGGATTAATTGTTGCTGTT

GCTGCCTTAATTTTAATTGTGGTGCTATGCGTGTCGTTTAGCAGGCA

CTAAACCGATGATAAGGCACGAAATAACTAAATAGCAAAAGTAGA

AAGTACATAACCAGGTATATGTGCCCCTTAAGAGGCACAATATATA

TAGCTAAGCACTATTAGATCAAAGGGCTATACAACCCCTGAATAGT

AACAAAACACAAAAACCAATAAAAATCATAAAAAGAAAAATCTCA

TAAACAGGTATAAGTGTCCCCTAAGAGACACATTGTATGTAGGTAG

TAAGTATAGATCAAAGGGCTATATTAACCCCTGAATAGTAACAAAA

CACAAAAACAATAAAAACTACAAAATAGAAAATCTATAAACAAAA

GTAGTTCAAAGGGCTACAAAACCCCTGAATAGTAACAAAACATAA

AATGTAATAAAAATTAAGTGTGTACCCAAAAGAGGTACAGTAAGA

ATCAGTGAATATCACAATTGGCAACGAGAAGAGACGTAGGTATTTA

AGCTTCCTAAAAGCAGCCGAACTCACTTTGAGACGTAGGCATAGCA

TACCGAACTCTTCCACTATTCTCCGAACCCACAGGGACGTAGGAGA

TGTTATTTTGTTTTTAATATTTC

SEQ ID NO: 5 MEFIPTQTFY RRYQPRPWAPRPTIQVIRPRPRPQRQAGQLAQLISAVN

KLTMRAVPQQKPRRNRXNKKQRQKKQAPQNDPKQKKQPPQKKPAQ

KKXKPGRRERMCMKIENDCIFEVKHEGKVMGYACLVGDKVMKPAHV

KGTIDNADLAKLAFKRSSKYDLECAQIPVHMKSDASKFTHEKPEGYYN

WHHGAVQYSGGRFTIPTGAGKPGDSGRPIFDNKGRVVAIVLGGANEG

ARTALSVVTWNKDIVTKITPEGAEEWSLALPVLCLLANTTFPCSQPPCT

PCCYEKEPESTLRMLEDNVMRPGYYQLLKASLTCSPHRQRRSTKDNF

NVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLKIQVSLQIGI

KTDDSHDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILA

RCPKGETLTVGFTDSRKISHTCTHPFHHEPPVIGRERFHSRPQHGKELPC

STYVQSTAATAEEIEVHMPPDTPDRTLMTQQSGNVKITV GQTVRYKC

NCGGSNEGLTTTDKVINNCKIDQCHAAVTNHKNWQYNSPLVPRNAEL

GDRKGKIHIPFPLANVTCRVPKARNPTVTYGK QVTMLLYPDHPTLLS

YRNMGQEPNYHEEWVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQ

MSTNGTAHGHPHEIILYYYELYPTMTVVIVSVASFVLLSMVGTAVGMC

VCARRRCITPYELTPGATVPFLLSLLCCVRTTKAATYYEAAAYLWNEQ

QPLFWLQALIPLAALIVLCNCLKLLPCCCKTLAFLAVMSIGAHTVSAYE

HVTVIPNTVGVPYKTLV RPGYSPMVLEMELQSVTLEPTLSLDYITCEY

KTVIPSPYVKCCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDA

ENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLRVLYQGN ITVAA

YANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGDVY MDYPPF

GAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGF

KYWLKERGASLQHTAPFGCQIATNPVRAVNCAVGNIPISIDIPDAAFTR

VVDAPSVTDMSCEVPACTHSSDFGGVAIIKYTASKKGKCAVHSMTNA

VTIREADVEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAACHPPK

DHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVVLC

-93- SEQ ID NO Sequence

VSFSRH

SEQ ID NO: 6 MDPVYVDIDADSAFLKALQPvAYPMFEVEPRQVTPNDHANARAFSHLA

IKLIEQEIDPDSTILDIGSAPARRMMSDRKYHCVCPMRSAEDPERLANY

ARKLASAAGKVLDRNISEKIGDLQAVMAVPDAETPTFCLHTDVSCRQR

ADVAIYQDVYAVHAPTSLYHQAIKGVRVAYWIGFDTTPFMYNAMAG

AYPSYSTNWADEQVLKAKNIGLCSTDLTEGRRGKLSIMRGKKMKPCD

RVLFSVGSTLYPESRKLLKSWHLPSVFHLKGKLSFTCRCDTVVSCEGY

VVKRITISPGLYGKTTGYAVTHHADGFLMCKTTDTVDGERVSFSVCTY

VPATICDQMTGILATEVTPEDAQKLLVGLNQRIVV GRTQRNTNTMK

NYLLPVVAQAFSKWAXECRKDMEDEKLLGIRERTLTCCCLWAFKKQ

KTHTVYKRPDTQSIQKVPAEFDSFVVPSLWSSGLSIPLRTRIKWLLSKV

PKTDLIPYSGDAKEARDAEKEAEEEREAELTREALPPLQAAQDDVQVE

IDVEQLEDRAGAGIIETPRGAIKVTAQPTDHWGEYLVLSPQTVLRSQK

LSLIHALAEQVKTCTHSGRAGRYAVEAYDGRILVPSGYAISPEDFQSLS

ESATMVYNEREFVNRKLHHIALHGPALNTDEESYELVRAERTEHEYV

YDVDQRRCCKKEEAAGLVLVGDLTNPPYHEFAYEGLRIRPACPYKTA

VIGVFGVPGSGKSAIIK LVTRQDLVTSGKKENCQEISTDVMRQRNLEI

SARTVDSLLLNGCNRPVDVLYVDEAFACHSGTLLALIALVRPRQKVVL

CGDPKQCGFFNMMQMKV Y HNICTQVYHKSISRRCTLPVTAIVSSL

HYEGKMRTTNEYNKPIVVDTTGSTKPDPGDLVLTCFRGWVKQLQIDY

RGHEVMTAAASQGLTRKGVYAVRQKVNENPLYASTSEHV VLLTRT

EGKLVWKTLSGDPWIKTLQNPPKGNFKATIKEWEVEHASIMAGICNH

QVTFDTFQNKANVCWAKSLVPILETAGIKLNDRQWSQIIQAFKEDRAY

SPEVALNEICTRMYGVDLDSGLFSKPLVSVHYADNHWDNRPGGKMFG

FNPEAASILERKYPFTKGKWNTNKQICVTTRRIEDFNPNTNIIPANRRLP

HSLVAEHRPVKGERMEWLVNKINGHHVLLVSGYNLVLPTKRVTWVA

PLGIRGADYTYNLELGLPATLGRYDLVIINIHTPFRIHHYQQCVDHAMK

LQMLGGDSLRLLKPGGSLLIRAYGYADRTSERVVCVLGRKFRSSRALK

PPCVTSNTEMFFLFSNFDNGRRNFTTHVMNNQLNAAFVGQATRAGCA

PSYRVKRMDIAK DEECVVNAANPRGLPGDGVCKAVYKKWPESFKN

SATPVGTAKTVMCGTYPVIHAVGPNFSNYSESEGDRELAAAYREVAK

EVTRLGVNSVAIPLLSTGVYSGGKDRLTQSLNHLFTALDSTDADVVIY

CRDKEWEKKIAEAIQMRTQVELLDEHISVDCDIIRVHPDSSLAGRKGYS

TTEGSLYSYLEGTRFHQTAVDMAEVYTMWPKQTEANEQVCLYALGE

SIESIRQKCPVDDADASSPPKTVPCLCRYAMTPERVTRLRMNHVTSIIV

CSSFPLPKYKIEGVQKVKCSKVMLFDHNVPSRVSPREYKSPQETAQEV

-94- SEQ ID NO Sequence

SSTTSLTHSQFDLSVDGEELPAPSDLEADAPIPEPTPDDRAVLTLPPTID

NFSAVSDWV NTAPVAPPRRRRGKNLNVTCDEREGNVLPMASVRFF

RADLHSIVQETAEIRDTAASLQAPLSVATEPNQLPISFGAPNETFPITFGD

FDEGEIESLSSELLTFGDFSPGEVDDLTDSDWSTCSDTDDELLDRAGGY

IFSSDTGPGHLQQRSVRQTVLPVNTLEEVQEEKCYPPKLDEVKEQLLLK

KLQESASMANRSRYQSRKVENMKATIVQRLKGGCKLYLMSETPKVPT

YRTTYPAPVYSPPINIRLSNPESAVAACNEFLARNYPTVASYQITDEYD

AYLDMVDGSESCLDRATFNPSKLRSYPKQHSYHAPTIRSAVPSPFQNT

LQNVLAAATKPNCNVTQMRELPTLDSAVFTSiVECFKKFACNQEYWKE

FAASPIRITTENLTTYVTKLKGPKAAALFAKTHNLLPLQEVPMDRFTVD

MKRDVKVTPGTKHTEERPKVQVIQAAEPLATAYLCGIHRELVRRLNA

VLLPNVHTLFDMSAEDFDAIIAAHFKPGDAVLETDIASFDKSQDDSLAL

TALMLLEDLGVDHPLLDLIEAAFGEISSCHLPTGTRFKFGAMMKSGMF

LTLFV TLLNITIASRVLEDRLTRSACAAFIGDDNIIHGVVSDELMAARC

ATWMNMEVKIIDAVVSQKAPYFCGGFILYDTVAGTACRVADPLKLRLF

KLGKPLAAGDEQDDDRRRALADEVVRWQRTGLTDELEKAVHSRYEV

QGISVVVMSMATFASSRSNFEKLRGPVVTLYGGPK

SEQ ID NO: 7 ATGGCGGGCAAGTGACACTTGTTCCGCCGGACGTCTCTAAGCTCTT

CCTCTGCATTGCAAGAGTTTACCACTCAGTATGTCGAAAGTCTTTGT

AGATATCGAGGCCGAGAGCCCGTTTTTAAAATCACTACAGAGAGCG

TTTCCAGCATTTGAAGTGGAAGCACAGCAGGTTACACCAAATGACC

ATGCTAACGCCAGAGCATTCTCGCATCTGGCTACTAAATTGATAGA

GCAAGAGACCGAAAAAGACACACTCATCCTGGATATCGGCAGTGC

GCCTGCCAGGAGAATGATGTCTGAGCACACGTACCATTGTGTGTGC

CCAATGCGCAGCGCTGAGGACCCAGAGCGTCTGCTGTATTATGCCA

GGAAGTTAGCCAAGGCATCAGGTGAAGTCGTTGACAGAAATATTGC

AGCGAAGATAGACGACCTGCAGTCAGTGATGGCGACCCCGGACAA

TGAGTCACGGACATTTTGCCTTCACACAGATCAGACATGCAGGACT

CCAGCTGAGGTGGCAGTCTATCAGGATGTCTATGCAGTTCACGCAC

CGACTTCTTTGTACTTCCAGGCAATGAAAGGAGTACGCACAGCGTA

CTGGATTGGGTTCGACACTACCCCATTCATGTTCGATACAATGGCC

GGGGCTTATCCAACATATGCAACCAACTGGGCCGACGAACAGGTGT

TGAAAGCCAGGAACATAGGACTGTGCTCCGCGGCACTGACTGAGG

GACACCTTGGCAAGCTATCAATAATGAGGAAGAAGAGAATGAAAC

CGAGTGACCAGATAATGTTCTCGGTAGGTTCCACATTGTATACGGA

AAGCCGACGTCTGCTAAAGAGTTGGCATCTGCCGTCAGTGTTTCAT

CTGAAAGGACGACAATCATATACGTGCCGGTGCGATACAATAGTGT

CATGTGAGGGCTACGTTGTTAAGAAGATAACGATGAGCCCAGGGGT

ATTCGGAAAAACGTCAGGGTACGCCGTCACACATCACGCAGAAGG

ATTTCTGGTATGTAAAACCACTGACACTATCGCAGGAGAACGAGTT

TCGTTCCCCGTTTGCACGTATGTGCCGTCGACGATCTGTGACCAAAT

GACAGGCATTCTGGCGACTGAGGTCACGCCCGAGGATGCGCAAAA

ATTGCTTGTCGGATTAAACCAGAGGATCGTCGTGAATGGGAGGACC

CAGAGAAACACTAATACAATGAAGAACTACCTGCTCCCAGTGGTGT

CACAAGCATTTAGTAAGTGGGCGAAAGAGTATCGGCTTGACCAAG

ACGATGAGAAAAACATGGGTATGCGCGAACGCACCCTGACTTGCTG

CTGCCTGTGGGCCTTTAAGACCCATAAGAATCACACCATGTATAAG

AAGCCAGACACACAGACGATCGTCAGTGTCCCGTCGGAGTTCAACT

CCTTCGTGATCCCTAGCCTGTGGTCAGCGGGGTTGTCGATCGGAATT

-95- SEQ ID NO Sequence

AGACACAGGATCAGGCTTCTTTTGCAGTCAAGACGTGCCGAGCCGC

TCGTTCCATTTATGGATGCTAGTGAAGCCAGAGCAGCAGAGAAGGA

GGCTGCAGAAGCTAAGGAGGCAGAAGAGACACTGGCAGCCCTACC

ACCTCTGATCCCGACCGCTCCGCTGCTCGATGACATCCCTGAAGTTG

ATGTAGAGGAGCTGGAGTTTCGAGCAGGAGCCGGTGTTGTCGAAAC

GCCTCGGAACGCCCTCAAAGTTACACCACAAGACAGAGACACTATG

GTAGGTAGCTATCTCGTTCTGTCTCCCCAGACAGTCCTGAAAAGTGT

TAAACTGCAGGTACTGCACTCCTTGGCAGAGCAAGTAAGAATCATT

ACCCACAAAGGCCGTGCAGGGCGCTACCAAGTGGATGCCTATGAC

GGCCGTGTTTTAATCCCGACAGGCGCGGCTATCCCGGTACCCGATT

TCCAGGCTCTAAGTGAGAGTGCGACTATGGTGTACAACGAACGTGA

GTTTATCAATCGCAAATTGTACCACATAGCCGTACATGGGGCAGCC

CTGAACACCGATGAGGAGGGTTACGAGAAAGTGCGGGCCGAAAGG

ACAGATGCCGAGTACGTTTTTGACGTGGATCGCAAACAGTGCGTTA

AGAGGGAGGATGCCGAGGGTCTCGTGATGATCGGAGACCTGGTCA

ACCCACCATTCCACGAATTTGCGTATGAAGGACTGAAACGAAGACC

AGCGGCTCCATACAAAACAACTGTAGTCGGAGTCTTCGGCGTGCCT

GGATCTGGAAAATCGGGTATAATCAAAAGCCTGGTCACACGTGCGG

ACTTGGTCACCAGTGGAAAGAGAGAGAACTGTCAGGAGATCATGC

ACGACGTCAAGAGATACAGAGACCTGGACATCACTGCAAAAACGG

TGGATTCCGTACTGTTGAATGGCGTTAAGCAGACTGTCGACGTCTT

GTACGTCGATGAGGCTTTCGCTTGCCATGCAGGGACATTGCTAGCG

CTTATCGCCACGGTGCGACCACGTAAGAAGGTTGTGCTTTGCGGCG

ACCCGAAACAGTGCGGTTTCTTCAACTTGATGCAACTACAGGTTAA

CTTTAACCACAACATCTGCACCGAGGTACACCATAAGAGCATTTCC

AGAAGATGCACGCTACCAGTCACCGCCATTGTCTCAACACTACACT

ATGAGGGCAAAATGCGCACCACTAACCCATACAATAAACCCGTTGT

CATTGACACCACAGGCCAGACTAAACCAAACCGCGAGGACATTGT

GTTAACATGTTTCCGCGGTTGGGTTAAGCAGCTGCAACTTGACTATC

GTGGACACGAAGTCATGACAGCCGCTGCATCCCAGGGGTTGACCCG

AAAGGGCGTGTACGCCGTCCGAATGAAGGTCAACGAAAACCCACT

GTACGCACAATCATCGGAGCATGTTAATGTTCTACTGACACGCACA

GAGGGCAGACTAGTGTGGAAGACACTGTCAGGAGATCCCTGGATC

AAAACTTTGAGCAACATCCCAAAAGGGAATTTCACAGCAACTTTGG

AAGATTGGCAACAAGAGCACGACGCCATTATGAGGGCAATAACAC

AAGAAGCAGCCCCTTTGGACGTGTTCCAAAATAAGGCTAAGGTGTG

TTGGGCCAAGTGCTTGGTACCCGTTTTGGAAACCGCGGGGATCAAG

TTGTCAGCCGCCGATTGGAGCTCAATCATTTTGGCTTTCAAAGAAG

ACAGAGCTTATTCACCAGAGGTTGCACTGAATGAGATTTGCACTAA

AATCTACGGGGCGGATTTGGACAGCGGCCTGTTTTCGGCTCCACGC

GTGTCGCTACACTATACTACAAATCATTGGGATAACTCGCCTGGAG

GAAGGATGTACGGGTTTTCCGTCGAGGCCGCCAACCGCCTAGAACA

ACGGCACCCGTTCTACAGGGGACGGTGGGCTTCTGGGCAGGTGTTG

GTCGCAGAACGAAGAACTCAGCCGATTGACATCACTTGCAACCTAA

TCCCCTTCAACCGGAGACTCCCACACGCGCTGGTCACGGAATATCA

TCCAGTTAAGGGAGAAAGAGTGGAGTGGCTTGTGAATAAGATCCC

AGGCTATCACTTGCTACTGGTTAGCGAGTATAACCTCATACTGCCTA

GAAGGAAGGTAACGTGGATTGCCCCGCCGACTGTGACAGGAGCCG

ATTTAACCCACGACTTGGATTTAGGACTACCGCCTAATGCTGGCAG

-96- SEQ ID NO Sequence

GTATGACCTAGTCTTCGTCAACATGCATACACCGTATAGGCTCCATC

ACTACCAACAATGCGTCGATCACGCCATGAAATTACAGATGCTGGG

CGGCGACGCACTCTACCTGTTGAAACCCGGGGGAAGCCTCCTTTTG

AGAGCCTACGGTTATGCCGATAGAACGAGCGAGGCTGTGGTGACG

GCTCTCGCTCGTCGGTTCTCGTCCTTCAGAGCGGTCAGACCTCCATG

TGTGACTAGTAACACCGAGGTGTTCTTACTGTTCACGAACTTTGACA

ACGGTAGAAGAACAGTAACCCTGCATCCTACAAATGGTAAATTATC

ATCAATTTATGCAGGTACAGTGCTGCAGGCGGCCGGCTGCGCTCCC

GCTTATACTGTCAAAAGGGCAGACATCGCGACCGCCATTGAGGATG

CGGTGGTCAATGCAGCTAACCACCGTGGACAAGTGGGCGACGGAG

TCTGCAGGGCAGTAGCACGGAAATGGCCTCAAGCCTTCCGCAACGC

AGCGACACCTGTCGGAACCGCAAAAACCGTCAAGTGCGACGAGAC

TTACATCATCCACGCGGTGGGTCCAAATTTTAACAATACATCTGAG

GCTGAAGGGGATCGTGACTTGGCGGCGGCATACAGGGCCGTAGCA

GCGGAGATTAACCGACTGTCTATAAGTAGTGTGGCGATTCCACTGC

TTTCCACAGGTATATTCAGTGCAGGAAAAGATAGAGTGCATCAGTC

GCTTTCGCACCTTCTAGCGGCAATGGACACCACTGAAGCACGGGTT

ACTATCTACTGCCGCGATAAAACGTGGGAGCAAAAGATCAAAACA

GTTCTGCAGAATCGCTGCGCCACTGAACTGGTGTCTGATGTGCTAC

AGCTTGAAGTCAATTTGACCAGAGTCCATCCGGACAGCAGCCTGGT

GGGACGTCCAGGGTATAGCACCACTGATGGGACCTTATATTCCTAT

ATGGAAGGTACTAAGTTCCACCAAGCGGCTCTTGACATGGCTGAGA

TCACGACCTTGTGGCCGAGAGTTCAGGATGCAAATGAACACATCTG

CATGTATGCACTGGGCGAGACGATGGACAACATCCGCTCTAGATGC

CCAGTTGAGGATAGTGACTCATCGACTCCACCGAAGACAGTCCCAT

GTCTCTGTCGGTACGCTATGACACCAGAGAGAGTCACAAGACTACG

AATGCATCACACAAAAGATTTTGTGGTCTGCTCGTCTTTCCAGCTAC

CGAAGTACCGCATAGCTGGTGTGCAGCGAGTAAAGTGCGAAAAAG

TGATGCTTTTTGATGCAACTCCACCGGCCTCTGTTAGTCCTGTGCAA

TACCTGACGAGTCACAGTGAAACTACTGTAAGCTTGAGCTCGTTCT

CAATTACATCTGACAGCAGCTCCCTAAGCACCTTCCCGGATCTGGA

GTCACTAGAAGAACTGGGCAATGATCCACAGTCCATGCGGATGGAC

GAGTCTGACAACCGGCAACCCATATCAACGGTAGAACCGGTTGTTC

GACCCGTACCACCTCCGCGTCCTAAACGTGCCAGGCGACTAGCGGC

TGCACGTATGCAGGTCCAGGCGGAAGTGCACCACCCACCCGTCGTC

CAAAGGACGAAACCGGTCCCAGCACCGCGCACCAGTTTGCGTCCCG

TCCCCGCGCCCAGAAGGTGTATGCCAAGACCAGCAGTAGAGCTGCC

CTGGCCGCAGGAGGCCGTCGACATAGAGTTCGGGGCGCCGACCGA

