Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS FOR THE SELECTIVE DELIVERY OF THERAPEUTIC AND IMAGING AGENTS
Document Type and Number:
WIPO Patent Application WO/2019/204364
Kind Code:
A1
Abstract:
Described herein are methods and compositions for the targeted delivery of therapeutic agents and imaging agents.

Inventors:
GONZALEZ JESUS E (US)
LIU JUNJIE (US)
MIAMPAMBA MARCEL (US)
DELLO IACANO GIUSEPPE (US)
ZOU NING (US)
GALE ANDREW (US)
Application Number:
PCT/US2019/027765
Publication Date:
October 24, 2019
Filing Date:
April 16, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AVELAS BIOSCIENCES INC (US)
International Classes:
A61K38/00; A61K38/04; A61K38/08; C07K7/00; C07K7/04; C07K7/06
Foreign References:
US20170218085A12017-08-03
Other References:
DATABASE PUBCHEM substance [online] 17 May 2016 (2016-05-17), "MMAF", XP055647464, retrieved from NCBI Database accession no. 313103385
See also references of EP 3781194A4
Attorney, Agent or Firm:
ZHANG, Adrianna P. (US)
Download PDF:
Claims:
CLAIMS

WHAT IS CLAIMED IS:

1. A compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula

(VIA):

wherein,

W is -0-, -S-, or -NR12-, wherein R12 is -H or optionally substituted Ci-C8 alkyl;

R11 is -H, an optionally substituted Ci-C2o alkyl, C6-Ci0 aryl, C3-C8 heterocyclyl, -(R130),-R14, or - (R130)t-CH(R15)2;

R13 is an optionally substituted Ci-C8 alkylene;

R14 is -H or an optionally substituted Ci-C8 alkyl;

each occurrence of R15 is independently -H, -COOH, -(CH2)q-N(R16)2, -(CH2)q-S03H, or -(CH2)q- S03 -(optionally substituted Ci-C8 alkyl);

each occurrence of R16 is independently -H, optionally substituted Ci-C8 alkyl, or -(CH2)q-

COOH;

R39 is -NHCH2CH2-,-OCH2CH2-, -NHCH2S(0)2-, -NHCR2BR3BC(0)-, -NHCR2BR3BCH2 - NHCH2C(0)NHCH2CH2-, or -NHCH(CH2CH2CH2NHC(=NH)NH2)C(0)-;

R2B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, -CH2OH, -CF3,-CH(CH3)2, - CH2CH2C(0)0H, or -CH2CH2CH2NHC(=NH)NH2;

R3B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, -CH2OH, -CF3, -CH(CH3)2, - CH2CH2C(0)0H, or -CH2CH2CH2NHC(=NH)NH2;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

wherein R2B and R3B cannot both be H when W is -O- and R11 is H.

2. The compound of claim 1, wherein W is -O- and R11 is -H or an optionally substituted Ci-C20 alkyl.

3. The compound of claim 2 wherein W is -O- and R11 is -CH3.

4. The compound of claim 1, wherein W is -NR12-, wherein R12 is -H; and R11 is -H or an optionally substituted Ci-C20 alkyl.

5. The compound of claim 4, wherein W is -NR12-, wherein R12 is -H; and R11 is -CH3.

6. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein R39 is -

NHCH2CH2-, -OCH2CH2-, -NHCR2BR3BC(0)-, -NHCR2BR3BCH2 -NHCH2C(0)NHCH2CH2-, or - NHCH(CH2CH2CH2NHC(=NH)NH2)C(0)-.

7. The compound of claim 6, or a pharmaceutically acceptable salt thereof, wherein R39 is - NHCH2CH2- or -NHCH2C(0)NHCH2CH2-.

8. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein R39 is - NHCR2BR3BC(0)- or -NHCR2BR3BCH2-; wherein, R2B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, - a¾OH, -CF3,-CH(CH3)2, or -CH2CH2C(0)0H; and R3B is -halogen, -CH3, -CH2CH3, -CH(OH)CH3, - CH2OH, -CF3, -CH(CH3)2, -CH2CH2C(0)0H.

9. The compound of claim 8, wherein R3B is not H.

10. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound is selected from:

11. A compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VI) :

G-T-Q-K (VI),

wherein,

G is selected from the following substituents: each X is independently -Cl, -Br, -I, or -S-phenyl;

T is an optionally substituted Ci-C8 alkylene, optionally substituted Ci-C8 alkylene-C(O)-, optionally substituted C3-C3 carbocyclylene, optionally substituted C3-C3 carbocyclylene-C(O)-, optionally substituted C rC8 alkylene-C(0)NHCH2C(0)-, optionally substituted C i -C8 alkylene-C(O)- (NHCH2C(0))n-, optionally substituted C6-Ci0 arylene, optionally substituted C6-Ci0 arylene -C(0)-, - (CH2-CH2-0)n-, -(CH2-CH2-0)n-(CH2)mC(0)-, optionally substituted C6-Ci0 arylene-C(0)NH-(CH2-CH2- 0)n-(CH2)mC(0)-, optionally substituted C |-C8 alkylene -C(0)NH-(CH2-CH2-0)n-(CH2)mC(0)-, -(CH2- CH2-NR1B)n-, -(CH2)m-(NR1B-CH2-CH2)n-, or -(CH2-CH2-NR1B)n-(CH2)mC(0)-;

each R1B is independently is -H, -CH3, -CH2CH3, or -CH2CH2NH2;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R1A is -H, optionally substituted Ci-C8 alkyl, optionally substituted carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-Ci2 aralkyl, or optionally substituted C3-C8 heterocyclyl;

R2A is -H, optionally substituted Ci-C8 alkyl, optionally substituted C3-C8 carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-C12 aralkyl, optionally substituted C3-C8 heterocyclyl, amino substituted Ci-C8 alkyl, -CH2CH2CH2CH2NH2 -CH2CH2CH2NHC(=NH)NH2, or - CH2CH2CH2NHC(0)NH2 ; and

K is a fragment having the structure of Formula (VIA):

wherein,

W is -0-, -S-, or -NR12-, wherein R12 is -H or optionally substituted C i -C8 alkyl;

R11 is -H, an optionally substituted Ci-C20 alkyl, C6-Ci0 aryl, C3-C8 heterocyclyl, -(R130)t-R14, or - (R130)t-CH(R15)2;

R13 is an optionally substituted C i -C8 alkylene;

R14 is -H or an optionally substituted Ci-C8 alkyl;

each occurrence of R15 is independently -H, -COOH, -(CH2)q-N(R16)2, -(CH2)q-S03H, or -(CH2)q- S03 -(optionally substituted Ci-C8 alkyl);

each occurrence of R16 is independently -H, optionally substituted Ci-C8 alkyl, or -(CH2)q-

COOH;

R39 is -NHCH2CH2-,-OCH2CH2-, -NHCH2S(0)2-, -NHCR2BR3BC(0)-, -NHCR2BR3BCH2 - NHCH2C(0)NHCH2CH2-, or -NHCH(CH2CH2CH2NHC(=NH)NH2)C(0)-;

R2B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, -CH2OH, -CF3,-CH(CH3)2, - CH2CH2C(0)0H, or -CH2CH2CH2NHC(=NH)NH2; R3B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, -CH2OH, -CF3, -CH(CH3)2, - CH2CH2C(0)0H, or -CH2CH2CH2NHC(=NH)NH2;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

wherein R2B and R3B cannot both be H when W is -O- and R11 is H.

12. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein R39 is - NHCH2CH2-,-OCH2CH2-, -NHCR2BR3BC(0)-, -NHCR2BR3BCH2 -NHCH2C(0)NHCH2CH2-, or - NHCH(CH2CH2CH2NHC(=NH)NH2)C(0)-, wherein R2B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, -CH2OH, -CF3,-CH(CH3)2, or -CH2CH2C(0)0H; and R3B is -halogen, -CH3, -CH2CH3, -CH(OH)CH3, - CH2OH, -CF3, -CH(CH3)2, -CH2CH2C(0)0H.

13. The compound of claim 12, or a pharmaceutically acceptable salt thereof, wherein R3B is not H.

14. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein W is -0-; and R11 is -H or an optionally substituted Ci-C20 alkyl.

15. The compound of claim 14, or a pharmaceutically acceptable salt thereof, wherein W is -0-; and R11 is -CH3.

16. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein W is -NR12-, wherein R12 is -H or an optionally substituted Ci-C8 alkyl; and R11 is -H or an optionally substituted Ci- C20 alkyl.

17. The compound of claim 16, or a pharmaceutically acceptable salt thereof, wherein W is -NH- and R11 is -CH3.

18. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein Q is selected from the group consisting of:

R1A is -H, optionally substituted Ci-C8 alkyl, optionally substituted carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-Ci2 aralkyl, or optionally substituted C3-C8 heterocyclyl; and

R2A is -H, optionally substituted Ci-C8 alkyl, optionally substituted C3-C8 carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-C12 aralkyl, optionally substituted C3-C8 heterocyclyl, amino substituted Ci-C8 alkyl, -CH2CH2CH2CH2NH2 -CH2CH2CH2NHC(=NH)NH2, or - CH2CH2CH2NHC(0)NH2 .

19. The compound of claim 18, or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof, wherein Q is selected from the group consisting of:

20. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein T is an optionally substituted Ci-C8 alkylene-C(O)-, optionally substituted C?,-C8 carbocyclylene-C(O)-, optionally substituted Ci-C8 alkylene-C(0)-(NHCH2C(0))n-, optionally substituted C6-Ci0 arylene -C(O)- , optionally substituted C6-Ci0 arylene-C(0)NH-(CH2-CH2-0)n-(CH2)mC(0)-, optionally substituted Ci- C8 alkylene -C(0)NH-(CH2-CH2-0)n-(CH2)mC(0)-, -(CH2-CH2-NR1B)n-, -(CH2)m-(NR1B-CH2-CH2)n-, or -(CH2-CH2-NR1B)n-(CH2)mC(0)-.

21. The compound of claim 20, or a pharmaceutically acceptable salt thereof, wherein T is is an optionally substituted Ci-C8 alkylene-C(O)-, an optionally substituted (2~€;, carbocyclylene-C(O)-, an optionally substituted Ci-C8 alkylene-C(0)-(NHCH2C(0)n-, or an optionally substituted C6-Ci0 arylene - C(O)-.

22. The compound of claim 11, or a pharmaceutically acceptable salt thereof,

wherein G is selected from the following substituents:

23. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein v is 1 or 2.

24. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein the compound is:

25. A compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VI):

G-T-Q-K (VI),

wherein,

G is selected from the following substituents:

J\ wherein each X is independently -Cl, -Br,

I, or -S-phenyl;

T is an optionally substituted Ci-C8 alkylene, optionally substituted Ci-C8 alkylene-C(O)-, optionally substituted C3-C3 carbocyclylene, optionally substituted C3-C3 carbocyclylene-C(O)-, optionally substituted C rC8 alkylene-C(0)NHCH2C(0)-, optionally substituted C i -C8 alkylene-C(O)- (NHCH2C(0))n-, optionally substituted C6-Ci0 arylene, optionally substituted C6-Ci0 arylene -C(O)-, - (CH2-CH2-0)n-, -(CH2-CH2-0)n-(CH2)mC(0)-, optionally substituted C6-Ci0 arylene-C(0)NH-(CH2-CH2- 0)n-(CH2)mC(0)-, optionally substituted C |-C8 alkylene -C(0)NH-(CH2-CH2-0)n-(CH2)mC(0)-, -(CH2- CH2-NR1B)n-, -(CH2)m-(NR1B-CH2-CH2)n-, or -(CH2-CH2-NR1B)n-(CH2)mC(0)-;

each R1B is independently is -H, -CH3, -CH2CH3, or -CH2CH2NH2;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10; Q is a bond or selected from the group consisting of:

R1A is -H, optionally substituted Ci-C8 alkyl, optionally substituted C3-C8 carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-C12 aralkyl, or optionally substituted C3-C8 heterocyclyl;

R2A is -H, optionally substituted Ci-C8 alkyl, optionally substituted C3-C3 carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-C12 aralkyl, optionally substituted C3-C8 heterocyclyl, amino substituted Ci-C8 alkyl, -CH2CH2CH2CH2NH2 -CH2CH2CH2NHC(=NH)NH2, or - CH2CH2CH2NHC(0)NH2 ; and

K is a fragment having the structure of Formula (VIB):

wherein,

W is -0-, -S-, or -NR12-, wherein R12 is -H or optionally substituted Ci-C8 alkyl;

R11 is -H, an optionally substituted Ci-C2o alkyl, C6-Ci0 aryl, C3-C8 heterocyclyl, -(R130),-R14, or - (R130)t-CH(R15)2;

R13 is an optionally substituted Ci-C8 alkylene;

R14 is -H or an optionally substituted Ci-C8 alkyl;

each occurrence of R15 is independently -H, -COOH, -(CH2)q-N(R16)2, -(CH2)q-S03H, or -(CH2)q- S03 -(optionally substituted C|-C8 alkyl);

each occurrence of R16 is independently -H, optionally substituted C i -C8 alkyl, or -(CH2)q-

COOH;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6; and

v is an integer ranging between 0 to 3.

26. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein W is -0-; and R11 is -H or an optionally substituted Ci-C20 alkyl.

27. The compound of claim 26, or a pharmaceutically acceptable salt thereof, wherein W is -0-; and R11 is -CH3.

28. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein W is -NR12-, wherein R12 is -H or an optionally substituted Ci-C8 alkyl; and R11 is -H or an optionally substituted Ci- C20 alkyl.

29. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein v is 1 or 2.

30. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein the compound

31. A compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VII):

M-G-T-Q-K (VII);

wherein,

M is a carrier;

G is selected from the following substituents:

T is an optionally substituted Ci-C8 alkylene, optionally substituted Ci-C8 alkylene-C(O)-, optionally substituted C;rC8 carbocyclylene, optionally substituted C3~C8 carbocyclylene-C(O)-, optionally substituted Ci-C8 alkylene-C(0)NHCH2C(0)-, optionally substituted Ci-C8 alkylene-C(O)- (NHCH2C(0))n-, optionally substituted C6-Ci0 arylene, optionally substituted C6-Ci0 arylene -C(O)-, - (CH2-CH2-0)n-, -(CH2-CH2-0)n-(CH2)mC(0)-, optionally substituted C6-Ci0 arylene-C(0)NH-(CH2-CH2- 0)n-(CH2)mC(0)-, optionally substituted Ci-C8 alkylene -C(0)NH-(CH2-CH2-0)n-(CH2)mC(0)-, -(CH2-

CH2-NR1B)n-, -(CH2)m-(NR , IB-CH2-CH2)„-. or -(CH2-CH2-NR 11BB\)n-(CH2)mC(0)-;

each R1B is independently -H, -CH3, -CH2CH3, or -CH2CH2NH2;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R1A is -H, optionally substituted Ci-C8 alkyl, optionally substituted C3-C8 carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-C12 aralkyl, or optionally substituted C3-C8 heterocyclyl;

R2A is -H, optionally substituted Ci-C8 alkyl, optionally substituted C3-C8 carbocyclyl, optionally substituted C6-Ci0 aryl, optionally substituted C7-C12 aralkyl, optionally substituted C3-C8 heterocyclyl, amino substituted Ci-C8 alkyl, -CH2CH2CH2CH2NH2 -CH2CH2CH2NHC(=NH)NH2, or - CH2CH2CH2NHC(0)NH2 ;

K is a fragment of having the structure of Formula (VIIA) or (VIIB):

wherein,

W is -0-, -S-, or -NR12-, wherein R12 is -H or optionally substituted Ci-C8 alkyl;

R11 is -H, an optionally substituted Ci-C2o alkyl, C6-Ci0 aryl, C3-C8 heterocyclyl, -(R130),-R14, or - (R130)t-CH(R15)2;

R13 is an optionally substituted Ci-C8 alkylene;

R14 is -H or an optionally substituted Ci-C8 alkyl;

each occurrence of R15 is independently -H, -COOH, -(CH2)q-N(R16)2, -(CH2)q-S03H, or -(CH2)q- S03 -(optionally substituted C |-C8 alkyl);

each occurrence of R16 is independently -H, optionally substituted C i -C8 alkyl, or -(CH2)q-

COOH;

R39 is -NHCH2CH2-,-OCH2CH2-, -NHCH2S(0)2-, -NHCR2BR3BC(0)-, -NHCR2BR3BCH2 - NHCH2C(0)NHCH2CH2-, or -NHCH(CH2CH2CH2NHC(=NH)NH2)C(0)-;

R2B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, -CH2OH, -CF3,-CH(CH3)2, - CH2CH2C(0)0H, or -CH2CH2CH2NHC(=NH)NH2;

R3B is -H, -halogen, -CH3, -CH2CH3, -CH(OH)CH3, -CH2OH, -CF3, -CH(CH3)2, - CH2CH2C(0)0H, or -CH2CH2CH2NHC(=NH)NH2;

q is an integer ranging between 0 to 6;

v is an integer ranging between 0 and 3;

t is an integer ranging between 0 to 6; and

provided that R2B and R3B are not both H when W is -O- and R11 is H.

32. The compound of claim 31, or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIIA).

33. The compound of claim 31 or 32, or a pharmaceutically acceptable salt thereof, wherein R3B is not H.

34. The compound of claim 31 , or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIIB).

35. The compound of any one of claims 31 -34, or a pharmaceutically acceptable salt thereof, wherein W is -0-; and R11 is -H or an optionally substituted Ci-C20 alkyl.

36. The compound of claim 35, or a pharmaceutically acceptable salt thereof, wherein W is -0-; and R11 is -CH3.

37. The compound of any one of claims 31-34, or a pharmaceutically acceptable salt thereof, wherein W is -NR12-, wherein R12 is -H or an optionally substituted C i -C8 alkyl; and R11 is -H or an optionally substituted Ci-C20 alkyl.

38. The compound of any one of claims 31-37, or a pharmaceutically acceptable salt thereof, wherein R39 is -NHCH2CH2-,-OCH2CH2-, -NHCR2BR3BC(0)-, -NHCR2BR3BCH2 - NHCH2C(0)NHCH2CH2-, or -NHCH(CH2CH2CH2NHC(=NH)NH2)C(0)-.

39. The compound of any one of claims 31-38, or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof, wherein Q is selected from the group consisting of:

40. The compound of any one of claims 31-39, or a pharmaceutically acceptable salt thereof, wherein T is an optionally substituted Ci-C8 alkylene-C(O)-, optionally substituted C^-Cg carbocyclylene- C(O)-, optionally substituted Ci-C8 alkylene-C(0)-(NHCH2C(0))n-, optionally substituted C6-Ci0 arylene -C(O)-, optionally substituted C6-Ci0 arylene -C(0)NH-(CH2-CH2-0)n-(CH2)mC(0)-, optionally substituted C ,-C8 alkylene -C(0)NH-(CH2-CH2-0)n-(CH2)mC(0)-, -(CH2-CH2-NR1B)n-, -(CH2)m-(NR1B- CH2-CH2)n-, or -(CH2-CH2-NR1B)n-(CH2)mC(0)-.

41. The compound of any one of claims 31 -40, or a pharmaceutically acceptable salt thereof, wherein G is selected from the following substituents:

42. The compound of claim 41, or a pharmaceutically acceptable salt thereof, wherein G is selected from the following substituents:

43. The compound of claim 41, or a pharmaceutically acceptable salt thereof, wherein G is selected from the following substituents:

44. The compound of any one of claims 31-43, or a pharmaceutically acceptable salt thereof, wherein M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 500 Daltons.

45. The compound of any one of claims 31-43, or a pharmaceutically acceptable salt thereof, wherein M is a carrier comprising an albumin protein.

46. A pharmaceutical composition comprising of compound of Formula (VI), or a pharmaceutically acceptable salt thereof, as provided in any one of claims 11-24, and a pharmaceutically acceptable excipient.

47. A pharmaceutical composition comprising of compound of Formula (VI), or a pharmaceutically acceptable salt thereof, as provided in any one of claims 25-30, and a pharmaceutically acceptable excipient.

48. A pharmaceutical composition comprising of compound of Formula (VII), or a pharmaceutically acceptable salt thereof, as provided in any one of claims 31-45, and a pharmaceutically acceptable excipient.

49. A method of treating cancer in a subject in need thereof comprising administering to the subject a pharmaceutical composition comprising a compound, or a pharmaceutically acceptable salt thereof, as provided in any one of claims 11-45, and a pharmaceutically acceptable excipient.

50. A method of treating cancer in a subject in need thereof comprising administering to the subject the pharmaceutical composition of any one of claims 46-48.

51. The method of claim 49 or 50, wherein the cancer is breast cancer, colorectal cancer, squamous cell carcinoma, skin cancer, prostate cancer, melanoma, thyroid cancer, ovarian cancer, cervical cancer, lung cancer, pancreatic cancer, head and neck cancer, esophageal cancer, or sarcoma.

