Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS FOR MAKING AND USING LAMININ NANOFIBERS
Document Type and Number:
WIPO Patent Application WO/2008/137659
Kind Code:
A1
Abstract:
The present invention encompasses methodologies and parameters for the formation of nanofibrous (to microfibrous) laminin via electrospinning. The present application discloses conditions and appropriate parameters to synthesize laminin fibers from a diameter of about 10 nM to a diameter of over 1,000 nM via electrospinning.

Inventors:
OGLE ROY CLINTON (US)
BOTCHWEY EDWARD A (US)
Application Number:
PCT/US2008/062395
Publication Date:
November 13, 2008
Filing Date:
May 02, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV VIRGINIA (US)
OGLE ROY CLINTON (US)
BOTCHWEY EDWARD A (US)
International Classes:
A61L27/32
Foreign References:
US20060204539A12006-09-14
Attorney, Agent or Firm:
UNIVERSITY OF VIRGINIA PATENT FOUNDATION (Suite 300Charlottesville, Virginia, US)
Download PDF:
Claims:

CLAIMS

What is claimed is

1 A method of preparing electrospun laminin, said method comprising obtaining purified laminin, dissolving said purified laminin in HFP, loading said dissolved laminin into a dispensing container comprising a positive lead, subjecting said lead to driving voltage from a power supply, pumping said laminin dissolved in HFP through an opening in said dispensing container, and collecting said laminin dissolved in HFP on a substrate placed on a grounded collector

2 The method of claim 1, wherein said laminin is dissolved at a concentration ranging from about 1% w/v to about 10% w/v

3 The method of claim 2, wherein said laminin is dissolved at a concentration ranging from about 3% w/v to about 8% w/v

4 The method of claim 1 , wherein said voltage is applied at a range of about 15 kv to about 25 kv

5 The method of claim 4, wherein said voltage is about 20 kv

6 The method of claim 1, wherein said laminin dissolved in HFP is pumped at a flow rate of about 0 1 ml/hr to about 10 0 ml/hr

7 The method of claim 6, wherein said flow rate is about 0 5 ml/hr to about 5 0 ml/hr

8 The method of claim 7, wherein said flow rate is about 1 0 ml/hr to about 3 0 ml/hr

9 The method of claim 1, wherein said collector is at a distance of about 5 0 cm to about 30 cm from the dispensing opening

10 The method of claim 9, wherein said distance is about 12 5 cm to about 25 cm

11 The method of claim 1, wherein said substrate is surface-charged before placing on said grounded collector

12 The method of claim 1, wherein said substrate is selected from the group consisting of a covershp, a single well culture plate, a multiwell culture plate, a chambered culture slide, a multi-chambered culture slide, a cup, a flask, a tube, a bottle, a perfusion chamber, a fermenter, and a bioreactor

13 The method of claim 12, wherein said substrate is a covershp

14 The method of claim 1 , wherein said electrospun laminin comprises laminin nanofibers

15 The method of claim 14, wherein said laminin nanofibers form a mesh

16 The method of claim 15, wherein said laminin nanofibers comprise diameters of about 10 nm to about 1,000 nm

17 The method of claim 16, wherein said laminin nanofibers comprise diameters of about 50 nm to about 500 nm

18 The method of claim 17, wherein said laminin nanofibers comprise diameters of about 75 nm to about 400 nm

19 The method of claim 18, wherein said laminin nanofibers comprise diameters of about 100 nm to about 300 nm

20 The method of claim 19, wherein said laminin nanofibers comprise diameters of about 125 nm to about 250 nm

21 The method of claim 14, wherein said laminin nanofibers further comprise beads

22 The method of claim 1 , wherein said laminin is laminin I

23 A laminin nanofibπllar structure comprising an environment for proliferation and differentiation of cells comprising one or more laminin nanofibers and a substrate, wherein said laminin nanofibers are prepared by electrospinning, further wherein said laminin nanofibers are not crosslinked

24 The laminin nanofibπllar structure of claim 23, wherein said nanofibπllar structure comprises laminin nanofibers having a diameter ranging from about 10 nm to about 1000 nm

25 The laminin nanofibπllar structure of claim 24, wherein said nanofibπllar structure comprises laminin nanofibers having a diameter ranging from about 100 nm to about 500 nm

26 The laminin nanofibπllar structure of claim 23, wherein said environment is a cell culture environment

27 The laminin nanofibπllar structure of claim 26, wherein said environment further comprises additional compounds

28 The laminin nanofibπllar structure of claim 26, wherein the structure comprises one or more growth factors

29 The laminin nanofibπllar structure of claim 28, wherein at least one of the growth factors is selected from the group consisting of vascular endothelial growth factor, transforming growth factor-beta, transforming growth factor-alpha, epidermal growth

factor, endothelial growth factor, platelet-derived growth factor, nerve growth factor, fibroblast growth factor, and insulin growth factor

30 The laminin nanofibπllar structure of claim 29, wherein the structure releases the growth factors

31 The laminin nanofibπllar structure of claim 26, wherein the structure comprises one or more differentiation factors

32 The laminin nanofibπllar structure of claim 23, wherein the laminin is laminin I

33 The laminin nanofibπllar structure of claim 23, wherein said laminin nanofibers form a mesh

34 The laminin nanofibπllar structure of claim 23, wherein said laminin nanofibπllar structure supports neuπte extension

35 The laminin nanofibπllar structure of claim 34, wherein said laminin nanofibπllar structure supports neuπte extension in the absence of NGF

36 The laminin nanofibπllar structure of claim 23, wherein said laminin nanofibπllar structure supports the proliferation and differentiation of cells selected from the group consisting of stem cells, pluπpotent stem cells, committed stem cells, embryonic stem cells, adult stem cells, bone marrow stem cells, adipose stem cells, umbilical cord stem cells, dura mater stem cells, precursor cells, differentiated cells, osteoblasts, myoblasts, neuroblasts, fibroblasts, ghoblasts, germ cells, hepatocytes, chondrocytes, keratinocytes, smooth muscle cells, cardiac muscle cells, connective tissue cells, glial cells, epithelial cells, endothelial cells, hormone-secreting cells, cells of the immune system, normal cells, cancer cells, Schwann cells, and neurons

37 A laminin nanofibπllar structure comprising an environment for proliferation and differentiation of cells comprising one or more laminin nanofibers and a substrate, wherein said laminin nanofibers are prepared according to claim 1

38 Electrospun laminin prepared by the method of claim 1

39 The electrospun laminin of claim 38, wherein said laminin is laminin I

40 The electrospun laminin of claim 38, wherein said electrospun laminin forms a mesh

41 A tissue culture container comprising a laminin nanofibπllar structure of claim 1

42 The tissue culture container of claim 41, wherein the culture container is selected from the group consisting of a covershp, a single well culture plate, a multiwell culture plate, a chambered culture slide, a multi-chambered culture slide, a cup, a flask, a tube, a bottle, a perfusion chamber, a fermenter, and a bioreactor

43 A method for manufacturing a tissue comprising a) layering two or more nanofibπllar structures of claim 1 to form a multi-layered nanofibπllar assembly comprising an environment for growth of living cells in cell culture, b) depositing viable cells onto the assembly, and c) cultuπng the assembly under conditions that promote growth and/or differentiation of the deposited cells

Description:

COMPOSITIONS AND METHODS FOR MAKING AND USING LAMEVEV NANOFE6ERS

CROSS REFERENCE TO RELATED APPLICATIONS This application is entitled to priority pursuant to 35 U. S. C. § 119(e) to U.S. provisional patent application no. 60/927,583, filed on May 4, 2007, the entirety of which is incorporated by reference herein.

STATEMENT REGARDEVG FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was supported in part by Grant No. DE-010369-08 awarded by the National Institutes of Health and Grant No. 736002 awarded by the National Science Foundation. The United States Government therefore has certain rights in the invention.

FIELD OF THE EVVENTION

The present invention relates to compositions, methods, and apparatuses for preparing and using electrospun laminin.

BACKGROUND

Laminins are a family of large extracellular matrix (ECM) proteins found primarily in basement membranes associated with all epithelial, endothelial, muscle, fat and Schwann cells. The laminins serve critical functions in cell attachment, growth, migration, and differentiation of many cell types. Laminin I is the first extracellular matrix protein to appear during embryonic development, where it surrounds the inner cell mass of the compacted blastocyst [I]. Studies of laminin I purified from the Engelbreth-Holm-Swarm (EHS) tumor established that laminin is required for cell attachment and growth, and many studies confirm the importance of laminins in development and survival [2,3]. Laminin interacts with cells through a variety of integrins [4], the dystroglycan receptor [5], syndecan [6], and other type receptors broadly expressed on many cell types [7,8].

Extracellular matrix (ECM) provides the extracellular environment for almost all mammalian cell types It is composed of structural proteins such as collagen and elastin, proteoglycans, and proteins such as fibrin, fibronectin, and laminin One of the over-reaching goals of cell biology and tissue engineering is to recreate the extracellular environment a cell experiences in vivo, and attaining the appropriate ECM components in appropriate morphological and physical characteristics is of the utmost importance

A fibrous laminin network alone may retain conformation reminiscent of basement membrane sufficient to promote cell adhesion and growth Laminin in the basement membrane actually self-assembles into a fibrous network independent of other basement membrane constituents Yurchenco and colleagues have demonstrated that laminin forms a polymer network independently of collagen IV in the basement membrane in vivo, as well as in vitro [9] While laminin does not require the presence of other polymers to form a fibrous mesh during development, it does regulate the conformation of other basement membrane components it can drive incorporation of type IV collagen into a mature basement membrane network, and in fact, the collagen cannot successfully polymerize without laminin [10] Additionally, Flemming and colleagues have shown that purely topographical cues produced by the conformation of the extracellular matrix can guide cell behavior and morphology [11] As laminin nanofibrous meshes are composed of a major basement membrane constituent and maintain a geometrical conformation similar to in vivo basement membrane, a fibrous laminin network may be sufficient to promote cell adhesion and growth in an environment reminiscent of basement membrane

To create a biomimetic laminin membrane both the morphology and the composition of the membrane must be considered [11] Feature sizes of the human corneal epithelial basement membrane have been measured at 47 to 380 nm in height with diameters in the range of 22 to 92 nm [12], falling within the nanoscale range In the same study, electron micrographs of the corneal epithelial basement membrane illustrate morphology reminiscent of a hydrated nanofiber mesh

Previous efforts to manufacture feature sizes on the nanometer scale have been unsuccessful with traditional printing and etching techniques [11] Currently the optimal method for producing fibers of these dimensions is the electrospinning

technique The basic method for electrospinning involves maintaining a polymer solution at its surface tension at the tip of a needle using a syringe pump When a voltage is applied to the needle, the outer layers of the polymer receive a charge which pulls them out of the needle toward a grounded collector As the solution leaves the needle, the solvent evaporates, and dry polymer fibers are collected

If it is to possess the biological properties of a natural basement membrane, the laminin nanofiber (LNF) mesh should be a favorable substrate for cell attachment and growth in a wide variety of tissue engineering applications Laminin is particularly relevant for nervous system tissue engineering, as laminin has been shown to encourage neuπte extension [15] However, previous studies demonstrated that the bioactive properties of laminin are fragile and often destroyed by processing methods required to form laminin substrates for in vitro cell culture studies including lyophihzation and exposure to ultraviolet light [16] Electrospinning typically calls for lyophihzation of proteins and subsequent solubilization in highly volatile organic solvents to form the initial polymer solution Other groups have faced this challenge when electrospinning interstitial collagens, and one might expect to encounter similar obstacles with laminin These studies have often shown electrospun collagen fibers flatten and form a πbbon- hke morphology in aqueous medium, decreasing porosity and surface roughness of the substrates [17] In order to overcome this issue in collagen electrospun matrices, researchers employ chemical crosslinkers such as glutaraldehyde While glutaraldehyde crosslinking does add some structural stability to the nanofiber matrices, the meshes lose a large percentage of their porosity and surface roughness In addition, glutaraldehyde is cytotoxic, and may be difficult to entirely remove after crosslinking treatment [18] There is a long felt need in the art to recreate the extracellular environment a cell experiences in vivo and to attain the appropriate ECM components in appropriate morphological and physical characteristics is of the utmost importance The present invention helps to satisfy these needs

SUMMARY OF THE INVENTION

The present invention encompasses methodologies and parameters for the formation of nanofibrous (to microfibrous) laminin via electrospinning The present invention further encompasses electrospun laminin In one aspect, the laminin is laminin I

Electrospinning as a technique is appealing because the physical parameters are easily varied and exert considerable effects on the resulting polymer fiber morphology While several investigators have successfully fabricated protein nanofibers in the range of 100-300 nm from interstitial collagens [13] and elastin [14] using electrospinning techniques, the present application discloses appropriate parameters to achieve laminin nanofibers via electrospinning, including novel and unexpected procedures to do so

The present application discloses conditions and appropriate parameters to synthesize laminin fibers ranging in size from a diameter of about 10 nM to a diameter of over 1 ,000 nM via electrospinning Many applications in biology and medicine can be based on the laminin nanofiber mesh resulting from this procedure The methodologies described herein are useful for numerous tissue engineering applications, as laminin is an essential component of the ECM for many cell types in various tissues For example, laminin is known to be a major migratory surface for the axons of neurons during development and peripheral nerve healing Conduits composed of or lined with laminin nanofibers could be used for tissue engineering constructs to mediate peripheral nerve regeneration Analogously, and of the cell types mentioned above that normally reside on basement membranes could be delivered on constructs based on laminin nanofibers Laminin nanofibers used to coat membrane filters used for Boyden chamber type assays of cell migration and tumor cell metastasis could more readily model the endothelial basement membrane of vessels breached during intra and extravasation

While a vast literature documents the importance and activity of laminin, and several labs have shown success with recreating the fibrous morphology of collagen in the laboratory using electrospinning techniques, we have discovered appropriate parameters to achieve laminin nanofibers via electrospinning The materials fabricated by this process may be used as an anhydrous coating of scaffold biomateπals for tissue

engineering, as well as substrate for ex vivo cultivation of both specialized tissue cells and stem cells The latter could be a tremendous aid to basic science research as differentiation and phenotype expression of cells on biomimetic laminin scaffolds may be more representative of in vivo behavior The lamimns of the invention are useful, inter aha, for

1) A scaffold for regeneration of numerous tissues such as nerves and bone through delivery of stem cells or promotion of endogenous healing

2) A biomimetic coating of scaffold materials to enhance or control cell- material interactions both in vitro and in vivo 3) An anhydrous base membrane scaffold for cell cultivation and basic science research, including a potential media for cultivation of undifferentiated embryonic stem cells in place of feeder layers

4) A model basement membrane barrier for migration and invasion studies in vitro The nanofiber meshes prepared by the methods of the invention should have a very long shelf life stored with desiccation They have far greater tensile strength than matπgel gels The nanoscale fibers are more similar to the fibers seen by cells encountering laminin in real basement membranes, thus they may be expected to demonstrate novel biomimetic effects The materials fabricated by this process may, for example, be used as an anhydrous coating of scaffold biomateπals for tissue engineering, as well as substrate for ex vivo cultivation of both specialized tissue cells and stem cells The latter could be a tremendous aid to basic science research as differentiation and phenotype expression of cells on biomimetic laminin scaffolds may be more representative of in vivo behavior Due to the sensitivity of laminin nanofibers, glutaraldehyde crosslinking may destroy the bioactivity of the laminin protein The present invention provides compositions and methods for electrospun laminin which does not have to be crosslinked In one aspect, the solvent HFP is used and laminin activity remains, and no cross-linking is required The present invention further provides compositions and methods for varying the diameter of the laminin nanofibers The examples demonstrate a positive linear

correlation between fiber diameter and initial solution concentration (laminin % w/v) and flow rate when being dispensed

In one embodiment, the present invention provides a method of preparing electrospun laminin comprising obtaining purified laminin, dissolving the purified laminin in HFP, loading the dissolved laminin into a dispensing container comprising a positive lead, subjecting the lead to a driving voltage from a power supply, pumping the laminin dissolved in HFP through an opening in the dispensing container, and collecting the laminin dissolved in HFP on a substrate placed on a grounded collector

In one aspect, the purified laminin can be purified homologs, derivatives, fragments, or modifications of laminin In one aspect, the homologs, derivatives, fragments, or modifications of laminin retain the desired laminin activities or properties of laminin

In one aspect, the laminin is dissolved at a concentration ranging from about 1% w/v to about 10% w/v In another aspect, the laminin is dissolved at a concentration ranging from about 3% w/v to about 8% w/v