AGAGGAGAGTGAAATCACATTCGGAGACTTTTCTGCTTCGGAGTGG

GAGACCATCAGCAACTCATCCTGACTAGGCCGAGCGGGGGCTTATA

TCTTCTCATCAGACGTCGGTCCAGGGCATCTGCAACAGAAATCAGT

GAGACAGCACGATCTAGAGGTGCCGATTATGGATCGCGTAGTCGAG

GAGAAAGTCTACCCGCCGAAACTAGATGAGGCAAAAGAGAAACAG

CTGCTCCTAAAACTGCAGATGCATGCCACAGACGCCAACCGGAGCC

GGTACCAATCAAGGAAAGTTGAGAACATAAAAGCAACGATCATTG

ACCGGCTGAAACAAGGCAGCGCATCCTACATCTCGGCTGAGGCCAA

TAAAGCAATCACATACCATGTCAAATATGCTAAGCCTCGGTACTCT

GTGCCGGTGATGCAAAGACTTAGCAGTGCAACCACCGCAGTTGCCG

CTTGCAATGAATTCCTGGCCCGGAACTACCCTACAGTGGCGTCATA

-97- SEQ ID NO Sequence

TCAGATCACCGATGAGTACGACGCTTATTTAGATATGGTGGACGGG

TCAGAAAGCTGCCTAGACAGAGCAAACTTCTGCCCGGCGAAGTTGC

GCTGCTATCCAAAACACCATGCATACCATGTACCCCAGATTAGAAG

TGCTGTTCCTTCGCCATTCCAAAACACGTTGCAGAATGTATTAGCGG

CCGCCACTAAGCGTAATTGCAACGTCACCCAGATGCGTGAACTACC

AACCCTGGATTCAGCCGTGTACAACGTGGAATGTTTCCGCAAGTAC

GCCTGTAACAACGAATATTGGGAAGAGTTTGCTGCTAAACCTATCA

GAATTACAACAGAGAATTTGACCACTTATGTGACCAAATTAAAAGG

TGGAAAGGCAGCCGCCCTGTTTGCAAAGACGCATAACTTAGTTCCA

CTGCAGGAGGTTCCAATGGATAGATTCGTCATGGACATGAAGCGCG

ATGTGAAGGTTACACCAGGGACGAAGCACACAGAGGAACGACCAA

AGGTCCAAGTGATTCAAGCTGCCGAGCCTCTGGCTACCGCCTACCT

GTGTGGAATTCACAGAGAACTGGTTCGCCGGCTCAATGCTGTGTTG

CTACCTAACATCCATACCCTGTTTGACATGTCTGCTGAAGATTTTGA

TGCCATCATATCAGAGCACTTCAAGCCAGGGGACCATGTCTTGGAA

ACGGACATCGCTTCTTTTGACAAAAGCCAGGACGATTCACTGGCAC

TAACGGGGCTAATGATACTGGAAGACTTGGGCGTCGATAACCAGTT

ATTGGATCTTATCGAGGCTGCATTTGGTCAGATTACCAGCTGCCACC

TGCCTACAGGGACTAGGTTTAAATTTGGGGCTATGATGAAGTCAGG

CATGTTTCTTACATTGTTCATTAACACCGTTTTGAACATTACCATTG

CCAGTAGAGTGCTGGAAGCCAGATTAACTAACTCAGCCTGTGCCGC

ATTTATCGGCGACGACAACGTGGTTCACGGAGTCGTCTCCGATAAA

CTGATGGCAGATAGATGTGCCACTTGGGTTAACATGGAGGTTAAAA

TAATAGATGCAGTCATGTGTGCAAAGCCACCGTATTTCTGTGGAGG

CTTTTTGGTCTATGATCATGTCACAAGGACGTCATGTCGAATAGCG

GATCCATTAAAAAGGTTATTCAAATTGGGCAAACCCCTGCCGGCAG

ACGACTGCCAAGATGAAGACCGCCGTAGGGCATTGCACGACGAGG

TTAAAAAATGGTTTAGATCAGGCTTGGGTTCGGAGATTGAGGTCGC

CCTCGCCACCAGATACGAGGTGGAAGGGGGTCACAACCTACTGCTG

GCTATGTCCACCTTTGCACACAGCATGAAGAATTTTTCTGCATTGAG

GGGACCCGTCATACACTTGTACGGCGGTCCTAAATAGGTGCTCTAC

ACGACACCTATACCACCATGGATTTCCTACCAACACAAGTGTTTTAT

GGCAGGCGATGGAGACCACGAATGCCGCCACGCCCTTGGAGGCCA

CGCCCACCTACAATTCAAAGACCAGATCAACAGGCCCGACAAATG

CAGCAGCTGATTGCTGCGGTCAGTACGCTTGCCCTTAGGCAAAACG

CTGCTGCCCCTCAGCGTGGAAGAAAGAAGCAACCACGTAGAAAGA

AACCAAAACCACAACCCGAGAAACCTAAGAAGCAAGAGCAGAAAC

CGAAGCAAAAGAAGACCCCTAAGAAGAAGCCCGGGAGAAGGGAG

CGCATGTGCATGAAGATTGAGCACGATTGCATCTTTGAGGTCAAGC

ACGAAGGAAAGGTCACAGGCTATGCTTGCCTTGTCGGTGACAAAGT

AATGAAGCCGGCACACGTCCCTGGAGTGATAGACAACATCGATCTC

GCACGTCTATCGTATAAGAAATCTAGTAAGTATGACCTGGAATGTG

CACAGATACCGGTGGCTATGAAGTCAGATGCATCGAAATACACCCA

TGAAAAACCCGAAGGTCACTATAACTGGCACTATGGGGCCGTCCAG

TACACAGGAGGCAGATTCACGGTGCCCACAGGAGTGGGTAAGCCT

GGCGACAGCGGCCGGCCCATCTTTGATAACAAGGGCCGCGTTGTCG

CAATAGTGCTAGGAGGAGCTAATGAAGGTGCCAGAACCGCGCTCTC

TGTCGTGACGTGGAATAAAGACATGGTCACCAAGATCACACCGGA

GGGCACAGAGGAGTGGGCAGCTCCGACAGTGACAGCTATGTGCCTT

-98- SEQ ID NO Sequence

CTGGCGAATGTATCCTTCCCATGTTTCCAACCGAGCTGCTCTCCATG

CTGTTATGAAAAGGGGCCTGAGCCGACGCTGAGAATGCTGGAAGA

GAACGTAAACTCAGAGGGATACTATGAATTGTTGCATGCTGCCGTG

TACTGCAAAAACAGCTCGAGGTCGAAGAGGAGCACTGCAAATCAC

TTTAACGCATACAAATTGACTCGTCCATACGTAGCCTACTGTGCAG

ACTGTGGCATGGGCCATTCTTGCCACAGTCCCGCCATGATTGAAAA

TGTGCAGGCGGATGCTACAGATGGCACGTTAAAGATTCAATTCGCT

TCTCAAATTGGCCTAACGAAAGCGGACACGCATGATCATACAAAGA

TTAGATATGCAGAAGGGCATGATATAGCGGAGGCTGCCAGGTCAA

CTCTTAAGGTCCATAGCAGCAGTGAGTGCGCGGTGACAGGAACGAT

GGGACACTTTATCTTGGCCAAATGTCCACCAGGCGAAGTCATTAGT

GTCTCATTTGTTGATTCAAAAAATGAACAGCGGACCTGTCGGATAG

CCTACCACCATGAACAGAGGCTAATAGGGCGTGAAAGATTCACGGT

ACGACCACATCATGGGATTGAGCTACCCTGCACCACTTACCAGCTA

ACGACCGCCGAAACCTCTGAAGAGATAGACATGCACATGCCGCCG

GACATTCCGGACAGAACTATCCTTTCCCAGCAATCAGGAAATGTCA

AGATAACGGTCAACGGGCGGACCGTCAAGTATAGCTGCTCATGTGG

TTCTAAACCATCAGGCACAACAACTACAGACAAGACTATCAATAGC

TGCACCGTTGACAAATGCCAGGCATATGTCACGAGCCATACGAAAT

GGCAATTTAATTCACCTTTCGTTCCGCGCGCGGAGCAAGCGGAGCG

TAAGGGCAAGGTGCACATTCCCTTTCCACTTATCAACACCACCTGC

CGAGTACCATTGGCTCCCGAAGCCCTAGTCAGGAGCGGTAAACGAG

AAGCTACGCTCTCACTGCACCCGATACATCCCACATTGCTAAGTTA

CAGAACACTGGGACGCGAGCCAGTTTTTGATGAACAGTGGATCACC

ACCCAGACGGAGGTAACAATCCCAGTACCAGTGGAGGGAGTGGAG

TATCGGTGGGGCAACCACAAACCACAACGCTTGTGGTCACAGCTAA

CAACTGATGGCAGAGCACATGGCTGGCCCCATGAAATTATCGAGTA

CTACTACGGGCTGCATCCTACGACAACCATTGTCGTGGTGGTTGCT

GTCTCAGTAGTGGTGCTCTTGTCAGTTGCTGCATCTGTTTATATGTG

TGTAGTGGCACGCAACAAGTGCCTGACACCATATGCACTCACCCCG

GGGGCCGTTGTCCCTGTTACTATCGGGGTATTATGCTGTGCACCGA

AAGCGCACGCAGCTAGCTTTGCTGAAGGCATGGCCTACCTGTGGGA

TAATAACCAGTCAATGTTCTGGATGGAGTTGACTGGACCTTTGGCT

CTTCTTATCCTGACTACATGTTGCGCCCGATCACTACTTTCCTGCTG

CAAGGGATCTTTTTTAGTCGCAGTGAGCGTCGGGAGTGCCGTTGCC

AGTGCTTACGAGCACACGGCAGTCATTCCAAATCAAGTGGGATTCC

CGTATAAGGCTCATGTTGCACGTGAAGGATACAGCCCGCTGACACT

GCAGATGCAGGTGGTTGAAACCAGTCTAGAGCCAACGCTCAACCTG

GAGTATATCACTTGCGACTACAAAACAAAGGTTCCATCCCCGTACG

TAAAGTGCTGTGGCACAGCTGAATGCCGCACGCAGGACAAGCCCG

AATACAAGTGTGCGGTGTTCACGGGCGTGTACCCTTTTATGTGGGG

AGGTGCATACTGTTTTTGTGACTCGGAAAACACACAGATGAGTGAG

GCCTACGTGGAGCGCGCTGACGTGTGCAAACACGACTACGCAGCCG

CCTACCGCGCCCACACTGCTTCCCTCAGAGCCAAAATCAAGGTAAC

ATATGGCACCGTAAATCAGACTGTCGAGGCGTATGTGAACGGTGAC

CATGCCGTAACGATTGCCGGGACGAAGTTTATCTTTGGTCCGGTGT

CAACGGCCTGGACACCGTTCGATACTAAAATCGTGGTCTATAAAGG

GGAGGTATACAACCAGGACTTTCCCCCTTATGGTGCCGGGCAGCCT

GGAAGATTCGGAGACATCCAGAGTAGGACGTTGGACAGTAAGGAC

-99- SEQ ID NO Sequence

CTATATGCAAACACGGGCCTTAAGCTGGCAAGACCAGCAGCCGGC

AACATCCACGTCCCCTATACCCAGACACCATCTGGTTTTAAAACAT

GGCAAAAAGACAGGGACTCACCGTTAAACGCTAAGGCACCCTTTG

GATGCACAATCCAGACAAATCCGGTCAGAGCGATGAATTGCGCTGT

CGGCAACATACCCGTTTCGATGGATATCGCCGACAGCGCATTCACT

AGACTGACTGATGCGCCTATAATATCAGAGCTGCTGTGCACTGTAT

CTACATGCACGCATTCTTCAGACTTCGGTGGAGTCGCTGTACTTTCT

TACAAGGTGGAAAAAGCAGGCAGGTGCGACGTCCATTCGCACTCG

AATGTCGCGGTACTCCAGGAAGTTTCCATCGAGGCAGAAGGTCGAT

CAGTGATCCACTTTTCGACCGCATCAGCCGCCCCTTCCTTCATAGTA

TCCGTCTGCAGCTCGCGTGCCACGTGCACAGCTAAATGTGAACCAC

CGAAAGACCATGTGGTCACTTACCCGGCAAATCACAACGGGATAAC

TTTGCCGGACTTATCCAGCACTGCAATGACTTGGGCGCAACATCTT

GCCGGTGGAGTCGGGCTATTGATAGCACTGGCAGTGCTAATTCTAG

TAATAGTTACTTGCATAACTTTGAGAAGGTGAATCATAAGTACCAT

GTATAATGCGGGCTGGCATATATGTAACCATTATTATATATTTTAAC

CATATTAACATTCGAATATCAAATTAGGTGCCGTGCATGATGCGGA

CCGATTTATTATTCACATATGTAACCTTTATCATATTACATCATATA

TTCAATTTTAAAATTTCTATACGCGTCTCTAATGGCGCATATAATAA

CCACCTACAATTTTCTTCATTTTCTTTATTTGTGCCACTATAGGGCAC

TTACTAACCATAGAAGTAATTCATTTTGTTTTTAATATTTC

SEQ ID NO: 8 MDFLPTQVFYGPJIWRPRMPPRPWRPRPPTIQRPDQQARQMQQLIAAV

STLALRQNAAAPQRGRKXQPPJ PKPQPEKPKKQEQKPKQKKTPKK

KPGRRERMCMKIEHDCIFEVKHEGKVTGYACLVGDKVMKPAHVPGVI

DNIDLARLSYKKSSKYDLECAQIPVAMKSDASKYTHEKPEGHYNWHY

GAVQYTGGRFTVPTGVGKPGDSGRPIFDNKGRVVAIVLGGANEGART

ALSVVTWNKDMVTKITPEGTEEWAAPTVTAMCLLANVSFPCFQPSCSP

CCYEKGPEPTLRMLEENV SEGYYELLHAAVYCK SSRS RSTANHF

NAYKLTRPYVAYCADCGMGHSCHSPAMIENVQADATDGTLKIQFASQ

IGLTKADTHDHTKIRYAEGHDIAEAARSTLKVHSSSECAVTGTMGHFIL

AKCPPGEVISVSFVDSKNEQRTCRIAYHHEQRLIGRERFTVRPHHGIELP

CTTYQLTTAETSEEIDMHMPPDIPDRTILSQQSGNVKITVNGRTVKYSC

SCGSKPSGTTTTDKTINSCTVDKCQAYVTSHTKWQFNSPFVPRAEQAE

RKGKVHIPFPLINTTCRVPLAPEALVRSGKREATLSLHPIHPTLLSYRTL

GREPVFDEQWITTQTEVTIPVPVEGVEYRWGNHKPQRLWSQLTTDGR

AHGWPHEIIEYYYGLHPTTTIWVVAVSV LLSVAASVYMCVVARN

KCLTPYALTPGAVVPVTIGVLCCAPKAHAASFAEGMAYLWDNNQSMF

WMELTGPLALLILTTCCARSLLSCCKGSFLVAVSVGSAVASAYEHTAV

IPNQVGFPYKAHVAREGYSPLTLQMQWETSLEPTLNLEYITCDYKTK

VPSPYVKCCGTAECRTQDKPEYKCAVFTGVYPFMWGGAYCFCDSENT

QMSEAYVERADVCKHDYAAAYRAHTASLRAKJKVTYGTVNQTVEAY

VNGDHAVTIAGTKFIFGPVSTAWTPFDTKIWYKGEVYNQDFPPYGAG

QPGRFGDIQSRTLDSKDLYANTGLKLARPAAGNIHVPYTQTPSGFKTW

QKDRDSPLNAKAPFGCTIQTNPVRAMNCAVGNIPVSMDIADSAFTRLT

DAPIISELLCTVSTCTHSSDFGGVAVLSYKVEKAGRCDVHSHSNVAVL

-100- SEQ ID NO Sequence

QEVSIEAEGRSVIHFSTASAAPSFIVSVCSSRATCTAKCEPPK HVVTYP ANHNGITLPDLSSTAMTWAQHLAGGVGLLIALAVLILVIVTCITLRR

SEQ ID NO: 9 MSKVFVDIEAESPFLKSLQRAFPAFEVEAQQVTPNDHANARAFSHLAT

KLIEQETEKDTLILDIGSAPARRMMSEHTYHCVCPMRSAEDPERLLYY

ARKLAKASGEVVDRNIAAKIDDLQSVMATPDNESRTFCLHTDQTCRTP

AEVAVYQDVYAVHAPTSLYFQAMKGVRTAYWIGFDTTPFMFDTMAG

AYPTYATNWADEQVLKARNIGLCSAALTEGHLGKLSIMRKKRMKPSD

QIMFSVGSTLYTESRRLLKSWHLPSVFHLKGRQSYTCRCDTIVSCEGY

VV ITMSPGVFGKTSGYAVTHHAEGFLVCKTTDTIAGERVSFPVCTY

VPSTICDQMTGILATEVTPEDAQKLLVGLNQRIW GRTQRNTNTMKN

YLLPVVSQAFSKWAKEYRLDQDDEKNMGMRERTLTCCCLWAFKTHK

NHTMYKKPDTQTIVSVPSEFNSFVIPSLWSAGLSIGIRHRIRLLLQSRRA

EPLVPFMDASEARAAEKEAAEAKEAEETLAALPPLIPTAPLLDDIPEVD

VEELEFRAGAGVVETPRNALKVTPQDRDTMVGSYLVLSPQTVLKSVK

LQVLHSLAEQVRIITHKGRAGRYQVDAYDGRVLIPTGAAIPVPDFQALS

ESATMVYNEREFINRKLYHIAVHGAALNTDEEGYEKVRAERTDAEYV

FDVDRKQCVKREDAEGLVMIGDLVNPPFHEFAYEGLKRRPAAPYKTT

VVGVFGVPGSGKSGIIKSLVTRADLVTSGKRENCQEIMHDVKRYRDLD

ITAKTVDSVLLNGVKQTVDVLYVDEAFACHAGTLLALIATVRPRKKV

VLCGDPKQCGFFNLMQLQVNFNHNICTEVHHKSISRRCTLPVTAIVSTL

HYEGKMRTTNPYNKPVVIDTTGQTKPNREDIVLTCFRGWVKQLQLDY

RGHE VMT AA AS QGLTRKG VY A VRMKV ENPLY AQ S SEH VNVLLTRT

EGRLVWKTLSGDPWIKTLSNIPKGNFTATLEDWQQEHDAIMRAITQEA

APLDVFQNKAKVCWAKCLVPVLETAGIKLSAADWSSIILAFKEDRAYS

PEVALNEICTKJYGADLDSGLFSAPRVSLHYTTNHWDNSPGGRMYGFS

VEAANRLEQRHPFYRGRWASGQVLVAERRTQPIDITCNLIPFNRRLPH

ALVTEYHPVKGERVEWLVNKIPGYHLLLVSEYNLILPRRKVTWIAPPT

VTGADLTHDLDLGLPPNAGRYDLVFVNMHTPYRLHHYQQCVDHAMK

LQMLGGDALYLLKPGGSLLLRAYGYADRTSEAWTALARRFSSFRAV

RPPCVTSNTEVFLLFTNFDNGRRTVTLHPTNGKLSSIYAGTVLQAAGC

APAYTVKRADIATAIEDAVV AANHRGQVGDGVCRAVARKWPQAFR

NAATPVGTAKTVKCDETYIIHAVGPNFNNTSEAEGDRDLAAAYRAVA

AEINRLSISSVAIPLLSTGIFSAGKDRVHQSLSHLLAAMDTTEARVTIYC

RDKTWEQKIKTVLQNRCATELVSDVLQLEVNLTRVHPDSSLVGRPGY

STTDGTLYSYMEGTKFHQAALDMAEITTLWPRVQDANEfflCMYALGE

TMDNIRSRCPVEDSDSSTPPKTVPCLCRYAMTPERVTRLRMHHTKDFV

VCSSFQLPKYRIAGVQRVKCEKVMLFDATPPASVSPVQYLTSHSETTV

SLSSFSITSDSSSLSTFPDLESLEELGNDPQSMRMDESDNRQPISTVEPVV

RPVPPPRPKRARRLAAARMQVQAEVHHPPVVQRTKPVPAPRTSLRPVP

APRRCMPRPAVELPWPQEAVDIEFGAPTEEESEITFGDFSASEWETISNS

SLGRAGAYIFSSDVGPGHLQQKSVRQHDLEVPIMDRVVEEKVYPPKLD

EAKEKQLLLKLQMHATDANRSRYQSRKVENIKATIIDRLKQGSASYIS

AEANKAITYHVKYAKPRYSVPVMQRLSSATTAVAACNEFLARNYPTV

ASYQITDEYDAYLDMVDGSESCLDRANFCPAKLRCYPKHHAYHVPQI

RSAVPSPFQNTLQNVLAAATKRNCNVTQMRELPTLDSAVYNVECFRK

YACNNEYWEEFAAKPIRITTENLTTYVTKLKGGKAAALFAKTHNLVPL

QEVPMDRFVMDMKRDVKVTPGTKHTEERPKVQVIQAAEPLATAYLC

GIHRELVRRLNAVLLPNIHTLFDMSAEDFDAIISEHFKPGDHVLETDIAS

- 101 - SEQ ID NO Sequence

FDKSQDDSLALTGLMILEDLGVDNQLLDLIEAAFGQITSCHLPTGTRFK

FGAMMKSGMFLTLFINTVLNITIASRVLEARLTNSACAAFIGDDNVVH

GVVSDKLMADRCATWVNMEVKIIDAVMCAKPPYFCGGFLVYDHVTR

TSCRIADPLKRLFKLGKPLPADDCQDEDRRRALHDEVKKWFRSGLGSE

IEVALATRYEVEGGHNLLLAMSTFAHSMK FSALRGPVIHLYGGPK

SEQ ID NO: 10 TGGCGGACGTGTGACATCACCGTTCGCCTTTCTTGGATCCCTTGTTA

CTCCACGTAGTGAGAGATAAACAACCCAGAATGAAGGTCACTGTA

GATGTTGAGGCTGATAGCCCATTTTTGAAGGCCCTTCAGAAAGCAT

TC CGGCTTTTGAGGTTGAATCACAGCAGGTCACACCCAATGACCA

TGCTAATGCCAGAGCTTTTTCGCATCTGGCCACAAAGTTAATTGAA

CAAGAGGTTCCAACCAACATCACCATCCTGGATGTGGGCAGCGCGC

CCGCAAGGAGGTTGATGTCTGATCACAGCTACCACTGCATTTGTCC