52. The method of claim 51, wherein the cancer is breast cancer.

53. The method of claim 52, wherein the cancer is inflammatory breast cancer.

54. The method of claim 52, wherein the cancer is triple negative breast cancer.

55. The method of claim 51, wherein the cancer is colorectal cancer.

56. The method of claim 51, wherein the cancer is prostate cancer.

57. The method of claim 51, wherein the cancer is lung cancer.

58. The method of claim 51, wherein the cancer is squamous cell carcinoma.

59. The method of claim 51, wherein the cancer is sarcoma.

60. The method of claim 51, wherein the cancer is soft tissue sarcoma.

61. The method of claim 51 , wherein the cancer is fibrosarcoma.

62. The method of claim 51 , wherein the cancer is ovarian cancer.

63. The method of claim 49 or 50, wherein the cancer is a B-cell cancer or a T-cell cancer.

64. The method of any one of the claims 49-63, wherein the cancer is a metastatic cancer.

65. The method of any one of the claims 49-63, wherein the cancer is a relapsed or refractory cancer.

66. The method of any one of claims 49-65, wherein the pharmaceutical composition is administered parenterally.

67. The method of claim 66, wherein the pharmaceutical composition is administered intravenously.

68. The method of any one of claims 49-67, wherein the subject is a human.

Description:
COMPOSITIONS AND METHODS FOR THE SELECTIVE DELIVERY OF THERAPEUTIC

AND IMAGING AGENTS

CROSS-REFERENCE

[0001] This application claims the benefit of US Provisional Application No. 62/658,413, filed on April 16, 2018, which is incorporated herein by reference in its entirety.

BACKGROUND

[0002] Described herein are methods and compositions for the targeted delivery of therapeutic agents and imaging agents.

SUMMARY

[0003] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VIA):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted Ci-C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 2 o alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0) t -R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted Ci-C 8 alkylene;

R 14 is -H or an optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted Ci-C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted Ci-C 8 alkyl, or -(CH 2 ) q -

COOH;

R 39 is -NHCH 2 CH 2 -, -OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 - NHCH 2 C(0)NHCH 2 CH 2 -, or -NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-;

R 2B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , -CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and wherein R 2B and R 3B cannot both be H when W is -O- and R 11 is H.

[0004] In some embodiments are compounds of Formula (VIA), or a pharmaceutically acceptable salt thereof, wherein W is -O- and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -CH 3 . In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and

R 1 1 1 1 is -H. In some embodiments, W is -NR 12 -, R12 is -H, and R 11 is optionally substituted Ci-C 20 alkyl.

In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 .

[0005] In some embodiments are compounds of Formula (VIA), or a pharmaceutically acceptable salt thereof, wherein R 39 is -NHCH 2 CH 2 -, -OCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or - NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, or - NHCR 2B R 3B CH 2 -. In some embodiments, R 39 is a -NHCH 2 C(0)-, -NHCH 2 CH 2 -,-OCH 2 CH 2 -, - NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 - or -NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is, - NHCH 2 C(0)-, -NHCH 2 CH 2 -,-NHCR 2B R 3B C(0)-, or -NHCR 2B R 3B CH 2 -. In some embodiments, R 39 is - NHCH 2 C(0)-. In some embodiments, R 39 is -NHCH(CH 3 )C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 3 )C(0)-. In some embodiments, R 39 is -NHCH(CH(CH 3 ) 2 )C(0)-. In some embodiments, R 39 is -NHCH(CH 2 CH 2 C(0)0H)C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-.

[0006] In some embodiments are compounds of Formula (VIA), or a pharmaceutically acceptable salt thereof, wherein R is not H. In some embodiments, R and R are not both H at the same time.

[0007] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VI):

G-T-Q-K (VI)

wherein,

G is selected from the following substituents:

each X is independently -Cl, -Br, -I, or -S-phenyl;

T is an optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C 5 -C ¾ carbocyclylene, optionally substituted CVC S carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)NHCH 2 C(0)-, optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0)) n -, optionally substituted C 6 -Ci 0 arylene, optionally substituted C 6 -Ci 0 arylene -C(0)-, - (CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-;

each R 1B is independently is -H, -CH 3 , -CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R 1A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3~ C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3 -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted Ci-C 8 alkyl, -C H 2 C H 2 CH 2 CH 2 N H 2 -CH2CH 2 CH 2 NHC(=NH)NH2, or - CH 2 CH 2 CH 2 NHC(0)NH 2 ;

K is a fragment having the structure of Formula (VIA):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted Ci-C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 20 alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0) t -R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted Ci-C 8 alkylene;

R 14 is -H or an optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted Ci-C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted Ci-C 8 alkyl, or -(CH 2 ) q -

COOH;

R 39 is -NHCH 2 CH 2 -, -OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 - NHCH 2 C(0)NHCH 2 CH 2 -, or -NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-;

R 2B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , -CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

wherein R 2B and R 3B cannot both be H when W is -O- and R 11 is H.

[0008] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein W is -O- and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -CH 3 . In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and

R 1 1 1 1 is -H. In some embodiments, W is -NR 12 -, R12 is -H, and R 11 is optionally substituted Ci-C 20 alkyl.

In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 .

[0009] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein R 39 is -NHCH 2 CH 2 -, -OCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or - NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, or -

NHCR 2B R 3B CH 2 -. In some embodiments, R 39 is a -NHCH 2 C(0)-, -NHCH 2 CH 2 -,-OCH 2 CH 2 -, - NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 - or -NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is, - NHCH 2 C(0)-, -NHCH 2 CH 2 -,-NHCR 2B R 3B C(0)-, or -NHCR 2B R 3B CH 2 -. In some embodiments, R 39 is - NHCH 2 C(0)-. In some embodiments, R 39 is -NHCH(CH 3 )C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 3 )C(0)-. In some embodiments, R 39 is -NHCH(CH(CH 3 ) 2 )C(0)-. In some embodiments, R 39 is -NHCH(CH 2 CH 2 C(0)0H)C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-.

[0010] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein R is not H. In some embodiments, R and R are not both H at the same time.

[0011] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein Q is a bond. In some embodiments, Q is selected from the group consisting of:

some embodiments, Q is selected from the group consisting of:

some embodiments, Q is selected from the group consisting of:

[0012] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein T is an optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C 6 - C s carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)-(NHCH 2 C(0) n -, optionally substituted C 6 -Ci 0 arylene -C(O)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n - (CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 - NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)-. In some embodiments, T is an optionally substituted Or O; carbocyclylene-C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0) n -. In some embodiments, T is an optionally substituted C 6 -Ci 0 arylene -C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 -NR 1B ) n -, - (CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-.

[0013] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein G is selected from the following substituents:

In some embodiments, G is selected from the following substituents:

O o

[0014] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VI):

G-T-Q-K (VI)

wherein,

G is selected from the following substituents: each X is independently -Cl, -Br, -I, or -S-phenyl;

T is an optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C 3 -C 3 carbocyclylene, optionally substituted C 3 -C 3 carbocyclylene-C(O)-, optionally substituted C r C 8 alkylene-C(0)NHCH 2 C(0)-, optionally substituted C i -C 8 alkylene-C(O)- (NHCH 2 C(0)) n -, optionally substituted C 6 -Ci 0 arylene, optionally substituted C 6 -Ci 0 arylene -C(0)-, - (CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted C | -C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-;

each R 1B is independently is -H, -CH 3 , -CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R 1A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3 -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -C 12 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted Ci-C 8 alkyl, -CH 2 CH 2 CH 2 CH 2 NH 2 -CH 2 CH 2 CH 2 NHC(=NH)NH 2 , or - CH 2 CH 2 CH 2 NHC(0)NH 2 ;

K is a fragment having the structure of Formula (VIB):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted Ci-C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 20 alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0) t -R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted C i -C 8 alkylene;

R 14 is -H or an optionally substituted C | -C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted C | -C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted C i -C 8 alkyl, or -(CH 2 ) q -

COOH;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

wherein R 2B and R 3B cannot both be H when W is -O- and R 11 is H. [0015] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein W is -O- and R 11 is -H or an optionally substituted C1-C20 alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted C1-C20 alkyl. In some embodiments, W is -O- and R 11 is -CH 3 . In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and

R 1 1 1 1 is -H. In some embodiments, W is -NR 12 -, R12 is -H, and R 11 is optionally substituted Ci-C 20 alkyl.

In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 .

[0016] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein v is 1 or 2. In some embodiments v is 1. In some embodiments, v is 2. In some embodiments, v is 3.

[0017] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein R is not H. In some embodiments, R and R are not both H at the same time.

[0018] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein Q is a bond. In some embodiments, Q is selected from the group consisting of:

some embodiments, Q is selected from the group consisting of:

some embodiments, Q is selected from the group consisting of:

[0019] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein T is an optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C 6 - C s carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)-(NHCH 2 C(0) n -, optionally substituted C 6 -Ci 0 arylene -C(O)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n - (CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 - NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)-. In some embodiments, T is an optionally substituted Or O; carbocyclylene-C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0) n -. In some embodiments, T is an optionally substituted C 6 -Ci 0 arylene -C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 -NR 1B ) n -, - (CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-.

[0020] In some embodiments are compounds of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein G is selected from the following substituents:

some embodiments, G is selected from the following substituents:

O o In some embodiments, G is selected from the following substituents:

[0021] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VII):

M-G-T-Q-K (VII)

wherein,

M is a carrier;

G is selected from the following substituents:

J is -0-, -NH-, or -S-;

T is an optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C 3~ C 8 carbocyclylene, optionally substituted C 3 -C 8 carbocyclylene-C(O)-, optionally substituted C r C 8 alkylene-C(0)NHCH 2 C(0)-, optionally substituted C i -C 8 alkylene-C(O)- (NHCH 2 C(0) n -, optionally substituted C 6 -Ci 0 arylene, optionally substituted C 6 -Ci 0 arylene -C(O)-, - (CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-;

each R 1B is independently is -H, -CH 3 , -CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R 1A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3 -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -C 12 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted Ci-C 8 alkyl, -CH 2 CH 2 CH 2 CH 2 NH 2 -CH 2 CH 2 CH 2 NHC(=NH)NH 2 , or - CH 2 CH 2 CH 2 NHC(0)NH 2 ;

K is a fragment having the structure of Formula (VIIA) or Formula (VIIB):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted Ci-C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 20 alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0),-R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted C i -C 8 alkylene;

R 14 is -H or an optionally substituted C | -C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted C | -C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted Ci-C 8 alkyl, or -(CH 2 ) q -

COOH; R 39 is -NHCH2CH2-, -OCH2CH2-, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 - NHCH 2 C(0)NHCH 2 CH 2 -, or -NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-;

R 2B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH2CH 2 CH 2 NHC(=NH)NH2;

R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , -CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH2CH 2 CH 2 NHC(=NH)NH2;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

wherein R 2B and R 3B cannot both be H when W is -O- and R 11 is H.