In one aspect, the voltage is applied at a range of about 15 kv to about 25 kv In another aspect, the voltage is about 20 kv

In one aspect, the laminin dissolved in HFP is pumped at a flow rate of about 0 1 ml/hr to about 10 0 ml/hr In another aspect, the flow rate is about 0 5 ml/hr to about 5 0 ml/hr In yet another aspect, the flow rate is about 1 0 ml/hr to about 3 0 ml/hr

In one aspect, the collector is placed at a distance of about 5 0 cm to about 30 cm from the dispensing opening In another aspect, the distance is about 12 5 cm to about 25 cm

In one embodiment, the substrate is surface-charged before placing on said grounded collector In another embodiment, the substrate is selected from the group consisting of a covershp, a single well culture plate, a multiwell culture plate, a chambered culture slide, a multi-chambered culture slide, a cup, a flask, a tube, a bottle, a perfusion chamber, a fermenter, and a bioreactor In one aspect, the substrate is a covershp In one aspect, the electrospun laminin comprises laminin nanofibers In one aspect, the laminin nanofibers form a mesh In one aspect, the laminin nanofibers

comprise diameters of about 10 nm to about 1,000 nm In another aspect, the laminin nanofibers comprise diameters of about 50 nm to about 500 nm In yet another aspect, the laminin nanofibers comprise diameters of about 75 nm to about 400 nm In a further aspect, the laminin nanofibers comprise diameters of about 100 nm to about 300 nm In another aspect, the laminin nanofibers comprise diameters of about 125 nm to about 250 nm

In one aspect, the laminin nanofibers further comprise beads

In one aspect, the laminin is laminin I

In another embodiment, the present invention provides a laminin nanofibπllar structure comprising an environment for proliferation and differentiation of cells comprising one or more laminin nanofibers and a substrate, wherein said laminin nanofibers are prepared by electrospinning, further wherein said laminin nanofibers are not crosslinked In one aspect, the laminin nanofibers maintain their structure when wetted by media In one aspect, the laminin nanofibπllar structure comprises laminin nanofibers having a diameter ranging from about 10 nm to about 1000 nm In another aspect, the nanofibπllar structure comprises laminin nanofibers having a diameter ranging from about 50 nm to about 500 nm In yet another aspect, the nanofibπllar structure comprises laminin nanofibers having a diameter ranging from about 75 nm to about 400 nm In yet another aspect, the nanofibπllar structure comprises laminin nanofibers having a diameter ranging from about 100 nm to about 300 nm In a further aspect, the nanofibπllar structure comprises laminin nanofibers having a diameter ranging from about 125 nm to about 250 nm

In one embodiment, the laminin nanofibπllar structure comprises an environment which is a cell culture environment In one aspect, the environment further comprises additional compounds In one aspect, the structure comprises one or more growth factors In one aspect the growth factors, include, but are not limited to, vascular endothelial growth factor, transforming growth factor-beta, transforming growth factor-alpha, epidermal growth factor, endothelial growth factor, platelet- derived growth factor, nerve growth factor, fibroblast growth factor, and insulin growth

factor In one aspect, the structure releases the growth factors In another aspect, the laminin nanofibπllar structure comprises one or more differentiation factors

In one embodiment, the laminin nanofibπllar structure comprises laminin I

In one embodiment, the laminin nanofibπllar structure comprises laminin nanofibers which form a mesh

In one embodiment, the laminin nanofibπllar structure supports neuπte extension In one aspect, the laminin nanofibπllar structure supports neuπte extension in the absence of NGF

In one aspect, the laminin nanofibπllar structure supports the proliferation and differentiation of cells selected from the group consisting of stem cells, pluπpotent stem cells, committed stem cells, embryonic stem cells, adult stem cells, bone marrow stem cells, adipose stem cells, umbilical cord stem cells, dura mater stem cells, precursor cells, differentiated cells, osteoblasts, myoblasts, neuroblasts, fibroblasts, ghoblasts, germ cells, hepatocytes, chondrocytes, keratinocytes, smooth muscle cells, cardiac muscle cells, connective tissue cells, glial cells, epithelial cells, endothelial cells, hormone-secreting cells, cells of the immune system, normal cells, cancer cells, Schwann cells, and neurons

In one embodiment, the laminin nanofibπllar structure comprising an environment for proliferation and differentiation of cells, comprises one or more laminin nanofibers and a substrate In one aspect, the laminin nanofibers are prepared as described herein

The invention further provides biologically active electrospun laminin prepared by the methods described herein In one aspect, the laminin is laminin I In one aspect, the electrospun laminin forms a mesh The invention also provides tissue culture containers comprising laminin nanofibπllar structure The containers include, but are not limited to, a covershp, a single well culture plate, a multiwell culture plate, a chambered culture slide, a multi- chambered culture slide, a cup, a flask, a tube, a bottle, a perfusion chamber, a fermenter, and a bioreactor The present invention also provides compositions and methods useful for manufacturing or prepare a tissue, scaffolding, etc In one aspect, the method

encompasses layering two or more nanofibπllar structures to form a multi-layered nanofibπllar assembly comprising an environment suitable for the growth of living cells in cell culture, by depositing viable cells onto the assembly and then cultuπng the assembly and cells under conditions that promote growth and/or differentiation of the deposited cells In one aspect, the cells include, but are not limited to, stem cells, pluπpotent stem cells, committed stem cells, embryonic stem cells, adult stem cells, bone marrow stem cells, adipose stem cells, umbilical cord stem cells, dura mater stem cells, precursor cells, differentiated cells, osteoblasts, myoblasts, neuroblasts, fibroblasts, ghoblasts, germ cells, hepatocytes, chondrocytes, keratinocytes, smooth muscle cells, cardiac muscle cells, connective tissue cells, glial cells, epithelial cells, endothelial cells, hormone- secreting cells, cells of the immune system, and neurons In one aspect, more than one cell type can be used

Various aspects and embodiments of the invention are described in further detail below

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1, comprising Figures IA to IF, represents images of scanning electron micrographs of laminin electrospun at 20 kV driving voltage and 1 5 mL/hr flow rate Concentrations (wt/vol) in HFP are shown across the top (3%, 5%, and 8%), and collecting distance is shown along the left side (12 5 cm, upper panels, 25 cm, lower panels) An increase in fiber diameter and decrease in bead area density are correlated with increasing weight percent laminin in HFP of the original solution White arrows indicate matπsome morphology

Figure 2, comprising Figures 2A to 2D, represents graphs displaying fiber diameter as a function of concentration (2A) and flow rate (2B) or bead area as a function of concentration (2C) and flow rate (2D) For 2A and 2B, all solutions were spun at 20 kV driving voltage over two collecting distances (12 5 and 25 cm) Initial solution concentration is given as % w/v in HFP Fiber diameter increases linearly with concentration (linear trendhne R = 0 991) and flow rate (linear trendhne R = 0 988) For graphs displaying bead area density as a function of concentration (2C) and flow rate (2D), voltage was held constant over all trials at 20 kV A strong linear relationship

exists between bead area density and both concentration and flow rate, though concentration is inversely related (linear trendhne R = O 975) and flow rate is directly related to bead area density (linear trendhne R = O 984) Error bars display standard error measurements over the sample Figure 3, comprising Figures 3A to 3C, represents images of scanning electron micrographs of electrospun laminin after hydration in basal culture medium for 30 minutes (3A), and 24 hours (3B) and (3C) ASCs on laminin nanofibers Scale bar for all images is 10 μm

Figure 4, comprising Figures 4A and 4B, graphically illustrates (4A) the change in fiber diameter of laminin nanofibers after hydration over 24 hours and (4B) the attachment assay to laminin nanofibers and laminin films Cells were allowed to attach to the substrate for 15, 30, 60, or 120 minutes before being washed off, fixed, imaged, and counted using light microscopy and Image J processing techniques * indicates significantly greater attachment to fibers than films (p < 0 05) Figure 5, comprising Figures 5 A and 5B, represents histogram depictions of neuπtes per cell for NGF stimulated (5A) and unstimulated (5B) PC 12 cells after 5 days in culture, along with descriptive statistics for each population NGF+ Mean- 1/673, Std Dev - 0 9693, N- 257 NGF- Mean 2 329, Std Dev - 0 6085, N- 350

Figure 6, comprising Figures 6A to 6H, represents images of comparative micrographs of ASCs cultured on laminin nanofibers (left column, Figs 6A, C, E, and G) and laminin films (right column, Figs 6B, D, F, and H) The upper four panels depict light micrographs of ASCs cultured for 24 hours in Ultraculture (6A, 6B), a chemically defined serum free media, or standard growth media (DMEM+++) (6C, 6D) All light micrographs are 2Ox magnification The lower four panels represent images of fluorescence micrographs of immunohistochemically labeled β-3-tubuhn ASCs after 24 hours in Ultraculture (6E, 6F) or standard growth medium (6G, 6H)

Figure 7 schematically illustrates the electrospinning setup of the invention Process parameters which may easily be varied to adjust fiber formation and morphology include collecting distance (d), driving voltage (V) provided by the voltage source, laminin concentration in solution (c), and the flow rate (f) of the syringe pump

DETAILED DESCRIPTION

Abbreviations and Acronyms

ANOVA- one way analysis of variance ASC- adipose stem cell

DMEM- Dulbecco's modified Eagle's medium DSC- dura mater stem cell ECM- extracellular matrix EHS- Engelbreth-Holm-Swarm ESC- embryonic stem cell

HFP- 1,1,1,3,3,3 -hexafluoro-2-propanol IR- infrared

LNF- laminin nanofiber NGF- nerve growth fiber PBS- phosphate-buffered saline

PCL- polycaprolactone SEM- scanning electron microscope Definitions

In describing and claiming the invention, the following terminology will be used in accordance with the definitions set forth below

The articles "a" and "an" are used herein to refer to one or to more than one (i e , to at least one) of the grammatical object of the article By way of example, "an element" means one element or more than one element

The term "about," as used herein, means approximately, in the region of, roughly, or around When the term "about" is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth For example, in one aspect, the term "about" is used herein to modify a numerical value above and below the stated value by a variance of 20%

As used herein, "amino acids" are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table

Full Name Three-Letter Code One-Letter Code

Aspartic Acid Asp D

Glutamic Acid GIu E

Lysine Lys K

Arginine Arg R

Histidine His H

Tyrosine Tyr Y

Cysteine Cys C

Asparagine Asn N

Glutamine GIn Q

Serine Ser S

Threonine Thr T

Glycine GIy G

Alanine Ala A

Valine VaI V

Leucine Leu L

Isoleucine He I

Methionine Met M

Proline Pro P

Phenylalanine Phe F

Tryptophan Trp W

The expression "amino acid" as used herein is meant to include both natural and synthetic amino acids, and both D and L amino acids "Standard amino acid" means any of the twenty standard L-amino acids commonly found in naturally occurring peptides "Nonstandard amino acid residue" means any amino acid, other than the standard amino acids, regardless of whether it is prepared synthetically or derived from a natural source As used herein, "synthetic amino acid" also encompasses chemically modified amino acids, including but not limited to salts, amino acid derivatives (such as amides), and substitutions Amino acids contained within the peptides of the present

invention, and particularly at the carboxy- or amino-terminus, can be modified by methylation, amidation, acetylation or substitution with other chemical groups which can change the peptide's circulating half-life without adversely affecting their activity Additionally, a disulfide linkage may be present or absent in the peptides of the invention

The term "amino acid" is used interchangeably with "amino acid residue," and may refer to a free amino acid and to an amino acid residue of a peptide It will be apparent from the context in which the term is used whether it refers to a free amino acid or a residue of a peptide

Amino acids have the following general structure

H R C COOH

NH 2

Amino acids may be classified into seven groups on the basis of the side chain R (1) aliphatic side chains, (2) side chains containing a hydroxyhc (OH) group, (3) side chains containing sulfur atoms, (4) side chains containing an acidic or amide group, (5) side chains containing a basic group, (6) side chains containing an aromatic ring, and (7) proline, an imino acid in which the side chain is fused to the amino group

As used herein, the term "conservative amino acid substitution" is defined herein as exchanges within one of the following five groups I Small aliphatic, nonpolar or slightly polar residues

Ala, Ser, Thr, Pro, GIy, II Polar, negatively charged residues and their amides

Asp, Asn, GIu, GIn,

III Polar, positively charged residues

His, Arg, Lys,

IV Large, aliphatic, nonpolar residues Met Leu, He, VaI, Cy s

V Large, aromatic residues

Phe, Tyr, Trp

The nomenclature used to describe the peptide compounds of the present invention follows the conventional practice wherein the amino group is presented to the left and the carboxy group to the right of each amino acid residue In the formulae representing selected specific embodiments of the present invention, the amino-and carboxy-terminal groups, although not specifically shown, will be understood to be in the form they would assume at physiologic pH values, unless otherwise specified

The term "basic" or "positively charged" amino acid, as used herein, refers to amino acids in which the R groups have a net positive charge at pH 7 0, and include, but are not limited to, the standard amino acids lysine, arginme, and histidine

As used herein, an "analog" of a chemical compound is a compound that, by way of example, resembles another in structure but is not necessarily an isomer (e g , 5- fluorouracil is an analog of thymine)

The term "bioactive laminin", as used herein, means laminin which maintains some or all of the biological properties of laminin The term bioactive is used interchangeably with "biologically active" and "functional"

The term "biocompatible," as used herein, refers to a material that does not elicit a substantial detrimental response in the host

The terms "cell" and "cell line," as used herein, may be used interchangeably All of these terms also include their progeny, which are any and all subsequent generations It is understood that all progeny may not be identical due to deliberate or inadvertent mutations

The terms "cell culture" and "culture," as used herein, refer to the maintenance of cells in an artificial, in vitro environment It is to be understood, however, that the term "cell culture" is a generic term and may be used to encompass the cultivation not only of individual cells, but also of tissues, organs, organ systems or whole organisms, for which the terms "tissue culture," "organ culture," "organ system culture" or "organotypic culture" may occasionally be used interchangeably with the term "cell culture "

The phrases "cell culture medium," "culture medium" (plural "media" in each case) and "medium formulation" refer to a nutritive solution for cultivating cells and may be used interchangeably

A "compound," as used herein, refers to a polypeptide, an isolated nucleic acid, and to any type of substance or agent that is commonly considered a chemical, drug, or a candidate for use as a drug, as well as combinations and mixtures of the above

A "conditioned medium" is one prepared by cultuπng a first population of cells or tissue in a medium, and then harvesting the medium The conditioned medium (along with anything secreted into the medium by the cells) may then be used to support the growth or differentiation of a second population of cells

The term "culture container" as used herein means a receptacle for holding media for cultuπng a cell or tissue The culture container may, for example, be glass or plastic Preferably the plastic is non-cytotoxic The term culture container includes, but is not limited to, single and multiwell culture plates, chambered and multi-chambered culture slides, covershps, cups, flasks, tubes, bottles, roller bottles, spinner bottles, perfusion chambers, bioreactors, and fermenters

"Cytokine," as used herein, refers to intercellular signaling molecules, the best known of which are involved in the regulation of mammalian somatic cells A number of families of cytokines, both growth promoting and growth inhibitory in their effects, have been characterized including, for example, interleukins, interferons, and transforming growth factors A number of other cytokines are known to those of skill in the art The sources, characteristics, targets, and effector activities of these cytokines have been described

The term "delivery vehicle" refers to any kind of device or material which can be used to deliver cells in vivo or can be added to a composition comprising cells administered to an animal This includes, but is not limited to, implantable devices, matrix materials, gels, etc

The use of the word "detect" and its grammatical variants is meant to refer to measurement of the species without quantification, whereas use of the word "determine" or "measure" with their grammatical variants are meant to refer to

measurement of the species with quantification The terms "detect" and "identify" are used interchangeably herein

As used herein, a "detectable marker" or a "reporter molecule" is an atom or a molecule that permits the specific detection of a compound comprising the marker in the presence of similar compounds without a marker Detectable markers or reporter molecules include, e g , radioactive isotopes, antigenic determinants, enzymes, nucleic acids available for hybridization, chromophores, fluorophores, chemiluminescent molecules, electrochemically detectable molecules, and molecules that provide for altered fluorescence-polarization or altered light-scattering The term "differentiation factor" as used herein means a bioactive molecule that promotes the differentiation of cells The term includes, but is not limited to, neurotrophin, colony stimulating factor (CSF), or transforming growth factor CSF includes granulocyte-CSF, macrophage-CSF, granulocyte-macrophage-CSF, erythropoietin, and IL-3 Some differentiation factors may also promote the growth of a cell or tissue TGF and IL-3, for example, may promote differentiation and/or growth of cells