CATGAAGAGTGCGGAAGACCCAGAGAGATTAGCGAACTATGCCCG

GAAACTGGCAAAAGCAGCAGGGGAAGTGCTAGACAAAAATGTGTC

CGGTAAGATCACGGACCTGCAGGACGTCATGGCAACCCCCGATCTG

GAATCTCCAACGTTCTGTCTCCACACCGACGAGACGTGTCGCACTA

GAGCTGAAGTAGCTGTGTACCAGGACGTGTACGCGGTGCACGCACC

GACCTCGCTTTATCATCAAGCGATGAAAGGGGTCAGGACAGTATAC

TGGATAGGATTTGACACCACCCCATTCATGTTCGAGGTTTTGGCTGG

CGCATACCCAACGTATTCCACGAATTGGGCGGACGAGCAGGTCCTG

CAGGCACGTAACATCGGCCTATGTGCGACCAGTCTCAGCGAAGGAC

ATCGAGGAAAACTCTCTATTATGAGGAAGAAACGCCTAAGGCCAA

GCGACAGGGTCATGTTCTCGGTTGGGTCAACGCTATATATAGAAAG

TAGACGCCTTCTTAAGAGTTGGCATCTTCCCTCCGTGTTCCACCTGA

AAGGCAAGAATAGCTTTACTTGCAGGTGCGACACAATAGTTTCATG

CGAGGGCTACGTTGTTAAAAAGATCACAATGAGCCCAGGGACGTA

CGGGAAGACGGTCGGATACGCCGTTACGCATCATGCAGAAGGTTTC

CTAATGTGCAAGGTGACGGACACTGTGCGCGGGGAGAGAGTATCA

TTCCCGGTATGCACTTATGTGCCTGCAACCATTTGCGATCAGATGAC

AGGAATCCTGGCTACCGACGTCACACCCGAAGATGCGCAGAAACTC

CTGGTGGGGTTGAACCAACGTATAGTTGTGAACGGCAGAACCCAAA

GAAATACCAACACAATGAAAAACTACCTATTGCCGGTAGTGGCCCA

AGCTTTCAGCAAGTGGGCACGAGAAGCAAAAGCAGACATGGAGGA

TGAGAAACCTCTGGGAACCAGAGAAAGAACCCTGACGTGCTGTTGC

CTGTGGGCATTCAAGAGCCACAAGACACACACCATGTACAAAAGG

CCGGATACCCAAACTATAGTCAAGGTGCCATCTACTTTTGACTCGTT

TGTGATTCCAAGCCTGTGGTCATCCAGCCTATCCATAGGCCTACGG

CAAAGAATAAAACTGCTATTAGGCCCAAAACTCTCGCGGGACCTCC

CGTACTCTGGAGACCGAAACGAAGCGCGAGAAGCAGAGAAGGAAG

CCGAAGAGACCAAGGAAGCAGAATTGACACGGGAAGCACTGCCAC

CATTGGTGGGAAGCAACTGCGCTGATGACGTCGATCGGGTAGATGT

GGAAGAGCTGACGTACCGCGCCGGAGCAGGGGTAGTGGAGACACC

CAGGAATGCGCTCAGAGTGACACCACAAGAGCGCGATCAGCTGAT

CGGCGCGTACCTGATCTTGTCTCCGCAAGCAGTACTGAAGAGTGAA

AAACTCACACCGATACATCCACTGGCTGAGCAAGTGACAATCATGA

CGCACTCTGGAAGATCTGGCAGATACCCGGTTGACCGCTACGACGG

ACGGGTGTTGGTCCCGACGGGCGCAGCGATCCCCGTCAGCGAATTT

CAAGCACTCAGTGAGAGTGCTACTATGGTCTACAACGAACGTGAGT

- 102- SEQ ID NO Sequence

TCATCAATCGCAAGTTGCACCATATAGCACTCTACGGCCCCGCCCT

AAACACTGAGGAGGAGAACTACGAAAAAGTAAGGGCAGAGAGAG

CCGAAGCTGAATACGTGTTTGACGTTGACAAGAGGATGTGCGTGAA

GAGAGAAGAAGCATCAGGCCTTGTACTGGTTGGTGACTTAATCAAC

CCACCCTTCCATGAGTTCGCGTATGAAGGACTGAAGATACGGCCCG

CAACGCCTTTCCAAACCACGGTCATTGGCGTCTTCGGGGTACCTGG

TTCGGGCAAGTCAGCCATAATCAAGAGTGTGGTGACTACGAGGGAC

CTGGTCGCCAGTGGGAAGAAGGAGAACTGCCAGGAGATAGTTAAT

GATGTCAAAAAGCAGAGAGGACTGGATGTAACAGCCAGGACTGTT

GACTCTATCCTGTTGAACGGGTGCAGAAGAGGAGTAGAGAACCTAT

ACGTGGACGAAGCATTTGCCTGTCATTCAGGTACACTGTTGGCTCTT

ATTGCCATGGTGAAACCAACTGGCAAGGTGATCCTATGCGGAGACC

CAAAACAGTGTGGATTTTTTAACCTGATGCAACTGAAGGTGAACTT

CAACCACGATATCTGCACACAAGTGCTCCACAAAAGCATATCCAGA

AGATGCACCCTCCCGATCACGGCTATCGTCTCGACCCTACACTATC

AGGGTAAGATGAGAACCACGAACTTATGTAGTGCACCCATCCAGAT

AGACACAACAGGTACCACTAAACCAGCCAAAGGAGACATCGTGTT

AACATGCTTCCGCGGTTGGGTAAAGCAACTGCAGATAGACTACCGT

GGACACGAAGTCATGACAGCAGCTGCATCACAAGGACTGACTAGA

AAAGGGGTATACGCCGTTAGGCAGAAAGTGAATGAAAACCCGCTT

TATGCCCCTTCATCAGAACATGTCAACGTATTGCTGACTAGAACTG

AAAACCGGCTGGTGTGGAAAACACTGTCGGGAGACCCGTGGATAA

AGGTGTTAACCAATATCCCCAAGGGCGATTTCAGCGCTACGTTGGA

GGAGTGGCAAGAGGAGCATGACAACATCATGAACGCCCTTCGCGA

GAGGTCGACAGCAGTAGACCCGTTCCAGAACAAAGCCAAAGTCTG

CTGGGCAAAGTGCCTCGTGCAGGTCCTAGAAACGGCTGGGATACGC

ATGACGGCAGAGGAGTGGGATACAGTGTTGGCTTTCCGCGAAGAC

AGGGCGTACTCACCCGAAGTGGCTCTGAACGAGATCTGTACCAAGT

ATTACGGCGTTGACTTAGACAGCGGATTGTTCTCCGCCCAATCGGT

CTCATTGTACTATGAAAACAACCACTGGGACAATAGACCGGGCGGC

CGGATGTATGGATTCAACCGCGAAGTCGCCCGTAAGTTTGAGCAAC

GCTACCCATTCCTGAGAGGCAAGATGGACTCGGGGCTACAAGTTAA

TGTTCCAGAGAGAAAAGTACAGCCATTCAATGCGGAATGTAATATA

TTACCATCAAACAGGCGACTTCCGCACGCCCTCGTCACCAGCTACC

AGCAGTGCCAGGGCGAGAGGGTAGAATGGCTTTTGAAGAAGCTTC

CCGGATACCATTTATTGCTGGTAAGCGAGTACAATCTGGCGCTGCC

CCATAAAAGAGTCTTTTGGATTGCACCACCCCATGTGTCTGGTGCA

GATCGTATTTATGATCTTGACCTAGGATTACCCCTGAATGCAGGCC

GTTACGACTTGGTATTTGTGAACATACACACTGAGTACAGGACGCA

CCACTACCAACAGTGCGTCGACCACTCTATGAAGTTACAGATGTTG

GGCGGTGACTCCTTACATCTATTGAAACCAGGCGGCTCACTGCTTA

TCCGTGCTTACGGGTACGCCGACAGAGTCAGCGAAATGGTGGTCAC

TGCATTAGCTAGGAAGTTTTCCGCCTTCAGAGTCTTGAGACCAGCA

TGTGTAACAAGTAACACTGAAGTCTTTCTGTTGTTCACCAATTTTGA

TAACGGCAGAAGGGCTGTGACTCTTCACCAGGCCAATCAGAGGCTC

AGCTCCATGTTTGCATGCAACGGGCTACACACAGCCGGATGCGCAC

CCTCATACCGTGTGCGTAGGACCGACATTTCCGGGCACGCTGAAGA

GGCGGTTGTTAATGCCGCCAACGCGAAGGGCACAGTCGGCGATGG

GGTTTGCAGAGCGGTGGCGAGAAAATGGCCAGACTCCTTCAAAGGT

-103- SEQ ID NO Sequence

GCCGCGACTCCCGTGGGTACGGCTAAGTTGGTACAGGCCAACGGTA

TGAATGTCATCCACGCGGTAGGCCCGAATTTCTCCACGGTGACCGA

GGCAGAGGGCGACAGAGAGTTGGCCGCCGCATACCGTGCCGTGGC

GGGTATTATCAATGCTAGTAACATTAAGAGTGTAGCCATCCCTCTG

TTGTCGACGGGAGTGTTCTCCGGAGGTAAAGATAGAGTCATGCAGT

CACTAAATCACCTGTTTACCGCAATGGACACCACGGACGCTGACGT

AGTCATCTATTGCCGCGACAAAGCCTGGGAGAAGAAAATCCAGGA

GGCTATCGATCGCCGCACCGCCGTGGAATTGGTATCTGAAGACATC

TCACTCGAGTCTGACTTGATACGGGTACACCCAGATAGTTGCTTGG

TAGGCAGAAAAGGTTACAGCATAACAGATGGGAAGCTGCATTCAT

ACCTGGAAGGTACCCGCTTTCATCAGACTGCGGTGGACATGGCTGA

GATATCTACCTTGTGGCCGAAACTTCAGGACGCAAACGAACAAATA

TGCTTGTATGCATTGGGTGAGAGTATGGACAGCATCAGAACGAAAT

GCCCTGTTGAGGACGCCGATTCGTCCACGCCTCCGAAAACAGTTCC

GTGTCTGTGTAGGTACGCTATGACTGCTGAGAGAGTGGCAAGACTT

CGGATGAACAACACTAAGGCCATAATTGTGTGCTCCTCCTTCCCTTT

ACCGAAGTACAGGATTGAAGGCGTCCAGAAGGTCAAGTGCGACCG

AGTGCTGATTTTTGACCAGACGGTGCCATCTCTGGTTAGTCCAAGG

AAGTACATACCAGCCGCCGCCTCTACGCACGCAGATACCGTGAGCT

TGGATTCTACAGTATCCACAGGATCCGCGTGGTCATTCCCATCTGA

GGCCACGTATGAGACCATGGAAGTAGTAGCAGAGGTGCACCACTC

GGAACCACCAGTCCCGCCACCGCGCAGGCGTCGTGCGCAGGTGAC

GATGCACCACCAGGAGCTGTTGGAAGTCTCTGACATGCACACCCCG

ATTGCGGCAAGGGTCGAGATCCCCGTGTACGATACCGCTGTTGTAG

TGGAGAGAGTGGCAATTCCTTGCACAAGCGAGTATGCAAAACCCAT

ACCAGCACCACGGGCAGCAAGGGTCGTACCCGTGCCGGCACCACG

CATTCAGCGAGCGTCGACGTACAGAGTCTCTCCTACACCCACGCCT

CGCGTTCTGAGAGCCTCGGTATGCAGTGTGACCACTAGCGCTGGGG

TAGAGTTCCCTTGGGCGCCTGAAGATCTGGAGGTACTCACCGAGCC

TGTGCACTGCAAAATGCGCGAGCCGGTTGAGTTACCGTGGGAGCCT

GAGGACGTTGATATCCAGTTCGGAGATTTTGAAACATCCGACAAAA

TCCAATTCGGCGATATTGATTTTGACCAATTCTGACTAGGCAGAGC

GGGGGCGTACATCTTCTCGTCTGATACCGGACCAGGGCACTTACAA

CAGAAGTCAGTACGGCAACACGCACTACCGTGCGAAATGCTATACG

TCCACGAGGAAGAACGGACGTACCCCCCCGCACTGGATGAGGCCA

GGGAGAAACTGCTGCAGGCAAAAATGCAGATGGCACCTACGGAAG

CAAACAAGAGCAGGTACCAATCAAGGAAGGTTGAAAACATGAAGG

CAGTGATCATAGATAGGCTGAAGGATGGAGCAAGAACCTACCTGA

CAGAACAGTCAGAGAAGATTCCAACCTATGTTAGTAAGTACCCGCG

GCCAGTTTACTCGCCGTCGGTAGAGGATAGCTTGCAGAATCCCGAG

GTCGCTGTGGCGGCCTGCAATGCTTTCCTGGAAGCCAATTACCCGA

CAGTGGCTAGTTACCAGATCACGGACGAGTATGATGCCTACTTGGA

TATGGTTGATGGGTCAGAGAGTTGTTTAGACCGGGCAACCTTCTGC

CCGGCAAAATTACGCTGCTACCCAAAGCATCATGCTTACCACCAAC

CGCAGGTTAGGAGCGCGGTCCCATCACCATTTCAAAACACCCTGCA

GAATGTGCTAGCAGCAGCCACGAAGAGAAACTGCAATGTTACACA

GATGAGAGAGCTACCCACTCTAGACTCAGCCGTGCTTAACGTGGAA

TGCTTCAAAAAATTCGCATGCAACGGAGAATACTGGCAGGAATTCA

AAGACAACCCAATAAGAATAACTACAGAGAACATAACAACTTATG

-104- SEQ ID NO Sequence

TTACTAGGCTTAAGGGCCCTAAAGCAGCGGCGCTGTTTGCAAAGAC

TCACAATCTAGTCCCGCTGCAGGAGGTGCCCATGGACCGGTTTGTG

GTAGATATGAAGAGAGACGTGAAAGTTACCCCTGGCACCAAACAT

ACCGAGGAACGCCCAAAGGTGCAAGTCATCCAGGCCGCCGAACCT

TTAGCTACAGCTTATTTATGTGGCATTCACAGGGAGTTAGTCCGCCG

CCTGAAGGCCGTCCTGGCCCCGAACATACATACATTGTTCGATATG

TCGGCAGAAGATTTTGATGCCATCATAGCTGCACATTTCCAACCAG

GCGACGCAGTTTTGGAAACGGACATAGCCTCCTTTGACAAGAGCCA

AGATGACTCTCTGGCGTTGACGGCACTGATGCTGTTGGAAGACCTC

GGGGTTGACCAAGAACTACTAGACTTGATAGAGGCAGCGTTCGGG

GAAATTACCAGCGTCCACCTGCCAACAGGTACGCGGTTCAAGTTTG

GCGCCATGATGAAGTCCGGAATGTTCCTGACACTGTTTGTAAATAC

CCTGTTAAACATTGTCATAGCATGCCGTGTACTGCGTGAGAAGCTG

ACAAACTCCGTCTGCGCCGCGTTTATCGGGGATGACAACATAGTGC

ACGGGGTAAGATCCGACCCGTTGATGGCTGAAAGGTGCGCCAGCTG

GGTTAATATGGAGGTAAAGATAATTGACGCTACCATGTGCGAGAAA

CCACCATATTTCTGCGGCGGGTTTATATTGTATGACAAAGTCACCG

GATCGGCGTGCCGAGTGGCCGACCCTCTGAAAAGGTTATTTAAACT

AGGTAAACCTTTACCCGCCGGAGACACCCAAGATGAAGATCGTAG

GCGTGCATTGAAGGATGAGACGGATAGGTGGGCACGAGTAGGGCT

GAAGTCTGAACTGGAAATAGCACTAAGTTCTCGGTATGAGGTGAAC

GGGACCGGCAACATAGTGCGAGCAATGGCCACACTGGCCAAGAGC

CTGAAGAATTTTAAAAAGCTGCGTGGACCCATCGTACACCTCTACG

GCGGTCCTAAATAGATGCAGAGACACACCTTCATCTAATACAGCTC

ACAACAGTAAACATGAATTACATACCAACCCAGACTTTTTACGGAC

GCCGTTGGCGGCCTCGCCCGGCGTTCCGTCCATGGCAGGTGCCGAT

GCAGCCGACACCTACTATGGTTACACCCATGCTGCAAGCACCAGAC

CTACAGGCCCAACAGATGCAACAACTGATCAGCGCTGTCTCTGCAT

TAACCACCAAACAGAATGTAAAAGCACCAAAAGGGCAACGGAAGA

AGAAACAGCAGAAACCAAAGGAAAAGAAGGAAAACCAGAAGAAA

AAGCCGACGCAAAAGAAGAAGCAGCAGCAGAAACCAAAACCACA

GGCTAAGAAGAAGAAACCAGGGAGAAGAGAAAGAATGTGCATGA

AGATCGAGAATGACTGCATATTCGAGGTCAAACTGGATGGCAAGGT

TACCGGTTATGCGTGCCTAGTCGGAGACAAGGTCATGAAGCCGGCT

CACGTTAAAGGCACAATTGATAACCCAGACCTTGCGAAGCTGACTT

ACAAGAAATCCAGTAAGTATGACCTCGAATGCGCCCAGATACCAGT

GCACATGAAGTCCGACGCCTCCAAGTACACACATGAAAAACCCGA

AGGTCATTACAATTGGCACCATGGAGCAGTGCAGTACAGCGGAGG

AAGGTTTACCATCCCCACAGGCGCCGGCAAACCGGGAGATAGCGG

TAGGCCTATTTTTGACAACAAAGGGCGAGTAGTGGCCATCGTGTTA

GGCGGGGCCAACGAAGGTGCTCGCACTGCGCTGTCTGTGGTGACGT

GGACAAAAGACATGGTCACTCGGGTAACGCCAGAAGGAACTGAAG

AGTGGTCTGCCGCGCTGATGATGTGTATCCTTGCCAACACCTCTTTC

CCCTGCTCATCACCTCCCTGCTACCCCTGCTGCTACGAAAAACAGC

CAGAACAGACACTGCGGATGCTGGAAGACAATGTGAATAGACCAG

GGTACTATGAGCTACTGGAAGCGTCCATGACATGCAGAAACAGATC

ACGCCACCGCCGTAGTGTAACAGAGCACTTCAATGTGTATAAGGCT

ACTAGACCGTACTTAGCGTATTGCGCTGACTGTGGGGACGGGTACT

TCTGCTATAGCCCAGTTGCTATCGAGAAGATCCGAGATGAGGCGTC

-105- SEQ ID NO Sequence

TGACGGCATGCTCAAGATCCAAGTCTCCGCCCAAATAGGTCTGGAC

AAGGCAGGTACCCACGCCCACACGAAGATCCGATATATGGCTGGTC

ATGATGTTCAGGAATCTAAGAGAGATTCCTTGAGGGTGTACACGTC

CGCAGCGTGCTCTATACATGGGACGATGGGACACTTCATCGTCGCA

CATTGTCCGCCAGGCGACTACCTCAAGGTTTCGTTCGAGGACGCAG

AYTCACACGTGAAGGCATGTAAGGTCCAATACAAGCACGACCCATT

GCCGGTGGGTAGAGAGAAGTTCGTGGTTAGACCCCACTTTGGCGTA

GAGCTGCCATGCACCTCATACCAGCTGACAACAGCTCCCACCGACG

AGGAGATCGACATGCACACACCGCCAGATATACCGGATCGCACCCT

GCTATCACAGACGGCGGGCAACGTCAAAATAACAGCAGGCGGCAG

GACTATCAGGTACAATTGTACCTGTGGCCGTGACAACGTAGGCACT

ACCAGTACTGACAAGACCATCAACACATGCAAGATTGACCAATGCC

ATGCTGCCGTTACCAGCCATGACAAATGGCAATTTACCTCTCCATTT

GTTCCCAGGGCTGATCAGACAGCTAGGAGGGGCAAAGTGCATGTTC

CATTCCCTTTGACTAACGTCACCTGCCGAGTGCCGTTGGCTCGAGCG

CCGGATGTCACCTATGGTAAGAAGGAGGTGACCCTGAGATTACACC

CAGATCATCCGACGCTCTTCTCCTATAGGAGTTTAGGAGCCGAACC

GCACCCGTACGAGGAGTGGGTTGACAAGTTCTCTGAGCGCATCATC

CCAGTGACGGAAGAAGGGATTGAGTACCAGTGGGGCAACAACCCG

CCGGTCCGCCTATGGGCGCAACTGACGACCGAGGGCAAACCCCAT

GGCTGGCCACATGAAATCATTCAGTACTATTATGGACTATACCCCG

CCGCCACCATTGCCGCAGTATCCGGGGCGAGTCTGATGGCCCTCCT

AACTCTAGCGGCCACATGCTGCATGCTGGCCACCGCGAGGAGAAA

GTGCCTAACACCATACGCCTTGACGCCAGGAGCGGTGGTACCGTTG

ACACTGGGGCTGCTTTGCTGCGCACCGAGGGCGAACGCAGCATCAT

TCGCTGAGACTATGGCATATCTGTGGGACGAGAACAAAACCCTCTT

TTGGATGGAATTCGCGGCCCCAGCCGCAGCGCTTGCTTTGCTGGCA

TGCTGTATCAAAAGCCTGATCTGCTGTTGTAAGCCATTTTCTTTTTT

AGTGTTACTGAGCCTGGGAGCCTCCGCAAAAGCTTACGAGCACACA

GCCACAATTCCGAATGTGGTGGGGTTCCCGTATAAGGCTCACATTG

AAAGGAATGGCTTCTCGCCCATGACTCTGCAGCTTGAAGTGGTGGA

GACAAGCTTGGAACCCACACTTAACCTGGAGTACATTACCTGCGAA

TACAAGACGGTGGTCCCTTCGCCATTCATCAAATGTTGCGGAACAT

CAGAATGCTCATCCAAGGAGCAGCCAGACTACCAATGCAAGGTGT

ACACGGGTGTATACCCATTCATGTGGGGTGGAGCCTACTGTTTCTG

CGACTCCGAGAACACGCAGCTCAGCGAGGCCTATGTCGACAGGTCA