[0022] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIIA). In some embodimetns, K is a fragment having the structure of Formula (VIIB).

[0023] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein W is -O- and R 11 is -H or an optionally substituted Ci-C 2 o alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted Ci-C 2 o alkyl. In some embodiments, W is -O- and R 11 is -CH 3 . In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 2 o alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and

R 1 1 1 1 is -H. In some embodiments, W is -NR 12 -, R12 is -H, and R 11 is optionally substituted Ci-C 2 o alkyl.

In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 .

[0024] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein R 39 is -NHCH 2 CH 2 -, -OCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or - NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, or - NHCR 2B R 3B CH 2 -. In some embodiments, R 39 is a -NHCH 2 C(0)-, -NHCH 2 CH2-,-OCH 2 CH2-, - NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 - or -NHCH 2 C(0)NHCH 2 CH 2 -. In some embodiments, R 39 is, - NHCH 2 C(0)-, -NHCH 2 CH 2 -,-NHCR 2B R 3B C(0)-, or -NHCR 2B R 3B CH 2 -. In some embodiments, R 39 is - NHCH 2 C(0)-. In some embodiments, R 39 is -NHCH(CH 3 )C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 3 )C(0)-. In some embodiments, R 39 is -NHCH(CH(CH 3 ) 2 )C(0)-. In some embodiments, R 39 is -NHCH(CH 2 CH 2 C(0)0H)C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-.

[0025] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein R is not H. In some embodiments, R and R are not both H at the same time.

[0026] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein v is 1 or 2 In some embodiments, v is 1. In some embodiments, v is 2 In some embodiments v is 3.

[0027] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein Q is a bond. In some embodiments, Q is selected from the group consisting of: elected from the group consisting of:

some embodiments, Q is selected from the group consisting of:

[0028] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein T is an optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted ( ' :

Cs carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)-(NHCH 2 C(0) n -, optionally substituted C 6 -Ci 0 arylene -C(O)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n - (CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 - NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)-. In some embodiments, T is an optionally substituted C 6 - C 8 carbocyclylene-C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0) n -. In some embodiments, T is an optionally substituted C 6 -Ci 0 arylene -C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 -NR 1B ) n -, - (CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-.

[0029] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein G is selected from the following substituents: some embodiments, G is selected from the following substituents:

O O In some embodiments, G is selected from the following substituents:

[0030] In some embodiments, disclosed herein are compounds of Formula (VII), or a

pharmaceutically acceptable salt thereof, wherein M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 500 Daltons. In some embodiments, M is a carrier comprising an albumin protein.

[0031] In some embodiments are compounds of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 500 Daltons. In some embodiments, M is a carrier comprising an albumin protein.

[0032] Disclosed herein is a pharmaceutical composition comprising of compound of Formula (VI), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.

[0033] Disclosed herein is a pharmaceutical composition comprising of compound of Formula (VII), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.

[0034] Disclosed herein is a pharmaceutical composition comprising a compound of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula

(VIA), and a pharmaceutically acceptable excipient.

[0035] Disclosed herein is a pharmaceutical composition comprising a compound of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula

(VIB), and a pharmaceutically acceptable excipient.

[0036] Disclosed herein is a pharmaceutical composition comprising a compound of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIIA), and a pharmaceutically acceptable excipient. [0037] Disclosed herein is a pharmaceutical composition comprising a compound of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIIB), and a pharmaceutically acceptable excipient.

[0038] Disclosed herein is a method of treating cancer in a patient in need thereof comprising administering to the patient a pharmaceutical composition comprising a compound of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIA), and a pharmaceutically acceptable excipient.

[0039] Disclosed herein is a method of treating cancer in a patient in need thereof comprising administering to the patient a pharmaceutical composition comprising a compound of Formula (VI), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIB), and a pharmaceutically acceptable excipient.

[0040] Disclosed herein is a method of treating cancer in a patient in need thereof comprising administering to the patient a pharmaceutical composition comprising a compound of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIIA), and a pharmaceutically acceptable excipient.

[0041] Disclosed herein is a method of treating cancer in a patient in need thereof comprising administering to the patient a pharmaceutical composition comprising a compound of Formula (VII), or a pharmaceutically acceptable salt thereof, wherein K is a fragment having the structure of Formula (VIIB), and a pharmaceutically acceptable excipient.

[0042] In some embodiments, the cancer is breast cancer, colorectal cancer, squamous cell carcinoma, skin cancer, prostate cancer, melanoma, thyroid cancer, ovarian cancer, cervical cancer, lung cancer, pancreatic cancer, head and neck cancer, esophageal cancer, or sarcoma. In some embodiments, the cancer is breast cancer. In some embodiments, the cancer is inflammatory breast cancer. In some embodiments, the cancer is triple negative breast cancer. In some embodiments, the cancer is colorectal cancer. In some embodiments, the cancer is prostate cancer. In some embodiments, the cancer is lung cancer. In some embodiments, the cancer is squamous cell carcinoma. In some embodiments, the cancer is sarcoma. In some embodiments, the cancer is soft tissue sarcoma. In some embodiments, the cancer is fibrosarcoma. In some embodiments, the cancer is ovarian cancer. In some embodiments, the cancer is a B-cell cancer or a, T-cell cancer. In some embodiments, the cancer is a metastatic cancer. In some embodiments, the cancer is a relapsed or refractory cancer. In some embodiments, the pharmaceutical composition is administered parenterally. In some embodiments, the pharmaceutical composition is administered intravenously. In some embodiments, the subject is a human.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] Various aspects of the disclosure are set forth with particularity in the appended claims. The patent application file contains at least one drawing executed in color. Copies of this patent application with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:

[0044] FIG. 1A and FIG. 1B provide the experimental results from dosing of SDM compounds in HT- 1080 human fibrosarcoma xenograft model. FIG. 1A illustrates the change in tumor volume. FIG. 1B illustrates the percentage change in body weight.

[0045] FIG. 2 provides the experimental results from dosing compound SDM-154 in a HT-l080 human fibrosarcoma xenograft model and monitoring the concentration of both glycine -MMAF and MMAF.

[0046] FIG. 3A and FIG. 3B provide the experimental results from dose escalation of SDM-154 in HT-1080 human fibrosarcoma xenograft model. FIG. 3A illustrates the change in tumor volume. FIG.

3B illustrates the percentage change in body weight.

[0047] FIG. 4A and FIG. 4B provide the experimental results from dosing of SDM-156 in HT-1080 human fibrosarcoma xenograft model. FIG. 4A illustrates the change in tumor volume. FIG. 4B illustrates the percentage change in body weight.

[0048] FIG. 5A and FIG. 5B provide the experimental results from dosing of SDM-164 in HT-1080 human fibrosarcoma xenograft model. FIG. 5 A illustrates the change in tumor volume. FIG. 5B illustrates the percentage change in body weight.

[0049] FIG. 6A and FIG. 6B provide the experimental results from dosing of SDM-168 in HT-1080 human fibrosarcoma xenograft model. FIG. 6A illustrates the change in tumor volume. FIG. 6B illustrates the percentage change in body weight.

[0050] FIG. 7A and FIG. 7B provide the experimental results from dosing of SDM-169 in HT-1080 human fibrosarcoma xenograft model. FIG. 7A illustrates the change in tumor volume. FIG. 7B illustrates the percentage change in body weight.

[0051] FIG. 8A and FIG. 8B provide the experimental results from dosing of SDM-270 in HT-1080 human fibrosarcoma xenograft model. FIG. 8A illustrates the change in tumor volume. FIG. 8B illustrates the percentage change in body weight.

[0052] FIG. 9A - FIG. 9B provide the experimental results from dosing of SDM-320 in HT-1080 human fibrosarcoma xenograft model. FIG. 9A illustrates the change in tumor volume. FIG. 9B illustrates the percentage change in body weight

[0053] FIG. 9C illustrates the structure differences between SDM-320 and SDM-154.

[0054] FIG. 10A - FIG. 10D provide the experimental results from dosing of exemplary SDMs in HT- 1080 human fibrosarcoma xenograft model. FIG. 10A and FIG. 10C illustrate the change in tumor volume of SDM-166, SDM-167, SDM-154, and SDM-165, respectively. FIG. 10B and FIG. 10D illustrate the percentage change in body weight of SDM-166, SDM-167, SDM-154, and SDM-165, respectively.

[0055] FIG. 11 illustrates the cell viability of exemplary ACCs. DETAILED DESCRIPTION OF THE INVENTION

[0056] Improving the delivery of drugs and other agents to the target cells, tissues and tumors to achieve maximal efficacy and minimal toxicity has been the focus of considerable research for many years. Though many attempts have been made to develop effective methods for importing biologically active molecules into cells, both in vivo and in vitro, none has proved to be entirely satisfactory.

Optimizing the association of the drug with its intracellular target, while minimizing intercellular redistribution of the drug, e.g., to neighboring cells, is often difficult or inefficient. Most agents currently administered to a patient parenterally are not targeted, resulting in systemic delivery of the agent to cells and tissues of the body where it is unnecessary, and often undesirable. This may result in adverse drug side effects, and often limits the dose of a drug (e.g., chemotherapeutic (anti -cancer), cytotoxic, enzyme inhibitor agents and antiviral or antimicrobial drugs) that can be administered. By comparison, although oral administration of drugs is considered to be a convenient and economical mode of administration, it shares the same concerns of non-specific toxicity to unaffected cells once the drug has been absorbed into the systemic circulation. Further complications involve problems with oral bioavailability and residence of drug in the gut leading to additional exposure of gut to the drug and hence risk of gut toxicities.

Accordingly, a major goal has been to develop methods for specifically targeting therapeutic and imaging agents to cells and tissues. The benefits of such treatment include avoiding the general physiological effects of inappropriate delivery of such agents to other cells and tissues, such as uninfected cells.

Intracellular targeting may be achieved by methods, compounds and formulations which allow accumulation or retention of biologically active agents, i.e. active metabolites, inside cells. There is a clear need in the art for therapeutic auristatin derivatives and cyanine based imaging agents having significantly lower toxicity, yet useful therapeutic efficiency. These and other limitations and problems of the past are addressed by the present invention.