A "disease" is a state of health of an animal wherein the animal cannot maintain homeostasis, and wherein if the disease is not ameliorated then the animal's health continues to deteriorate In contrast, a "disorder" in an animal is a state of health in which the animal is able to maintain homeostasis, but in which the animal's state of health is less favorable than it would be in the absence of the disorder Left untreated, a disorder does not necessarily cause a further decrease in the animal's state of health

A disease or disorder is "alleviated" if the severity of a symptom of the disease or disorder, the frequency with which such a symptom is experienced by a patient, or both, are reduced

A "disease or disorder associated with aberrant osteoclast activity" refers to a disease or disorder comprising either increased or decreased osteoclast activity, numbers of osteoclasts, or numbers of osteoclast precursors

A "dispensing container" refers to a vessel such as a syringe, which is used in the process of electrospinning The syringe may have a needle attached and the gauge may be varied, depending in the particular conditions needed when electrospinning

"Electroaerosoling" means a process in which droplets are formed from a solution or melt by streaming a solution or melt through an orifice in response to an electric field

"The terms "electroprocessing" and "electrodeposition" shall be defined broadly to include all methods of electrospinning, electrospraying, electroaerosoling, and electrosputteπng of materials, combinations of two or more such methods, and any other method wherein materials are streamed, sprayed, sputtered, or dripped across an electric field and toward a target The electroprocessed material can be electroprocessed from one or more grounded reservoirs in the direction of a charged substrate or from charged reservoirs toward a grounded target The term electroprocessing is not limited to the specific examples set forth herein, and it includes any means of using an electrical field for depositing a material on a target The material may be in the form of fibers, powder, droplets, particles, or any other form The target may be a solid, semisolid, liquid, or any other material "Electrospinning" means a process in which fibers are formed from a solution or melt by streaming a solution or melt through an orifice in response to an electric field

A "fragment" or "segment" is a portion of an amino acid sequence, comprising at least one amino acid, or a portion of a nucleic acid sequence comprising at least one nucleotide The terms "fragment" and "segment" are used interchangeably herein A "biologically active fragment" of a peptide or protein is one which retains activity of the parent peptide such as binding to a natural hgand or performing the function of the protein

As used herein, a "functional" biological molecule is a biological molecule in a form in which it exhibits a property or activity by which it is characterized A functional enzyme, for example, is one which exhibits the characteristic catalytic activity by which the enzyme is characterized

"Graft" refers to any free (unattached) cell, tissue, or organ for transplantation

"Allograft" refers to a transplanted cell, tissue, or organ derived from a different animal of the same species "Xenograft" refers to a transplanted cell, tissue, or organ derived from an animal of a different species

The term "growth factor" as used herein means a bioactive molecule that promotes the proliferation of a cell or tissue Growth factors useful in the present invention include, but are not limited to, transforming growth factor-alpha (TGF-α), transforming growth factor-beta (TGF-β), platelet-derived growth factors including the AA, AB and BB isoforms (PDGF), fibroblast growth factors (FGF), including FGF acidic isoforms 1 and 2, FGF basic form 2, and FGF 4, 8, 9 and 10, nerve growth factors (NGF) including NGF 2 5 s, NGF 7 Os and beta NGF and neurotrophins, brain derived neurotrophic factor, cartilage derived factor, bone growth factors (BGF), basic fibroblast growth factor, insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), EG-VEGF, VEGF-related protein, Bv8, VEGF-E, granulocyte colony stimulating factor (G-CSF), insulin like growth factor (IGF) I and II, hepatocyte growth factor, glial neurotrophic growth factor, stem cell factor (SCF), keratinocyte growth factor (KGF), skeletal growth factor, bone matrix derived growth factors, and bone derived growth factors and mixtures thereof Some growth factors may also promote differentiation of a cell or tissue TGF, for example, may promote growth and/or differentiation of a cell or tissue

"Homologous" as used herein, refers to the subunit sequence similarity between two polymeric molecules, e g , between two nucleic acid molecules, e g , two DNA molecules or two RNA molecules, or between two polypeptide molecules When a subunit position in both of the two molecules is occupied by the same monomeπc subunit, e g , if a position in each of two DNA molecules is occupied by adenine, then they are homologous at that position The homology between two sequences is a direct function of the number of matching or homologous positions, e g , if half (e g , five positions in a polymer ten subunits in length) of the positions in two compound sequences are homologous then the two sequences are 50% homologous, if 90% of the positions, e g , 9 of 10, are matched or homologous, the two sequences share 90% homology By way of example, the DNA sequences 3αTTGCC5' and 3'TATGGC share 50% homology

As used herein, "homology" is used synonymously with "identity " The determination of percent identity between two nucleotide or amino acid sequences can be accomplished using a mathematical algorithm For example, a

mathematical algorithm useful for comparing two sequences is the algorithm of Karhn and Altschul (1990, Proc Natl Acad Sci USA 87 2264-2268), modified as in Karhn and Altschul (1993, Proc Natl Acad Sci USA 90 5873-5877) This algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al (1990, J MoI Biol 215 403-410), and can be accessed, for example at the National Center for

Biotechnology Information (NCBI) world wide web site BLAST nucleotide searches can be performed with the NBLAST program (designated "blastn" at the NCBI web site), using the following parameters gap penalty = 5, gap extension penalty = 2, mismatch penalty = 3, match reward = 1, expectation value 10 0, and word size = 11 to obtain nucleotide sequences homologous to a nucleic acid described herein BLAST protein searches can be performed with the XBLAST program (designated "blastn" at the NCBI web site) or the NCBI "blastp" program, using the following parameters expectation value 10 0, BLOSUM62 scoring matrix to obtain amino acid sequences homologous to a protein molecule described herein To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al

(1997, Nucleic Acids Res 25 3389-3402) Alternatively, PSI-Blast or PHI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id ) and relationships between molecules which share a common pattern When utilizing BLAST, Gapped BLAST, PSI-Blast, and PHI-Blast programs, the default parameters of the respective programs (e g , XBLAST and NBLAST) can be used

The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps In calculating percent identity, typically exact matches are counted The term "ingredient" refers to any compound, whether of chemical or biological origin, that can be used in cell culture media to maintain or promote the growth or proliferation of cells The terms "component," "nutrient" and ingredient" can be used interchangeably and are all meant to refer to such compounds Typical non- hmiting ingredients that are used in cell culture media include amino acids, salts, metals, sugars, lipids, nucleic acids, hormones, vitamins, fatty acids, proteins and the

like Other ingredients that promote or maintain cultivation of cells ex vivo can be selected by those of skill in the art, in accordance with the particular need

The term "inhibit," as used herein, means to suppress or block an activity or function such that it is lower relative to a control value The inhibition can be via direct or indirect mechanisms In one aspect, the activity is suppressed or blocked by at least 10% compared to a control value, more preferably by at least 25%, and even more preferably by at least 50% The term "inhibitor" as used herein, refers to any compound or agent, the application of which results in the inhibition of a process or function of interest, including, but not limited to, differentiation and activity Inhibition can be inferred if there is a reduction in the activity or function of interest

The term "injury" refers to any physical damage to the body caused by violence, accident, trauma, or fracture, etc

As used herein, an "instructional material" includes a publication, a recording, a diagram, or any other medium of expression which can be used to communicate the usefulness of the composition of the invention for its designated use The instructional material of the kit of the invention may, for example, be affixed to a container which contains the composition or be shipped together with a container which contains the composition Alternatively, the instructional material may be shipped separately from the container with the intention that the instructional material and the composition be used cooperatively by the recipient

As used herein, the term "insult" refers to injury, disease, or contact with a substance or environmental change that results in an alteration of tissue or normal cellular metabolism in a tissue, cell, or population of cells

An "isolated nucleic acid" refers to a nucleic acid segment or fragment which has been separated from sequences which flank it in a naturally occurring state, e g , a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e g , the sequences adjacent to the fragment in a genome in which it naturally occurs The term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e g , RNA or DNA or proteins, which naturally accompany it in the cell The term therefore includes, for example, a recombinant DNA which is incorporated into a

vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e g , as a cDNA or a genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence

The term "laminin nanofibπllar structure supports the proliferation and differentiation of cells", should not be construed to mean that it must support both proliferation and differentiation of a specific cell, but should be construed in the broad sense of being able to support the proliferation and/or differentiation of many cell types Additionally, the term does not mean that additional things such as supplements, growth factors, and differentiation factors do not need to be added when cultuπng a particular cell type in an effort to support its growth and/or differentiation

Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence Nucleotide sequences that encode proteins and RNA may include introns

As used herein, the term "linkage" refers to a connection between two groups The connection can be either covalent or non-covalent, including but not limited to ionic bonds, hydrogen bonding, and hydrophobic/hydrophihc interactions As used herein, the term "linker" refers to a molecule that joins two other molecules either covalently or noncovalently, e g , through ionic or hydrogen bonds or van der Waals interactions As used herein, the term "nucleic acid" encompasses RNA as well as single and double-stranded DNA and cDNA Furthermore, the terms, "nucleic acid," "DNA," "RNA" and similar terms also include nucleic acid analogs, i e analogs having other than a phosphodiester backbone For example, the so-called

"peptide nucleic acids," which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention

The term "material" refers to any compound, molecule, substance, or group or combination thereof that forms any type of structure or group of structures during or after electroprocessing Materials include natural materials, synthetic materials, or

combinations thereof Naturally occurring organic materials include any substances naturally found in the body of plants or other organisms, regardless of whether those materials have or can be produced or altered synthetically Synthetic materials include any materials prepared through any method of artificial synthesis, processing, or manufacture Preferably, the materials are biologically compatible materials

The term "mesh" as used herein, refers to a collection of nanofibers, particularly two or more non- woven layers of polymer nanofibers and thus the mesh comprises what is referred to herein as a "nanofibπllar structure" Nanofibers within the mesh may be either randomly oriented or are deposited in a controlled fashion, such as aligned in parallel Such a mesh comprises both nanofibers and "pores" (spaces not occupied by fibers)

The term "nanofiber" as used herein means a fiber comprising a diameter of about 1000 nanometers or less The term "nanofiber" is use interchangeably with "nanofiber network" and "nanofiber mesh" herein The term "nanofibπllar structure" as used herein means a structure comprising one or more nanofibers, wherein the structure is defined by a network or mesh of one or more nanofibers In some embodiments, the nanofibπllar structure comprises a substrate wherein the nanofibπllar structure is defined by a network of one or more nanofibers deposited on a surface of the substrate The nanotopography, the topography of the nanofiber network and the arrangement of the nanofibers of the nanofiber network in space, is engineered to provide an in vitro biomimetic substratum that is more tissue compatible for the promotion of homotypic or heterotypic cell growth and/or cell differentiation in single layer or multi-layered cell culture The nanofibπllar structures may be layered to form a multi-layered nanofibπllar assembly, cellular array, or tissue structure

The term "network" as used herein means a random or oriented distribution of nanofibers in space that is controlled to form an interconnecting net with spacing between fibers selected to promote growth and culture stability Physical properties of the network including, but not limited to, texture, rugosity, adhesivity, porosity, solidity, elasticity, geometry, interconnectivity, surface to volume ratio, fiber diameter, fiber

solubility/insolubility, hydrophihcity/hydrophobicity, fibril density, and fiber orientation may be engineered to desired parameters

Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence Nucleotide sequences that encode proteins and RNA may include introns

As used herein, the term "nucleic acid" encompasses RNA as well as single and double-stranded DNA and cDNA Furthermore, the terms, "nucleic acid," "DNA," "RNA" and similar terms also include nucleic acid analogs, i e analogs having other than a phosphodiester backbone For example, the so-called "peptide nucleic acids," which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention By "nucleic acid" is meant any nucleic acid, whether composed of deoxyπbonucleosides or πbonucleosides, and whether composed of phosphodiester linkages or modified linkages such as phosphotπester, phosphoramidate, siloxane, carbonate, carboxymethylester, acetamidate, carbamate, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphoramidate, bridged phosphoramidate, bridged methylene phosphonate, phosphorothioate, methylphosphonate, phosphorodithioate, bridged phosphorothioate or sulfone linkages, and combinations of such linkages The term nucleic acid also specifically includes nucleic acids composed of bases other than the five biologically occurring bases (adenine, guanine, thymine, cytosine and uracil) Conventional notation is used herein to describe polynucleotide sequences the left-hand end of a single-stranded polynucleotide sequence is the 5'-end, the left-hand direction of a double-stranded polynucleotide sequence is referred to as the 5 '-direction The direction of 5' to 3' addition of nucleotides to nascent RNA transcripts is referred to as the transcription direction The DNA strand having the same sequence as an mRNA is referred to as the "coding strand", sequences on the DNA strand which are located 5' to a reference point on the DNA are referred to as "upstream sequences", sequences on the DNA strand which are 3' to a reference point on the DNA are referred to as "downstream sequences "

The term "Oligonucleotide" typically refers to short polynucleotides, generally no greater than about 50 nucleotides It will be understood that when a nucleotide sequence is represented by a DNA sequence (i e , A, T, G, C), this also includes an RNA sequence (i e , A, U, G, C) in which "U" replaces "T " As used herein, the term "pharmaceutically acceptable carrier" includes any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents The term also encompasses any of the agents approved by a regulatory agency of the US Federal government or listed in the US Pharmacopeia for use in animals, including humans

"Plurality" means at least two

"Polypeptide" refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof Synthetic polypeptides can be synthesized, for example, using an automated polypeptide synthesizer

The term "protein" typically refers to large polypeptides

The term "peptide" typically refers to short polypeptides

A "recombinant polypeptide" is one which is produced upon expression of a recombinant polynucleotide

A peptide encompasses a sequence of 2 or more amino acids wherein the amino acids are naturally occurring or synthetic (non-naturally occurring) amino acids Peptide mimetics include peptides having one or more of the following modifications

1 peptides wherein one or more of the peptidyl --C(O)NR-- linkages (bonds) have been replaced by a non-peptidyl linkage such as a ~CH2-carbamate linkage

(-CH20C(0)NR-), a phosphonate linkage, a -CH2-sulfonamide (-CH 2~S(O)2NR~) linkage, a urea (--NHC(O)NH--) linkage, a --CH2 -secondary amine linkage, or with an alkylated peptidyl linkage (--C(O)NR-) wherein R is C1-C4 alkyl,

2 peptides wherein the N-terminus is deπvatized to a --NRR1 group, to a

- NRC(O)R group, to a -NRC(O)OR group, to a ~NRS(0)2R group, to a ~ NHC(O)NHR group where R and Rl are hydrogen or C1-C4 alkyl with the proviso that R and Rl are not both hydrogen,

3 peptides wherein the C terminus is deπvatized to ~C(0)R2 where R 2 is selected from the group consisting of Cl -C4 alkoxy, and — NR3R4 where R3 and R4 are independently selected from the group consisting of hydrogen and C1-C4 alkyl

The term "pumping said laminin dissolved in HFP through an opening in said dispensing container" refers to the route in which laminin is electrospun, such as through the tip of a syringe As used herein, the term "purified" and like terms relate to an enrichment of a cell, cell type, molecule, or compound relative to other components normally associated with the cell, cell type, molecule, or compound in a native environment The term "purified" does not necessarily indicate that complete purity of the particular cell, cell type, molecule, or compound has been achieved during the process A "reversibly implantable" device is one which may be inserted (e g surgically or by insertion into a natural orifice of the animal) into the body of an animal and thereafter removed without great harm to the health of the animal

A "sample," as used herein, refers preferably to a biological sample from a subject, including, but not limited to, normal tissue samples, diseased tissue samples, biopsies, blood, saliva, feces, semen, tears, and urine A sample can also be any other source of material obtained from a subject which contains cells, tissues, or fluid of interest A sample can also be obtained from cell or tissue culture

By "small interfering RNAs (siRNAs)" is meant, inter aha, an isolated dsRNA molecule comprised of both a sense and an anti-sense strand In one aspect, it is greater than 10 nucleotides in length siRNA also refers to a single transcript which has both the sense and complementary antisense sequences from the target gene, e g , a hairpin siRNA further includes any form of dsRNA (proteolytically cleaved products of larger dsRNA, partially purified RNA, essentially pure RNA, synthetic RNA, recombinantly produced RNA) as well as altered RNA that differs from naturally occurring RNA by the addition, deletion, substitution, and/or alteration of one or more nucleotides