GACGTTTGCAAACATGATCACGCATCGGCCTACAAGGCACACACGG

CCTCTCTAAAAGCAACAATCAGGATCAGTTATGGCACCATCAACCA

GACCACCGAGGCCTTCGTTAATGGTGAACACGCGGTCAACGTGGGC

GGAAGCAAGTTCATCTTTGGACCGATCTCAACAGCTTGGTCACCGT

TCGACAATAAAATTGTCGTGTATAAAGATGATGTCTACAACCAGGA

CTTCCCACCCTACGGATCAGGCCAGCCGGGTAGATTCGGAGACATT

CAGAGCAGGACAGTGGAGAGCAAAGACTTGTATGCCAACACGGCC

CTAAAACTCTCAAGACCATCACCCGGGGTTGTGCATGTGCCATACA

CGCAGACACCATCCGGATTTAAATATTGGCTGAAGGAGAAAGGATC

TTCATTGAATACAAAGGCCCCTTTTGGCTGCAAGATAAAGACCAAT

CCAGTCAGAGCCATGGATTGTGCAGTTGGCAGTATACCTGTGTCGA

TGGACATACCTGACAGTGCATTCACACGAGTGGTAGATGCCCCGGC

TGTAACAGACCTGAGCTGCCAGGTAGTGGTCTGTACACACTCCTCC

-106- SEQ ID NO Sequence

GATTTCGGAGGAGTTGCCACATTGTCTTACAAAACGGACAAACCCG

GCAAGTGCGCTGTCCACTCACATTCCAACGTCGCAACGTTGCAAGA

GGCGACGGTGGATGTCAAGGAGGATGGCAAGGTCACAGTGCACTT

TTCCACGGCGTCCGCCTCCCCGGCCTTCAAAGTGTCCGTCTGTGACG

CAAAAACAACGTGCACGGCGGCGTGCGAGCCTCCAAAAGACCACA

TCGTCCCTTATGGGGCGAGCCATAACAACCAGGTCTTTCCGGACAT

GTCAGGAACTGCGATGACGTGGGTGCAGAGGCTGGCCAGTGGGTT

AGGTGGGCTGGCTCTCATCGCGGTGGTTGTGCTGGTCTTGGTAACCT

GCATAACAATGCGTCGGTAAGCTTTAGTTCAAAGGGCCATATAAAC

CCCTGAATAGTAACAAAATATAAAAATTACAAAATATGTAGTTCAA

AGGGCTATACTACCCCTGATTAGTAACAAAATAGAAAACCACAAA

ATATGTAGTTAAGTATTATAAGATGTGTAGTTCAAAGGGCTATATC

ACCCCTGATTAGTAACAAAATATAAAAACAAAAATATGTAGTTAAG

TACTAACCAACAAGTAGACAAATAGATGCTAACCATATATATAACC

AGCTATAGTATACTATATTTAGCTAAGCAGTTGCAGTAGTAAGAAT

GTAGTTCAAAGGGCTATACAACCCCTGAATAGTAACAAAATACAAA

AATACTAATAAAAATTTAAAAATCACTAGAAATCCAATCATTAAAT

TATTAATTGGCTAGCCGAACTCTAAGGAGATGTAGGCGTCCGAACT

CTGCGGAGATGTAGGACTAAATTCTGCCGAACCCCATAACACCGGG

GACGTAGGCGTCTAATTTGTTTTTTAATATTTTACAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAA

SEQ ID NO: 11 MNYIPTQTFYGRJR.WRPRPAFRJWQVPMQPTPTMVTPMLQAPDLQAQ

QMQQLISAVSALTTKQNVKAPKGQRKKKQQKPKEKKENQKKKPTQK

KKQQQKPKPQAKKKXPGRRERMC KIENDCIFEVKLDGKVTGYACL

VGDKVMKPAHVKGTIDNPDLAKLTYKKSSKYDLECAQIPVHMKSDAS

KYTHEKPEGHY WHHGAVQYSGGRFTIPTGAGKPGDSGRPIFDNKGR

VVAIVLGGANEGARTALSVVTWTKDMVTRVTPEGTEEWSAALMMCI

LANTSFPCSSPPCYPCCYEKQPEQTLRMLEDNVNRPGYYELLEASMTC

RNRSRHRRSVTEHFNVYKATRPYLAYCADCGDGYFCYSPVAIEKIRDE

ASDGMLKIQVSAQIGLDKAGTHAHTKJRYMAGHDVQESKRDSLRVYT

SAACSIHGTMGHFIVAHCPPGDYLKVSFEDADSHVKACKVQYKHDPL

PVGREKFVVRPHFGVELPCTSYQLTTAPTDEEIDMHTPPDIPDRTLLSQ

TAGNVKITAGGRTIRYNCTCGRDNVGTTSTDKTINTCKIDQCHAAVTS

HDKWQFTSPFVPRADQTARRGKVHVPFPLTNVTCRVPLARAPDVTYG

KKEVTLRLHPDHPTLFSYRSLGAEPHPYEEWVDKFSERIIPVTEEGIEYQ

WGN PPVRLWAQLTTEGKPHGWPHEIIQYYYGLYPAATIAAVSGASL

MALLTLAATCCMLATARRKCLTPYALTPGAWPLTLGLLCCAPRANA

ASFAETMAYLWDENKTLFWMEFAAPAAALALLACCIKSLICCCKPFSF

LVLLSLGASAKAYEHTATIPNVVGFPYKAHIERNGFSPMTLQLEVVETS

LEPTLNLEYITCEYKTWPSPFIKCCGTSECSSKEQPDYQCKVYTGVYP

FMWGGAYCFCDSENTQLSEAYVDRSDVCKHDHASAYKAHTASLKAT

IRISYGTINQTTEAFVNGEHAV VGGSKFIFGPISTAWSPFDNKIVVYKD

DVYNQDFPPYGSGQPGRFGDIQSRTVESKDLYANTALKLSRPSPGWH

VPYTQTPSGFKYWLKEKGSSLNTKAPFGCKIKTNPVRAMDCAVGSIPV

SMDIPDSAFTRVVDAPAVTDLSCQVVVCTHSSDFGGVATLSYKTDKPG

-107- SEQ ID NO Sequence

KCAVHSHSNVATLQEATVDVKEDGKVTVHFSTASASPAFKVSVCDAK TTCTAACEPPKDHIVPYGASHNNQVFPDMSGTAMTWVQRLASGLGGL ALIAVVVLVLVTCITMRR

SEQ ID NO: 12 MKVTVDVEADSPFLKALQKAFPAFEVESQQVTPNDHANARAFSHLAT

KLIEQEVPTNITILDVGSAPARRLMSDHSYHCICPMKSAEDPERLANYA

RKLAKAAGEVLDKNVSGKITDLQDVMATPDLESPTFCLHTDETCRTR

AEVAVYQDVYAVHAPTSLYHQAMKGVRTVYWIGFDTTPFMFEVLAG

AYPTYSTNWADEQVLQARNIGLCATSLSEGHRGKLSIMRKKRLRPSDR

VMFSVGSTLYIESRRLLKSWHLPSVFHLKGKNSFTCRCDTIVSCEGYV

VKKITMSPGTYGKTVGYAVTHHAEGFLMCKVTDTVRGERVSFPVCTY

VPATICDQMTGILATDVTPEDAQKLLVGLNQRIVVNGRTQRNTNTMK

NYLLPVVAQAFSKWAREAKADMEDEKPLGTRERTLTCCCLWAFKSH

KTHTMYKRPDTQTIVKVPSTFDSFVIPSLWSSSLSIGLRQRIKLLLGPKL

SRDLPYSGDRNEAREAEKEAEETKEAELTREALPPLVGSNCADDVDRV

DVEELTYRAGAGVVETPRNALRVTPQERDQLIGAYLILSPQAVLKSEK

LTPIHPLAEQVTIMTHSGRSGRYPVDRYDGRVLVPTGAAIPVSEFQALS

ESATMVY EREFINRKLHfflALYGPALNTEEENYEKVRAERAEAEYVF

DVDKRMCVKREEASGLVLVGDLINPPFHEFAYEGLKIRPATPFQTTVIG

VFGVPGSGKSAIIKSVVTTRDLVASGKKENCQEIVNDVKKQRGLDVTA

RTVDSILLNGCRRGVENLYVDEAFACHSGTLLALIAMVKPTGKVILCG

DPKQCGFFNLMQLKV FNHDICTQVLHKSISRRCTLPITAIVSTLHYQG

KMRTTNLCSAPIQIDTTGTTKPAKGDIVLTCFRGWVKQLQIDYRGHEV

MTAAASQGLTRKGVYAVRQKV ENPLYAPSSEHVNVLLTRTENRLV

WKTLSGDPWIKVLTNIPKGDFSATLEEWQEEHDNIMNALRERSTAVDP

FQNKAKVCWAKCLVQVLETAGIRMTAEEWDTVLAFREDRAYSPEVA

LNEICTKYYGVDLDSGLFSAQSVSLYYENNHWDNRPGGRMYGFNREV

ARKFEQRYPFLRGKMDSGLQV VPERKVQPFNAECNILPSNRRLPHAL

VTSYQQCQGERVEWLLKKLPGYHLLLVSEYNLALPHKRVFWIAPPHV

SGADRIYDLDLGLPLNAGRYDLVFVNIHTEYRTHHYQQCVDHSMKLQ

MLGGDSLHLLKPGGSLLIRAYGYADRVSEMWTALARKFSAFRVLRP

ACVTSNTEVFLLFTNFDNGRRAVTLHQANQRLSSMFACNGLHTAGCA

PSYRVRRTDISGHAEEAVV AANAKGTVGDGVCRAVARKWPDSFKG

AATPVGTAKLVQANGMNVIHAVGPNFSTVTEAEGDRELAAAYRAVA

GIINASNIKSVAIPLLSTGVFSGGKDRVMQSLNHLFTAMDTTDADVVIY

CRDKAWEK JQEAIDRRTAVELVSEDISLESDLIRVHPDSCLVGRKGYS

ITDGKLHSYLEGTRFHQTAVDMAEISTLWPKLQDANEQICLYALGESM

DSIRTKCPVEDADSSTPPKTVPCLCRYAMTAERVARLRMN TKAIIVC

SSFPLPKYRIEGVQKVKCDRVLIFDQTVPSLVSPRKYIPAAASTHADTV

SLDSTVSTGSAWSFPSEATYETMEVVAEVHHSEPPVPPPRRRRAQVTM

HHQELLEVSDMHTPIAARVEIPVYDTAVVVERVAIPCTSEYAKPIPAPR

AARVVPVPAPRIQRASTYRVSPTPTPRVLRASVCSVTTSAGVEFPWAPE

DLEVLTEPVHCKMREPVELPWEPEDVDIQFGDFETSDKIQFGDIDFDQF

LGRAGAYIFSSDTGPGHLQQKSVRQHALPCEMLYVHEEERTYPPALDE

AREKLLQAKMQMAPTEANKSRYQSRKVENMKAVIIDRLKDGARTYL

TEQSEKIPTYVSKYPRPVYSPSVEDSLQNPEVAVAACNAFLEANYPTV

ASYQITDEYDAYLDMVDGSESCLDRATFCPAKLRCYPKHHAYHQPQV

RSAVPSPFQNTLQNVLAAATKRNCNVTQMRELPTLDSAVLNVECFKK

FACNGEYWQEFKDNPIRITTENITTYVTRLKGPKAAALFAKTHNLVPL

QEVPMDRFVVDMKRDVKVTPGTKHTEERPKVQVIQAAEPLATAYLCG

-108- SEQ ID NO Sequence

IHRELVRRLKAVLAPNIHTLFDMSAEDFDAIIAAHFQPGDAVLETDIASF

DKSQDDSLALTALMLLEDLGVDQELLDLIEAAFGEITSVHLPTGTRFKF

GAMMKSGMFLTLFV TLLNIVIACRVLREKLTNSVCAAFIGDDNIVHG

VRSDPLMAERCASWVNMEVKIIDATMCEKPPYFCGGFILYDKVTGSA

CRVADPLKRLFKLGKPLPAGDTQDEDRRRALKDETDRWARVGLKSEL

EIALSSRYEVNGTGNIVRAMATLAKSLKNFKKLRGPIVHLYGGPK

SEQ ID NO: 13 ATGGGCGGCGCATGAGAGAAGCCCACACCAATTACCTACCCAAAA

ATGGAGAGAGTTCACGTTGACATCGAGGAAGACAGCCCATTCCTCA

GAGCTTTGCAACGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCA

GGTCACTGATAATGACCATGCTAATGCCAGAGCGTTTTCGCATCTG

GCTTCAAAATTGATCGAAACGGAGGTGGACCCATCCGACACGATCC

TTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCATAA

GTATCATTGCATCTGTCCGATGAGATGCGCGGAAGATCCGGACAGA

TTGTACAAGTATGCAACTAAGCTGAAGAAAAATTGCAAGGAAATA

ACTGACAAGGAATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTC

ATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCCACGACG

ATGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGT

ATACGCAGTTGACGGACCGACAAGTCTCTATCACCAAGCCAACAAG

GGAGTTAGAGTCGCCTATTGGATAGGCTTTGACACCACCCCTTTTAT

GTTTAAGAACTTGGCTGGAGCATATCCATCATACTCTACTAACTGG

GCCGACGAAACCGTGTTAACGGCTCGTAATATAGGCCTATGCAGCT

CCGACGTTATGGAGCGGTCACGCAGAGGAATGTCCATTCTTAGGAA

GAAGTATTTGAAACCATCCAATAATGTCTTATTCTCTGTTGGCTCGA

CCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGCC

GTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGT

GAGACTATAGTTAGTTGCGACGGGTACGTCGTTAAAAGAATAGCTA

TCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGAT

GCACCGCGAGGGATTCTTGTGCTGCAAAGTGACAGACACATTGAAC

GGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAGCTACAT

TGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGA

CGACGCGCAAAAACTGCTGGTTGGGCTCAACCAGCGCATAGTCGTC

AACGGTCGCACCCAAAGAAATACCAATACCATGAAGAATTATCTTT

TGCCCGTAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAA

GGAAGATCAAGAAGATGAGAGGCCACTAGGACTACGAGATAGACA

GTTAGTCATGGGGTGCTGCTGGGCTTTTAGAAGGCATAAGATAACA

TCTATTTATAAGCGCCCAGATACCCAAACCATCATCAAAGTGAACA

GCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATT

GGAGATCGGGCTGAGAACAAGAATCAGGAAAATGCTAGAAGAGCA

CAAGGAGCCGTCACCTCTCATTACTGCCGAGGACATACAAGAAGCT

AAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAG

TTGCGCGCCGCACTACCACCTTTGGCAGCTGATGTTGAGGAGCCCA

CTCTGGAAGCCGATGTTGACTTGATGTTACAAGAGGCTGGGGCCGG

CTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTATGCC

GGCGAGGACAAGATCGGCTCTTACGCAGTGCTTTCTCCGCAGGCTG

TACTTAAGAGTGAGAAACTATCTTGCATTCACCCTCTCGCTGAACA

AGTCATAGTGATAACACACTCTGGCCGAAAAGGGCGTTACGCCGTG

GAACCCTACCATGGAAAAGTAGTGGTGCCAGAGGGACATGCAATA

CCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCTACCATTGTGT

ACAACGAACGAGAGTTCGTAAACAGGTATCTGCACCATATTGCCAC

-109- SEQ ID NO Sequence

ACATGGAGGAGCGCTGAACACAGATGAAGAATATTACAAAACTGT

CAAGCCCAGCGAGCACGATGGCGAATACCTGTATGACATCGACAG

GAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAGGGCTTAC

AGGCGAGCTGGTGGACCCTCCCTTCCATGAATTCGCCTACGAGAGT

CTGAGAACACGACCGGCCGCTCCTTACCAAGTACCAACCATAGGGG

TGTATGGCGTGCCGGGATCAGGCAAGTCTGGCATCATCAAAAGCGC

AGTCACCAAAAAAGATCTGGTGGTGAGCGCCAAGAAAGAAAACTG

CGCAGAAATAATAAGGGACGTCAAGAAAATGAGAGGGCTGGACGT

CAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACAC

CCCGTAGAGACCCTGTATATTGACGAAGCTTTTGCTTGTCATGCAG

GCACTCTCAGAGCGCTCATAGCCATCATAAGACCTAAAAAGGCAGT

GCTCTGCGGGGATCCAAAACAGTGCGGCTTTTTCAATATGATGTGT

CTGAAAGTGCATTTTAACCACGAGATTTGCACGCAGGTCTTCCACA

AAAGCATCTCTCGTCGTTGCACTAAATCTGTGACTTCGGTCGTCTCA

ACCTTGTTTTACGACAAAAGAATGAGAACGACGAACCCGAAAGAG

ACTAAGATTGAGATTGACACTACTGGCAGTACCAAACCAAAGCAG

GACGATCTCATTCTCACTTGTTTTAGAGGGTGGGTGAAGCAGTTGC

AAATAGATTACAAAGGCAACGAGATAATGACGGCAGCTGCCTCTC

AAGGGCTGACCCGTAAAGGCGTGTATGCCGTTCGGTACAAGGTGAA

TGAAAACCCCCTGTACGCACCCACCTCAGAACACGTGAACGTCCTA

CTGACCCGCACGGAGGACCGTATCGTGTGGAAAACACTAGCCGGC

GATCCATGGATAAAAACACTGACGGCCAAGTATCCTGGGAATTTCA

CTGCCACGATAGAGGAATGGCAAGCAGAGCATGATGCCATCATGA

GGCACATCTTGGAGAGACCGGACCCTACCGATGTTTTCCAAAATAA

GGCGAACGTGTGTTGGGCCAAGGCTTTGGTGCCGGTACTGAAGACT

GCAGGCATAGACATGACCACTGAACAATGGAACACTGTGGATTATT

TCGAAACGGACAAAGCTCACTCAGCAGAGATAGTGTTGAACCAACT

ATGCGTGAGGTTCTTTGGACTCGACCTGGACTCCGGTCTATTTTCTG

CACCCACTGTTCCGCTGTCCATTAGGAATAATCACTGGGATAATTCC

CCGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGC

TCTCCCGCCGGTACCCACAACTGCCTCGAGCAGTTGCCACTGGAAG

AGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGC

ATAAATCTAGTACCTGTGAACAGAAGACTGCCTCATGCTTTAGTCC

TCCACCATAATGAACACCCGCAGAGTGATTTTTCTTCATTCGTCAGC

AAACTGAAGGGCAGAACTGTCTTGGTGGTCGGGGAGAAGTTGTCCG

TCCCAGGCAAAACGGTTGATTGGTTGTCAGACAAGCCTGAGGCTAC

CTTCAGAGCTCGGCTGGATTTAGGTATCCCAGGTGACGTGCCCAAA

TACGACATTATATTTATTAACGTGAGGACTCCATATAAATACCATC

ATTATCAGCAGTGTGAAGACCACGCCATTAAGCTTAGTATGTTGAC

CAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGCGTCAGC

ATAGGTTATGGTTACGCTGACAGGGCCAGCGAAAGCATCATTGGTG

CTATAGCGCGGCAGTTCAAGTTCTCCCGGGTATGCAAACCTAAATC

CTCACTTGAAGAGACAGAAGTTCTGTTTGTATTCATTGGGTACGATC

GCAAGGCCCGTACGCATAATCCTTACAAGCTTTCATCTACCTTGACC

AACATCTATACAGGTTCCAGACTCCACGAAGCCGGATGCGCACCCT

CATATCATGTGGTGCGAGGGGATATTGCCATGGCCACCGAAGGAGT

GATCATAAATGCCGCTAACAGCAAAGGACAACCTGGCGGAGGGGT

GTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAG

CCAATCGAAGTGGGAAAAGCGCGACTGGTCAAAGGTGCAGCTAAA

- 1 10- SEQ ID NO Sequence

CACATCATTCATGCCGTAGGGCCCAACTTCAACAAAGTTTCGGAAG

TTGAAGGTGACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAA

AATTGTCAACGATAACAATTACAAGTCAGTAGCGATTCCACTGTTG

TCTACCGGCATCTTTTCTGGTAACAAAGATCGACTAACCCAATCATT

GAACCATTTGCTGACAGCTTTAGACACCACTGATGCAGATGTAGCC

ATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCA

GTGGCTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGAC

TCTTCGGTGACAGAACCGGATGCAGAGCTGGTGAGGGTACATCCGA

AGAGTTCTTTGGCTGGCAGGAAGGGCTACAGCACAAGTGATGGCA

AGACTTTCTCATATTTGGAAGGGACTAAATTCCACCAGGCGGCCAA

GGATATAGCAGAAATTAATGCCATGTGGCCTGTTGCAACGGAGGCC

AATGAGCAAGTATGCATGTATATCCTCGGTGAAAGCATGAGCAGCA

TTAGGTCAAAATGCCCCGTCGAAGAATCGGAAGCCTCCACACCACC

TAGCACGCTGCCTTGCTTGTGCATCCATGCTATGACTCCAGAAAGA

GTACAACGCCTAAAAGCCTCGCGTCCAGAACAAATTACTGTGTGCT

CATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGAAGAT

CCAGTGCTCCCAGCCTATACTGTTCTCACCGAAGGTGCCTGCGTAC

ATTCATCCACGGAAGTACCTCGTGGAAACACCACCGGTGGAAGAG

ATTCCGGAGCTGCCGGCGGAGAACCAATCCACAGAGGGGACATCT

GAACAACCAGCACCAAACGTGGATGCAACCAGGACTAGAACGCCT

GAACCGATCATCATTGAAGAGGAAGAAGAGGATAGTATAAGTTTG

CTGTCAGACGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGAC

ATCCACGGGCCGCCTTCTGTATCCAGCTCATCCTGGTCCATTCCTCA

CGCATCCGACTTTGATGTGGACAGTTTATCCATCCTTGCCCTGGAGG

GAGCTAGCGTGACTAGCGAGGCAGCGTCAGCCGAGACTAACTCAT

ACTTCGCAAGGAGCATGGAGTTTCTGGCGCGACCGGTGCCTGCGCC

TCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCACGCACAAGA

ACACCGTCACTTGCACCCAGCAGGGCCAGCTCGAGAACTAGCCTGG

TTTCCACCCCGCCAGGCGTGAATAGGGTGATTACTAGAGAGGAGCT

CGAGGCGCTTACCCCGTCCCGCGCTCCTAGCAGGTCGGCCTCAAGA

ACTAGTCTGGTCTCTAACCCGCCAGGCGTAAATAGGGTGATTACAA

GAGAGGAGTTTGAGGCGTTCGTGGCACAACAACAATGACGGTTTGA

CGCGGGTGCATACATCTTTTCCTCCGATACCGGTCAAGGGCATTTAC

AACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAGTGGTTTTGGA

GAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAA

AAAGAAGAACTACTACGCAAGAAATTACAGCTGAATCCCACACCT

GCTAACAGAAGCAGATACCAGTCCAGAAGGGTGGAGAACATGAAA

GCCATAACAGCTAGACGTATTCTGCAAGGCCTAGGACATTATTTGA

AGGCAGAAGGAAAAGTGGAGTGCTATCGAACCCTGCATCCTGTTCC

TTTGTATTCATCTAGTGTGAATCGTGCTTTTTCAAGCCCCAAGGTCG

CAGTGGAAGCCTGCAATGCCATGCTGAAAGAAAACTTTCCGACTGT

AGCTTCTTACTGTATAATTCCAGAGTACGATGCCTATCTGGACATGG

TTGACGGCGCTTCTTGTTGCTTAGACACTGCCAGTTTTTGCCCTGCG

AAGCTGCGCAGTTTTCCAAAGAAACACTCTTACTTGGAACCCACAA

TACGGTCGGCAGTGCCATCGGCGATTCAGAACACGCTCCAGAATGT

CCTGGCAGCTGCCACAAAAAGAAATTGCAACGTCACGCAAATGAG

AGAATTGCCCGTATTGGACTCGGCTGCCTTTAATGTGGAATGCTTCA

AGAAATATGCGTGCAATAATGAATATTGGGAAACGTTTAAAGAAA

ACCCCATCAGGCTTACTGAAGAAAATGTGGTAAATTACATTACTAA

- 1 1 1 - SEQ ID NO Sequence

ATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAAT

TTAAATATGTTACAGGACATACCAATGGACAGGTTTGTAATGGACT

TAAAGAGGGACGTGAAAGTGACTCCAGGAACAAAACATACTGAAG

AACGACCCAAGGTACAGGTGATCCAGGCCGCCGATCCGCTAGCGA

CAGCGTATCTGTGCGGAATCCACCGGGAGTTGGTTAGGAGATTAAA

TGCTGTCCTGCTTCCGAACATCCATACACTGTTTGACATGTCGGCTG

AAGACTTTGACGCTATTATTGCCGAGCATTTCCAGCCTGGGGACTG

TGTTCTGGAAACTGACATTGCGTCGTTTGATAAAAGTGAGGACGAC

GCCATGGCTCTGACCGCGTTGATGATTCTGGAAGATCTAGGAGTGG

ACGCAGAGCTGTTGACGCTGATTGAGGCGGCTTTCGGCGAAATATC

ATCAATACATTTGCCCACCAAAACTAAATTTAAATTCGGAGCCATG

ATGAAATCCGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTA

ACATCGTAATCGCAAGCAGAGTGTTAAGAGAGCGGCTAACCGGAT

CACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGT

CAAATCTGACAAATTAATGGCAGACAGGTGCGCCACTTGGTTGAAC

ATGGAAGTCAAGATCATAGACGCCGTGGTGGGCGAGAAAGCGCCC

TATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGC

GTGCCGTGTGGCAGACCCCCTAAAAAGGCTGTTTAAGCTTGGCAAA

CCTCTGGCAGCAGACGATGAACATGACGATGACAGGAGAAGGGCA

TTATACGAAGAGTCAACACGCTGGAATCGAGTGGGAATTCTTCCAG

AGCTGTGTAAGGCAGTAGAATCAAGGTATGAAACCGTAGGAACTTC

CATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAGTCGT

TCAGCTACCTGAGAGGGGCCCCTATAACTCTCTACGGCTAACCTGA

ATGGACTACGACATAGTCTAGTCCGCCAAGATGTTCCCGTTCCAAC

CAATGTATCCGATGCAGCCAATGCCCTATCGTAACCCGTTCGCGGC

CCCGCGCAGGCCCTGGTTCCCCAGAACCGATCCTTTTCTGGCGATG

CAGGTGCAGGAATTAACCCGCTCGATGGCTAACCTGACGTTCAAGC

AACGCCGGGATGCGCCACCTGAAGGGCCACCCGCTAAGAAACCGA

AGCGGGAGGCCCCGCAAAAACAAAAAGGGGGAGGCCAAGGGAAG

AAGAAGAAGAATCAGGGGAAGAAGAAGGCTAAGACGGGGCCACC

TAATCCGAAGGCACAGAGTGGAAACAAGAAGAAGACCAACAAGAA

ACCAGGCAAGAGACAGCGCATGGTCATGAAATTGGAATCTGACAA

GACATTCCCAATTATGCTGGAAGGGAAGATTAACGGCTACGCTTGC

GTGGTCGGAGGGAAGTTATTCAGGCCGATGCACGTGGAAGGCAAG

ATCGACAATGACGTTCTGGCCGCACTTAAGACGAAGAAAGCATCCA

AATATGATCTTGAGTATGCAGATGTGCCACAGAACATGCGGGCCGA

TACATTCAAGTACACCCACGAGAAGCCCCAAGGCTATTATAGCTGG

CATCATGGAGCAGTCCAATATGAAAATGGGCGTTTCACGGTGCCAA

AAGGAGTTGGGGCCAAGGGAGACAGCGGACGACCCATTCTGGACA

ATCAGGGACGGGTGGTCGCTATTGTGCTGGGAGGTGTGAATGAAGG

ATCTAGGACAGCCCTTTCAGTCGTCATGTGGAACGAGAAGGGAGTA

ACTGTGAAGTATACTCCGGAGAACTGCGAGCAATGGTCACTAGTGA

CCACCCTGTGTCTGCTCGCCAATGTGACGTTCCCATGTGCCCAACCA

CCAATTTGCTACGACAGAAAACCAGCAGAGACCTTGGCCATGCTCA

GCGTTAACGTTGACAACCCGGGCTACGATGAGCTGCTGGAAGCAGC

TGTTAGGTGCCCCGGAAGAAAAAGGAGATCTACCGAGGAGCTGTTT

AAGGAGTATAAGCTAACGCGCCCTTACATGGCCAGATGCATCAGAT

GTGCCGTTGGGAGCTGCCATAGTCCAATAGCAATTGAGGCAGTGAA

GAGCGACGGGCACGACGGCTATGTTAGACTTCAGACTTCCTCGCAG

-1 12- SEQ ID NO Sequence

TACGGCCTGGATTCCTCTGGCAACTTAAAGGGAAGGACCATGCGGT

ATGACATGCACGGAACCATTGAAGAGATACCGCTACATCAAGTGTC

ACTCCACACATCTCGCCCGTGTCACATTGTGGATGGGCATGGTTATT

TTCTGCTTGCTAGGTGCCCGGCAGGGGACTCCATCACTATGGAATTT

AAGAAAGATTCAGTCACACACTCCTGCTCAGTGCCGTATGAAGTGA

AATTTAATCCTGTAGGCAGAGAACTCTACACTCATCCCCCAGAACA

CGGAGCAGAGCAAGCGTGCCAAGTCTACGCGCATGATGCACAGAA

CAGAGGAGCTTATGTCGAGATGCACCTCCCGGGCTCAGAAGTGGAC

AGCAGTTTGGTTTCCTTGAGCGGCAGTTCAGTCACCGTGACACCTCC

TGCTGGGACTAGCGCCCTGGTGGAATGCGAGTGCGGCGGCACAAA

GATCTCCGAGACCATCAACACGGCAAAACAGTTCAGCCAGTGCACA

AAGAAGGAGCAATGCAGAGCATATCGACTGCAGAATGACAAATGG

GTGTATAATTCTGACAAACTGCCCAAAGCAGCGGGAGCCACCCTAA

AAGGAAAACTACACGTCCCATTTTTGCTGGCAGACGGCAAATGCAC

CGTGCCTCTAGCACCGGAACCTATGATAACCTTCGGTTTCCGATCA

GTGTCACTGAAACTGCACCCTAAGAATCCCACATATCTGACCACTC

GCCAACTTGCTGATGAGCCTCATTACACGCACGAGCTCATATCTGA

ACCAGCTGTTAGGAATTTTACCGTCACTGAAAAGGGGTGGGAGTTT

GTATGGGGAAACCACCCGCCGAAAAGGTTTTGGGCACAGGAAACA

GCACCCGGAAATCCACATGGGCTGCCACACGAGGTGATAACTCATT

ATTACCACAGATACCCTATGTCCACCATCCTGGGTTTATCAATTTGC

GCCGCCATTGTAACCGTTTCCGTTGCAGCGTCTACCTGGCTGTTCTG

CAAATCCAGAGTTTCGTGCCTAACTCCTTACCGGCTAACACCTAAC

GCCAGGATGCCGCTTTGCCTGGCTGTGCTTTGCTGCGCTCGCACTGC

CCGGGCCGAGACCACCTGGGAGTCCTTGGATCACCTATGGAACAAT

AACCAGCAGATGTTCTGGATTCAATTGCTGATCCCCCTGGCCGCCTT

GATTGTAGTGACTCGCCTGCTCAAGTGCGTGTGCTGTGTAGTGCCTT

TTTTAGTCGTGGCCGGCGCCGCAGGCGCCGGCGCCTACGAGCACGC

GACCACGATGCCGAGCCAAGTGGGAATCTCGTATAACACCATAGTC

AACAGAGCAGGCTACGCGCCACTCCCTATCAGCATAACACCAACA

AAGATCAAGCTGATACCTACAGTGAACTTGGAGTACATCACCTGCC

ACTACAAAACAGGAATGGATTCACCAGCCATTAAGTGCTGCGGATC

TCAGGAATGTACTCCAACTTACAGGCCTGATGAACAGTGCAAAGTC

TTCACTGGGGTTTACCCGTTCATGTGGGGAGGCGCATATTGCTTTTG

CGACACTGAGAACACCCAAGTCAGCAAGGCCTACGTAATGAAATCT

GACGACTGCCTTGCTGATCACGCTGAAGCATACAAAGCGCACACAG

CCTCAGTGCAGGCGTTCCTCAACATCACAGTGGGAGAACACTCTAT

TGTGACCACCGTGTATGTGAATGGAGAAACTCCTGTGAACTTCAAT

GGGGTCAAATTAACTGCAGGTCCACTTTCCACAGCTTGGACACCCT

TTGACCGCAAAATCGTGCAGTATGCCGGGGAGATCTATAATTACGA

TTTTCCTGAGTACGGGGCAGGACAACCAGGAGCATTTGGAGACATA

CAATCCAGAACAGTCTCGAGCTCAGATCTGTATGCCAATACCAACC

TAGTGCTGCAGAGACCCAAAGCAGGAGCGATCCATGTGCCATACAC

TCAGGCACCATCGGGTTTTGAGCAATGGAAGAAAGATAAAGCTCCG

TCATTGAAATTCACCGCCCCTTTCGGATGCGAAATATATACAAACC

CCATTCGCGCCGAAAATTGTGCCGTAGGGTCAATTCCATTAGCCTTT

GACATCCCCGACGCCTTGTTCACCAGGGTGTCAGACACACCGACAC

TTTCAGCGGCCGAATGCACTCTTAACGAGTGCGTGTATTCATCCGA

CTTTGGCGGGATCGCCACGGTCAAGTATTCGGCCAGCAAGTCAGGC

-1 13- SEQ ID NO Sequence

AAGTGCGCAGTCCATGTGCCATCAGGGACTGCTACCCTAAAAGAAG

CAGCAGTCGAGTTAACCGAGCAAGGGTCGGTGACCATTCATTTCTC

GACCGCAAATATCCACCCGGAGTTCAGGCTCCAAATATGCACATCA

TATGTCATGTGCAAAGGTGATTGTCACCCCCCGAAAGACCACATTG

TGACACACCCACAGTATCACGCCCAAACATTTACAGCCGCGGTGTC

AAAAACCGCGTGGACGTGGTTAACATCCCTGCTGGGAGGATCGGCC

GTAATTATTATAATTGGCTTAGTGCTGGCTACTATTGTGGCCATGTA

CGTGCTGACCAACCAGAAACATAATTGAACATAGCAGCAATTGGCA

AGCTGCTTATATAGAACTCGCGGCGATTGGCATGCCGCTTTAAAAT

TTTATTTTATTTTCTTTTCTTTTC

SEQ ID NO: 14 MFPFQPMYPMQPMPYRNPFAAPRRPWFPRTDPFLAMQVQELTRSMAN

LTFKQRRDAPPEGPPAKKPKJ EAPQKQKGGGQGKKXKNQGKKKAKT

GPPWKAQSGNKKKTNKKPGKRQRMVMKLESDKTFPIMLEGKINGYA

CVVGGKLFRPMHVEGKIDNDVLAALKTKKASKYDLEYADVPQNMRA

DTFKYTHEKPQGYYSWHHGAVQYENGRFTVPKGVGAKGDSGRPILD

NQGRVVAIVLGGVNEGSRTALSWMW EKGVTVKYTPENCEQWSLV

TTLCLLANVTFPCAQPPICYDRKPAETLAMLSV VDNPGYDELLEAAV

RCPGRKRRSTEELFKEYKLTRPYMARCIRCAVGSCHSPIAIEAVKSDGH

DGYVRLQTSSQYGLDSSGNLKGRTMRYDMHGTIEEIPLHQVSLHTSRP

CHIVDGHGYFLLARCPAGDSITMEFK DSVTHSCSVPYEVKFNPVGRE

LYTHPPEHGAEQACQVYAHDAQNRGAYVEMHLPGSEVDSSLVSLSGS

SVTVTPPAGTSALVECECGGTKISETINTAKQFSQCTKKEQCRAYRLQN

DKWVYNSDKLPKAAGATLKGKLHVPFLLADGKCTVPLAPEPMITFGF

RSVSLKLHPK PTYLTTRQLADEPHYTHELISEPAVRNFTVTEKGWEF

VWGNHPPKRFWAQETAPGNPHGLPHEVITHYYHRYPMSTILGLSICAA

IVTVSVAASTWLFCKSRVSCLTPYRLTPNARMPLCLAVLCCARTARAE

TTWESLDHLWN NQQMFWIQLLIPLAALIVVTRLLKCVCCVVPFLVV

AGAAGAGAYEHATTMPSQVGISYNTIVNRAGYAPLPISITPTKIKLIPTV

NLEYITCHYKTGMDSPAIKCCGSQECTPTYRPDEQCKVFTGVYPFMW

GGAYCFCDTENTQVSKAYV KSDDCLADHAEAYKAHTASVQAFLNI

TVGEHSIVTTVYVNGETPV FNGVKLTAGPLSTAWTPFDRKIVQYAGE

IYNYDFPEYGAGQPGAFGDIQSRTVSSSDLYANTNLVLQRPKAGAIHV

PYTQAPSGFEQWKKDKAPSLKFTAPFGCEIYTNPIRAENCAVGSIPLAF

DIPDALFTRVSDTPTLSAAECTLNECVYSSDFGGIATVKYSASKSGKCA

-1 14- SEQ ID NO Sequence

VHVPSGTATLKEAAVELTEQGSVTIHFSTANIHPEFRLQICTSYVMCKG DCHPPKDHIVTHPQYHAQTFTAAVSKTAWTWLTSLLGGSAVIIIIGLVL ATIVAMYVLTNQKHN

SEQ ID NO: 15 MERVHVDIEEDSPFLRALQRSFPQFEVEAKQVTDNDHANARAFSHLAS

KLIETEVDPSDTILDIGSAPARRMYSKHKYHCICPMRCAEDPDRLYKYA

TKLKKNCKEITDKELDKKMKELAAVMSDPDLETETMCLHDDESCRYE

GQVAVYQDVYAVDGPTSLYHQANKGVRVAYWIGFDTTPFMFKNLAG

AYPSYSTNWADETVLTARNIGLCSSDVMERSRRGMSILRKKYLKPSNN

VLFSVGSTIYHEKRDLLRSWHLPSVFHLRGKQNYTCRCETIVSCDGYV

VKRIAISPGLYGKPSGYAATMHREGFLCCKVTDTLNGERVSFPVCTYV

PATLCDQMTGILATDVSADDAQKLLVGLNQRIVVNGRTQRNTNTMKN

YLLPVVAQAFARWAKEYKEDQEDERPLGLRDRQLVMGCCWAFRRHK

ITSIY RPDTQTIIKVNSDFHSFVLPRIGSNTLEIGLRTRIRKMLEEHKEPS

PLITAEDIQEAKCAADEAKEVREAEELRAALPPLAADVEEPTLEADVD

LMLQEAGAGSVETPRGLIKVTSYAGEDKIGSYAVLSPQAVLKSEKLSCI

HPLAEQVIVITHSGRKGRYAVEPYHGKVWPEGHAIPVQDFQALSESA

TIVYNEREFVNRYLHfflATHGGALNTDEEYYKTVKPSEHDGEYLYDID

RKQCVKKELVTGLGLTGELVDPPFHEFAYESLRTRPAAPYQVPTIGVY

GVPGSGKSGIIKSAVTKKDLVVSAKKENCAEIIPvDV MRGLDV ART

VDSVLLNGCKHPVETLYIDEAFACHAGTLRALIAIIRPKKAVLCGDPKQ

CGFFNMMCL VHFNHEICTQVFHKSISRRCTKSVTSVVSTLFYDKRMR

TTNPKETKIEIDTTGSTKPKQDDLILTCFRGW QLQIDYKGNEIMTAA

ASQGLTRKGVYAVRYKVNENPLYAPTSEHV VLLTRTEDRIVWKTLA

GDPWIKTLTAKYPGNFTATIEEWQAEHDAIMRHILERPDPTDVFQNKA

NVCWAKALVPVLKTAGIDMTTEQWNTVDYFETDKAHSAEIVLNQLC

VRFFGLDLDSGLFSAPTVPLSIRN HWDNSPSPNMYGLNKEVVRQLSR

RYPQLPRAVATGRVYDMNTGTLRNYDPRINLVPVNRRLPHALVLHFIN

EHPQSDFSSFVSKLKGRTVLVVGEKLSVPGKTVDWLSDKPEATFRARL

DLGIPGDVPKYDnFINVRTPYKYHHYQQCEDHAIKLSMLTKKACLHLN

PGGTCVSIGYGYADRASESIIGAIARQFKFSRVCKPKSSLEETEVLFVFI

GYDRKARTHNPYKLSSTLTNIYTGSRLHEAGCAPSYHVVRGDIAMATE

G VIIN A ANS KGQPGGG V CG ALYKKFPE SFDLQPIE VGKARLVKG A AKH

IIHAVGPNFNKVSEVEGDKQLAEAYESIAKIVNDN YKSVAIPLLSTGIF