Certain Terminology

[0057] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the claimed subject matter belongs. All patents, patent applications, published applications and publications, GENBANK sequences, websites and other published materials referred to throughout the entire disclosure herein, unless noted otherwise, are incorporated by reference in their entirety. In the event that there is a plurality of definitions for terms herein, those in this section prevail. Where reference is made to a URL or other such identifier or address, it is understood that such identifiers can change and particular information on the internet can come and go, but equivalent information is known and can be readily accessed, such as by searching the internet and/or appropriate databases. Reference thereto evidences the availability and public dissemination of such information. Generally, the procedures for cell culture, cell infection, antibody production and molecular biology methods are methods commonly used in the art. Such standard techniques can be found, for example, in reference manual, such as, for example, Sambrook et al. (2000) and Ausubel et al. (1994). [0058] As used herein, the singular forms“a,”“an” and“the” include plural referents unless the context clearly dictates otherwise. In this application, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of "or" means "and/or" unless stated otherwise. Furthermore, use of the term "including" as well as other forms (e.g., "include", "includes", and

"included") is not limiting.

[0059] The transitional term“comprising”, which is synonymous with“including,”“containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. The transitional phrase“consisting of’ excludes any element, step, or ingredient not specified in the claim. The transitional phrase“consisting essentially of’ limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s) of the claimed invention.

[0060] As used herein, ranges and amounts can be expressed as“about” a particular value or range. About also includes the exact amount. Hence“about 40 mg” means“about 40 mg” and also“40 mg.” Generally, the terms“about” and“approximately” includes an amount that would be expected to be within experimental error.

[0061] The terms“individual,”“patient,” or“subject” are used interchangeably. As used herein, they mean any mammal (i.e. species of any orders, families, and genus within the taxonomic classification animalia: chordata: vertebrata: mammalia). In some embodiments, the mammal is a human. None of the terms require or are limited to situation characterized by the supervision (e.g. constant or intermittent) of a health care worker (e.g. a doctor, a registered nurse, a nurse practitioner, a physician’s assistant, an orderly, or a hospice worker).

[0062] As used herein, the term "delivery molecule" refers to any agent (e.g., peptide, protein, nucleic acid polymer, aptamer, or small molecule) that associates with (e.g., binds to) a target of interest. The target of interest may be a tissue, a cell, a cellular structure (e.g., an organelle), a protein, a peptide, a polysaccharide, or a nucleic acid polymer.

[0063] The terms“polypeptide,”“peptide” and“protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to naturally occurring amino acid polymers as well as amino acid polymers in which one or more amino acid residues is a non-naturally occurring amino acid (e.g., an amino acid analog). The terms encompass amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds.

[0064] Where an amino acid sequence is provided herein, L-, D-, or beta amino acid versions of the sequence are also contemplated as well as retro, inversion, and retro -inversion isoforms. Peptides also include amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. In addition, the term applies to amino acids joined by a peptide linkage or by other modified linkages (e.g., where the peptide bond is replaced by an a-ester, a b-ester, a thioamide, phosphonamide, carbamate, hydroxylate, and the like (see, e.g., Spatola, (1983) Chem. Biochem. Amino Acids and Proteins 7: 267-357), where the amide is replaced with a saturated amine (see, e.g., Skiles et ah, U.S. Pat. No. 4,496,542, which is incorporated herein by reference, and Kaltenbronn et al, (1990) Pp. 969-970 in Proc. 1 lth American Peptide Symposium, ESCOM Science Publishers, The Netherlands, and the like)).

[0065] The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, g-carboxyglutamate, and O-phosphoserine. Amino acids are grouped as hydrophobic amino acids, polar amino acids, non-polar amino acids, and charged amino acids. Hydrophobic amino acids include small hydrophobic amino acids and large hydrophobic amino acids. Small hydrophobic amino acid can be glycine, alanine, proline, and analogs thereof. Large hydrophobic amino acids can be valine, leucine, isoleucine, phenylalanine, methionine, tryptophan, and analogs thereof. Polar amino acids can be serine, threonine, asparagine, glutamine, cysteine, tyrosine, and analogs thereof. Non-polar amino acids can be glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, and analogs thereof. Charged amino acids can be lysine, arginine, histidine, aspartate, glutamate, and analogs thereof. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid. Amino acids are either D amino acids or L amino acids.

[0066] In some instances, one or more of the amino acid residues in the Formulas (I), (II), (III), (IV), (V), (VI), or (VII) described herein is modified to a polar amino acid. As discussed above, exemplary polar amino acids include serine, threonine, asparagine, glutamine, cysteine, tyrosine, and analogs thereof.

[0067] In other instances, one or more of the amino acid residues in the Formulas (I), (II), (III), (IV),

(V), (VI), or (VII) described herein is modified to a non-polar amino acid. Exemplary non-polar amino acids include glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, and analogs thereof.

[0068] In some cases, one or more of the amino acid residues in the Formulas (I), (II), (III), (IV), (V),

(VI), or (VII) described herein is modified a hydrophobic amino acids. Exemplary hydrophobic amino acids include small hydrophobic amino acid such as glycine, alanine, proline, and analogs thereof; and large hydrophobic amino acids such as valine, leucine, isoleucine, phenylalanine, methionine, tryptophan, and analogs thereof.

[0069] In other cases, one or more of the amino acid residues in the Formulas (I), (II), (III), (IV), (V), (VI), or (VII) described herein is modified to a charged amino acid. Exemplary charged amino acids include lysine, arginine, histidine, aspartate, glutamate, and analogs thereof. [0070] In some embodiments, one of skill will recognize that one or more of the amino acid residues described herein may be conservatively modified. Conservative substitution tables providing functionally similar amino acids are well known in the art. For examples, the following table illustrates exemplary conservative substitutions.

[0071] In some cases, such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.

[0072] The term PEG means polyethylene glycol polymer. In some embodiments, the PEG is a polydisperse. In some embodiments, the PEG is a discreet unit.

[0073] As used in the specification and appended claims, unless specified to the contrary, the following terms have the meaning indicated below.

[0074] "Amino" refers to the -NH 2 radical.

[0075] "Cyano" refers to the -CN radical.

[0076] "Nitro" refers to the -N0 2 radical.

[0077] "Oxa" refers to the -O- radical.

[0078] "Oxo" refers to the =0 radical.

[0079] "Thioxo" refers to the =S radical.

[0080] "Imino" refers to the =N-H radical.

[0081] "Oximo" refers to the =N-OH radical.

[0082] "Hydrazino" refers to the =N-NH 2 radical.

[0083] "Alkyl" refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to fifteen carbon atoms (e.g., C1-C15 alkyl). In certain embodiments, an alkyl comprises one to thirteen carbon atoms (e.g., C1-C13 alkyl). In certain embodiments, an alkyl comprises one to eight carbon atoms (e.g., Ci-C 8 alkyl). In other embodiments, an alkyl comprises one to five carbon atoms (e.g., C 1 -C 5 alkyl). In other embodiments, an alkyl comprises one to four carbon atoms (e.g., C 1 -C 4 alkyl). In other embodiments, an alkyl comprises one to three carbon atoms (e.g., C 1 -C 3 alkyl). In other embodiments, an alkyl comprises one to two carbon atoms (e.g., Ci-C 2 alkyl). In other embodiments, an alkyl comprises one carbon atom (e.g., Ci alkyl). In other embodiments, an alkyl comprises five to fifteen carbon atoms (e.g., C5-C15 alkyl). In other embodiments, an alkyl comprises five to eight carbon atoms (e.g., C 5 -C 8 alkyl). In other embodiments, an alkyl comprises two to five carbon atoms (e.g., C 2 -C 5 alkyl). In other embodiments, an alkyl comprises three to five carbon atoms (e.g., C 3 -C 5 alkyl). In other embodiments, the alkyl group is selected from methyl, ethyl, 1 -propyl («-propyl), l-methylethyl (iso-propyl), 1 -butyl («-butyl), 1- methylpropyl (sec-butyl), 2-methylpropyl (iso-butyl), l,l-dimethylethyl (tert- butyl), l-pentyl («-pentyl). The alkyl is attached to the rest of the molecule by a single bond. Unless stated otherwise specifically in the specification, an alkyl group is optionally substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, imino, oximo, trimethylsilanyl, -OR a , -SR a , -0C(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)0R a , -C(0)N(R a ) 2 , -N(R a )C(0)0R a , -0C(0)-N(R a ) 2 , -N(R a )C(0)R a , -N(R a )S(0) t R a (where t is 1 or 2), -S(0),0R a (where t is 1 or 2), -S(0),R a (where t is 1 or 2) and -S(0),N(R a ) 2 (where t is 1 or 2) where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, carbocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), carbocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl).

[0084] "Alkoxy" refers to a radical bonded through an oxygen atom of the formula -O-alkyl, where alkyl is an alkyl chain as defined above.

[0085] "Alkenyl" refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one carbon-carbon double bond, and having from two to twelve carbon atoms. In certain embodiments, an alkenyl comprises two to eight carbon atoms. In other embodiments, an alkenyl comprises two to four carbon atoms. The alkenyl is attached to the rest of the molecule by a single bond, for example, ethenyl ( i.e ., vinyl), prop-l-enyl (i.e.. allyl), but-l-enyl, pent-l-enyl, penta-l,4-dienyl, and the like. Unless stated otherwise specifically in the specification, an alkenyl group is optionally substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, imino, oximo, trimethylsilanyl, -OR a , -SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , - C(0)N(R a ) 2 , -N(R a )C(0)OR a , -OC(0)-N(R a ) 2 , -N(R a )C(0)R a , -N(R a )S(0) t R a (where t is 1 or 2), - S(0),OR a (where t is 1 or 2), -S(0),R a (where t is 1 or 2) and -S(0),N(R a ) 2 (where t is 1 or 2) where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, carbocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), carbocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl).

[0086] "Alkynyl" refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one carbon-carbon triple bond, having from two to twelve carbon atoms. In certain embodiments, an alkynyl comprises two to eight carbon atoms. In other embodiments, an alkynyl comprises two to six carbon atoms. In other embodiments, an alkynyl comprises two to four carbon atoms. The alkynyl is attached to the rest of the molecule by a single bond, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkynyl group is optionally substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, imino, oximo, trimethylsilanyl, -OR a , -SR a , - 0C(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)0R a , -C(0)N(R a ) 2 , -N(R a )C(0)0R a , -0C(0)-N(R a ) 2 , -N(R a )C(0)R a , - N(R a )S(0),R a (where t is 1 or 2), -S(0),0R a (where t is 1 or 2), -S(0),R a (where t is 1 or 2)

and -S(0),N(R a ) 2 (where t is 1 or 2) where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, carbocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), carbocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or

trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl).