The term "standard," as used herein, refers to something used for comparison

For example, a standard can be a known standard agent or compound which is administered or added to a control sample and used for comparing results when measuring said compound in a test sample Standard can also refer to an "internal standard," such as an agent or compound which is added at known amounts to a sample and is useful in determining such things as purification or recovery rates when a sample is processed or subjected to purification or extraction procedures before a marker of interest is measured

A "subject" of analysis, diagnosis, or treatment is an animal Such animals include mammals, preferably a human As used herein, a "subject in need thereof is a patient, animal, mammal or human, who will benefit from the method of this invention

The term "substantially pure" describes a compound, e g , a protein or polypeptide or other compound which has been separated from components which naturally accompany it Typically, a compound is substantially pure when at least 10%, more preferably at least 20%, more preferably at least 50%, more preferably at least 60%, more preferably at least 75%, more preferably at least 90%, and most preferably at least 99% of the total material (by volume, by wet or dry weight, or by mole percent or mole fraction) in a sample is the compound of interest Purity can be measured by any appropriate method, e g , in the case of polypeptides by column chromatography, gel electrophoresis, or HPLC analysis A compound, e g , a protein, is also substantially purified when it is essentially free of naturally associated components or when it is separated from the native contaminants which accompany it in its natural state

The term "substrate" as used herein means any surface on which electrospun laminin, laminin nanofibers, meshes or networks of laminin nanofibers are deposited The substrate may be any surface that offers structural support for the deposited network or mesh of nanofibers The substrate may comprise, for example, glass or plastic Preferably, the plastic is non-cytotoxic The substrate may, for example, be a film or culture container "Substrate" should be interpreted to mean not just a surface upon which material can be deposited, but additionally the surface and the materials that have been deposited upon it

As used herein, the term "treating" includes prophylaxis of a specific disease, disorder, or condition, or alleviation of the symptoms associated with a specific disorder or condition and/or preventing or eliminating said symptoms A "prophylactic" treatment is a treatment administered to a subject who does not exhibit signs of a disease or exhibits only early signs of the disease for the purpose of decreasing the risk of developing pathology associated with the disease

A "therapeutic" treatment is a treatment administered to a subject who exhibits signs of pathology for the purpose of diminishing or eliminating those signs

A "therapeutically effective amount" of a compound is that amount of compound which is sufficient to provide a beneficial effect to the subject to which the compound is administered

As used herein, the term "wound" relates to a physical tear or rupture to a tissue or cell layer A wound may occur by any physical insult, including a surgical procedure

Embodiments

The present invention provides compositions and methods for mimicking three dimensional scaffolding as found in vivo to better mimic how cells grow and differentiate Cell proliferation and differentiation are regulated by unique spatial interactions between cells Spatial cues in conjunction with the topologically distinct location of specific attachment molecules, and the release of specific humoral factors, such as growth and differentiation factors, function as signals to the cell to proliferate, differentiate, migrate, remain in a resting state, or initiate apoptosis The capacity of the cell to respond to these signaling triggers is dependent on the availability of specific cell surface and intracellular receptors The signal transduction pathways that are stimulated by these molecules depend on the organization and structure of the cell cytoskeleton whose architecture is a function of multipoint cell surface interactions with these signaling molecules, surrounding cells, and extracellular matrix

When designing cell and tissue culture environments, it is important to consider the cellular interactions that must be incorporated into the growth environment Cell types, spatial cues, and chemical triggers and modulators play a significant role in

regulating gene expression within interacting cells (Li et al , 2002, FASEB J , 17 97-99, Botarro et al , 2002, Ann N Y Acad Sci , 961 143-153, Kunz-Schughart et al , 2003, Am J Physiol Cell Physiol , 284 C209-C219, Cukierman et al , 2001, Science, 294 1708-1712) Past advances in the practice of cell and tissue culture have been directed toward providing the biochemical and physical conditions that approximate the complex in vivo microenvironment within a tissue (Cukierman et al , 2001, Science, 23 1708-1712, Li et al , 2002, FASEB J , 17 97-99, Chiu et al , 2000, Proc Natl Acad Sci USA, 97 2408-2413) These efforts have been limited by factors that include the use of cell lines that have been continuously grown on and selected for their ability to proliferate on planar culture surfaces that lack the spatial cues and chemical triggers and modulators present in tissue in vivo

Another aspect of the invention is a nanofibπllar structure comprising one or more nanofibers and wherein the nanofibπllar structure is defined by a network of one or more nanofibers In an embodiment, the nanofiber network is deposited on a surface of a substrate

In an embodiment, the substrate comprises glass or plastic In a further embodiment, the substrate is a surface of a culture container

The nanofibπllar structures may be utilized singly or layered to form a multi- layered assembly of nanofibπllar structures for cell or tissue culture The nanofibπllar structure of the invention has many in vivo and ex vivo uses including wound repair, growth of artificial skin, veins, arteries, tendons, ligaments, cartilage, heart valves, organ culture, treatment of bums, and bone grafts In an embodiment, a diverse array of growth environments for a cell or tissue may be constructed by engineering specific chemical and physical properties into the nanofiber network, substrate, and/or spacers comprising the individual nanofibπllar structure elements and/or sequentially layering individual nanofibπllar structures In certain embodiments, the unique nature of the environment can be obtained from the heterogeneous nature of the fiber diameter and composition Physical properties and/or characteristics of the individual nanofiber, nanofibπllar structure, and nanofibπllar network including, but not limited to, texture, rugosity, adhesivity, porosity, solidity, elasticity, geometry, interconnectivity, surface to volume ratio, fiber diameter, fiber

solubility/insolubility, hydrophilicity/hydrophobicity, and fibril density may be varied and/or modified to construct nano- and/or micro- environments that promote a desired cellular activity, including proliferation and/or differentiation Specific nano- and/or micro- environments may be engineered within individual nanofibπllar structures or within a cellular array comprising two or more nanofibπllar structures

Specific chemical properties and recognition motifs such as polypeptides, lipids, carbohydrates, amino acids, nucleotides, nucleic acids, polynucleotides, or polysaccharides including, but not limited, to growth factors, differentiation factors, fibrous proteins, adhesive proteins, glycoproteins, functional groups, adhesive compounds, deadhesive compounds, and targeting molecules may be engineered into the nanofibπllar network substrate

The present invention is also directed to methods of manufacturing a tissue In an embodiment, two or more nanofibπllar structures are layered to form a multi-layered nanofibπllar assembly Viable cells are deposited on the fiber and the structure is cultured under conditions that promote growth, migration, and/or differentiation of the deposited cells In a further embodiment, nano- and/or micro-environments that promote cellular activity may be engineered within an individual matrix by varying and/or modifying selected physical and/or chemical properties of the growth matrix In another embodiment, multiple cell types are cultured on individual nanofibπllar structures under different culture conditions Two or more of the individual nanofibπllar structures are then layered to form a multi-layered nanofibπllar assembly and the assembly is cultured under conditions that promote a desired cellular activity, including growth and/or differentiation of the cells In a further embodiment, nano- and/or micro-environments that promote cellular activity may be engineered within an individual nanofibπllar structure by varying and/or modifying selected physical and/or chemical properties of the nanofibπllar structure or within the nanofibπllar assembly by selectively layering the individual nanofibπllar structures to obtain the desired nano- or micro- environment Homogeneous or heterogeneous fiber diameters and compositions may be selected to optimize proliferation and/or differentiation

The compositions and nanofibπllar structures of the present invention comprise electrospun laminin The electrospun laminin can constitute or be formed, for example, from natural laminin, genetically engineered laminin, or laminin modified by conservative amino acid substitutions, non-conservative amino acid substitutions or substitutions with non-naturally occurring amino acids The laminin used in electrospinning can be derived from a natural source, manufactured synthetically, or produced through any other means Numerous methods for producing lamimns and other proteins are known in the art Synthetic laminin can be prepared to contain specific desired amino acid sequences The electrospun laminin can also be formed from laminin itself

In some embodiments, the compositions and structures of the present invention includes additional electroprocessed materials Other electroprocessed materials can include natural materials, synthetic materials, or combinations thereof Some preferred examples of natural materials include, but are not limited to, amino acids, peptides, denatured peptides such as gelatin from denatured collagen, polypeptides, proteins, carbohydrates, lipids, nucleic acids, glycoproteins, lipoproteins, glycolipids, glycosaminoglycans, and proteoglycans Some preferred synthetic matrix materials for electroprocessing with collagen include, but are not limited to, polymers such as poly(lactic acid) (PLA), polyglycolic acid (PGA), copolymers of PLA and PGA, polycaprolactone, poly(ethylene-co-vinyl acetate), (EVOH), poly(vinyl acetate) (PVA), polyethylene glycol (PEG) and poly(ethylene oxide) (PEO)

In many desirable embodiments, the electrospun laminin is combined with one or more substances Such substances include any type of molecule, cell, or object or combinations thereof The electrospun laminin compositions of the present invention can further comprise one substance or any combination of substances Several especially desirable embodiments include the use of cells as a substance combined with the laminin nanofiber matrix Any cell can be used Cells that can be used include, but are not limited to, stem cells, committed stem cells, and differentiated cells Molecules can be present in any phase or form and combinations of molecules can be used Examples of desirable classes of molecules that can be used include human or veterinary therapeutics, cosmetics, nutraceuticals, agπculturals such as herbicides,

pesticides and fertilizers, vitamins, amino acids, peptides, polypeptides, proteins, carbohydrates, lipids, nucleic acids, glycoproteins, lipoproteins, glycolipids, glycosaminoglycans, proteoglycans, growth factors, hormones, neurotransmitters, pheromones, chalones, prostaglandins, immunoglobulins, monokines and other cytokines, humectants, metals, gases, plasticizers, minerals, ions, electrically and magnetically reactive materials, light sensitive materials, anti-oxidants, molecules that can be metabolized as a source of cellular energy, antigens, and any molecules that can cause a cellular or physiological response Examples of objects include, but are not limited to, cell fragments, cell debris, organelles and other cell components, extracellular matrix constituents, tablets, and viruses, as well as vesicles, liposomes, capsules, nanoparticles, and other structures that serve as an enclosure for molecules Magnetically or electrically reactive materials are also examples of substances that are optionally included within compositions of the present invention Examples of electrically active materials include, but are not limited, to carbon black or graphite, carbon nanotubes, and various dispersions of electrically conducting polymers

Examples of magnetically active materials include, but are not limited to, ferrofluids (colloidal suspensions of magnetic particles)

By selecting different materials for combining with electrospun laminin, or combinations thereof, many characteristics of the electroprocessed material can be manipulated The properties of a matrix comprised of electrospun laminin may be adjusted Electrospun laminin and other electroprocessed materials can provide a therapeutic effect when applied In addition, selection of matrix materials can affect the permanency of an implanted matrix Use of matrices made of natural materials such as proteins also minimize rejection or immunological response to an implanted matrix Accordingly, selection of materials for electroprocessing and use in substance delivery is influenced by the desired use In one embodiment, a skin patch of electrospun laminin combined with healing promoters, analgesics and or anesthetics and anti- rejection substances may be applied to the skin and may subsequently dissolve into the skin In another embodiment, an electrospun laminin implant for delivery to bone may be constructed of materials useful for promoting bone growth, osteoblasts, and hydroxyapatite, and may be designed to endure for a prolonged period of time In

embodiments in which the matrix contains substances that are to be released from the matrix, incorporating electroprocessed synthetic components, such as biocompatible substances, can modulate the release of substances from an electroprocessed composition For example, layered or laminate structures can be used to control the substance release profile Unlayered structures can also be used, in which case the release is controlled by the relative stability of each component of the construct For example, layered structures composed of alternating electroprocessed materials are prepared by sequentially electroprocessing different materials onto a target The outer layers are, for example, tailored to dissolve faster or slower than the inner layers Multiple agents can be delivered by this method, optionally at different release rates Layers can be tailored to provide a complex, multi-kinetic release profile of a single agent over time Using combinations of the foregoing provides for release of multiple substances released, each with a complex profile

In some embodiments, the electrospun laminin is combined with one or more substances or compounds In embodiments in which the electrospun laminin compositions of the present invention comprise one or more substances, substances can include any type or size of molecules, cells, objects, or combinations thereof The compositions of the present invention may comprise one substance or any combination of substances One embodiment includes cells as a substance combined with the electrospun laminin mesh Any cell type can be used Some preferred examples include, but are not limited to, stem cells, committed stem cells, and differentiated cells Examples of stem cells include, but are not limited to, embryonic stem cells, bone marrow stem cells, adipose stem cells, and umbilical cord stem cells Other examples of cells include, but are not limited to, osteoblasts, myoblasts, neuroblasts, fibroblasts, ghoblasts, germ cells, hepatocytes, chondrocytes, keratinocytes, smooth muscle cells, cardiac muscle cells, connective tissue cells, glial cells, epithelial cells, endothelial cells, hormone- secreting cells, cells of the immune system, and neurons In some embodiments, it is unnecessary to pre-select the type of stem cell that is to be used, because many types of stem cells can be induced to differentiate in an organ specific pattern once delivered to a given organ

Embodiments in which the substance comprises cells include cells that can be cultured in vitro, derived from a natural source, genetically engineered, or produced by any other means Any natural source of prokaryotic or eukaryotic cells may be used Embodiments in which the matrix is implanted in an organism can use cells from the recipient, cells from a conspecific donor or a donor from a different species, or bacteria or microbial cells Cells harvested from a source and cultured prior to use are included

Some embodiments use cells that have been genetically engineered The engineering involves programming the cell to express one or more genes, repressing the expression of one or more genes, or both One example of genetically engineered cells useful in the present invention is a genetically engineered cell that makes and secretes one or more desired molecules When electrospun laminin matrices comprising genetically engineered cells are implanted in an organism, the molecules produced can produce a local effect or a systemic effect, and can include the molecules identified above as possible substances Cells can also produce antigenic materials in embodiments in which one of the purposes of the matrix is to produce an immune response Cells may produce substances to aid in the following non-inclusive list of purposes inhibit or stimulate inflammation, facilitate healing, resist immunor ejection, provide hormone replacement, replace neurotransmitters, inhibit or destroy cancer cells, promote cell growth, inhibit or stimulate formation of blood vessels, augment tissue, and to supplement or replace neurons, skin, synovial fluid, tendons, cartilage (including, but not limited to articular cartilage), ligaments, bone, muscle, organs, dura, blood vessels, bone marrow, and extracellular matrix

In many embodiments, cells in an electrospun matrix exhibit characteristics and functions typical of such cells in vivo In embodiments in which the substances or compounds are molecules, any molecule can be used Molecules may, for example, be organic or inorganic and may be in a solid, semisolid, liquid, or gas phase Molecules may be present in combinations or mixtures with other molecules, and may be in solution, suspension, or any other form Examples of classes of molecules that may be used include human or veterinary therapeutics, cosmetics, nutraceuticals, agπculturals such as herbicides, pesticides and fertilizers, vitamins, salts, electrolytes, amino acids, peptides, polypeptides, proteins,

carbohydrates, lipids, nucleic acids, glycoproteins, lipoproteins, glycolipids, glycosaminoglycans, proteoglycans, growth factors, hormones, neurotransmitters, pheromones, chalones, prostaglandins, immunoglobulins, monokines and other cytokines, humectants, metals, gases, minerals, plasticizers, ions, electrically and magnetically reactive materials, light sensitive materials, anti-oxidants, molecules that may be metabolized as a source of cellular energy, antigens, and any molecules that can cause a cellular or physiological response Any combination of molecules can be used, as well as agonists or antagonists of these molecules