SG KDRLTQSLNHLLTALDTTDADVAIYCRDKKWEMTLKEAVARRE

AVEEICISDDSSVTEPDAELVRVHPKSSLAGRKGYSTSDGKTFSYLEGT

KFHQAAKDIAEINAMWPVATEANEQVCMYILGESMSSIRSKCPVEESE

ASTPPSTLPCLCIHAMTPERVQRLKASRPEQITVCSSFPLPKYRITGVQKI

QCSQPILFSPKVPAYIHPRKYLVETPPVEEIPELPAENQSTEGTSEQPAPN

VDATRTRTPEPIIIEEEEEDSISLLSDGPTHQVLQVEADIHGPPSVSSSSW

SIPHASDFDVDSLSILALEGASVTSEAASAETNSYFARSMEFLARPVPAP

RTVFRNPPHPAPRTRTPSLAPSRASSRTSLVSTPPGVNRVITREELEALT

PSRAPSRSASRTSLVSNPPGVNRVITREEFEAFVAQQQRRFDAGAYIFSS

DTGQGHLQQKSVRQTVLSEVVLERTELEISYAPRLDQEKEELLRKKLQ

LNPTPANRSRYQSRRVENMKAITARRILQGLGHYLKAEGKVECYRTLH

PVPLYSSSVNRAFSSPKVAVEACNAMLKENFPTVASYCIIPEYDAYLD

MVDGASCCLDTASFCPAKLRSFPKKHSYLEPTIRSAVPSAIQNTLQNVL

AAATKJWCNVTQMRELPVLDSAAF VECFKKYACN EYWETFKE PI

RLTEENVVNYITKLKGPKAAALFAKTHNLNMLQDIPMDRFVMDLKRD

VKVTPGTKHTEERPKVQVIOAADPLATAYLCGIHRELVRRLNAVLLPN

- 1 15- SEQ ID NO Sequence

IHTLFDMSAEDFDAIIAEHFQPGDCVLETDIASFDKSEDDAMALTALMI

LEDLGVDAELLTLIEAAFGEISSIHLPTKTKFKFGAMMKSGMFLTLFVN

TVINIVIASRVLRERLTGSPCAAFIGDDNIVKGVKSDKLMADRCATWL

NMEVKIIDAVVGEKAPYFCGGFILCDSVTGTACRVADPLKRLFKLGKP

LAADDEHDDDRRRALYEESTRWNRVGILPELCKAVESRYETVGTSIIV

MAMTTL AS S VKSFS YLRG APITLYG

SEQ ID NO: 16 TAGAGGCAACCACCCTATTTCCACCTATCCAAAATGGAGAAAGTTC

ATGTTGACTTAGACGCAGACAGCCCATTCGTCAAGTCACTGCAAAG

ATGCTTTCCACATTTTGAGATAGAAGCAACGCAGGTCACTGACAAT

GACCATGCTAATGCTAGGGCGTTTTCGCACCTAGCTACTAAGCTCA

TTGAGGGAGAAGTGGATACAGACCAGGTGATCCTGGATATTGGGA

GCGCGCCTGTAAGGCACACGCATTCCAAACATAAGTACCACTGTAT

TTGCCCAATGAAGAGCGCAGAAGACCCTGACAGACTCTACCGCTAC

GCAGACAAGCTTAGAAAGAGTGATGTCACTGACAAATGTATTGCCT

CTAAGGCCGCGGACCTGCTAACAGTAATGTCGACGCCTGACGCTGA

GACACCCTCGTTATGCATGCACACTGACTCAACTTGCAGGTACCAC

GGCTCCGTGGCCGTATATCAGGATGTATATGCAGTGCATGCACCGA

CTTCCATTTACTACCAGGCGCTGAAAGGTGTACGAACTATCTATTG

GATCGGGTTCGATACTACACCGTTCATGTATAAGAACATGGCAGGC

GCCTACCCTACATACAACACTAATTGGGCCGATGAAAGTGTGTTGG

AAGCCAGAAATATAGGGCTGGGTAGTTCAGACTTGCACGAAAAGA

GTTTCGGAAAAGTATCCATTATGAGGAAGAAGAAATTACAACCCAC

CAATAAAGTAATATTTTCTGTGGGGTCAACTATTTATACTGAAGAG

AGAATACTGTTACGCAGTTGGCATCTACCTAATGTTTTTCATCTAAA

AGGTAAAACTAGCTTTACAGGCAGATGTAATACTATCGTCAGCTGC

GAAGGTTACGTTGTCAAGAAGATTACGCTCAGTCCTGGGATTTACG

GGAAAGTGGATAATCTTGCTTCGACCATGCACCGAGAGGGATTCTT

AAGTTGCAAGGTTACAGATACGTTAAGAGGGGAGAGGGTCTCTTTT

CCCGTGTGTACGTACGTGCCAGCGACACTGTGCGACCAGATGACCG

GGATACTGGCGACTGACGTCAGTGTCGATGACGCCCAGAAGCTGCT

GGTTGGGCTCAACCAGCGAATTGTCGTCAATGGCAGAACACAACGT

AACACAAATACCATGCAGAATTATCTATTACCAGTGGTCGCCCAGG

CGTTCTCGCGGTGGGCGCGGGAACACCGCGCAGACCTGGAGGACG

AAAAAGGGCTAGGGGTACGGGAACGTTCCCTAGTCATGGGCTGCTG

CTGGGCTTTCAAAACTCACAAGATCACATCCATTTACAAGAGACCT

GGGACTCAAACTATCAAGAAGGTGCCCGCCGTATTCAATTCCTTTG

TCATCCCACAACCAACCAGCTATGGGCTTGATATAGGGTTGCGTCG

CCGCATTAAGATGCTATTCGACGCAAAGAAGGCACCCGCTCCAATT

ATTACTGAGGCCGACGTTGCACACCTTAAAGGCCTGCAGGATGAAG

CTGAAGCCGTGGCAGAGGCTGAAGCCGTACGTGCAGCACTACCACC

ACTTCTGCCGGAGGTCGACAAGGAGACCGTAGAGGCTGACATCGA

CCTGATCATGCAGGAGGCAGGAGCAGGTAGCGTGGAGACACCTAG

ACGACACATCAAGGTCACGACGTACCCAGGAGAAGAAATGATCGG

CTCGTACGCAGTGCTTTCACCACAAGCGGTCCTTAACAGCGAGAAG

CTCGCTTGTATTCACCCGTTAGCTGAGCAAGTGCTCGTGATGACTCA

CAAGGGGCGCGCAGGACGATACAAGGTAGAGCCATACCACGGTAG

AGTTATCGTCCCTAGTGGTACAGCTATACCAATCCCCGATTTCCAGG

CTCTGAGTGAAAGTGCAACCATAGTATTTAACGAACGGGAGTTCGT

TAACCGTTACTTACACCACATTGCCGTTAACGGAGGGGCACTGAAT

- 1 16- SEQ ID NO Sequence

ACAGATGAAGAGTACTACAAGGTTGTGAAAAGCACTGAGACAGAC

TCTGAGTACGTATTTGACATCGACGCAAAGAAGTGCGTGAAGAAAG

GGGATGCCGGACCAATGTGCCTGGTCGGCGAATTAGTAGACCCGCC

ATTCCACGAATTCGCGTACGAGAGTTTAAAAACACGTCCTGCTGCA

CCACACAAAGTGCCTACCATCGGAGTTTATGGAGTCCCAGGTTCCG

GAAAGTCTGGTATAATCAAAAGCGCTGTTACCAAACGTGATCTGGT

GGTCAGTGCAAAGAAAGAAAATTGCATGGAAATCATTAAAGACGT

CAAACGTATGCGCGGCATGGACATCGCCGCCCGCACAGTGGATTCG

GTGCTGCTAAATGGGGTAAAACACTCCGTCGACACACTGTACATAG

ACGAGGCATTCGCTTGCCATGCAGGGACCCTGCTAGCACTTATTGC

CATCGTCAAGCCAAAGAAAGTTGTATTGTGTGGAGATCCGAAACAA

TGCGGCTTCTTTAACATGATGTGTCTAAAAGTGCATTTTAACCACGA

GATATGCACAGAAGTGTATCACAAGAGTATTTCTCGGCGATGCACT

AAGACAGTGACATCCATCGTTTCCACCCTGTTCTATGATAAACGCA

TGAGAACTGTCAACCCATGCAATGATAAGATCATAATAGATACCAC

CAGTACTACCAAACCTTTAAAGGATGACATAATATTAACCTGCTTT

AGAGGGTGGGTTAAACAACTGCAGATTGACTACAAGAACCACGAG

ATCATGACTGCAGCGGCCTCACAGGGGCTTACTAGAAAAGGGGTAT

ACGCAGTGCGCTACAAGGTCAATGAGAACCCACTATACGCACAGA

CATCTGAGCATGTGAATGTATTACTTACACGCACTGAAAAACGTAT

AGTATGGAAGACTTTGGCCGGTGACCCTTGGATCAAGACGTTGACA

GCATCGTATCCGGGTAATTTCACCGCCACACTGGAAGAATGGCAAG

CTGAGCATGACGCTATCATGGCGAAAATACTTGAGACACCAGCTAG

CAGCGACGTTTTCCAAAATAAAGTGAACGTCTGCTGGGCCAAAGCG

CTAGAACCTGTGTTGGCCACCGCCAATATTACGCTGACCCGCTCGC

AGTGGGAGACCATTCCAGCGTTCAAGGATGACAAAGCGTATTCGCC

TGAGATGGCCTTAAACTTTTTCTGCACCAGATTCTTTGGCGTCGACA

TCGACAGCGGGTTGTTCTCCGCGCCAACTGTTCCGCTGACTTACACC

AATGAACACTGGGATAATAGCCCAGGTCCAAACATGTATGGTTTGT

GCATGCGCACTGCTAAAGAACTTGCACGTCGGTATCCTTGTATTCTG

AAAGCCGTGGATACAGGTAGAGTGGCTGACGTTCGCACAGACACT

ATCAAAGACTATAACCCGCTAATAAATGTGGTACCCTTGAATAGAA

GACTCCCACACTCATTGGTTGTCACACATAGATACACTGGGAACGG

TGATTACTCCCAGCTAGTGACCAAGATGACCGGAAAGACCGTACTA

GTAGTGGGTACACCTATGAACATACCAGGAAAGAGAGTCGAGACA

CTAGGCCCAAGCCCACAATGTACATATAAAGCGGAACTGGACCTGG

GCATTCCTGCCGCTTTAGGCAAATATGACATCATTTTTATTAACGTG

AGGACTCCCTACCGACACCACCATTACCAACAGTGCGAGGACCATG

CGATCCACCACAGCATGCTTACCAGAAAAGCAGTGGACCATTTGAA

CAAAGGCGGTACGTGCATCGCATTGGGCTATGGGACTGCGGACAG

AGCCACCGAGAACATTATCTCTGCAGTCGCCCGCTCATTCAGGTTCT

CACGTGTGTGCCAGCCGAAGTGTGCCTGGGAAAACACTGAGGTCGC

GTTCGTGTTTTTCGGCAAGGACAACGGCAACCATCTCCAAGATCAA

GATAGGCTGAGTGTTGTGCTAAACAACATATACCAAGGGTCAACTC

AACATGAAGCTGGCAGAGCACCTGCGTACAGAGTGGTGCGCGGCG

ACATAACAAAGAGCAATGATGAGGTTATTGTTAACGCGGCGAACA

ACAAAGGGCAACCCGGTGGCGGTGTGTGTGGCGCCCTTTACAGGAA

GTGGCCTGGAGCTTTTGATAAGCAGCCGGTAGCAACTGGTAAAGCG

CACCTCGTCAAGCATTCTCCGAACGTCATCCATGCTGTTGGTCCTAA

-1 17- SEQ ID NO Sequence

TTTCTCTCGGCTATCAGAAAACGAAGGAGACCAGAAATTGTCTGAA

GTGTACATGGACATTGCCAGAATTATCAACAACGAGAGGTTTACTA

AAGTCTCCATTCCGTTGTTATCTACCGGCATCTACGCAGGTGGTAAG

GACAGGGTTATGCAATCGCTGAACCATTTATTTACAGCCATGGATA

CTACCGACGCAGACATTACTATTTACTGTCTAGATAAGCAATGGGA

GTCAAGAATAAAGGAAGCTATCACTCGGAAGGAAAGCGTTGAAGA

GCTTACTGAGGATGACAGACCAGTTGACATTGAACTGGTACGGGTG

CACCCGTTGAGCAGCTTGGCAGGTAGACCTGGTTATTCAACCACCG

AGGGCAAGGTGTATTCGTATCTAGAGGGGACTAGGTTTCATCAAAC

TGCCAAAGACATAGCTGAAATTTACGCTATGTGGCCTAACAAGCAA

GAAGCAAACGAGCAGATTTGCTTATACGTGTTGGGAGAGAGTATGA

ACAGCATCCGCTCTAAGTGTCCAGTTGAAGAGTCGGAGGCCTCTTC

CCCCCCTCACACCATCCCGTGTCTGTGCAACTATGCAATGACTGCA

GAGCGAGTTTACAGATTACGTATGGCAAAGAATGAACAATTCGCAG

TTTGTTCGTCCTTTCAGTTACCGAAATACAGGATTACAGGGGTTCAG

AAAATTCAATGCAGTAAACCTGTGATATTCTCTGGCACTGTACCCC

CGGCCATACATCCAAGAAAATTCGCATCCGTGACAGTGGAAGACAC

TCCGATGGTCCAACCTGAAAGGTTGGTGCCTAGGCGACCTGCACCG

CCTGTGCCCGTACCTGCAAGAATCCCCAGCCCTCCATGTACATCGA

CCAATGGATCGACGACCAGTATACAATCACTGGGGGAGGATCAAA

GCGCATCTGCTTCTAGCGGAGCTGAAATCTCTGTAGACCAGGTTTC

GCTATGGAGCATACCCAGCGCTACCGGGTTCGATGTGCGTACCTCC

TCATCGTTGAGCCTAGAGCAGCCTACCTTTCCGACAATGGTTGTCG

AAGCAGAGATTCACGCCAGTCAAGGATCACTGTGGAGCATACCCA

GTATCACCGGATCTGAAACCCGTGCTCCGTCACCTCCAAGTCAGGA

TAGTAGACCTTCCACCCCATCTGCAAGTGGTTCACACACGTCCGTG

GACTTAATCACGTTTGACAGCGTTGCAGAGATTTTGGAGGATTTCA

GTCGTTCGCCGTTTCAATTTTTGTCTGAAATCAAACCTATTCCTGCA

CCTCGTACCCGAGTTACTAACATGAGCCGCAGCGCAGACACGATCA

AACCAATTCCAAAGCCGCGTAAATGCCAGGTGAAGTACACGCAGC

CACCTGGCGTCGCCAGGGCCATATCGGCAGCGGAATTTGACGAGTT

TGTGCGGAGGCACTCGAATTGACGGTACGAAGCGGGTGCGTACATT

TTCTCATCCGAGACGGGACAAGGGCACCTGCAACAAAAATCTACGC

GGCAATGCAAACTCCAGTATCCAATCCTGGAGCGTTCCGTCCATGA

GAAATTTTACGCCCCGCGCCTCGATCTCGAGCGTGAGAAGCTGTTG

CAGAAGAAACTACAATTGTGTGCTTCTGAAGGTAATCGGAGCAGGT

ATCAGTCTCGTAAAGTAGAGAACATGAAGGCAATCACCGTTGAGCG

TCTACTGCAGGGGATAGGCTCATACCTCTCTGCAGAACCGCAACCA

GTTGAATGCTACAAAGTCACCTATCCTGCTCCCATGTATTCAAGTAC

TGCAAGCAACAGCTTTTCATCAGCAGAAGTGGCCGTCAAAGTCTGC

AACCTAGTACTGCAAGAGAATTTTCCCACCGTAGCCAGCTATAACA

TAACGGATGAGTATGATGCCTATCTTGATATGGTGGACGGAGCATC

CTGCTGTTTAGATACTGCCACCTTTTGCCCAGCCAAATTAAGGAGCT

TTCCAAAGAAGCACAGTTATTTGCGGCCTGAGATACGGTCAGCAGT

GCCATCACCGATTCAAAACACGCTCCAGAATGTACTAGCAGCAGCC

ACGAAACGGAATTGCAATGTCACTCAAATGAGGGAACTTCCAGTGT

TGGATTCAGCTGCCTTCAACGTGGAGTGTTTCAAAAAGTACGCCTG

TAACGATGAGTACTGGGACTTCTACAAGACAAACCCGATAAGACTC

ACCGCAGAAAATGTTACTCAGTATGTTACTAAGTTAAAGGGACCCA

- 1 18- SEQ ID NO Sequence

AAGCAGCTGCCCTTTTTGCGAAAACGCATAACTTACAGCCATTGCA

TGAGATACCAATGGATAGATTCGTGATGGACCTTAAACGGGATGTT

AAGGTTACACCCGGGACAAAACATACTGAAGAAAGACCAAAAGTT

CAGGTGATACAGGCAGCTGATCCACTTGCAACCGCCTACCTATGTG

GTATACATCGAGAGCTTGTGCGCAGGTTGAACGCAGTGCTGCTACC

GAACATCCACACTTTGTTTGACATGTCTGCAGAAGATTTTGATGCTA

TCATTGCCGAACACTTTCAATTCGGCGACTCGGTGTTAGAGACAGA

CATAGCTTCTTTTGATAAAAGCGAGGACGATGCTATCGCCATGTCT

GCTCTAATGATTCTTGAAGACCTAGGAGTTGATCAGGCACTGTTAA

ACCTAATTGAAGCAGCCTTTGGGAACATAACATCTGTGCACTTACC

AACAGGCACCCGATTTAAGTTCGGGGCAATGATGAAATCCGGGATG

TTTTTGACACTCTTTATTAATACTGTTGTCAATATCATGATCGCTAG

CCGCGTGCTCCGCGAGCGGTTGACCACTTCCCCCTGCGCAGCATTT

ATCGGCGACGACAACATCGTGAAAGGGGTTACATCTGACGAGCTG

ATGGCAGAGCGGTGCGCCACGTGGTTGAACATGGAAGTGAAGATC

ATCGATGCAGTAGTCGGAGTAAAGGCACCGTACTTTTGCGGAGGGT

TCATCGTAGTCGATCAGATCACAGGAACTGCGTGCAGAGTCGCCGA

CCCCCTGAAGAGACTGTTTAAGCTAGGTAAGCCGCTTCCATTGGAC

GATGACCAAGACGTCGACAGGCGCAGAGCTCTGCATGATGAAGCG

GCACGTTGGAACAGAATTGGCATCACTGAAGAGCTGGTGAAAGCA

GTTGAATCACGCTACGAGGTGAACTACGTGTCACTAATCATTACAG

CGTTGACTACATTAGCATCTACAGTTAGCAACTTTAAACACATAAG

AGGTCACCCCATAACCCTCTACGGCTGACCTAAATAGGTTGTGCAT

TAGTACCTAACCTATTTATATTATATTGCTATCTAAATATCAGAGAT

GTTCCCATACCCTACACTTAACTACCCGCCTATGGCGCCGATTAACC

CGATGGCCTACCGGGATCCTAATCCGCCTAGGCGCAGGTGGCGGCC

CTTTAGGCCACCACTTGCAGCTCAAATTGAGGACCTGAGACGTTCC

ATTGCTAACCTGACTTTGAAACAACGAGCACCTAACCCTCCAGCAG

GACCGCCCGCCAAACGCAAGAAGCCTGCGCCCAAGCCTAAGCCTG

CGCAGGCGAAAAAGAAGCGACCACCACCACCTGCCAAGAAACAAA

AACGTAAACCTAAACCAGGCAAACGACAGCGAATGTGTATGAAGC

TAGAGTCAGATAAAACGTTTCCGATCATGTTGAACGGACAGGTGAA

TGGTTACGCGTGCGTCGTGGGTGGACGAGTGTTTAAACCGCTGCAC

GTAGAAGGCAGAATAGACAATGAGCAACTGGCCGCTATCAAGCTG

AAGAAGGCCAGCATATATGACCTTGAGTACGGTGATGTGCCACAAT

GCATGAAATCAGATACCCTCCAGTACACCAGTGACAAGCCTCCTGG

CTTTTATAACTGGCATCATGGAGCTGTGCAGTATGAGAACAACAGG

TTCACCGTACCACGAGGGGTAGGTGGAAAGGGCGACAGCGGGAGA

CCTATTCTTGACAACAAAGGTAGAGTCGTCGCAATTGTCCTGGGTG

GAGTCAACGAAGGATCCAGGACGGCTCTATCAGTGGTGACATGGA

ACCAAAAGGGGGTTACAGTCAAAGATACACCAGAGGGGTCAGAGC

CATGGTCGCTCGCCACTGTCATGTGCGTCCTGGCCAATATCACGTTT

CCATGTGATCAACCACCCTGCATGCCATGCTGTTATGAAAAGAATC

CACACGAAACACTCACCATGCTGGAACAGAATTACGACAGCCGAG

CCTATGATCAGCTGCTCGATGCCGCTGTGAAATGTAATGCTAGGAG

AACCAGGAGAGATTTGGACACTCATTTCACCCAGTATAAGTTGGCA

CGCCCGTATATTGCTGATTGCCCTAACTGTGGGCATAGTCGGTGCG

ACAGCCCTATAGCTATAGAAGAAGTCAGAGGGGATGCGCATGCAG

GAGTCATCCGCATCCAGACATCAGCTATGTTTGGTCTGAAGACGGA

-1 19- SEQ ID NO Sequence

TGGAGTCGATTTGGCCTACATGAGTTTCATGAACGGCAAAACGCAG

AAATCAATAAAGATCGACAACCTGCATGTGCGCACCTCAGCCCCTT

GTTCCCTCGTGTCGCACCACGGCTATTACATCTTGGCTCAATGCCCA

CCAGGGGACACGGTTACAGTTGGGTTTCACGACGGGCCTAACCGCC

ATACGTGCACAGTTGCCCATAAGGTAGAATTCAGGCCAGTGGGTAG