[0087] "Alkylene" or "alkylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing no unsaturation and having from one to twelve carbon atoms, for example, methylene, ethylene, propylene, «-butylene, and the like. The alkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group are through one carbon in the alkylene chain or through any two carbons within the chain. In certain embodiments, an alkylene comprises one to eight carbon atoms (e.g., Ci-C 8 alkylene). In other embodiments, an alkylene comprises one to five carbon atoms (e.g., Ci-C 5 alkylene). In other embodiments, an alkylene comprises one to four carbon atoms (e.g., Ci-C 4 alkylene). In other embodiments, an alkylene comprises one to three carbon atoms (e.g., Ci- C 3 alkylene). In other embodiments, an alkylene comprises one to two carbon atoms (e.g., Ci-C 2 alkylene). In other embodiments, an alkylene comprises one carbon atom (e.g., Ci alkylene). In other embodiments, an alkylene comprises five to eight carbon atoms (e.g., C 5 -C 8 alkylene). In other embodiments, an alkylene comprises two to five carbon atoms (e.g., C 2 -C 5 alkylene). In other embodiments, an alkylene comprises three to five carbon atoms (e.g., C 3 -C 5 alkylene). Unless stated otherwise specifically in the specification, an alkylene chain is optionally substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, imino, oximo, trimethylsilanyl, -OR a , -SR a , - 0C(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)0R a , -C(0)N(R a ) 2 , -N(R a )C(0)0R a , -OC(O)- N(R a ) 2 , -N(R a )C(0)R a , - N(R a )S(0) t R a (where t is 1 or 2), -S(0) t 0R a (where t is 1 or 2), -S(0) t R a (where t is 1 or 2) and - S(0) t N(R a ) 2 (where t is 1 or 2) where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, carbocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), carbocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or

trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl).

[0088] "Alkenylene" or "alkenylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one carbon-carbon double bond, and having from two to twelve carbon atoms. The alkenylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond. In certain embodiments, an alkenylene comprises two to eight carbon atoms (e.g., C 2 -C 8 alkenylene). In other embodiments, an alkenylene comprises two to five carbon atoms (e.g., C 2 -C 5 alkenylene). In other embodiments, an alkenylene comprises two to four carbon atoms (e.g., C 2 -C 4 alkenylene). In other embodiments, an alkenylene comprises two to three carbon atoms (e.g., C 2 -C 3 alkenylene). In other embodiments, an alkenylene comprises five to eight carbon atoms (e.g., C 5 -C 8 alkenylene). In other embodiments, an alkenylene comprises two to five carbon atoms (e.g., C 2 -C 5 alkenylene). In other embodiments, an alkenylene comprises three to five carbon atoms (e.g., C 3 -C 5 alkenylene). Unless stated otherwise specifically in the specification, an alkenylene chain is optionally substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, imino, oximo, trimethylsilanyl, -OR a , -SR a , -0C(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)0R a , -C(0)N(R a ) 2 , -N(R a )C(0)0R a , - OC(O)- N(R a ) 2 , -N(R a )C(0)R a , -N(R a )S(0) t R a (where t is 1 or 2), -S(0),0R a (where t is 1 or 2), -S(0) t R a (where t is 1 or 2) and -S(0),N(R a ) 2 (where t is 1 or 2) where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, carbocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), carbocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl).

[0089] "Alkynylene" or "alkynylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one carbon-carbon triple bond, and having from two to twelve carbon atoms. The alkynylene chain is atached to the rest of the molecule through a single bond and to the radical group through a single bond. In certain embodiments, an alkynylene comprises two to eight carbon atoms (e.g., C 2 -C·, alkynylene). In other embodiments, an alkynylene comprises two to five carbon atoms (e.g., C 2 -C 5 alkynylene). In other embodiments, an alkynylene comprises two to four carbon atoms (e.g., C 2 -C 4 alkynylene). In other embodiments, an alkynylene comprises two to three carbon atoms (e.g., C 2 -C 3 alkynylene). In other embodiments, an alkynylene comprises two carbon atoms (e.g., C 2 alkylene). In other embodiments, an alkynylene comprises five to eight carbon atoms (e.g., C 5 -C 8 alkynylene). In other embodiments, an alkynylene comprises three to five carbon atoms (e.g., C 3 -C 5 alkynylene). Unless stated otherwise specifically in the specification, an alkynylene chain is optionally substituted by one or more of the following substituents: halo, cyano, nitro, oxo, thioxo, imino, oximo, trimethylsilanyl, -OR a , -SR a , -0C(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)0R a , -C(0)N(R a ) 2 , -N(R a )C(0)0R a , -0C(0)-N(R a ) 2 , - N(R a )C(0)R a , -N(R a )S(0) t R a (where t is 1 or 2), -S(0),0R a (where t is 1 or 2), -S(0) t R a (where t is 1 or 2) and -S(0),N(R a ) 2 (where t is 1 or 2) where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, carbocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), carbocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or

trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl).

[0090] "Aryl" refers to a radical derived from an aromatic monocyclic or multicyclic hydrocarbon ring system by removing a hydrogen atom from a ring carbon atom. The aromatic monocyclic or multicyclic hydrocarbon ring system contains only hydrogen and carbon from five to eighteen carbon atoms, where at least one of the rings in the ring system is fully unsaturated, i.e., it contains a cyclic, delocalized (4n+2) p-electron system in accordance with the Hiickel theory. The ring system from which aryl groups are derived include, but are not limited to, groups such as benzene, fluorene, indane, indene, tetralin and naphthalene. Unless stated otherwise specifically in the specification, the term "aryl" or the prefix "ar-" (such as in "aralkyl") is meant to include aryl radicals optionally substituted by one or more substituents independently selected from alkyl, alkenyl, alkynyl, halo, fluoroalkyl, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted carbocyclyl, optionally substituted carbocyclylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R b -OR a , -R b -OC(0)-R a , -R b -OC(0)-OR a , -R b -OC(0)-N(R a ) 2 , -R b -N(R a ) 2 , - R b -C(0)R a , -R b -C(0)OR a , -R b -C(0)N(R a ) 2 , -R b -0-R c -C(0)N(R a ) 2 , -R b -N(R a )C(0)OR a , -R b -N(R a )C(0)R a , -R b -N(R a )S(0),R a (where t is 1 or 2), -R b -S(0),R a (where t is 1 or 2), -R b -S(0),OR a (where t is 1 or 2) and -R b -S(0),N(R a ) 2 (where t is 1 or 2), where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, cycloalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), cycloalkylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or

trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), each R b is independently a direct bond or a straight or branched alkylene or alkenylene chain, and R c is a straight or branched alkylene or alkenylene chain, and where each of the above substituents is unsubstituted unless otherwise indicated.

[0091] "Aralkyl" refers to a radical of the formula -R c -aryl where R c is an alkylene chain as defined above, for example, methylene, ethylene, and the like. The alkylene chain part of the aralkyl radical is optionally substituted as described above for an alkylene chain. The aryl part of the aralkyl radical is optionally substituted as described above for an aryl group.

[0092] "Aralkenyl" refers to a radical of the formula -R d -aryl where R d is an alkenylene chain as defined above. The aryl part of the aralkenyl radical is optionally substituted as described above for an aryl group. The alkenylene chain part of the aralkenyl radical is optionally substituted as defined above for an alkenylene group.

[0093] "Aralkynyl" refers to a radical of the formula -R e -aryl, where R e is an alkynylene chain as defined above. The aryl part of the aralkynyl radical is optionally substituted as described above for an aryl group. The alkynylene chain part of the aralkynyl radical is optionally substituted as defined above for an alkynylene chain.

[0094] "Aralkoxy" refers to a radical bonded through an oxygen atom of the formula -0-R c -aryl where R c is an alkylene chain as defined above, for example, methylene, ethylene, and the like. The alkylene chain part of the aralkyl radical is optionally substituted as described above for an alkylene chain. The aryl part of the aralkyl radical is optionally substituted as described above for an aryl group.

[0095] "Carbocyclyl" refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which includes fused or bridged ring systems, having from three to fifteen carbon atoms. In certain embodiments, a carbocyclyl comprises three to ten carbon atoms. In other embodiments, a carbocyclyl comprises five to seven carbon atoms. The carbocyclyl is attached to the rest of the molecule by a single bond. Carbocyclyl is saturated (i.e.. containing single C-C bonds only) or unsaturated (i.e., containing one or more double bonds or triple bonds). A fully saturated carbocyclyl radical is also referred to as "cycloalkyl." Examples of monocyclic cycloalkyls include, e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. An unsaturated carbocyclyl is also referred to as "cycloalkenyl." Examples of monocyclic cycloalkenyls include, e.g., cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl. Polycyclic carbocyclyl radicals include, for example, adamantyl, norbomyl (i.e.. bicyclo[2.2.l]heptanyl), norbomenyl, decalinyl,

7,7-dimethyl-bicyclo[2.2. l]heptanyl, and the like. Unless otherwise stated specifically in the specification, the term "carbocyclyl" is meant to include carbocyclyl radicals that are optionally substituted by one or more substituents independently selected from alkyl, alkenyl, alkynyl, halo, fluoroalkyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted carbocyclyl, optionally substituted carbocyclylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R b -OR a , -R b -

0C(0)-R a , -R b -0C(0)-0R a , -R b -0C(0)-N(R a ) 2 , -R b -N(R a ) 2 , -R b -C(0)R a , -R b -C(0)0R a , -R b -C(0)N(R a ) 2 ,

-R b -0-R c -C(0)N(R a ) 2 , -R b -N(R a )C(0)0R a , -R b -N(R a )C(0)R a , -R b -N(R a )S(0) t R a (where t is 1 or 2), -R b - S(0),R a (where t is 1 or 2), -R b -S(0),0R a (where t is 1 or 2) and -R b -S(0),N(R a ) 2 (where t is 1 or 2), where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, cycloalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), cycloalkylalkyl (optionally substituted with halogen, hydroxy, methoxy, or

trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), each R b is independently a direct bond or a straight or branched alkylene or alkenylene chain, and R c is a straight or branched alkylene or alkenylene chain, and where each of the above substituents is unsubstituted unless otherwise indicated.

[0096] "Carbocyclylalkyl" refers to a radical of the formula -R c -carbocyelyl where R c is an alkylene chain as defined above. The alkylene chain and the carbocyclyl radical are optionally substituted as defined above.

[0097] "Carbocyclylalkynyl" refers to a radical of the formula -R c -carbocyelyl where R c is an alkynylene chain as defined above. The alkynylene chain and the carbocyclyl radical are optionally substituted as defined above.

[0098] "Carbocyclylalkoxy" refers to a radical bonded through an oxygen atom of the formula -O- R c -carbocyelyl where R c is an alkylene chain as defined above. The alkylene chain and the carbocyclyl radical are optionally substituted as defined above.