Several preferred embodiments include use of any therapeutic molecule including, without limitation, any pharmaceutical or drug Examples of pharmaceuticals include, but are not limited to, anesthetics, hypnotics, sedatives and sleep inducers, antipsychotics, antidepressants, antiallergics, antianginals, antiarthπtics, antiasthmatics, antidiabetics, antidiarrheal drugs, anticonvulsants, antigout drugs, antihistamines, antipruritics, emetics, antiemetics, antispasmodics, appetite suppressants, neuroactive substances, neurotransmitter agonists, antagonists, receptor blockers and reuptake modulators, beta-adrenergic blockers, calcium channel blockers, disulfiram and disulfiram-hke drugs, muscle relaxants, analgesics, antipyretics, stimulants, anticholinesterase agents, parasympathomimetic agents, hormones, anticoagulants, antithrombotics, thrombolytics, immunoglobulins, immunosuppressants, hormone agonists/antagonists, vitamins, antimicrobial agents, antineoplastics, antacids, digestants, laxatives, cathartics, antiseptics, diuretics, disinfectants, fungicides, ectoparasiticides, antiparasitics, heavy metals, heavy metal antagonists, chelating agents, gases and vapors, alkaloids, salts, ions, autacoids, digitalis, cardiac glycosides, antiarrhythmics, antihypertensives, vasodilators, vasoconstrictors, antimuscaπnics, ganglionic stimulating agents, ganglionic blocking agents, neuromuscular blocking agents, adrenergic nerve inhibitors, anti-oxidants, vitamins, cosmetics, antiinflammatories, wound care products, antithrombogenic agents, antitumoral agents, antiangiogenic agents, anesthetics, antigenic agents, wound healing agents, plant extracts, growth factors, emollients, humectants, rejection/anti-rejection drugs, spermicides, conditioners, antibacterial agents, antifungal agents, antiviral agents, antibiotics, tranquilizers, cholesterol-reducing drugs, antitussives, histamine-blocking

drugs, monoamine oxidase inhibitor All substances listed by the U S Pharmacopeia are also included within the substances of the present invention

Other preferred embodiments involve the use of growth factors, including more than one growth factor, as described herein Other molecules useful as compounds or substances in the present invention include, but are not limited to, growth hormones, leptin, leukemia inhibitory factor (LIF), tumor necrosis factor alpha and beta, endostatin, angiostatin, thrombospondin, osteogenic protein- 1, bone morphogenetic proteins 2 and 7, osteonectin, somatomedin- hke peptide, osteocalcin, interferon alpha, interferon alpha A, interferon beta, interferon gamma, interferon 1 alpha, and interleukins 2, 3, 4, 5 6, 7, 8, 9, 10, 11, 12,13, 15, 16, 17 and 18

Embodiments involving amino acids, peptides, polypeptides, and proteins may include any type of such molecules of any size and complexity as well as combinations of such molecules Examples include, but are not limited to, structural proteins, enzymes, and peptide hormones These compounds can serve a variety of functions In some embodiments, the matrix may contain peptides containing a sequence that suppresses enzyme activity through competition for the active site In other applications, antigenic agents that promote an immune response and invoke immunity can be incorporated into a construct For substances such as nucleic acids, any nucleic acid can be present Examples include, but are not limited to deoxyribonucleic acid (DNA), ent-DNA, oligonucleotides, aptamers, and ribonucleic acid (RNA) Embodiments involving DNA include, but are not limited to, cDNA sequences, natural DNA sequences from any source, and sense or anti-sense oligonucleotides For example, DNA can be naked (e g , U S Pat Nos 5,580,859, 5,910,488) or complexed or encapsulated (e g , U S Pat Nos 5,908,777, 5,787,567) DNA can be present in vectors of any kind, for example in a viral or plasmid vector In some embodiments, nucleic acids used will serve to promote or to inhibit the expression of genes in cells inside and/or outside the electroprocessed matrix The nucleic acids can be in any form that is effective to enhance uptake into cells

Substances or compounds in the electrospun laminin compositions of the present invention also comprise objects Examples of objects include, but are not limited to, cell fragments, cell debris, organelles and other cell components, tablets, and viruses as well as vesicles, liposomes, capsules, nanoparticles, and other structures that serve as an enclosure for molecules In some embodiments, the objects constitute vesicles, liposomes, capsules, or other enclosures that contain compounds that are released at a time after electroprocessing, such as at the time of implantation or upon later stimulation or interaction In one illustrative embodiment, transfection agents such as liposomes contain desired nucleotide sequences to be incorporated into cells that are located in or on the electroprocessed material or mesh In other embodiments, cell fragments, specific cell fractions or cell debris are incorporated into the mesh The presence of cell fragments is known to promote healing in some tissues

Compounds and substances that can provide favorable matrix or mesh characteristics also include drugs and other substances that can produce a therapeutic or other physiological effect on cells and tissues within or surrounding an implant Any substance may be used In some embodiments, substances are included in the electrospun matrix that will improve the performance of the implanted electrospun matrix Examples of substances that can be used include but are not limited to peptide growth factors, antibiotics, and/or anti-rejection drugs Chemicals that affect cell function, such as oligonucleotides, promoters or inhibitors of cell adhesion, hormones, and growth factor are additional examples of substances that can be incorporated into the electroprocessed collagen material and the release of those substances from the electroprocessed material can provide a means of controlling expression or other functions of cells in the electroprocessed material Alternatively, cells that are engineered to manufacture desired compounds can be included The entire construct is, for example, cultured in a bioreactor or conventional culture or placed directly in vivo For example, neovascularization can be stimulated by angiogenic and growth- promoting factors, administered, as peptides, proteins or as gene therapy Angiogenic agents can be incorporated into the electroprocessed collagen matrix Alternatively, where neovascularization is not desired, antiangiogenic materials, such as angiostatin, may be included in the electroprocessed collagen matrix Nerve growth factors can be

electrospun into the electrospun laminin matrix to promote growth of neurons into the matrix and tissue In a degradable electrospun laminin matrix, the gradual degradation/breakdown of the matrix will release these factors and accelerate growth of desired tissues Substances can be incorporated into the electrospun laminin matrix to regulate differentiation of cells in the matrix Oligonucleotides and peptides drugs such as retinoic acid are examples of such compounds and substances Oligonucleotide DNA or messenger RNA sequences coding for specific proteins in the sense and antisense direction can also be used For example, where expression of a protein is desired, sense oligonucleotides can be provided for uptake by cells and expression Antisense oligonucleotides can be released, for example, to suppress the expression gene sequences of interest Implants can be designed such that the substances affect cells contained within the matrix, outside the matrix or both

Several methods exist for studying and quantifying specific characteristics of the matrix materials of the present invention The present invention also includes methods of making the compositions of the present invention The methods of making the compositions include, but are not limited to, electrospinning laminin, and optionally electroprocessing other materials, substances or both In the most fundamental sense, the electroprocessing apparatus for electroprocessing material includes an electrodepositing mechanism and a target The present invention allows forming matrices that have a predetermined shape

In a preferred embodiment, the electrospun materials form a matrix The term "matrix" refers to any structure comprised of electroprocessed materials Matrices are comprised of fibers, or droplets of materials, or blends of fibers and droplets of any size or shape Matrices are single structures or groups of structures and can be formed through one or more electroprocessing methods using one or more materials Matrices are engineered to possess specific porosities Substances can be deposited within, or anchored to or placed on matrices Cells are substances which can be deposited within or on matrices

Any solvent can be used that allows delivery of the material or substance to the orifice, tip of a syringe, or other site from which the material will be electrospun In one aspect, the electrospun material must maintain an activity as indicated In one

aspect, an appropriate solvent for laminin is HFP The solvent may be used for dissolving or suspending the material or the substance to be electroprocessed Solvents useful for dissolving or suspending a material or a substance depend on the material or substance Electrospinning techniques often require more specific solvent conditions One of ordinary skill in the art recognizes that changes in the concentration of materials or substances in the solutions requires modification of the specific voltages to obtain the formation and streaming of droplets from the tip of a pipette or device being used

The electrospinning process can be manipulated to meet the specific requirements for any given application of the electrospun compositions made with these methods

In the electrospinning process, the stream or streams can branch out to form fibers The degree of branching can be varied by many factors including, but not limited to, voltage, ground geometry, distance from micropipette tip (such as a needle or syringe) to the collector surface, diameter of micropipette tip, and concentration of materials or compounds that will form the electroprocessed materials This process can be varied by many factors including, but not limited to, voltage (for example ranging from about 0 to 30,000 volts), distance from micropipette tip to the substrate (for example from 0-40 cm), the relative position of the micropipette tip and target (i e above, below, aside etc ), and the diameter of micropipette tip (approximately 0-2 mm)

The geometry of the grounded target can be modified to produce a desired matrix By varying the ground geometry, for instance having a planar or linear or multiple points ground, the direction of the streaming materials can be varied and customized to a particular application In many embodiments, the compounds or substances comprise cells Cells can be combined with an electrospun laminin matrix by any of the means noted above for combining small objects in a matrix Cells can, for example, be suspended in a solution or other liquid that contains the laminin, disposed in the area between the solutions and target, or delivered to a target or substrate from a separate source before, during, or after electroprocessing Cells can be dripped through the matrix, onto the matrix as it deposits on the target, or suspended within an aerosol as a delivery system for the cells

to the electrospun material The cells can be delivered in this manner while the matrix is being formed

The compositions and substances of the invention are also useful for preparing engineered tissue Once the electroengineered tissue containing electrospun laminin and cells is assembled, the tissue can be inserted into a recipient Alternatively, the structure can be placed into a culture to enhance the cell growth Different types of nutrients and growth factors can be added to a culture (or administered to a recipient) in order to promote a specific type of growth of the engineered tissue

Electrospun laminin materials, such as matrices and meshes, are useful in the formation of prostheses One application of the electrospun laminin matrices is in the formation of medium and small diameter vascular prostheses An example of a small diameter prosthesis is one having an inner diameter less than six millimeters, for example, a diameter of four millimeters Some useful materials for this embodiment are collagen and elastin, especially collagen type I and collagen type III Some examples include, but are not limited to coronary vessels for bypass or graft, femoral artery, popliteal artery, brachial artery, tibial artery, radial artery, arterial bifurcation, or corresponding veins The electroprocessed material is useful, especially when combined with endothelial cells on the inside of the vascular prosthesis, and smooth muscle cells, for example a collagen tube, and also when combined with fibroblasts on the outside of the collagen tube

Combinations of electrospun laminin and other fibers, such as larger diameter (e g , 50 to 200 μm) collagen or other fibers can provide optimal growth conditions for cells The large diameter fibers form a basic structural matrix that lends mechanical support to the construct, and the electroprocessed matrix is used as a scaffolding to deliver and/or support the cells This facilitates cell attachment onto the structural matrix

Tissue containing electrospun laminin, and optionally other material, can be engineered with an endogenous vascular system This vascular system can be composed of artificial vessels or blood vessels excised from a donor site on the transplant recipient The engineered tissue containing electrospun laminin matrix material is then assembled around the vessel By enveloping such a vessel with the

tissue during or after assembly of the engineered tissue, the engineered tissue has a vessel that can be attached to the vascular system of the recipient

In some embodiments, the stem cells or other cells used to construct the implant are isolated from the subject, or other compatible donor requiring tissue reconstruction This provides the advantage of using cells that will not induce an immune response, because they originated with the subject (autologous tissue) requiring the reconstruction Relatively small biopsies can be used to obtain a sufficient number of cells to construct the implant This minimizes functional deficits and damage to endogenous tissues that serve as the donor site for the cells The electrospun laminin compositions of the present invention have a broad array of potential uses Uses include, but are not limited to, manufacture of engineered tissue and organs, including structures such as patches or plugs of tissues or matrix material, prosthetics, and other implants, tissue scaffolding, repair or dressing of wounds, hemostatic devices, devices for use in tissue repair and support such as sutures, surgical and orthopedic screws, and surgical and orthopedic plates, natural coatings or components for synthetic implants, cosmetic implants and supports, repair or structural support for organs or tissues, substance delivery, bioengineeπng platforms, platforms for testing the effect of substances upon cells, cell culture, and numerous other uses This discussion of possible uses is not intended to be exhaustive and many other embodiments exist

The ability to combine cells in an electrospun laminin material provides the ability to use the compositions of the present invention to build tissue, organs, or organ- like tissue Cells included in such tissues or organs can include cells that serve a function of delivering a substance, seeded cells that will provide the beginnings of replacement tissue, or both Many types of cells can be used to create tissue or organs Stem cells, committed stem cells, and/or differentiated cells are used in various embodiments

The electrospun laminin nanofibπllar structures and matrices of the present invention also permit the in vitro cultuπng of cells for study The ability to mimic extracellular matrix and tissue conditions in vitro provides a new platform for study and manipulation of cells In some embodiments, selected cells are grown in the matrix and

exposed to selected drugs, substances, or treatments For example, neuπte extension can be studied

Another use of electrospun laminin matrices is as a bioengineeπng platform for manipulation of cells in vitro This provides for placement of cells in a matrix and treating the cells to engineer them a specific way For example, stem cells can be placed in a matrix under conditions that will control their differentiation Differentiation is controlled through the use of matrix materials or substances in the matrix that will influence differentiation For example, agents, such as retinoic acid, that play a role in promoting differentiation might be placed within the matrix One use of the electrospun laminin compositions of the present invention is the delivery of one or more substances to a desired location In some embodiments, the electroprocessed materials are used simply to deliver the materials In other embodiments, the electroprocessed materials are used to deliver substances that are contained in the electroprocessed materials or that are produced or released by substances contained in the electroprocessed materials For example, an electroprocessed material containing cells can be implanted in a body and used to deliver molecules produced by the cells after implantation The present compositions can be used to deliver substances to an in vivo location, an in vitro location, or other locations The present compositions can be administered to these locations using any method In some embodiments, electrospun laminin compositions used in tissue scaffolding deliver substances that will aid in the function of the scaffolding Any substance that will aid in the function of the scaffold may be used

The peptides of the present invention may be readily prepared by standard, well- established techniques, such as solid-phase peptide synthesis (SPPS) as described by Stewart et al in Solid Phase Peptide Synthesis, 2nd Edition, 1984, Pierce Chemical Company, Rockford, Illinois, and as described by Bodanszky and Bodanszky in The Practice of Peptide Synthesis, 1984, Springer- Verlag, New York At the outset, a suitably protected amino acid residue is attached through its carboxyl group to a deπvatized, insoluble polymeric support, such as cross-linked polystyrene or polyamide resin "Suitably protected" refers to the presence of protecting groups on both the α- amino group of the amino acid, and on any side chain functional groups Side chain

protecting groups are generally stable to the solvents, reagents and reaction conditions used throughout the synthesis, and are removable under conditions which will not affect the final peptide product Stepwise synthesis of the oligopeptide is carried out by the removal of the N-protecting group from the initial amino acid, and couple thereto of the carboxyl end of the next amino acid in the sequence of the desired peptide This amino acid is also suitably protected The carboxyl of the incoming amino acid can be activated to react with the N-terminus of the support-bound amino acid by formation into a reactive group such as formation into a carbodπmide, a symmetric acid anhydride, or an "active ester" group such as hydroxybenzotπazole or pentafluorophenly esters

Examples of solid phase peptide synthesis methods include the BOC method which utilized tert-butyloxcarbonyl as the α-amino protecting group, and the FMOC method which utilizes 9-fluorenylmethyloxcarbonyl to protect the α-amino of the amino acid residues, both methods of which are well known by those of skill in the art Incorporation of N- and/or C- blocking groups can also be achieved using protocols conventional to solid phase peptide synthesis methods For incorporation of C-terminal blocking groups, for example, synthesis of the desired peptide is typically performed using, as solid phase, a supporting resin that has been chemically modified so that cleavage from the resin results in a peptide having the desired C-terminal blocking group To provide peptides in which the C-terminus bears a primary amino blocking group, for instance, synthesis is performed using a p-methylbenzhydrylamine (MBHA) resin so that, when peptide synthesis is completed, treatment with hydrofluoric acid releases the desired C-terminally amidated peptide Similarly, incorporation of an N-methylamine blocking group at the C-terminus is achieved using N-methylaminoethyl-deπvatized DVB, resin, which upon HF treatment releases a peptide bearing an N-methylamidated C-terminus Blockage of the C-terminus by esteπfication can also be achieved using conventional procedures This entails use of resin/blocking group combination that permits release of side-chain peptide from the resin, to allow for subsequent reaction with the desired alcohol, to form the ester function FMOC protecting group, in combination with DVB resin deπvatized with methoxyalkoxybenzyl alcohol or equivalent linker, can be used for this purpose, with

cleavage from the support being effected by TFA in dicholoromethane Esteπfication of the suitably activated carboxyl function e g with DCC, can then proceed by addition of the desired alcohol, followed by deprotection and isolation of the esteπfied peptide product Incorporation of N-terminal blocking groups can be achieved while the synthesized peptide is still attached to the resin, for instance by treatment with a suitable anhydride and nitπle To incorporate an acetyl-blocking group at the N-terminus, for instance, the resin-coupled peptide can be treated with 20% acetic anhydride in acetonitπle The N-blocked peptide product can then be cleaved from the resin, deprotected and subsequently isolated