AGAGAAATACCGTCACCCACCTGAACATGGAGTTGAATTACCGTGT

AACCGTTACACTCACAAGCGTGCAGACCAAGGACACTATGTTGAGA

TGCATCAACCAGGGCTAGTTGCCGACCACTCTCTCCTTAGCATCCAC

AGTGCCAAGGTGAAAATTACGGTACCGAGCGGCGCCCAAGTGAAA

TACTACTGCAAGTGTCCAGATGTACGAGAGGGAATTACCAGCAGCG

ACCATACAACCACCTGCACGGATGTCAAACAATGCAGGGCTTACCT

GATTGACAACAAGAAATGGGTGTACAACTCTGGAAGACTGCCTCGA

GGAGAGGGCGACACTTTTAAAGGAAAACTTCATGTGCCCTTTGTGC

CTGTTAAGGCCAAGTGCATCGCCACGCTGGCACCGGAGCCTCTAGT

TGAGCACAAACACCGCACCCTGATTTTACACCTGCACCCGGACCAC

CCGACCTTGCTGACGACCAGGTCACTTGGAAGTGATGCAAATCCAA

CTCGACAATGGATTGAGCGACCAACAACTGTCAATTTCACAGTCAC

CGGAGAAGGGTTGGAGTATACCTGGGGAAACCATCCACCAAAAAG

AGTATGGGCTCAAGAGTCAGGAGAAGGGAACCCACATGGATGGCC

GCACGAAGTGGTAGTCTATTACTACAACAGATACCCGCTAACCACA

ATTATCGGGTTATGCACCTGTGTGGCTATCATCATGGTCTCTTGTGT

CACATCCGTGTGGCTCCTTTGCAGGACTCGCAATCTTTGCATAACCC

CGTATAAACTAGCCCCGAACGCTCAAGTCCCAATACTCCTGGCGTT

ACTTTGCTGCATTAAGCCGACGAGGGCAGACGACACCTTGCAAGTG

CTGAATTATCTGTGGAACAACAATCAAAACTTTTTCTGGATGCAGA

CGCTTATCCCACTTGCAGCGCTTATCGTATGCATGCGCATGCTGCGT

TGCTTATTTTGCTGTGGGCCGGCTTTTTTACTTGTCTGCGGCGCCTTG

GGCGCCGCAGCGTACGAACACACAGCAGTGATGCCGAACAAGGTG

GGGATCCCGTATAAAGCTTTAGTCGAACGCCCAGGGTATGCACCCG

TTCACCTACAGATACAGCTGGTTAATACCAGGATAATTCCATCAAC

TAACCTGGAGTACATCACCTGCAAGTACAAGACAAAAGTGCCGTCT

CCAGTAGTGAAATGCTGCGGTGCCACTCAATGTACCTCTAAACCCC

ATCCTGACTATCAGTGTCAGGTGTTTACAGGTGTTTACCCATTCATG

TGGGGAGGAGCCTACTGCTTCTGCGACACCGAAAACACCCAGATGA

GCGAGGCGTATGTAGAGCGCTCGGAAGAGTGCTCTATCGACCACGC

AAAAGCTTATAAAGTACACACAGGCACTGTTCAGGCAATGGTGAAC

ATAACTTATGGGAGCGTCAGCTGGAGATCTGCAGATGTCTACGTCA

ATGGTGAAACTCCCGCGAAAATAGGAGATGCCAAACTCATCATAG

GTCCACTGTCATCTGCGTGGTCCCCATTCGATAACAAGGTGGTGGTT

TATGGGCATGAAGTGTATAATTACGACTTTCCTGAGTACAGCACCG

GCAAAGCAGGCTCTTTCGGAGACCTGCAATCACGCACATCAACCAG

CAACGATCTGTACGCAAATACCAACTTGAAGCTACAACGACCCCAG

GCTGGTATCGTGCACACACCTTTCACCCAGGCGCCCTCTGGCTTCGA

ACGATGGAAAAGGGACAAAGGGGCACCGTTGAACGACGTAGCCCC

GTTTGGCTGTTCAATTGCCCTGGAGCCGCTCCGTGCAGAAAATTGT

GCAGTGGGAAGCATCCCTATATCTATAGATATACCCGATGCGGCTT

TCACCAGAATATCTGAAACACCGACAGTCTCAGACCTGGAATGCAA

AATTACGGAGTGTACTTATGCCTCCGATTTCGGTGGTATAGCCACC

GTTGCCTACAAATCCAGTAAAGCAGGAAACTGTCCAATTCATTCTC

-120- SEQ ID NO Sequence

CATCGGGTGTTGCAGTTATTAAAGAGAATGACGTCACCCTTGCTGA

GAGCGGATCATTTACATTCCACTTCTCCACTGCAAACATCCATCCTG

CTTTTAAGCTGCAGGTCTGCACCAGTGCAGTTACCTGCAAAGGAGA

TTGCAAGCCACCGAAAGATCATATCGTCGATTATCCAGCACAACAT

ACCGAATCCTTTACGTCGGCGATATCCGCCACCGCGTGGTCGTGGC

TAAAAGTGCTGGTAGGAGGAACATCAGCATTTATTGTTCTGGGGCT

TATTGCTACAGCAGTGGTTGCCCTAGTTCTGTTCTTCCATAGACATT

AACATCTTGTCAACCACATAACACTACAGGCAGTGTATAAGGCTGT

CTTACTAAACACTAAAATCACCCTAGTTCGATGTACTTCCGAGCTAT

GGTGACGGTGGTGCATAATGCCGCCGATGCAGTGCATAAGGCTGCT

ATATTACCAAATTATAACACTAAGGGCAGTGCATAATGCTGCTCCT

AAGTAATTTTATACACACTTTATAATCAGGCATAATTGCCGTATATA

CAATTACACTACAGGTAATATACCGCCTCTTATAAACACTACAGGC

AGCGCATAATGCTGTCTTTTATATCAATTTACAAAATCATAT

SEQ ID NO: 17 MFPYPTLNYPPMAPINPMAYRDPNPPRRRWRPFRPPLAAQIEDLRRSIA

NLTLKQRAPNPPAGPPAKR PAPKPKPAQAKKKRPPPPAKKQKRKP

KPGKRQRMCMKLESDKTFPIMLNGQVNGYACVVGGRVFKPLHVEGRI

DNEQLAAIKLKKASIYDLEYGDVPQCMKSDTLQYTSDKPPGFY WHH

GAVQYEN RFTVPRGVGGKGDSGRPILDNKGRVVAIVLGGVNEGSRT

ALSVVTWNQKGVTVKDTPEGSEPWSLATVMCVLANITFPCDQPPCMP

CCYEKNPHETLTMLEQNYDSRAYDQLLDAAVKCNARRTRRDLDTHFT

QYKLARPYIADCPNCGHSRCDSPIAIEEVRGDAHAGVIRIQTSAMFGLK

TDGVDLAYMSFMNGKTQKSIKIDNLHVRTSAPCSLVSHHGYYILAQCP

PGDTVTVGFHDGPNRHTCTVAHKVEFRPVGREKYRHPPEHGVELPCN

RYTHKRADQGHYVEMHQPGLVADHSLLSIHSAKVKITVPSGAQVKYY

CKCPDVREGITSSDHTTTCTDVKQCRAYLIDNKKWVY SGRLPRGEG

DTFKGKLHVPFVPVKAKCIATLAPEPLVEHKHRTLILHLHPDHPTLLTT

RSLGSDANPTRQWIERPTTVNFTVTGEGLEYTWGNHPPKRVWAQESG

EGNPHGWPHE VYYYNRYPLTTIIGLCTCVAIIMVSCVTSVWLLCRT

RNLCITPYKLAPNAQVPILLALLCCIKPTPvADDTLQVLNYLWN QNF

FWMQTLIPLAALIVCMRMLRCLFCCGPAFLLVCGALGAAAYEHTAVM

PNKVGIPYKALVERPGYAPVHLQIQLV TRIIPSTNLEYITCKYKTKVPS

PVVKCCGATQCTSKPHPDYQCQVFTGVYPFMWGGAYCFCDTENTQM

SEAYVERSEECSIDHAKAYKVHTGTVQAMVNITYGSVSWRSADVYV

- 121 - SEQ ID NO Sequence

GETPAKIGDAKLIIGPLSSAWSPFDNKVVVYGHEVYNYDFPEYSTGKA

GSFGDLQSRTSTSNDLYANTNLKLQRPQAGIVHTPFTQAPSGFERWKR

DKGAPLNDVAPFGCSIALEPLRAENCAVGSIPISIDIPDAAFTRISETPTV

SDLECKITECTYASDFGGIATVAYKSSKAGNCPIHSPSGVAVIKENDVT

LAESGSFTFHFSTANIHPAFKLQVCTSAVTCKGDCKPPKDHIVDYPAQH

TESFTSAISATAWSWLKVLVGGTSAFIVLGLIATAVVALVLFFHRH

SEQ ID NO: 18 MEKVHVDLDADSPFVKSLQRCFPHFEIEATQVTDNDHANARAFSHLA

TKLIEGEVDTDQVILDIGSAPVRHTHSKHKYHCICPMKSAEDPDRLYRY

ADKLRKSDVTDKCIASKAADLLTVMSTPDAETPSLCMHTDSTCRYHG

SVAVYQDVYAVHAPTSIYYQALKGVRTIYWIGFDTTPFMYK MAGAY

PTYNTNWADESVLEARNIGLGSSDLHEKSFGKVSIMRKKKLQPTNKVI

FSVGSTIYTEERILLRSWHLPNVFHLKGKTSFTGRCNTIVSCEGYVVKKI

TLSPGIYGKVDNLASTMHREGFLSCKVTDTLRGERVSFPVCTYVPATL

CDQMTGILATDVSVDDAQKLLVGLNQRIVVNGRTQRNTNTMQNYLLP

VVAQAFSRWAREHRADLEDEKGLGVRERSLVMGCCWAFKTHKITSIY

KRPGTQTIKKVPAVFNSFVIPQPTSYGLDIGLRRRIKMLFDAKKAPAPII

TEADVAHLKGLQDEAEAVAEAEAVRAALPPLLPEVDKETVEADIDLIM

QEAGAGSVETPRRHIKVTTYPGEEMIGSYAVLSPQAVLNSEKLACIHPL

AEQVLVMTHKGRAGRYKVEPYHGRVIVPSGTAIPIPDFQALSESATIVF

NEREFVNRYLHfflAVNGGALNTDEEYYKVVKSTETDSEYVFDIDAKK

CVKKGDAGPMCLVGELVDPPFHEFAYESLKTRPAAPHKVPTIGVYGV

PGSGKSGnKSAVTKPvDLVVSAKKENCMEIIKDVKPvMRGMDIAARTVD

SVLLNGVKHSVDTLYIDEAFACHAGTLLALIAIVKPKKVVLCGDPKQC

GFFNMMCLKVHFNHEICTEVYHKSISRRCTKTVTSIVSTLFYDKRMRT

V PCNDKIIIDTTSTTKPL DDIILTCFRGWVKQLQIDYK HEIMTAAAS

QGLTRKGVYAVRYKVNENPLYAQTSEHV VLLTRTEKRIVWKTLAG

DPWIKTLTASYPGNFTATLEEWQAEHDAIMAKILETPASSDVFQNKV

VCWAKALEPVLATANITLTRSQWETIPAFKDDKAYSPEMALNFFCTRF

FGVDIDSGLFSAPTVPLTYTNEHWDNSPGPNMYGLCMRTAKELARRY

PCILKAVDTGRVADVRTDTIKDYNPLINVVPLNRRLPHSLVVTHRYTG

NGDYSQLVTKMTGKTVLVVGTPMNIPGKRVETLGPSPQCTYKAELDL

GIPAALGKYDIIFINVRTPYRHHHYQQCEDHAIHHSMLTRKAVDHLNK

GGTCIALGYGTADRATENIISAVARSFRFSRVCQPKCAWENTEVAFVFF

GKDNGNHLQDQDRLSVVLNNIYQGSTQHEAGRAPAYRVVRGDITKSN

DEVIV AANNKGQPGGGVCGALYRKWPGAFDKQPVATGKAHLVKHS

PNVIHAVGPNFSRLSENEGDQKLSEVYMDIARIIN ERFTKVSIPLLSTGI

YAGGKDRVMQSLNHLFTAMDTTDADITIYCLDKQWESRIKEAITRKES

VEELTEDDRPVDIELVRVHPLSSLAGRPGYSTTEGKVYSYLEGTRFHQT

AKDIAEIYAMWPNKQEANEQICLYVLGESMNSIRSKCPVEESEASSPPH

TIPCLCNYAMTAERVYRLRMAKNEQFAVCSSFQLPKYRITGVQKIQCS

KPVIFSGTVPPAIHPRKFASVTVEDTPMVQPERLVPRRPAPPVPVPARIP

SPPCTSTNGSTTSIQSLGEDQSASASSGAEISVDQVSLWSIPSATGFDVR

TSSSLSLEQPTFPTMVVEAEIHASQGSLWSIPSITGSETRAPSPPSQDSRP

STPSASGSHTSVDLITFDSVAEILEDFSRSPFQFLSEIKPIPAPRTRVTNMS

RSADTIKPIPKPRKCQVKYTQPPGVARAISAAEFDEFVRRHSNRRYEAG

AYIFSSETGQGHLQQKSTRQCKLQYPILERSVHEKFYAPRLDLEREKLL

QKKLQLCASEGNRSRYQSRKVENMKAITVERLLQGIGSYLSAEPQPVE

CYKVTYPAPMYSSTASNSFSSAEVAVKVCNLVLQENFPTVASYNITDE

YDAYLD VDGASCCLDTATFCPAKLRSFPKKHSYLRPEIRSAVPSPIQN

-122- SEQ ID NO Sequence

TLQNVLAAATKRNCNVTQMRELPVLDSAAFNVECFKKYACNDEYWD

FYKTNPIRLTAENVTQYVTKLKGPKAAALFAKTHNLQPLHEIPMDRFV

MDLKRDVKVTPGTKHTEERPKVQVIQAADPLATAYLCGIHRELVRRL

NAVLLPNIHTLFDMSAEDFDAIIAEHFQFGDSVLETDIASFDKSEDDAIA

MSALMILEDLGVDQALLNLIEAAFGNITSVHLPTGTRFKFGAMMKSG

MFLTLFI TVVNIMIASRVLRERLTTSPCAAFIGDDNIVKGVTSDELMA

ERCATWLNMEVKIIDAVVGVKAPYFCGGFIVVDQITGTACRVADPLKR

LFKLGKPLPLDDDQDVDRRRALHDEAARWNRIGITEELVKAVESRYE

VNYVSLIITALTTLASTVSNFKHIRGHPITLYG

SEQ ID NO: 19 AACTAATCGATCCAATATGGAAAGAATTCACGTTGACTTAGATGCT

GACAGCCCGTATGTCAAGTCGTTACAGCGGAGCTTTCCACAATTTG

AGATCGAAGCAAGGCAGGTCACTGACAATGACCATGCCAATGCCA

GAGCGTTTTCGCATGTGGCAACAAAGCTCATTGAGAGCGAAGTCGA

CCGGGACCAAGTTATCTTGGACATTGGAAGTGCGCCCGTCAGACAT

GCACATTCCAATCACCGCTATCATTGTATCTGCCCTATGATAAGCGC

TGAAGACCCGGACAGACTACAACGGTATGCAGAAAGACTTAAGAA

AAGTGACATTACCGACAAGAACATAGCCTCTAAGGCGGCAGACCT

GCTGGAAGTCATGTCAACACCAGACGCAGAGACTCCATCTCTGTGT

ATGCACACAGACGCCACGTGTAGGTACTTTGGAAGTGTAGCAGTAT

ACCAAGATGTGTACGCAGTCCATGCACCGACATCAATCTACCACCA

GGCGCTTAAAGGAGTTAGGACAATTTACTGGATAGGCTTTGACACG

ACCCCTTTTATGTACAAAAACATGGCAGGTTCTTACCCTACTTACAA

CACGAACTGGGCTGACGAGAGAGTATTGGAAGCACGTAACATTGG

CCTCGGTAACTCAGATCTTCAGGAGAGCAGGCTTGGAAACCTCTCA

ATCCTTAGGAAGAAGAGGCTCCAACCTACTAATAAGATCATATTCT

CGGTTGGTTCAACAATCTACACAGAAGATAGATCACTGTTACGTAG

CTGGCATCTTCCAAACGTGTTCCACTTGAAAGGAAAGTCTAACTTC

ACAGGTAGATGTGGGACCATTGTCAGCTGTGAAGGGTACGTCATAA

AAAAAATTACAATCAGCCCAGGACTATACGGTAAAGTTGAGAACTT

GGCGTCCACAATGCATCGCGAGGGTTTCTTGAGTTGCAAAGTCACA

GATACGTTGCGCGGCGAGAGGGTTTCTTTTGCTGTGTGTACGTATGT

ACCAGCCACACTTTGCGATCAGATGACAGGGATTCTGGCAACTGAC

GTTAGTGTGGATGACGCACAAAAACTATTGGTTGGGCTCAACCAAA

GGATTGTCGTCAATGGTAGGACGCAAAGAAATACTAACACAATGC

AGAACTATCTATTACCAGTGGTCGCCCAGGCGTTTTCCAGGTGGGC

GCGTGAACATCGTGCCGACTTGGACGACGAGAAAGAACTAGGGGT

GCGGGAGCGCACTCTTACTATGGGCTGCTGCTGGGCTTTCAAGACC

CAGAAAATCACATCCATCTACAAGAAGCCTGGTACGCAAACAATTA

AGAAAGTACCTGCCGTCTTTGACTCATTTGTGTTTCCACGCCTTACC

AGCCACGGGCTCGATATGGGCTTCCGCCGTAGGCTCAAGCTGCTGC

TTGAACCAACTGTCAAACCCGCACCGGCTATTACAATGGCCGATGT

GGAGCATCTGCGTGGCTTACAGCAAGAAGCTGAAGAAGTGGCTGC

AGCGGAAGAGATCAGAGAAGCCCTGCCGCCCTTGCTCCCTGAAATA

GAAAAAGAGACCGTAGAGGCAGAAGTAGACCTCATTATGCAAGAG

GCAGGAGCAGGTAGCGTGGAGACACCACGAGGACACATCAGGGTG

ACAAGTTACCCAGGCGAAGAGAAGATTGGGTCTTACGCTGTACTTT

CACCCCAGGCGGTATTGAATAGTGAAAAACTGGCGTGTATCCACCC

ATTGGCGGAACAAGTACTGGTAATGACTCACAAAGGTAGGGCTGG

GAGATACAAGGTCGAGCCATACCACGGTAAGGTCATTGTACCAGA

-123- SEQ ID NO Sequence

AGGGACGGCGGTCCCTGTTCAGGACTTCCAGGCATTGAGTGAGAGC

GCTACGATCGTTTTCAACGAGAGGGAGTTCGTAAACAGATACCTGC

ATCACATCGCAATCAACGGAGGAGCGCTAAACACTGACGAAGAGT

ACTATAAGACTGTAAAGACTCAGGACACAGACTCAGAATACGTCTT

CGACGTTGACGCACGAAAGTGTGTTAAGCGAGAAGACGCAGGTCC

GTTGTGCCTAACCGGTGATCTGGTAGATCCGCCATTTCACGAGTTTG

CGTACGAGAGTCTTAGGACGCGACCAGCAGCACCTCACAAAGTCCC

AACCATTGGAGTCTATGGAGTGCCAGGTTCGGGTAAATCTGGAATC

ATCAAAAGCGCTGTGACCAAGAAAGATCTGGTTGTGAGTGCGAAG

AAGGAAAACTGCGCAGAAATCATCAGGGATGTAAGGAGGATGAGA

TGTATGGATGTTGCTGCTAGGACTGTAGATTCTGTGCTGCTGAATGG

GGTTAAGCACCCCGTTAACACTCTGTACATTGATGAGGCATTTGCCT

GCCATGCAGGGACGCTGCTGGCACTGATTGCCATCGTCAAACCTAA

GAAAGTGGTATTGTGCGGGGACCCAAAACAATGCGGCTTCTTTAAC

ATGATGTGCCTGAAAGTACATTTTAACCATGACATATGCACTGAAG

TGTACCATAAAAGCATCTCTAGGAGGTGCACACAGACTGTAACCGC

TATCGTCTCCACGCTCTTTTACGACAAGCGAATGAAGACGGTTAAC

CCATGTGCTGACAAAATCATCATAGATACCACAGGGACCACAAAGC

CGCACAAAGATGATCTGATTCTAACCTGTTTCAGAGGATGGGTGAA

ACAGCTACAGATTGACTATAAAAATCATGAAATCATGACTGCGGCT

GCATCGCAAGGACTTACGCGGAAAGGCGTTTATGCTGTCAGGTACA

AAGTCAACGAGAATCCACTCTACTCGCAGACTTCTGAGCACGTGAA

CGTGTTACTTACACGCACAGAAAAACGCATTGTCTGGAAGACGCTA

GCTGGTGATCCCTGGATAAAGATACTTACAGCTAAATATTCCGGGG

ATTTCACGGCTTCATTGGACGACTGGCAGCGAGAACATGATGCCAT

TATGGCACGCGTTCTTGATAAGCCGCAGACAGCTGATGTGTTCCAG

AATAAGGTGAACGTCTGCTGGGCGAAGGCTCTAGAGCCAGTCTTGG

CCACGGCCAACATTGTGCTGACGAGACAGCAGTGGGAGACGTTGC

ACCCATTCAAGCATGACAGAGCGTACTCACCTGAAATGGCACTGAA

CTTCTTTTGCACCAGGTTCTTTGGAGTAGACCTGGACAGTGGGTTGT

TTTCCGCTCCTACCGTCGCACTTACTTATAGGGATCAGCACTGGGAT

AACTCGCCAGGGAAGAACATGTATGGGCTTAATAGAGAGGTAGCA

AAGGAGTTGTCACGGCGATATCCGTGCATCACAAAAGCGGTTGACA

CAGGCAGGGTAGCTGATATAAGGAATAATACCATCAAGGACTACTC

TCCAACAATTAATGTGGTTCCATTAAATCGTCGGTTACCCCACTCGT

TGATCGTTGACCACAAAGGACAGGGTACAACTGATCACAGCGGATT

CCTATCTAAGATGAAGGGCAAATCTGTGTTGGTGATCGGCGATCCT

ATCAGCATTCCAGGGAAGAAAGTAGAGTCCATGGGTCCATTGCCCA