[0099] As used herein,“carboxylic acid bioisostere” refers to a functional group or moiety that exhibits similar physical, biological and/or chemical properties as a carboxylic acid moiety. Examples of carboxylic acid bioisosteres include, but are not limited to,

. [0100] "Halo" or "halogen" refers to bromo, chloro, fluoro or iodo substituents. In some embodiments the halogen is chloro. In some embodiments the halogen is fluoro. In some embodiments the halogen is iodo. In some embodiments the halogen is bromo.

[0101] "Fluoroalkyl" refers to an alkyl radical, as defined above, that is substituted by one or more fluoro radicals, as defined above, for example, trifluoromethyl, difluoromethyl, fluoromethyl,

2,2,2-trifluoroethyl, 1 -fluoromethyl -2 -fluoroethyl, and the like. In some embodiments, the alkyl part of the fluoroalkyl radical is optionally substituted as defined above for an alkyl group.

[0102] "Heterocyclyl" refers to a stable 3- to l8-membered non-aromatic ring radical that comprises two to twelve carbon atoms and from one to six heteroatoms selected from nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical is a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which optionally includes fused or bridged ring systems.

The heteroatoms in the heterocyclyl radical are optionally oxidized. One or more nitrogen atoms, if present, are optionally quatemized. The heterocyclyl radical is partially or fully saturated. The heterocyclyl is attached to the rest of the molecule through any atom of the ring(s). Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[l,3]dithianyl,

decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, l-oxo-thiomorpholinyl, and l, l-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, the term "heterocyclyl" is meant to include heterocyclyl radicals as defined above that are optionally substituted by one or more substituents selected from alkyl, alkenyl, alkynyl, halo, fluoroalkyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted carbocyclyl, optionally substituted carbocyclylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R b -OR a , -R b -OC(0)-R a , -R b -OC(0)-OR a , - R b -OC(0)-N(R a ) 2 , -R b -N(R a ) 2 , -R b -C(0)R a , -R b -C(0)OR a , -R b -C(0)N(R a ) 2 , -R b -0-R c -C(0)N(R a ) 2 , -R b - N(R a )C(0)OR a , -R b -N(R a )C(0)R a , -R b -N(R a )S(0),R a (where t is 1 or 2), -R b -S(0),R a (where t is 1 or 2), - R b -S(0) t OR a (where t is 1 or 2) and -R b -S(0) t N(R a ) 2 (where t is 1 or 2), where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, cycloalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), cycloalkylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or

trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), each R b is independently a direct bond or a straight or branched alkylene or alkenylene chain, and R c is a straight or branched alkylene or alkenylene chain, and where each of the above substituents is unsubstituted unless otherwise indicated.

[0103] "A'-hctcrocyclyl" or“N-attached heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. An A'-hctcrocyclyl radical is optionally substituted as described above for heterocyclyl radicals. Examples of such A'-hctcrocyclyl radicals include, but are not limited to, l-morpholinyl, l-piperidinyl, l-piperazinyl, l-pyrrolidinyl, pyrazolidinyl, imidazolinyl, and imidazolidinyl.

[0104] "C-heterocyclyl" or“C-attached heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one heteroatom and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a carbon atom in the heterocyclyl radical. A C-heterocyclyl radical is optionally substituted as described above for heterocyclyl radicals. Examples of such C-heterocyclyl radicals include, but are not limited to, 2-morpholinyl, 2- or 3- or 4-piperidinyl, 2-piperazinyl, 2- or 3- pyrrolidinyl, and the like.

[0105] "Heterocyclylalkyl" refers to a radical of the formula -R c -heterocyclyl where R c is an alkylene chain as defined above. If the heterocyclyl is a nitrogen -containing heterocyclyl, the heterocyclyl is optionally attached to the alkyl radical at the nitrogen atom. The alkylene chain of the heterocyclylalkyl radical is optionally substituted as defined above for an alkylene chain. The heterocyclyl part of the heterocyclylalkyl radical is optionally substituted as defined above for a heterocyclyl group.

[0106] "Heterocyclylalkoxy" refers to a radical bonded through an oxygen atom of the formula -O- R c -heterocyelyl where R c is an alkylene chain as defined above. If the heterocyclyl is a

nitrogen-containing heterocyclyl, the heterocyclyl is optionally attached to the alkyl radical at the nitrogen atom. The alkylene chain of the heterocyclylalkoxy radical is optionally substituted as defined above for an alkylene chain. The heterocyclyl part of the heterocyclylalkoxy radical is optionally substituted as defined above for a heterocyclyl group.

[0107] "Heteroaryl" refers to a radical derived from a 3- to l8-membered aromatic ring radical that comprises two to seventeen carbon atoms and from one to six heteroatoms selected from nitrogen, oxygen and sulfur. As used herein, the heteroaryl radical is a monocyclic, bicyclic, tricyclic or tetracyclic ring system, wherein at least one of the rings in the ring system is fully unsaturated, i.e., it contains a cyclic, delocalized (4n+2) p-electron system in accordance with the Hiickel theory.

Heteroaryl includes fused or bridged ring systems. The heteroatom(s) in the heteroaryl radical is optionally oxidized. One or more nitrogen atoms, if present, are optionally quatemized. The heteroaryl is attached to the rest of the molecule through any atom of the ring(s). Examples of heteroaryls include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzindolyl, l,3-benzodioxolyl, benzofuranyl, benzooxazolyl, benzo[d]thiazolyl, benzothiadiazolyl, benzo[A][l,4]dioxepinyl, benzo[b][l,4]oxazinyl, l,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl),

benzothieno[3,2-d]pyrimidinyl, benzotriazolyl, benzo[4,6]imidazo[l,2-a]pyridinyl, carbazolyl, cinnolinyl, cyclopenta[d]pyrimidinyl, 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidinyl,

5.6-dihydrobenzo[h]quinazolinyl, 5,6-dihydrobenzo[h]cinnolinyl, 6,7-dihydro-5H- benzo[6,7]cyclohepta[l,2-c]pyridazinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, furo[3,2-c]pyridinyl, 5,6,7,8,9, l0-hexahydrocycloocta[d]pyrimidinyl,

5, 6, 7, 8, 9, lO-hexahydrocycloocta[d]pyridazinyl, 5, 6, 7, 8, 9, lO-hexahydrocycloocta[d]pyridinyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indobnyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, 5,8-methano-5,6,7,8-tetrahydroquinazolinyl, naphthyridinyl,

1.6-naphthyridinonyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl,

5,6,6a,7,8,9,lO, lOa-octahydrobenzo[h]quinazobnyl, 1 -phenyl- l//-pyrrolyl. phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyrazolo[3,4-d]pyrimidinyl, pyridinyl, pyrido[3,2-d]pyrimidinyl, pyrido[3,4-d]pyrimidinyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, quinazobnyl, quinoxalinyl, quinolinyl, isoquinolinyl, tetrahydroquinobnyl,

5.6.7.8-tetrahydroquinazobnyl, 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidinyl,

6.7.8.9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidiny l,

5,6,7,8-tetrahydropyrido[4,5-c]pyridazinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, thieno[2,3-d]pyrimidinyl, thieno[3,2-d]pyrimidinyl, thieno[2,3-c]pridinyl, and thiophenyl (i.e. thienyl). Unless stated otherwise specifically in the specification, the term "heteroaryl" is meant to include heteroaryl radicals as defined above which are optionally substituted by one or more substituents selected from alkyl, alkenyl, alkynyl, halo, fluoroalkyl, haloalkenyl, haloalkynyl, oxo, thioxo, cyano, nitro, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted carbocyclyl, optionally substituted carbocyclylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R b -OR a , -R b -0C(0)-R a , -R b -0C(0)-0R a , -R b -0C(0)- N(R a ) 2 , -R b -N(R a ) 2 , -R b -C(0)R a , -R b -C(0)0R a , -R b -C(0)N(R a ) 2 , -R b -0-R c -C(0)N(R a ) 2 , -R b - N(R a )C(0)0R a , -R b -N(R a )C(0)R a , -R b -N(R a )S(0) t R a (where t is 1 or 2), -R b -S(0) t R a (where t is 1 or 2), - R b -S(0),0R a (where t is 1 or 2) and -R b -S(0),N(R a ) 2 (where t is 1 or 2), where each R a is independently hydrogen, alkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), fluoroalkyl, cycloalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), cycloalkylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aryl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), aralkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heterocyclylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), heteroaryl (optionally substituted with halogen, hydroxy, methoxy, or

trifluoromethyl), or heteroarylalkyl (optionally substituted with halogen, hydroxy, methoxy, or trifluoromethyl), each R b is independently a direct bond or a straight or branched alkylene or alkenylene chain, and R c is a straight or branched alkylene or alkenylene chain, and where each of the above substituents is unsubstituted unless otherwise indicated. [0108] "L ' '-hctcroaryl" refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. An L'-hctcroaryl radical is optionally substituted as described above for heteroaryl radicals.

[0109] "C-heteroaryl" refers to a heteroaryl radical as defined above and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a carbon atom in the heteroaryl radical. A C-heteroaryl radical is optionally substituted as described above for heteroaryl radicals.

[0110] "Heteroarylalkyl" refers to a radical of the formula -R c -heteroaryl, where R c is an alkylene chain as defined above. If the heteroaryl is a nitrogen -containing heteroaryl, the heteroaryl is optionally attached to the alkyl radical at the nitrogen atom. The alkylene chain of the heteroarylalkyl radical is optionally substituted as defined above for an alkylene chain. The heteroaryl part of the heteroarylalkyl radical is optionally substituted as defined above for a heteroaryl group.

[0111] "Heteroarylalkoxy" refers to a radical bonded through an oxygen atom of the formula -O- R c -heteroaryl, where R c is an alkylene chain as defined above. If the heteroaryl is a nitrogen-containing heteroaryl, the heteroaryl is optionally attached to the alkyl radical at the nitrogen atom. The alkylene chain of the heteroarylalkoxy radical is optionally substituted as defined above for an alkylene chain.

The heteroaryl part of the heteroarylalkoxy radical is optionally substituted as defined above for a heteroaryl group.

[0112] The compounds disclosed herein, in some embodiments, contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that are defined, in terms of absolute stereochemistry, as ( R )- or (5)-. Unless stated otherwise, it is intended that all stereoisomeric forms of the compounds disclosed herein are contemplated by this disclosure. When the compounds described herein contain alkene double bonds, and unless specified otherwise, it is intended that this disclosure includes both E and Z geometric isomers (e.g., cis or trans .) Likewise, all possible isomers, as well as their racemic and optically pure forms, and all tautomeric forms are also intended to be included. The term“geometric isomer” refers to E or Z geometric isomers (e.g., cis or trans ) of an alkene double bond. The term“positional isomer” refers to structural isomers around a central ring, such as ortho-, meta-, and para- isomers around a benzene ring.