To ensure that the peptide obtained from either chemical or biological synthetic techniques is the desired peptide, analysis of the peptide composition should be conducted Such amino acid composition analysis may be conducted using high- resolution mass spectrometry to determine the molecular weight of the peptide Alternatively, or additionally, the amino acid content of the peptide can be confirmed by hydrolyzing the peptide in aqueous acid, and separating, identifying and quantifying the components of the mixture using HPLC, or an amino acid analyzer Protein sequenators, which sequentially degrade the peptide and identify the amino acids in order, may also be used to determine definitely the sequence of the peptide Prior to its use, the peptide is purified to remove contaminants In this regard, it will be appreciated that the peptide will be purified so as to meet the standards set out by the appropriate regulatory agencies Any one of a number of a conventional purification procedures may be used to attain the required level of purity including, for example, reversed-phase high-pressure liquid chromatography (HPLC) using an alkylated silica column such as C4 -, C8- or Cl 8- silica A gradient mobile phase of increasing organic content is generally used to achieve purification, for example, acetonitπle in an aqueous buffer, usually containing a small amount of tπfluoroacetic acid Ion-exchange chromatography can be also used to separate peptides based on their charge

It will be appreciated, of course, that the peptides or antibodies, derivatives, or fragments thereof may incorporate amino acid residues which are modified without affecting activity For example, the termini may be deπvatized to include blocking

groups, i e chemical substituents suitable to protect and/or stabilize the N- and C- termini from "undesirable degradation", a term meant to encompass any type of enzymatic, chemical or biochemical breakdown of the compound at its termini which is likely to affect the function of the compound, i e sequential degradation of the compound at a terminal end thereof

Blocking groups include protecting groups conventionally used in the art of peptide chemistry which will not adversely affect the in vivo activities of the peptide For example, suitable N-terminal blocking groups can be introduced by alkylation or acylation of the N-terminus Examples of suitable N-terminal blocking groups include C 1 -C5 branched or unbranched alkyl groups, acyl groups such as formyl and acetyl groups, as well as substituted forms thereof, such as the acetamidomethyl (Acm) group Desamino analogs of amino acids are also useful N-terminal blocking groups, and can either be coupled to the N-terminus of the peptide or used in place of the N-terminal reside Suitable C-terminal blocking groups, in which the carboxyl group of the C- terminus is either incorporated or not, include esters, ketones or amides Ester or ketone-forming alkyl groups, particularly lower alkyl groups such as methyl, ethyl and propyl, and amide-forming amino groups such as primary amines (-NH 2 ), and mono- and di-alkylamino groups such as methylamino, ethylamino, dimethylamino, diethylamino, methylethylamino and the like are examples of C-terminal blocking groups Descarboxylated amino acid analogues such as agmatine are also useful C- terminal blocking groups and can be either coupled to the peptide's C-terminal residue or used in place of it Further, it will be appreciated that the free amino and carboxyl groups at the termini can be removed altogether from the peptide to yield desamino and descarboxylated forms thereof without affect on peptide activity Other modifications can also be incorporated without adversely affecting the activity and these include, but are not limited to, substitution of one or more of the amino acids in the natural L-isomeπc form with amino acids in the D-isomeπc form Thus, the peptide may include one or more D-amino acid resides, or may comprise amino acids which are all in the D-form Retro-inverso forms of peptides in accordance with the present invention are also contemplated, for example, inverted peptides in which all amino acids are substituted with D-amino acid forms

Acid addition salts of the present invention are also contemplated as functional equivalents Thus, a peptide in accordance with the present invention treated with an inorganic acid such as hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, and the like, or an organic acid such as an acetic, propionic, glycolic, pyruvic, oxalic, malic, malonic, succinic, maleic, fumaπc, tataπc, citric, benzoic, cinnamie, mandehc, methanesulfonic, ethanesulfonic, p-toluenesulfonic, salicyclic and the like, to provide a water soluble salt of the peptide is suitable for use in the invention

The present invention also provides for homologs of proteins and peptides Homologs can differ from naturally occurring proteins or peptides by conservative amino acid sequence differences or by modifications which do not affect sequence, or by both

For example, conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function To that end, depending on the size of the peptide, 10 or more conservative amino acid changes typically have no effect on peptide function

Modifications (which do not normally alter primary sequence) include in vivo, or in vitro chemical deπvatization of polypeptides, e g , acetylation, or carboxylation Also included are modifications of glycosylation, e g , those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps, e g , by exposing the polypeptide to enzymes which affect glycosylation, e g , mammalian glycosylating or deglycosylating enzymes Also embraced are sequences which have phosphorylated amino acid residues, e g , phosphotyrosine, phosphoseπne, or phosphothreonine

Substantially pure protein obtained as described herein may be purified by following known procedures for protein purification, wherein an immunological, enzymatic or other assay is used to monitor purification at each stage in the procedure Protein purification methods are well known in the art, and are described, for example in Deutscher et al (ed , 1990, Guide to Protein Purification, Harcourt Brace Jovanovich, San Diego) The present invention also provides nucleic acids encoding peptides, proteins, and antibodies of the invention By "nucleic acid" is meant any nucleic acid, whether

composed of deoxyπbonucleosides or πbonucleosides, and whether composed of phosphodiester linkages or modified linkages such as phosphotπester, phosphoramidate, siloxane, carbonate, carboxymethylester, acetamidate, carbamate, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphoramidate, bridged phosphoramidate, bridged methylene phosphonate, phosphorothioate, methylphosphonate, phosphorodithioate, bridged phosphorothioate or sulfone linkages, and combinations of such linkages The term nucleic acid also specifically includes nucleic acids composed of bases other than the five biologically occurring bases (adenine, guanine, thymine, cytosine and uracil) It is not intended that the present invention be limited by the nature of the nucleic acid employed The target nucleic acid may be native or synthesized nucleic acid The nucleic acid may be from a viral, bacterial, animal or plant source The nucleic acid may be DNA or RNA and may exist in a double-stranded, single-stranded or partially double-stranded form Furthermore, the nucleic acid may be found as part of a virus or other macromolecule See, e g , Fasbender et al , 1996, J Biol Chem 272 6479-89 (polylysine condensation of DNA in the form of adenovirus)

Nucleic acids useful in the present invention include, by way of example and not limitation, oligonucleotides and polynucleotides such as antisense DNAs and/or RNAs, πbozymes, DNA for gene therapy, viral fragments including viral DNA and/or RNA, DNA and/or RNA chimeras, mRNA, plasmids, cosmids, genomic DNA, cDNA, gene fragments, various structural forms of DNA including single-stranded DNA, double- stranded DNA, supercoiled DNA and/or triple-helical DNA, Z-DNA, and the like The nucleic acids may be prepared by any conventional means typically used to prepare nucleic acids in large quantity For example, DNAs and RNAs may be chemically synthesized using commercially available reagents and synthesizers by methods that are well-known in the art (see, e g , Gait, 1985, OLIGONUCLEOTIDE SYNTHESIS A PRACTICAL APPROACH (IRL Press, Oxford, England)) RNAs may be produce in high yield via in vitro transcription using plasmids such as SP65 (Promega Corporation, Madison, WI) In some circumstances, as where increased nuclease stability is desired, nucleic acids having modified internucleoside linkages may be preferred Nucleic acids

containing modified internucleoside linkages may also be synthesized using reagents and methods that are well known in the art For example, methods for synthesizing nucleic acids containing phosphonate phosphorothioate, phosphorodithioate, phosphoramidate methoxyethyl phosphoramidate, formacetal, thioformacetal, dnsopropylsilyl, acetamidate, carbamate, dimethylene-sulfide (-CH2-S-CH2), diinethylene-sulfoxide (-CH2-SO-CH2), dimethylene-sulfone (-CH2-SO2-CH2), 2'-O- alkyl, and 2'-deoxy2'-fluoro phosphorothioate internucleoside linkages are well known in the art (see Uhlmann et al , 1990, Chem Rev 90 543-584, Schneider et al , 1990, Tetrahedron Lett 31 335 and references cited therein) The nucleic acids may be purified by any suitable means, as are well known in the art For example, the nucleic acids can be purified by reverse phase or ion exchange HPLC, size exclusion chromatography or gel electrophoresis Of course, the skilled artisan will recognize that the method of purification will depend in part on the size of the DNA to be purified The term nucleic acid also specifically includes nucleic acids composed of bases other than the five biologically occurring bases (adenine, guanine, thymine, cytosine and uracil)

Pharmaceutical compositions comprising the present compounds are administered to an individual in need thereof by any number of routes including, but not limited to, topical, oral, intravenous, intramuscular, lntra-arteπal, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means

The invention also encompasses the use pharmaceutical compositions of an appropriate compound, homolog, fragment, analog, or derivative thereof to practice the methods of the invention, the composition comprising at least one appropriate compound, homolog, fragment, analog, or derivative thereof and a pharmaceutically - acceptable carrier

The pharmaceutical compositions useful for practicing the invention may be administered to deliver a dose of between 1 ng/kg/day and 100 mg/kg/day Pharmaceutical compositions that are useful in the methods of the invention may be administered systemically in oral solid formulations, ophthalmic, suppository, aerosol,

topical or other similar formulations In addition to the appropriate compound, such pharmaceutical compositions may contain pharmaceutically-acceptable carriers and other ingredients known to enhance and facilitate drug administration Other possible formulations, such as nanoparticles, liposomes, resealed erythrocytes, and immunologically based systems may also be used to administer an appropriate compound according to the methods of the invention

Compounds which are identified using any of the methods described herein may be formulated and administered to a mammal for treatment of the diseases disclosed herein are now described Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, and dogs, birds including commercially relevant birds such as chickens, ducks, geese, and turkeys Pharmaceutical compositions that are useful in the methods of the invention may be prepared, packaged, or sold in formulations suitable for oral, rectal, vaginal, parenteral, topical, pulmonary, intranasal, buccal, ophthalmic, intrathecal or another route of administration Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations

A pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, or as a plurality of single unit doses As used herein, a "unit dose" is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient The amount of the active ingredient is

generally equal to the dosage of the active ingredient which would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one- third of such a dosage

The relative amounts of the active ingredient, the pharmaceutically acceptable carrier, and any additional ingredients in a pharmaceutical composition of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered By way of example, the composition may comprise between 0 1% and 100% (w/w) active ingredient In addition to the active ingredient, a pharmaceutical composition of the invention may further comprise one or more additional pharmaceutically active agents Particularly contemplated additional agents include anti-emetics and scavengers such as cyanide and cyanate scavengers

Controlled- or sustained- release formulations of a pharmaceutical composition of the invention may be made using conventional technology A formulation of a pharmaceutical composition of the invention suitable for oral administration may be prepared, packaged, or sold in the form of a discrete solid dose unit including, but not limited to, a tablet, a hard or soft capsule, a cachet, a troche, or a lozenge, each containing a predetermined amount of the active ingredient Other formulations suitable for oral administration include, but are not limited to, a powdered or granular formulation, an aqueous or oily suspension, an aqueous or oily solution, or an emulsion

As used herein, an "oily" liquid is one which comprises a carbon-containing liquid molecule and which exhibits a less polar character than water

A tablet comprising the active ingredient may, for example, be made by compressing or molding the active ingredient, optionally with one or more additional ingredients Compressed tablets may be prepared by compressing, in a suitable device, the active ingredient in a free flowing form such as a powder or granular preparation, optionally mixed with one or more of a binder, a lubricant, an excipient, a surface active agent, and a dispersing agent Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture Pharmaceutically acceptable excipients

used in the manufacture of tablets include, but are not limited to, inert diluents, granulating and disintegrating agents, binding agents, and lubricating agents Known dispersing agents include, but are not limited to, potato starch and sodium starch glycollate Known surface active agents include, but are not limited to, sodium lauryl sulphate Known diluents include, but are not limited to, calcium carbonate, sodium carbonate, lactose, microcrystalline cellulose, calcium phosphate, calcium hydrogen phosphate, and sodium phosphate Known granulating and disintegrating agents include, but are not limited to, corn starch and alginic acid Known binding agents include, but are not limited to, gelatin, acacia, pre-gelatinized maize starch, polyvinylpyrrolidone, and hydroxypropyl methylcellulose Known lubricating agents include, but are not limited to, magnesium stearate, stearic acid, silica, and talc Tablets may be non-coated or they may be coated using known methods to achieve delayed disintegration in the gastrointestinal tract of a subject, thereby providing sustained release and absorption of the active ingredient By way of example, a material such as glyceryl monostearate or glyceryl distearate may be used to coat tablets Further by way of example, tablets may be coated using methods described in U S Patents numbers 4,256,108, 4,160,452, and 4,265,874 to form osmotically- controlled release tablets Tablets may further comprise a sweetening agent, a flavoring agent, a coloring agent, a preservative, or some combination of these in order to provide pharmaceutically elegant and palatable preparation

Hard capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin Such hard capsules comprise the active ingredient, and may further comprise additional ingredients including, for example, an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin Soft gelatin capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin Such soft capsules comprise the active ingredient, which may be mixed with water or an oil medium such as peanut oil, liquid paraffin, or olive oil

Liquid formulations of a pharmaceutical composition of the invention which are suitable for oral administration may be prepared, packaged, and sold either in liquid

form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use

Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle Aqueous vehicles include, for example, water and isotonic saline Oily vehicles include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents Oily suspensions may further comprise a thickening agent Known suspending agents include, but are not limited to, sorbitol syrup, hydrogenated edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose

Known dispersing or wetting agents include, but are not limited to, naturally occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e g polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxy ethylene sorbitol monooleate, and polyoxyethylene sorbitan monooleate, respectively) Known emulsifying agents include, but are not limited to, lecithin and acacia Known preservatives include, but are not limited to, methyl, ethyl, or n-propyl para hydroxybenzoates, ascorbic acid, and sorbic acid Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin Known thickening agents for oily suspensions include, for example, beeswax, hard paraffin, and cetyl alcohol

Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the solvent

Liquid solutions of the pharmaceutical composition of the invention may comprise each

of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent Aqueous solvents include, for example, water and isotonic saline Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin

Powdered and granular formulations of a pharmaceutical preparation of the invention may be prepared using known methods Such formulations may be administered directly to a subject, used, for example, to form tablets, to fill capsules, or to prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto Each of these formulations may further comprise one or more of dispersing or wetting agent, a suspending agent, and a preservative Additional excipients, such as fillers and sweetening, flavoring, or coloring agents, may also be included in these formulations A pharmaceutical composition of the invention may also be prepared, packaged, or sold in the form of oil in water emulsion or a water-in-oil emulsion The oily phase may be a vegetable oil such as olive or arachis oil, a mineral oil such as liquid paraffin, or a combination of these Such compositions may further comprise one or more emulsifying agents such as naturally occurring gums such as gum acacia or gum tragacanth, naturally occurring phosphatides such as soybean or lecithin phosphatide, esters or partial esters derived from combinations of fatty acids and hexitol anhydrides such as sorbitan monooleate, and condensation products of such partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate These emulsions may also contain additional ingredients including, for example, sweetening or flavoring agents

A pharmaceutical composition of the invention may also be prepared, packaged, or sold in a formulation suitable for rectal administration, vaginal administration, nasal, pulmonary, and parenteral administration Nasal and pulmonary administration may be accomplished by means such as aerosols The pharmaceutical compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution This suspension or

solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein Such sterile injectable formulations may be prepared using a non toxic parenterally acceptable diluent or solvent, such as water or 1,3 butane diol, for example Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono or di-glyceπdes Other parentally-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form, in a liposomal preparation, or as a component of a biodegradable polymer systems Compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt

Formulations suitable for topical administration include, but are not limited to, liquid or semi liquid preparations such as liniments, lotions, oil in water or water in oil emulsions such as creams, ointments or pastes, and solutions or suspensions Topically - admimstrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient may be as high as the solubility limit of the active ingredient in the solvent Formulations for topical administration may further comprise one or more of the additional ingredients described herein

A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for pulmonary administration via the buccal cavity Such a formulation may comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0 5 to about 7 nanometers, and preferably from about 1 to about 6 nanometers Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant may be directed to disperse the powder or using a self propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved or suspended in a low-boiling propellant in a sealed container Preferably, such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0 5 nanometers and at least 95% of the

particles by number have a diameter less than 7 nanometers More preferably, at least 95% of the particles by weight have a diameter greater than 1 nanometer and at least 90% of the particles by number have a diameter less than 6 nanometers Dry powder compositions preferably include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form

Low boiling propellants generally include liquid propellants having a boiling point of below 65°F at atmospheric pressure Generally, the propellant may constitute 50 to 99 9% (w/w) of the composition, and the active ingredient may constitute 0 1 to 20% (w/w) of the composition The propellant may further comprise additional ingredients such as a liquid non-ionic or solid anionic surfactant or a solid diluent