CTAATACCATCAGGTGTGATCTAGATTTGGGAATACCTAGCCATGT

CGGTAAATATGACATTATATTTGTCAATGTTAGGACCCCGTATAAG

AACCATCACTACCAACAGTGCGAGGATCACGCTATCCACCACAGCA

TGTTAACGTGTAAGGCTGTCCACCACCTGAACACTGGCGGAACATG

TGTGGCTATAGGGTATGGGCTTGCTGATCGCGCAACCGAGAATATC

ATCACTGCGGTAGCGCGCTCATTTAGGTTTACCCGTGTCTGTCAGCC

TAAGAACACTGCCGAAAATACTGAGGTTCTCTTCGTGTTCTTCGGC

AAGGACAACGGCAACCACACACATGACCAGGACAGACTCGCTGTA

GTGCTTGACAACATCTACCAAGGGTCAACCAGGTACGAGGCAGGG

AGAGCTCCAGCGTACAGAGTGATCAGAGGTGACATTAGCAAGAGC

GCTGACCAAGCTATCGTTAATGCTGCTAATAGCAAAGGTCAACCAG

- 124- SEQ ID NO Sequence

GTTCCGGAGTGTGCGGTGCACTGTACCGAAAATGGCCGGCTGCTTT

TGATAGACAGCCAATAGCTGTCGGGACGGCTAGACTTGTGAAGCAC

GAACCGCTCATCATACATGCTGTAGGACCCAATTTTTCTAAGATGC

CGGAACCGGAGGGCGACCTTAAGCTCGCAGCTGCCTACATGAGCAT

AGCGTCAATCGTCAACGCTGAACGGATTACTAAAATATCAGTACCG

CTACTGTCAACCGGCATCTATTCTGGTGGCAAAGATCGAGTGATGC

AATCATTGCATCACCTGTTCACTGCTTTCGACACTACGGATGCCGAT

GTCACCATATATTGCTTGGATAAACAATGGGAGACCAGGATAATCG

AGGCCATTCACCGCAAAGAAAGCGTCGAAATACTGGATGATGACA

AGCCAGTAGACATTGACTTGGTTAGGGTCCATCCAAACAGCGCTTT

GGCAGGCAGACCTGGTTACTCCGTCAATGAGGGCAAGCTGTATTCA

TACCTGGAAGGTACACGATTCCATCAGACCGCCAAGGACATTGCCG

AAATCCATGCAATGTGGCCCAACAAATCTGAGGCTAATGAGCAGAT

TTGCTTGTACATCCTGGGTGAGAGTATGTCCAGCATCCGCTCCAAAT

GCCCAGTAGAGGAGTCAGAGGCGTCTGCTCCACCTCACACACTGCC

GTGCCTGTGTAATTACGCTATGACGGCTGAGCGCGTATACAGGTTG

CGCTCTGCGAAGAAAGAACAGTTCGCCGTATGCTCATCATTCCTGT

TGCCGAAGTACAGGATCACAGGCGTGCAGAAGCTACAATGCAGCA

AACCAGTCCTGTTTTCAGGCGTCGTACCGCCGGCTGTACACCCCAG

GAAGTACGCGGAAATAATTCTAGAAACGCCACCACCGCCAGTAAC

GACAACCGTAATATGTGAACCCACTGTGCCAGAACGTATACCCAGT

CCGGCGATTTCTAGAGCACCAAGTGCGGAATCACTGCTATCTTTTA

GCGGCGTCTCGTTCTCTAGCTCTGCCACACGCTCGTCAACCGCCTGG

AGCGACTATGACAGGCGGTTTGTGGTTACAGCTGACGTGCATCAAG

CGAACATATCTACGTGGAGCATCCCTAGTGCTCCTGGCTTGGACGT

CCAAATACCTTCTGACGTCAGTGATTCCCACTGGAGTGTTCCGAGT

GCATCAGGCTTCGAAGTGAGAACACCATCTGTACAGGACCTAACTG

CGGAGTGTGCAAAGCCTCGTGGGCTGGCCGAAATAATGCAAGACTT

CAATACTGCCCCTTTCCAGTTTCTTTCGGACCACAGACCAGTACCGG

CACCACGGAGACGCCCCATCCCATCACCTAGATCGACGGTTTCCGC

ACCTCCAGTTCCAAAGCCACGCAGGACTAAGTACCAACAACCACCA

GGAGTCGCTAGAGCGATCTCAGAAGCGGAGCTGGACGAGTACATC

CGTCAACACTCCAATTGACGGTATGAAGCGGGAGCGTATATTTTCT

CATCGGAAACAGGCCAAGGTCACCTTCAACAGAAATCAGTACGTCA

ATGTAAACTACAAGAACCTATATTGGACCGGGCCGTCCATGAGAAG

TATTACGCCCCGCGCCTCGATCTCGAAAGAGAGAAAATGTTACAGA

AGAAATTGCAATTATGTGCCTCTGAAGGAAATAGAAGCAGGTATCA

ATCACGAAAAGTAGAAAATATGAAAGCAATTACAGCGGAGCGACT

CATTTCTGGATTGGGCACATACCTATCATCAGAAGTGAATCCTGTC

GAGTGTTACAGAGTCAACTATCCTGTACCAATCTACTCGTCAACGG

TAATTAACAGGTTTACATCTGCAGAGGTCGCGGTTAAAACGTGCAA

CTTAGTTATCCAAGAGAATTACCCTACAGTAGCCAGTTATTGTATA

ACAGATGAATACGATGCGTATCTTGACATGGTGGACGGCGCATCGT

GCTGTCTAGATACAGCCACTTTTTGTCCGGCTAAACTGAGAAGCTA

CCCAAAGAAGCATAGCTATTTGCAGCCAGAGATAAGATCAGCCGTC

CCATCGCCTATACAGAATACATTACAAAATGTATTGGCTGCAGCTA

CTAAAAGGAATTGCAACGTTACCCAAATGCGAGAATTACCTGTCTT

AGATTCGGCGGCATTTAACGTTGATTGTTTCAAGAAATACGCATGC

AATGATGAGTACTGGGATACCTTTCGCGATAACCCTATTCGGCTAA

-125- SEQ ID NO Sequence

CTACAGAGAACGTTACGCAATATGTGACAAAGCTGAAAGGGCCGA

AAGCAGCAGCATTGTTTGCGAAAACTCACAATCTAAAACCGTTGCA

GGAGATACCAATGGATCAATTCGTCATGGATCTAAAAAGAGATGTC

AAAGTTACTCCCGGCACGAAACATACAGAGGAGCGGCCTAAGGTG

CAGGTTATTCAGGCTGCAGACCCCCTTGCTACCGCTTACCTTTGCGG

GATCCACCGGGAATTAGTCCGTAGACTGAACGCTGTGCTTCTGCCG

AATATCCATACTCTCTTCGACATGTCAGCGGAAGATTTTGATGCGAT

TATTGCTGGACATTTCCACCACGGCGACCCAGTATTGGAAACGGAC

ATCGCGTCGTTTGATAAAAGCGAAGACGACGCTATCGCCATTTCGG

CGATGATGATCCTTGAGGACTTAGGCGTCGACCAACCGCTCTTAGA

TTTGATAGAGGCGGCGTTCGGCAATATCACATCTGTGCACCTACCT

ACAGGAACGAGGTTTAAATTTGGTGCCATGATGAAATCCGGCATGT

TCTTAACGCTGTTTGTCAACACACTAGTCAATATCATGATTGCTAGC

AGAGTACTACGTGAACGGTTAACCACGTCAGCGTGCGCGGCCTTTA

TCGGCGACGATAACATAGTGCATGGTGTCGTCTCCGACACCTTGAT

GGCGGAGAGATGCGCCACTTGGCTGAACATGGAAGTAAAAATTATT

GATGCAGTCATTGGTATCAAAGCACCCTACTTCTGCGGGGGATTTA

TCCTGGTGGACCAGATAACAGGCACAGCCTGCAGGGTCGCAGACCC

TCTAAAAAGGCTTTTTAAGCTTGGAAAACCGTTGTCAGTTGAAGAC

ACCCAAGACTGCGACCGCCGCCGGGCACTGCATGATGAAGCAATG

CGATGGAACAGAATCGGAATTACGGACGAGTTGGTGAAGGCCGTA

GAATCCAGATACGAGATCATACTGGCAGGCCTGATCATCACGTCTC

TGTCCACGTTAGCCGAAAGCGTTAAGAACTTCAAGAGCATAAGAGG

GAGCCCAATCACCCTCTACGGCTGACCTAAATAGGTGACGTAGTAG

ACACGCACCTACCCATCGCCATAATGTTTCCATACCCTCAGCTGAA

CTTTCCACCAGTTTACCCTACAAATCCGATGGCTTACCGAGATCCAA

ACCCTCCTAGGCGCCGCTGGAGGCCGTTCCGGCCCCCGCTGGCTGC

TCAAATCGAAGATCTTAGGAGGTCGATAGCTAACTTGACTTTCAAA

CAACGATCACCTAATCCGCCGCCAGGTCCACCGCCAAAGAAGAAG

AAGAGTGCTCCTAAGCCAAAACCTACTCAGCCTAAAAAGAAGAAG

CAGCAAGCCAAGAGGACGAAACGTAAGCCTAAACCAGGGAAACGA

CAGCGTATGTGTATGAAGTTGGAGTCGGACAAGACATTTCCGATCA

TGCTGAACGGCCAAGTGAATGGATACGCTTGCGTTGTCGGAGGAAG

GCTGATGAAACCACTCCACGTTGAAGGAAAAATTGATAATGAGCA

ATTAGCGGCCGTGAAATTGAAGAAGGCTAGCAAGTACGACTTAGA

GTATGGCGACGTTCCCCAGAATATGAAATCAGACACGCTGCAGTAC

ACCAGTGACAAACCACCGGGCTTCTACAACTGGCACCATGGCGCAG

TCCAGTATGAGAATGGGAGATTCACCGTACCGAGAGGAGTGGGCG

GGAAAGGCGACAGCGGAAGACCGATCCTGGACAACAGAGGCAGAG

TTGTGGCTATTGTTCTAGGAGGTGCAAATGAGGGCACGCGTACGGC

GCTTTCAGTGGTCACTTGGAACCAGAAAGGGGTGACCGTTTGGGAT

CCCCCCGAAGGTTCTGAACCGTGGTCACTAGTTACAGCGCTGTGCG

TGCTTTCGAATGTCACTTTCCCATGTGACAAACCACCCGTGTGCTAT

TCACTGGCGCCAGAACGAACACTCGACGTGCTCGAAGAGAACGTC

GACAATCCAAATTACGACACGCTGCTGGAGAACGTCTTGAAATGTC

CATCACACCGGCCCAAACGAAGCATTACCGATGACTTCACACTGAC

CAGTCCCTACTTGGGGTTCTGCCCGTATTGCAGACACTCAACGCCGT

GTTTCAGCCCAATAAAAATTGAGAACGTGTGGGACGAATCTGATGA

TGGATCGATTAGAATCCAGGTCTCGGCACAATTCGGTTACAATCAG

-126- SEQ ID NO Sequence

GCAGGCACTGCAGATGTCACTAAATTCCGTTACATGTCTTTCGACC

ACGACCATGACATCAAGGAAGACAGTATGGAGAAAATAGCCATCA

GCACATCCGGACCCTGCCGTCGTCTTGGCCACAAAGGGTATTTCCT

GTTAGCTCAATGTCCTCCAGGTGACAGTGTAACCGTCAGTATCACG

AGCGGAACTGCTGAGAACTCATGCACCGTGGAGAGAAAGATCAGG

AGGAAGTTTGTCGGTAGAGAGGAGTACTTGCTCCCACCCATCCATG

GAAAGCAGGTAAAGTGCCACGTTTACGATCACTTGAAAGAGACGTC

TGCCGGGTATATAACCATGCACAGGCCAGGCCCACACGCGTATAAG

TCCTATCTGGAGGAAGCGTCAGGCGAAGTGTATATTAAACCACCTT

CTGGCAAGAACGTCACCTACGAATGTAAGTGTGGCGACTACAGCAC

AGGTATCGTGAGCACGCGAACGAAGATAAACGGCTGCACTAAAGC

AAAACAGTGCATTGCCTACAAGAGCGACCAAACGAAATGGGTCTTC

AACTCGCCGGATCTTATTAGGCACACAGACCACTCAGTGCAAGGTA

AACTGCATATTCCATTCCGCTTGACACCGACAGTCTGCCCGGTTCCG

TTAGCTCACACGCCTACAGTCATGAAGTGGTTCAAAGGCATCACCC

TCCACCTGACTGCAACGCGACCAACATTGCTGACAACGAGAAAATT

GGGGCTGCGAGCAGACGCAACAGCAGAATGGATTACAGGGACTAC

ATCCAGGAATTTTTCTGTGGGGCGAGAAGGGCTGGAGTACGTATGG

GGCAACCATGAACCGGTCAGAGTCTGGGCCCAGGAGTCGGCACCA

GGCGACCCACATGGATGGCCGCATGAGATTATCATTCACTATTATC

ATCGGCATCCAGTCTACACCGTCATTGTGCTGTGTGGTGTCGCTCTT

GCTATCCTGGTAGGCACTGCATCGTCAGCAGCTTGTATCTCCAAAG

CAAGAAGAGACTGCCTGACGCCATACGCGCTTGCACCGAACGCGA

CGGTACCCACAGCATTAGTGGTTTTGTGCTGCATTCGGCCAACCAA

CGCTGAAACACTTGGAGAAACTTTGAACCATCTGTGGTTTAACAAC

CAACCGTTTCTCTGGGCACAGTTGTGCATTCCTCTGGCGGCTCTTAT

TATTCTGTTCCGCTGCTTTTCATGCTGCATGCCTTTTTTATTGGTTGC

AGGCGTCTGCCTGGGGAAGGTAGACGCCTTCGAACATGCGACCACT

GTGCCAAATGTTCCGGGGATCCCGTATAAGGCGTTGGTCGAACGTG

CAGGTTACGCGCCACTTAACCTGGAGATCACTGTTGTCTCATCGGA

ATTAACACCCTCAACTAATAAGGAGTACGTGACCTGCAAATTCCAC

ACAGTCATTCCTTCACCACAAGTTAAATGCTGCGGGTCCCTCGAGT

GTAAGGCATCCTCAAGGGCGGATTACACATGCCGCGTTTTTGGCGG

TGTGTACCCTTTCATGTGGGGAGGCGCACAATGCTTCTGTGACAGT

GAGAACACACAACTGAGTGAGGCATACGTCGAGTTCGCTCCGGACT

GCACTATAGATCACGCAGTCGCACTAAAAGTTCATACAGCTGCTCT

GAAAGTCGGCCTGCGTATAGTGTACGGTAATACCACCGCGCACCTG

GATACGTTCGTCAACGGCGTCACACCAGGTTCCTCACGGGACCTGA

AGGTCATAGCAGGGCCGATATCAGCCGCTTTTTCACCCTTTGACCAT

AAGGTCGTCATCAGAAAGGGGTTTGTTTACAACTACGACTTCCCTG

AGTATGGTGCTATGAAACCAGGAGCGTTCGGCGATATTCAAGCATC

CTCTCTTGATGCTACAGACATAGTAGCCCGCACTGACATACGGCTG

CTGAAGCCTTCTGTCAAGAACATCCACGTCCCCTACACCCAAGCAG

TATCAGGGTATGAAATGTGGAAGAACAACTCAGGACGACCCCTGC

AAGAAACAGCACCATTTGGATGTAAAATTGAAGTGGAGCCTCTGCG

AGCGTCTAACTGTGCTTACGGGCACATTCCTATCTCGATTGACATCC

CTGATGCAGCTTTCGTGAGATCATCAGAATCACCAACAATTTTAGA

AGTTAGCTGCACAGTAGCAGACTGCATTTATTCTGCAGACTTTGGT

GGTTCTCTAACATTACAGTACAAAGCTGATAGGGAGGGACATTGTC

-127- SEQ ID NO Sequence

CAGTTCACTCCCACTCCACGACAGCTGTTTTGAAGGAAGCGACCAC

ACATGTGACTGCCGTAGGCAGCATAACACTACATTTTAGCACATCG

AGCCCACAAGCAAATTTTATAGTTTCGCTATGCGGCAAGAAGTCCA

CCTGCAATGCTGAATGTAAACCACCGGCCGACCACATAATTGGAGA

ACCGCATAAAGTCGACCAAGAATTCCAAGCGGCAGTTTCCACAACA

TCTTGGAACTGGCTGCTTGCACTGTTTGGGGGAGCATCATCCCTCAT

TGTTGTAGGACTTATAGTGTTGGTCTGCAGCTCTATGCTTATAAACA

CACGTAGATGACTGAGCGCGGACACTGACATAGCGGTAAAAACTC

GATGTACTTCCGAGGAAGCGTGGTGCATAATGCCACGCGCCGCTTG

ACACTAAAACTCGATGTATTTCCGAGGAAGCACAGTGCATAATGCT

GTGCAGTGTCACATTAATCGCATATCACACTATATATTAACAACAC

TATATCACTTTTATAAGACTCACTATGGGTCTCTAATATACACTACA

CATATTTTACTTAAAAACACTATACACACTTTATAAGTTCTTTTATA

ATTTTTCTTTTGTTTTTATTTTGTTTTTAAAATTT

SEQ ID NO: 20 MFPYPQLNFPPVYPTNPMAYRDPNPPRRRWRPFRPPLAAQIEDLRRSIA

NLTFKQRSPNPPPGPPPKK SAPKPKPTQPKKKKQQAKRTKRKPKPG

KRQRMCMKLESDKTFPIMLNGQVNGYACVVGGRLMKPLHVEGKIDN

EQLAAVKLKKASKYDLEYGDVPQNMKSDTLQYTSDKPPGFY WHHG

AVQYENGRFTVPRGVGGKGDSGRPILDNRGRVVAIVLGGANEGTRTA

LSWTW QKGVTVWDPPEGSEPWSLVTALCVLSNVTFPCDKPPVCYS

LAPERTLDVLEENVDNPNYDTLLENVLKCPSHRPKRSITDDFTLTSPYL

GFCPYCRHSTPCFSPIKIENVWDESDDGSIRIQVSAQFGY QAGTADVT

KFRYMSFDHDHDIKEDSMEKIAISTSGPCRRLGHKGYFLLAQCPPGDS

VTVSITSGTAENSCTVERKIRRKFVGREEYLLPPIHGKQVKCHVYDHLK

ETSAGYITMHRPGPHAYKSYLEEASGEVYIKPPSGKNVTYECKCGDYS

TGIVSTRTKI GCTKAKQCIAYKSDQTKWVFNSPDLIRHTDHSVQGKL

HIPFRLTPTVCPVPLAHTPTVMKWFKGITLHLTATRPTLLTTRKLGLRA

DATAEWITGTTSRNFSVGREGLEYVWGNHEPVRVWAQESAPGDPHG

WPHEIIIHYYHRHPVYTVIVLCGVALAILVGTASSAACISKARRDCLTP

YALAPNATVPTALVVLCCIRPTNAETLGETLNHLWFNNQPFLWAQLCI

PLAALIILFRCFSCCMPFLLVAGVCLGKVDAFEHATTVPNVPGIPYKAL

VERAGYAPLNLEITVVSSELTPSTNKEYVTCKFHTVIPSPQVKCCGSLE

CKASSRADYTCRVFGGVYPFMWGGAQCFCDSENTQLSEAYVEFAPDC

TIDHAVALKVHTAALKVGLRIVYGNTTAHLDTFVNGVTPGSSRDLKVI

AGPISAAFSPFDHKVVIRKGFVYNYDFPEYGAMKPGAFGDIQASSLDA

TDIVARTDIRLLKPSVKMHVPYTQAVSGYEMWK SGRPLQETAPFG

CKIEVEPLRASNCAYGHIPISIDIPDAAFVRSSESPTILEVSCTVADCIYSA

DFGGST.TT .QYKADREGHCPVHSHSTTAVLKEATTHVTAVGSITLHFST

SSPQANFIVSLCGKKSTCNAECKPPADHIIGEPHKVDQEFQAAVSTTSW

NAVLLALFGGASSLIVVGLIVLVCSSMLINTRR

SEQ ID NO: 21 MERIHVDLDADSPYVKSLQRSFPQFEIEARQVTDNDHANARAFSHVAT

KLIESEVDRDQVILDIGSAPVRHAHSNHRYHCICPMISAEDPDRLQRYA

ERLKKSDITDKNIASKAADLLEVMSTPDAETPSLCMHTDATCRYFGSV

AVYQDVYAVHAPTSIYHQALKGVRTIYWIGFDTTPFMYKNMAGSYPT

YNTNWADERVLEARNIGLGNSDLQESRLGNLSILRKKRLQPTNKIIFSV

GSTIYTEDRSLLRSWHLPNVFHLKGKSNFTGRCGTIVSCEGYVIKKITIS

PGLYGKVENLASTMHREGFLSCKVTDTLRGERVSFAVCTYVPATLCD

QMTGILATDVSVDDAQKLLVGLNQRIVV GRTQRNTNTMQNYLLPV

VAQAFSRWAREHRADLDDEKELGVRERTLTMGCCWAFKTQKITSIYK

- 128- 2

-129- SEQ ID NO Sequence

LYQDFCAGAFDDNGLPWMSDTEESPFLDPALRKRAVKVKHVKRREK

KSEKKKEERYKP^RQKQKHKDKWKHPERADAKDPASLPQCLGPGCV

RPAQPSSKYCSDDCGMKLAANRIYEILPQRIQQWQQSPCIAEEHGKKL

LERIRREQQSARTRLQEMERRFHELEAIILRAKQQAVREDEESNEGDSD

DTDLQIFCVSCGHPINPRVALRHMERCYAKYESQTSFGSMYPTRIEGAT

RLFCDVYNPQSKTYCKRLQVLCPEHSRDPKVPADEVCGCPLVRDVFEL

TGDFCRLPKRQCNRHYCWEKLRRAEVDLERVRVWYKLDELFEQERN

VRTAMTNRAGLLALMLHQTIQHDPLTTDLRSSADR

-130-