(preferably having a particle size of the same order as particles comprising the active ingredient)

Pharmaceutical compositions of the invention formulated for pulmonary delivery may also provide the active ingredient in the form of droplets of a solution or suspension Such formulations may be prepared, packaged, or sold as aqueous or dilute alcoholic solutions or suspensions, optionally sterile, comprising the active ingredient, and may conveniently be administered using any nebuhzation or atomization device Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, or a preservative such as methylhydroxybenzoate The droplets provided by this route of administration preferably have an average diameter in the range from about 0 1 to about 200 nanometers

The formulations described herein as being useful for pulmonary delivery are also useful for intranasal delivery of a pharmaceutical composition of the invention Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0 2 to 500 micrometers Such a formulation is administered in the manner in which snuff is taken i e by rapid inhalation through the nasal passage from a container of the powder held close to the nares

Formulations suitable for nasal administration may, for example, comprise from about as little as 0 1% (w/w) and as much as 100% (w/w) of the active ingredient, and may further comprise one or more of the additional ingredients described herein A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for buccal administration Such formulations may, for example, be in the form of tablets or lozenges made using conventional methods, and may, for example, 0 1 to 20% (w/w) active ingredient, the balance comprising an orally dissolvable or degradable composition and, optionally, one or more of the additional ingredients described herein Alternately, formulations suitable for buccal administration may comprise a powder or an aerosolized or atomized solution or suspension comprising the active ingredient Such powdered, aerosolized, or aerosolized formulations, when dispersed, preferably have an average particle or droplet size in the range from about 0 1 to about 200 nanometers, and may further comprise one or more of the additional ingredients described herein A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for ophthalmic administration Such formulations may, for example, be in the form of eye drops including, for example, a 0 1/1 0% (w/w) solution or suspension of the active ingredient in an aqueous or oily liquid carrier Such drops may further comprise buffering agents, salts, or one or more other of the additional ingredients described herein Other opthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form or in a liposomal preparation

As used herein, "additional ingredients" include, but are not limited to, one or more of the following excipients, surface active agents, dispersing agents, inert diluents, granulating and disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents, preservatives, physiologically degradable compositions such as gelatin, aqueous vehicles and solvents, oily vehicles and solvents, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, buffers, salts, thickening agents, fillers, emulsifying agents, antioxidants, antibiotics, antifungal agents, stabilizing agents, and pharmaceutically acceptable polymeric or hydrophobic materials Other "additional ingredients" which may be

included in the pharmaceutical compositions of the invention are known in the art and described, for example in Genaro, ed , 1985, Remington's Pharmaceutical Sciences, Mack Publishing Co , Easton, PA, which is incorporated herein by reference

Typically, dosages of the compound of the invention which may be administered to an animal, preferably a human, range in amount from 1 μg to about 100 g per kilogram of body weight of the subject While the precise dosage administered will vary depending upon any number of factors, including but not limited to, the type of animal and type of disease state being treated, the age of the animal and the route of administration Preferably, the dosage of the compound will vary from about 1 mg to about 1O g per kilogram of body weight of the animal More preferably, the dosage will vary from about 10 mg to about 1 g per kilogram of body weight of the subject

The compound may be administered to a subject as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or even less frequently, such as once every several months or even once a year or less The frequency of the dose will be readily apparent to the skilled artisan and will depend upon any number of factors, such as, but not limited to, the type and severity of the disease being treated, the type and age of the subject, etc

The invention also includes a kit comprising a compound or materials of the invention and an instructional material which describes administering the composition to a cell or a tissue of a subject, or the preparation of a structure described herein

Other techniques useful for the practice of the present invention can be found in PCT Publication WO 03/099230, U S Pat Publications 2007/0225631 (Bowlin et al ), 2007/0275458 (Gouma), 2007/0269481 (Li et al ), 2004/0058887 (Bowlin et al ), 2002/0042128 (Bowlin et al ), 2005/0095695 (Shindler), 2002/0094514 (Bowlin et al ),

2002/0081732 (Bowlin et al ), 2008/0038352 (Simpson et al ), Ma et al , 2005, Tissue Engineering, 11 101, and Stegemann et al , 2007, Tissue Engineering, 13 2601

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods

Examples

The invention is now described with reference to the following examples These examples are provided for the purpose of illustration only and the invention should in no way be construed as being limited to these examples, but rather should be construed to encompass any and all variations which become evident as a result of the teachings provided herein

Example 1

Materials and Methods-

The solvent, l,l,l,3,3,3-hexafluoro-2-propanol (HFP) was purchased from Sigma (St Louis, MO) All cell culture reagents were purchased from Fisher Scientific (Pittsburg, PA)

Laminin Isolation

Laminin I was purified from the EHS tumor according to previously established methods The final laminin solution was subjected to 2 rounds of precipitation with 45% ammonium sulfate to remove most growth factors present Purity of laminin was evaluated by SDS-PAGE and Western analysis with affinity purified antibodies to type IV collagen, entactin/nidogen and perlecan, the major contaminants of such preparations Purity was determined to be greater than 99% laminin (w/v) Laminin was stored at -80° C Laminin Electrospinning

For the parametric study, a series of process parameters was chosen within ranges shown to be successful in creating submicron or nanoscale fibers of other ECM proteins such as collagens [13] and fibrinogen Laminin was dialyzed exhaustively against dH 2 O, lyophihzed and dissolved overnight with stirring at 4°C in HFP to achieve desired concentrations prior to electrospinning 3, 5, or 8% (w/v) final solution

The laminin solution was loaded into a 5 mL glass syringe with an 18G blunt needle, and mounted into an Aladdin programmable syringe pump (World Precision Instruments, Sarasota, FL) A collector plate covered with aluminum foil was placed 12 5 or 25 cm below the tip of the needle and electrically grounded A high voltage power supply (Gamma, Ormond Beach, FL) was connected with the positive lead on the needle and set at 20 kV The syringe pump was programmed to dispense the

solution at 0 5, 1 5, 2 0, or 3 0 mL/hr Laminin was allowed to collect on the aluminum foil for at least 20 minutes before the sample was removed and the parameters changed Samples were cut from the aluminum foil, mounted on aluminum stubs (Electron Microscopy Sciences), sputter coated with gold using a BAL-TEC SCD005 sputter coater, and imaged using a JEOL6400 Scanning Electron Microscope (SEM) with Orion image processing at 15 kV accelerating voltage and 39 mm working distance For comparison purposes, collagen type I isolated from rat tail tendon was dissolved at 8% (w/v) concentration in HFP and electrospun using 20 kV driving voltage, 10 cm working distance, and 1 0 mL/hr flow rate Fiber Diameter and Bead Area Density Analysis

Scanning electron micrographs taken on a JEOL 6400 Scanning Electron Microscope with Orion image processing were analyzed for fiber diameter using Image J (open source program available from NIH) For fiber diameter measurements, protocols previously described were followed Briefly, images were opened in Image J and the measure tool was used to find the average diameter of at least 50 fibers per sample, with at least four samples per condition Bead area density was determined by finding the average diameter of each bead and calculating the area based on the assumption that all beads were roughly circular in shape The threshold function in Image J was used to change the image to black and white pixels and the total surface area of laminin was measured, including fibers and beads This total area divided by the bead area already calculated yielded the bead area density per sample Each bead with a diameter larger than twice the average fiber diameter was counted in each sample, and at least four sample images were used per condition For both fiber diameter and bead area density a minimum of three samples were used with a minimum of 50 measurements made per sample, and error bars indicate standard error Laminin Scaffold and Film Preparation for Cell Culture To prepare laminin nanofiber scaffolds for cell culture, 12 mm diameter round covershp glass was surface-charged using the Lectro-Treat 3-D Surface Treater (Lectro Engineering Co , St Louis, MO) and placed on the grounded collector opposite the syringe tip Laminin was electrospun at 5% (w/v) in HFP, 12 5 cm collecting distance,

1 5 mL/hr flow rate, and 20 kV driving voltage After laminin collected on the

coverslips, the samples were removed from the collector and were sterilized under UVC radiation for 20 minutes Coverslips were placed into wells in a 24-well plate for cell culture

Laminin I films for cell culture were prepared on coverslips identical to those used for nanofiber scaffold preparation as previously described Briefly, soluble laminin stock solution (sterile laminin, 3 mg/ml in tπs buffered saline~0 15M Tπs, 0 05 M NaCl pH 7 5) was diluted into either distilled water or 0 1 M ammonium carbonate pH 7 8 to a final concentration of 10 μg/mL 20 μL of the solution was evaporated overnight onto a sterile, glass covershp 5 mm in diameter under a laminar flow hood, yielding 0 2 μg of dried laminin film covering the upper surface of each covershp Coverslips were then placed into wells in a 24-well plate for cell culture Hydration Study

LNF meshes were electrospun onto coverslips as described above Meshes were placed in 24 well plate dishes and immersed in 500 μL DMEM plus antibiotics to maintain similarity to ASC and PC12 culture conditions Meshes were incubated at 37°C for 30 mm, 6 hours, or 24 hours At each time point, a group of three LNF meshes were removed from incubation, aspirated, and dried in vacuum desiccators overnight Dried samples were mounted on aluminum mounts with carbon stickers, coated with gold, and imaged using a JEOL6400 Scanning Electron Microscope with Orion image processing Fiber diameters were measured as described above Cell Isolation and Culture

Adipose tissue was obtained through the Department of Plastic Surgery at the University of Virginia in compliance with the UVa Human Investigation Committee ASCs were isolated from the hpoaspirate using previously described methods Cells were grown in culture medium containing of DMEM, 10% FBS, and 1% antibiotic/antimycotic The cells were initially plated (p=0) and maintained at 37 0 C with 5% CO 2 Sub-confluent cells were released with 0 5% trypsin/EDTA and then either re-plated at 2000 cells/cm 2 or used for experiments For serum- free culture, DMEM plus 1% antibiotic/antimycotic was used Cell Attachment Assay

ASC attachment was compared on laminin nanofibers and laminin films ASCs were chosen as a promising source for nerve tissue tissue engineering applications Cells were dispersed using trypsin and the reaction was stopped with soybean trypsin inhibitor After counting, cells were plated in triplicate using an initial seeding density of 1 24 x 10 7 cells/cm 2 (15000 cells per covershp) onto covershps coated with either laminin films or nanofibers Substrates were placed in the incubator (37°C, 5% CO 2 ) and cells were allowed to attach for 15, 30, 60, or 120 minutes in serum free DMEM, after which time they were washed from the substrates using Hank's buffer and fixed using 4% paraformaldehyde Serum-free medium was used to prevent serum proteins from enhancing attachment, requiring cells to utilize the laminin substrate or secrete their own matrix proteins in response to the substrate Substrates were imaged on a Hoffman Optics inverted light microscope at 4x and cells were counted in Image J Some ASCs were maintained in culture conditions for 3 days and then analyzed by scanning electron microscopy Neuπte Extension Assay

A neuπte extension assay was performed using PC 12 cells, a cell type known to extend neuπtes in response to nerve growth factor (NGF) stimulation Cells were seeded on laminin nanofiber substrates subconfluently at a density of 2 5 x 10 4 cells/cm 2 to allow sufficient space for process formation Serum-free medium was used to prevent serum proteins from enhancing neuπte extension and to illustrate the effect of the substrate specifically on neuπte extension NGF was added up to 50 ng/mL to the NGF stimulated group after two hours Half the media was changed for each sample after 48 hours After five days in culture, cells were rinsed in phosphate buffer solution (PBS) and then fixed in 4% paraformaldehyde for 120 minutes at 4°C Following fixation, cells were imaged using a Nikon TE 2000-E2 confocal microscope

Representative images were acquired using a 60X/1 45 Nikon oil immersion objective and MicroFire Picture Frame imaging software (Optronics, Galeta, California) Processes were established to be any cellular extension longer than the diameter of the cell, these were counted to determine number per cell Statistics

To compare nanofiber hydrated diameters, a one-way ANOVA was performed with a Tukey's post hoc test using Minitab software For the cell attachment assay and neuπte extension assay, cell or neuπte counts were input into Minitab software and paired Student's t-tests were performed to determine statistically significant differences between conditions Significance was asserted as p < 0 05 Histograms were plotted in Minitab for neuπte extension comparisons Results- Parametric Analysis

A parametric study was necessary to determine the effects of the physical parameters of electrospinning, specifically concentration, distance, and flow rate, on resultant laminin fiber morphology In order to create a map of parameters needed to produce particular fiber morphologies, we chose the parameters within standard ranges for biological polymer electrospinning shown in Table 1 and performed trials with each of the parameter sets Driving voltage was held constant throughout at 20 kV Representative scanning electron micrographs are shown in Figure 1

Figure 6 demonstrates the results of plating ASCs on laminin nanofibers or films prepared as described Figure represents images of comparative micrographs of ASCs cultured on laminin nanofibers (left column, Figs 6A, C, E, and G) and laminin films (right column, Figs 6B, D, F, and H)

Table 1. Average diameter values measured from scanning electron micrographs using Image J.

*note - Student's t-test performed on two distance groups within a concentration to give p-value indicated in table

Fiber diameter and bead area density were chosen as appropriate metrics to assess and compare morphologies among the parameter sets As seen in the micrographs and is further supported by the data shown in Figure 2, fiber diameter increased linearly with initial solution concentration over both collecting distances Calculated linear regressions show an almost perfectly linear correlation (R = 0 99) Fiber diameter exhibits a less marked increase with increasing flow rate, though the linear correlation is equally strong (R = 0 99) The same trend emerges with working distance, with increasing collector distance translating to increased fiber diameter We generated the smallest diameter fibers, 91 5 nm (+/- 8 4 nm) average, with 3% (w/v) initial concentration, 1 5 mL/hr flow rate, and 12 5 cm working distance Overall, fiber diameter shows an approximate linear relationship to two of the physical parameters studied concentration of initial solution and flow rate during electrospinning

Although beads are a common product of the electrospinning process often regarded as defects, pioneering observations made by Martin and colleagues of the presence of the "matπsome" in basement membrane, suggested that beaded structures may be important to the activity of authentic basement membranes Therefore, bead area density was measured to identify parameters that might control the area distribution of these matπsome-like structures Representative images in Figure 1 show several of the parameter sets used resulted in the "matπsome" morphology Our data demonstrate a decreasing linear relationship between bead area density and initial solution concentration (R = 0 97), starting at 18 7% bead area density using the 3% (w/v) initial concentration and decreasing to only 3 4% bead area density with the 8% (w/v) initial concentration, as shown in Figure 2 However, increasing flow rate yields a linear increase in bead area density (R = 0 98) Under varying flow rates between 0 5 ml/hr and 3 0 ml/hr, we measured bead area densities ranging from 9 7% to 11 5% Finally, no obvious trend emerged with the change in distance, instead data again showed dependence on initial solution concentration Over the two lower concentrations of 3% and 5% (wt/vol), we observed a statistically significant increase in bead area density of 15 0 to 23 8% and 8 0 to 16 0%, respectively with increased collecting distance When compared using a student's t-test, these differences were statistically significant With the higher initial concentration of 8% (wt/vol), the distances compared did not

demonstrate statistically significant difference in bead area density, varying from 3 8% at the shorter distance to only 2 2% at the longer distance LNF hvdrated morphology

For hydration studies, the median parameters were chosen to create the meshes, with the resulting morphology shown in Figure IB The parameter set chosen was an initial concentration of 5% laminin (w/v), flow rate of 1 5 ml/hr, collecting distance of 12 5 cm, and the constant driving voltage of 20 kV which yielded a mean fiber diameter of 141 6 nm and 8 0% bead area density Often, biological polymers such as collagen, fibronectin, elastin, and others require chemical crosslinking to maintain their morphology in culture Representative images of collagen changes in morphology after hydration are shown in the bottom panel of Figure 3 In the case of laminin, however, we have determined no chemical crosslinking is necessary for laminin to retain its fibrous morphology in culture As shown in Figure 3, laminin does not swell significantly in culture medium, even after 24 hours at 37°C, while collagen almost completely loses its fibrous morphology Figure 4 demonstrates the swelling of laminin nanofibers in aqueous media is consistently less than 10%, regardless of the amount of time the fibers are submerged No statistically significant difference was found among the groups, including the control fibers which were not hydrated This inherent property of laminin nanofibers to resist hydration in aqueous media makes them an attractive system to use relative to other biological polymers, as no special processing is required to crosslink and reduce or remove residual chemical crosslinking agents Maintenance of Bioactivity

After fibers of the desired morphology were obtained and their ability to maintain this morphology in culture medium was tested, cytocompatibility of the laminin nanofiber mesh using ASCs was investigated, a cell type which has shown promise as a tissue engineering cell source This cell type has been shown to differentiate to a nerve-like phenotype and shows promise as a Schwann cell precursor, making ASCs applicable to peripheral nerve tissue engineering After three days in aqueous culture conditions, we observed ASC attachment on laminin nanofibers and preferential process extension along fibers as shown in Figure 3 Additionally, we performed a cell attachment assay comparing the attachment of ASCs on laminin

nanofibers to laminin films The assay was performed under serum free conditions to exclude attachment mediated through serum proteins Accordingly, the attachment measured was assumed to be mediated solely through the bioactivity of the substrate Throughout the time course of the attachment study, cells showed significantly greater attachment to the nanofiber substrate than the film substrate, as shown in Figure 4

Because the cells attach more avidly to the nanofibers than equivalent saturating quantities of planar laminin, there are likely features related to size and scale of the nanofibers that are recognized by the cells

To consider the cytocompatibility of LNFs for a nerve-like cell, PC 12 cells, a cell type known to extend neuπtes in response to NGF, were examined The neuπte extension experiment was performed on laminin nanofibers with and without NGF stimulation to determine if the laminin substrate alone could cause neuπte extension Figure 5 depicts number of neuπtes per cell Surprisingly, both groups exhibited similar neuπte extension, and while the mean neuπte-per-area measurement appears greater on nanofibers without stimulation, no statistically significant difference was found

Discussion

Through the parametric study and subsequent hydration study, we were able to achieve nanoscale diameter fibers that retained their fibrous morphology in culture medium without chemical crosslinking The positive linear correlations we found between fiber diameter and initial solution concentration and flow rate are supported by previous research in the field With synthetic polymers such as poly(lactide-co- glycohde) and polycaprolactone (PCL), and also in other biopolymers such as collagen [21], and elastin [23], fiber diameter is generally observed to be smallest at the lowest solution concentration and flow rate, most likely due to limitations placed on the polymer content of the jet by these process parameters Low flow rates (less than 1 mL/hr) and low solution concentrations (dependent on polymer) cause less polymer to be ejected from the syringe needle toward the collector plate at any given time, leaving a greater volume of solvent to evaporate over a longer evaporation time and extending a small volume of polymer over a greater distance in space Generally, as we strive to mimic basement membrane in our laminin nanofibrous scaffold, we will require a range

of feature heights, widths, and porosities based on the particular native membrane we hope to recreate The relationships we have achieved through the parametric study should allow us to choose specific parameters to create the fiber diameter and morphology we desire, removing the time and expense of trial and error in the experimentation

Additionally, the fibers generated show morphology characteristic of basement membrane Fiber diameters from 100 nm to 280 nm were achieved herein, solidly within the ranges shown by Flemming and colleagues for human corneal epithelial basement membrane feature sizes, and within the same order of magnitude as the laminin structures shown by Yurchenco and colleagues [11] For example, as visible in

Figure 1 , electrospun laminin at lower concentrations forms structures reminiscent of matπsomes, structures composed of several basement membrane components such as type IV collagen, laminin, proteoglycans, and nidogen first discussed by Martin and colleagues [27] It has been suggested by their group that these tetrahedral structures are a primary site for cell attachment and direction of matrix synthesis and formation

The presence of similar structures in laminin nanofiber meshes, and the observation that cells on a laminin matrix preferentially bind at these structures, supports the claim that laminin alone may provide a favorable substrate to provide cell attachment cues

Laminin holds yet another advantage over other electrospun biological polymers such as collagens or fibrinogen the ability to maintain fibrous morphology after exposure to an aqueous medium Thus, laminin nanofibers are the first reported protein nanofibers suitable for in vitro studies in which the protein is native Based on diameter measurements before and after hydration, the meshes experience a slight swelling in aqueous media resulting in a less than 10% increase in fiber diameter Similar collagen meshes show no fibrous morphology after hydration, yielding a structure more like that of a hydrated mat or gel than a fibrous mesh The common solution to this issue is chemical crosslinking to assist fibers in retaining their shape upon hydration, however, crosslinking itself changes the fibrous morphology significantly, destroying the porosity of the mesh and causing flattening of fibers into a ribbon-like morphology, as observed by others [17] Cross-linking of many proteins ablates biological activity, including laminin, which, when treated for sterilization by ultraviolet exposure, loses the ability to

stimulate neuπte extension of chick dorsal root ganglia It is possible that the process of electrospinning caused a change in the molecular structure of laminin, which, while maintaining biological activity, caused the laminin nanofibers to become insoluble in aqueous media Notably, Kakada and colleagues have shown changes in the infrared (IR) spectrum of poly(ethylene oxide) suggestive of a change in the molecular structure of the fibers most likely resulting from a molecular level alignment of the individual polymer molecules

In the present system, this structural change caused by electrospinning may be the basis for the insolubility of laminin nanofibers in aqueous media, however, this may also result from loss of water solubility as a consequence of lyophihzation of the laminin preparation before dissolution in the electrospinning solvent Laminin is essentially insoluble in aqueous, physiological buffers following lyophihzation, which is a process avoided in purification of laminin for that reason

In the attachment assay, it was shown herein that laminin in either film or fibrous form is sufficient for ASC attachment under serum free conditions The LNF meshes, most likely due to their topography and physical similarity to basement membrane, facilitated ASC attachment over two-dimensional laminin films Additionally, the extension of neuπtes by PC 12 cells without standard NGF stimulation suggests laminin retains its bioactivity even in nanofiber form PC 12 cells are known to extend processes reversibly in the presence of NGF, achieving a nerve-like morphology, but cannot be forced to extend neuπtes without NGF by other means In the present study, exposure to laminin nanofibers was sufficient to form processes and NGF stimulation was unnecessary In fact, no statistical difference was found between the stimulated and unstimulated cells, suggesting the nanofibers substitute completely for the presence of NGF for neuπte extension Therefore, the present application demonstrates that the ability of the substrate to promote neuπte extension was not destroyed by any of the processing methods described herein, specifically lyophihzation, solubilization, and sterilization This observation promotes LNF meshes as an ideal substrate for nervous system applications In conclusion, it is disclosed herein for the first time, successfully electrospun laminin- 1 using HFP as a solvent under varying process parameters The completion of

the parametric study has provided guidelines by which to select parameters to create varying fiber diameters and morphologies, allowing these parameters to be tailored to the design constraints of the particular tissue Cells attach and grow on laminin nanofibers, and nerve-like cells extend processes (neuπtes) without growth factor stimulation, making a nanofibrous laminin substrate ideal for many applications, particularly in nervous system tissue engineering

Example 2- Laminin Nanofiber Mesh Substrates for Stem Cell Growth and Differentiation Methods- Embryonic Stem Cell Culture D3 and ES-E14TG2a murine embryonic stem cells were cultured on STO or CFl mouse embryonic fibroblast feeder layers, fed daily and sub-cultured every 2 or 3 days The media used was DMEM + 15% ES-quahfied FBS supplemented with L-glutamine, non essential amino acids, pyruvate, 2-mercaptoethanol, and leukemia inhibitory factor (Chemicon) All tissue culture reagents were from GIBCO except as noted

Fabricated meshes of laminin I nanofibers (LNFs) with fiber size (10-150 nM dia ), geometry, and porosity of authentic basement membranes were fabricated using electrospinning methods Unlike previously described NFs synthesized from protein polymers, meshes of LNFs retain their structural features when wetted and do not require fixation by chemical cross-linking, which often destroys biological activity Embryonic stem cells (ESCs) and multipotent stem cells from adipose tissue (ASCs) and dura mater (DSCs) attached more rapidly and avidly to LNFs than to 2-D laminin films The rate of proliferation observed for DSCs on LNFs was greater than on 2-D films Multipotent stem cells differentiated into cells with morphology and gene expression characteristic of Schwann (S 100/nestin) and neuron-like (beta 3-tubuhn) cells in serum-free, chemically defined conditions on LNFs More neuron-like cells formed from ASCs on LNFs than on 2-D laminin films Because the LNF meshes adhere tightly to glass and polystyrene, procedures such as immuno-histochemistry and in situ hybridization were done without detachment of substrate or cells LNFs were stored in desiccated conditions for long periods without loss of activity Together these observations demonstrate that LNF meshes display biological properties of basement

membranes in vitro and are thus biomimetic Furthermore, it is likely that the LNFs will be useful for many applications in vitro, including isolation and propagation of multipotent stem cells and ESCs derived from the inner cell mass, as well as in vivo, supporting tissue engineering of peripheral nerve and growth of glands and organs as scaffolds fabricated from LNFs

Other methods which were used but not described herein are well known and within the competence of one of ordinary skill in the art of cell biology, molecular biology, and clinical medicine The invention should not be construed to be limited solely to the assays and methods described herein, but should be construed to include other methods and assays as well One of skill in the art will know that other assays and methods are available to perform the procedures described herein

The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated by reference herein in their entirety

Headings are included herein for reference and to aid in locating certain sections These headings are not intended to limit the scope of the concepts described therein under, and these concepts may have applicability in other sections throughout the entire specification

While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention

Bibliography

[1] Yurchenco, P D , Amenta, P S , Patton, B L Basement membrane assembly, stability and activities observed through a developmental lens Matrix Biol 22, 521, 2004 [2] Hunter, D D , Shah, V , Merhe, J P , Sanes, J R A laminin-hke adhesive protein concentrated in the synaptic cleft of the neuromuscular junction Nature 338, 229, 1989

[3] Li, S , Harrison, D , Carbonetto, S , Fassler, R , Smyth, N , Edgar, D , Yurchenco, P D Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation J Cell Biol 157, 1279, 2002

[4] Sonnenberg, A , P W Modderman, and F Hogervorst Laminin receptor on platelets is the integral VLA-6 Nature (Lond ), 336, 487, 1988

[5] Colognato, H , Galvin, J , Wang, Z , Relucio, J , Nguyen, T , Harrison, D , Yurchenco, P D , Ffrench-Constant, C Identification of dystroglycan as a second laminin receptor in oligodendrocytes, with a role in my ehnation Development 134(9),

1723, 2007

[6] Okazaki, I , Suzuki, N , Nishi, N , Utani, A , Matsuura, H , Shinkai, H , Yamashita, H , Kitagawa, Y , Nomizu, M Identification of biologically active sequences in the laminin alpha 4 chain G domain J Biol Chem 277(40), 37070-8, 2002

[7] Blum, J L , Zeigler, M E , Wicha, M S Regulation of mammary differentiation by the extracellular matrix Environ Health Perspect 80, 71, 1989

[8] Clement, B , Segui-Real, B , Savagner, P , Kleinman, H K , Yamada, Y Hepatocyte attachment to laminin is mediated through multiple receptors J Cell Biol 110, 185, 1990

[9] Yurchenco, P D , Cheng, Y , Colognato H Laminin forms an independent network in basement membranes J Cell Biol 117, 1119, 1992

[10] Tsiper, M V , Yurchenco P D Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells J Cell Sci 115, 1005, 2002 [11] Flemming, R G , Murphy, C J , Abrams, G A , Goodman, S L , Nealy P F

Effects of synthetic micro- and nano-structured surfaces on cell behavior Biomateπals 20, 573, 1999

[12] Abrams, G A , Schaus, S S , Goodman, S L , Nealey, P F , Murphy, C J Nanoscale topography of the corneal epithelial basement membrane and Descemet's membrane of the human Cornea 19, 57, 2000

[13] Matthews J A , Wnek GE , Simpson D G , Bowhn GL Electrospinning of collagen nanofibers Biomacromolecules 3(2), 232, 2002

[14] Buttafoco L, Kolkman NG, Engbers-Buytenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J Electrospinning of collagen and elastin for tissue engineering applications Biomateπals 27(5), 724, 2006

[15] Rogers S L , Letourneau P C , Palm S L , McCarthy J , Furcht L T Neuπte extension by peripheral and central nervous system neurons in response to substratum- bound fibronectin and laminin Dev Biol 98(1), 212, 1983 Jul,98(l) 212-20

[16] Smith- Thomas, L C , Fok-Seang, J , Stevens, J , Du, J S , Muir, E , Faissner, A Geller, H M , Rogers, J H , Fawcett, J W An inhibitor of neuπte outgrowth produced by astrocytes J Cell Sci 107, 1687, 1994

[17]Rho, K S , Jeong, L , Lee, G , Seo, B M , Park, Y J , Hong, S D , Roh, S , Cho, J J , Park, W H , Mm, B M Electrospinning of collagen nanofibers effects on the behavior of normal human keratinocytes and early-stage wound healing Biomateπals 27, 1452, 2006

[18] van Wachem, P B , van Luyn, M J , Olde Damink, L H , Dykstra, P J , Feyen, J , Nieuwenhuis, P Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen J Biomed Mater Res 28, 353, 1994

[19] Kleinman, H K , McGarvey, M L , Hassell, J R , Martin, GR Formation of a supramolecular complex is involved in the reconstitution of basement membrane components Biochemistry 22, 4969, 1983

[20] Kleinman, H K , McGarvey, M L , Liotta, L A , Robey, P G , Tryggvason, K Martin, G R Isolation and characterization of type IV procollagen, laminin and heparin sulfate proteoglycan from the EHS sarcoma Biochem 21, 6188, 1982 [21] Wnek, G E , Carr, M , Simpson, D G, Bowhn, G L , Electrospinning of nanofiber fibrinogen structures, Nano Lett 3, 213, 2003

[22] Sefcik, L S , Neal, R A , Kaszuba, S N , Parker, A M , Katz, A J , Ogle, R C , Botchwey, E A Collagen nanofibers are a biomimetic substrate for the serum free osteogenic differentiation of human adipose stem cells Tissue Engineering and Regenerative Medicine 2008 Accepted

[23] Buttafoco, L , Kolkman, N G , Engbers-Buytenhuijs, P , Poot, A A , Dykstra, P J , Vermes, I , Feyen, J Electrospinning of collagen and elastin for tissue engineering applications Biomateπals 27, 724, 2006

[24] Kleinman, H K , Ogle, R C , Cannon, F B , Little, C D , Sweeney, T M , Luckenbill-Edds, L Laminin receptors for neuπte formation Proc Natl Acad Sci U S A 85, 1282, 1988

[25] Zuk, P A , Zhu, M , Mizuno, H , Huang, J , Futrell, J W , Katz, A J , Benhaim, P , Lorenz, H P , Hedπck, M H Multilineage cells from human adipose tissue Implications for cell-based therapies Tissue Engineering 7, 211, 2001

[26] Katti, D S , Robinson, K W , Ko, F K , Laurencin, C T Bioresorbable nanofiber-based systems for wound healing and drug delivery optimization of fabrication parameters J Biomed Mater Res B Appl Biomater 70, 286, 2004

[27] Martin, G R , Kleinman, H K , Terranova, V P , Ledbetter, S , Hassell, J R The regulation of basement membrane formation and cell-matrix interactions by defined supramolecular complexes Ciba Found Symp 108, 197, 1984 [28] Kokai, L E , Rubin, J P , Marra, K G The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells Plast Reconstr Surg 116(5), 1453, 2005

[29] Kingham, P J , Kalbermatten, D F , Mahay, D , Armstrong, S J , Wiberg, M , Terenghi, G Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neuπte outgrowth in vitro Exp Neurol 207(2), 267, 2007

[30] Bashur, C A , Dahlgren, L A , Goldstein, A S Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic- co-gly colic acid) meshes Biomateπals 27, 5681, 2006

[31] Li, W J , Cooper, J A , Mauck, R L , Tuan, R S Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications Acta Biomater 2, 377, 2006

[32] Yurchenco, P D , Ruben, G C Basement membrane structure in situ evidence for lateral associations in the type IV collagen network J Cell Bio 105, 2559, 1987 [33]Hammarback, J A , Palm, S L , Furcht, L T , Letourneau, P C Guidance of neuπte outgrowth by pathways of substratum-adsorbed laminin J Neurosci Res 13(1- 2), 213, 1985

[34] Kakade, M V , Givens, S , Gardner, K , Lee, K H , Chase, D B , Rabolt, J F Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers J Am Chem Soc 129(10), 2777, 2007

[35] Greene, L A , and Tischler, A S Establishment of noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor Proc Natl Acad Sci USA 73(7), 2424, 1976