[0113] A "tautomer" refers to a molecule wherein a proton shift from one atom of a molecule to another atom of the same molecule is possible. The compounds presented herein, in certain

embodiments, exist as tautomers. In circumstances where tautomerization is possible, a chemical equilibrium of the tautomers will exist. The exact ratio of the tautomers depends on several factors, including physical state, temperature, solvent, and pH. Some examples of tautomeric equilibrium include:

[0114] The compounds disclosed herein, in some embodiments, are used in different enriched isotopic forms, e.g., enriched in the content of 2 H, 3 H, 11 C, 13 C and/or 14 C. In one particular embodiment, the compound is deuterated in at least one position. Such deuterated forms can be made by the procedure described in U.S. Patent Nos. 5,846,514 and 6,334,997. As described in U.S. Patent Nos. 5,846,514 and 6,334,997, deuteration can improve the metabolic stability and or efficacy, thus increasing the duration of action of drugs.

[0115] Unless otherwise stated, structures depicted herein are intended to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13 C- or 14 C-enriched carbon are within the scope of the present disclosure.

[0116] The compounds of the present disclosure optionally contain unnatural proportions of atomic isotopes at one or more atoms that constitute such compounds. For example, the compounds may be labeled with isotopes, such as for example, deuterium ( 2 H), tritium (¾), iodine-l25 ( 125 I) or carbon-l4 ( 14 C). Isotopic substitution with ¾, n C, 13 C, 14 C, 15 C, 12 N, 13 N, 15 N, 16 N, 16 0, 17 0, 14 F, 15 F, 16 F, 17 F, 18 F,

33 S, 34 S, 35 S, 36 S, 35 Cl, 37 Cl, 79 Br, 81 Br, and 125 I are all contemplated. All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.

[0117] In certain embodiments, the compounds disclosed herein have some or all of the 'H atoms replaced with 2 H atoms. The methods of synthesis for deuterium -containing compounds are known in the art and include, by way of non-limiting example only, the following synthetic methods.

[0118] Deuterium substituted compounds are synthesized using various methods such as described in: Dean, Dennis C.; Editor. Recent Advances in the Synthesis and Applications of Radiolabeled

Compounds for Drug Discovery and Development. [In: Curr., Pharm. Des., 2000; 6(10)] 2000, 110 pp; George W.; Varma, Rajender S. The Synthesis of Radiolabeled Compounds via Organometallic Intermediates, Tetrahedron, 1989, 45(21), 6601-21; and Evans, E. Anthony. Synthesis of radiolabeled compounds, J. Radioanal. Chem., 1981, 64(1-2), 9-32.

[0119] Deuterated starting materials are readily available and are subjected to the synthetic methods described herein to provide for the synthesis of deuterium -containing compounds. Large numbers of deuterium-containing reagents and building blocks are available commercially from chemical vendors, such as Aldrich Chemical Co.

[0120] Deuterium-transfer reagents suitable for use in nucleophilic substitution reactions, such as iodomethane-d 3 (CD 3 I), are readily available and may be employed to transfer a deuterium-substituted carbon atom under nucleophilic substitution reaction conditions to the reaction substrate. The use of CD 3 I is illustrated, by way of example only, in the reaction schemes below.

[0121] Deuterium-transfer reagents, such as lithium aluminum deuteride (LiAlD 4 ), are employed to transfer deuterium under reducing conditions to the reaction substrate. The use of LiAlD 4 is illustrated, by way of example only, in the reaction schemes below.

[0122] Deuterium gas and palladium catalyst are employed to reduce unsaturated carbon-carbon linkages and to perform a reductive substitution of aryl carbon-halogen bonds as illustrated, by way of example only, in the reaction schemes below.

[0123] In one embodiment, the compounds disclosed herein contain one deuterium atom. In another embodiment, the compounds disclosed herein contain two deuterium atoms. In another embodiment, the compounds disclosed herein contain three deuterium atoms. In another embodiment, the compounds disclosed herein contain four deuterium atoms. In another embodiment, the compounds disclosed herein contain five deuterium atoms. In another embodiment, the compounds disclosed herein contain six deuterium atoms. In another embodiment, the compounds disclosed herein contain more than six deuterium atoms. In another embodiment, the compound disclosed herein is fully substituted with deuterium atoms and contains no non-exchangeable 'H hydrogen atoms. In one embodiment, the level of deuterium incorporation is determined by synthetic methods in which a deuterated synthetic building block is used as a starting material.

[0124] "Pharmaceutically acceptable salt" includes both acid and base addition salts. A pharmaceutically acceptable salt of any one of the selective delivery molecules described herein is intended to encompass any and all pharmaceutically suitable salt forms. Preferred pharmaceutically acceptable salts of the compounds described herein are pharmaceutically acceptable acid addition salts and pharmaceutically acceptable base addition salts.

[0125] "Pharmaceutically acceptable acid addition salt" refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, hydroiodic acid, hydrofluoric acid, phosphorous acid, and the like. Also included are salts that are formed with organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and. aromatic sulfonic acids, etc. and include, for example, acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like. Exemplary salts thus include sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, nitrates, phosphates, monohydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, trifluoroacetates, propionates, caprylates, isobutyrates, oxalates, malonates, succinate suberates, sebacates, fiimarates, maleates, mandelates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, phthalates, benzenesulfonates, toluenesulfonates, phenylacetates, citrates, lactates, malates, tartrates, methanesulfonates, and the like. Also contemplated are salts of amino acids, such as arginates, gluconates, and galacturonates (see, for example, Berge S.M. et al., "Pharmaceutical Salts," Journal of

Pharmaceutical Science, 66: 1-19 (1997)). Acid addition salts of basic compounds are, in some embodiments, prepared by contacting the free base forms with a sufficient amount of the desired acid to produce the salt according to methods and techniques with which a skilled artisan is familiar.

[0126] "Pharmaceutically acceptable base addition salt" refers to those salts that retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Pharmaceutically acceptable base addition salts are, in some embodiments, formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Salts derived from inorganic bases include, but are not limited to, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, for example, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, diethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, A', L'-d ibcnzylcthylcncdi am i n c .

chloroprocaine, hydrabamine, choline, betaine, ethylenediamine, ethylenedianiline, A'-m c th y 1 g 1 ucam i n c . glucosamine, methylglucamine, theobromine, purines, piperazine, piperidine, A'-cthylpipcridinc. polyamine resins and the like. See Berge et al, supra.

[0127] As used herein,“treatment” or“treating,” or“palliating” or“ameliorating” are used interchangeably. These terms refer to an approach for obtaining beneficial or desired results including but not limited to therapeutic benefit and/or a prophylactic benefit. By“therapeutic benefit” is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the patient, notwithstanding that the patient is still afflicted with the underlying disorder. For prophylactic benefit, the compositions are, in some embodiments, administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease has not been made.

Selective delivery molecules

[0128] Selective delivery molecules (SDMs) allow the targeted delivery of therapeutic agents and/or imaging agents to specific cells and/or tissues. In certain embodiments, the selective delivery molecule comprises an auristatin-related agent. In certain embodiments, the selective delivery molecule comprises an imaging agent. In certain embodiments, selective delivery molecules comprise: a therapeutic agent or imaging agent (portion of D); a therapeutic agent or imaging agent modifier (portion of Y); an optional cleavable linker (portion Q); an optional spacer (portion T); a Michael acceptor available for nucleophilic attack (portion G); or substituent that has formed as a product of nucleophilic attack (portion G when bound to M), and is now bound to a carrier (portion M). In some embodiments, cleavage of the Q linker allows the separation of portion of Y-D from portion of G-T or M-G-T, thereby promoting the uptake or retention of portion of the therapeutic agent Y-D or imaging agent Y-D into cells or tissue retention. In some embodiments, the therapeutic agent is a chemotherapeutic agent. In some embodiments, the therapeutic agent is a cytotoxin. In some embodiments, the therapeutic agent is a modified auristatin.

[0129] In some embodiments, therapeutic agent Y -D or imaging agent Y -D has superior therapeutic or imaging properties to the free therapeutic agent D or imaging agent D. In some embodiments, Y -D is non-hydrolyzable under physiological conditions. In some embodiments, Y is a single amino acid. In some embodiments, Y is not an amino acid. In some embodiments, Y is a small amino acid, such as alanine or glycine. In some embodiments, Y is a non -amino acid modifier that consists of 15 atoms or less. In some embodiments, Y is a non-amino acid modifier that consists of 10 atoms or less.

[0130] In some embodiments of the disclosure, is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (I):

G-T-Q-Y-D (I).

[0131] In some embodiments of the disclosure, is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (II):

M-G-T-Q-Y-D (II). [0132] In some embodiments of the disclosure, is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VI):

G-T-Q-K (VI).

[0133] In some embodiments of the disclosure, is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VII):

M-G-T-Q-K (VII).

Portion D

[0134] In some embodiments, D is a therapeutic agent or imaging agent. In some embodiments, D is U or Z 2 , wherein U is a therapeutic agent and Z 2 is an imaging agent. In some embodiments, D is U. In some embodiments, D is Z 2 .

Portion U

[0135] In some embodiments, U is a therapeutic agent. In some embodiments, a therapeutic agent is selected from: a chemotherapeutic agent, a steroid, an immunotherapeutic agent, a targeted therapy, an anti-inflammatory agent, or a combination thereof.

[0136] In some embodiments, a therapeutic agent is a CD79A inhibitor, a CD79B inhibitor, a CD 19 inhibitor, a Lyn inhibitor, a Syk inhibitor, a PI3K inhibitor, a Blnk inhibitor, a PLOy inhibitor, a RKOb inhibitor, or a combination thereof. In some embodiments, a therapeutic agent is an antibody, B cell receptor signaling inhibitor, a PI3K inhibitor, an IAP inhibitor, an mTOR inhibitor, a

radioimmunotherapeutic, a DNA damaging agent, a proteosome inhibitor, a histone deacytlase inhibitor, a protein kinase inhibitor, a hedgehog inhibitor, an Hsp90 inhibitor, a telomerase inhibitor, a Jakl/2 inhibitor, a protease inhibitor, a PKC inhibitor, a PARP inhibitor, or a combination thereof. In some embodiments, a therapeutic agent is a B cell receptor pathway inhibitor. In some embodiments, a therapeutic agent is selected from: chlorambucil, ifosphamide, doxorubicin, mesalazine, thalidomide, lenalidomide, temsirolimus, everolimus, fludarabine, fostamatinib, paclitaxel, docetaxel, ofatumumab, rituximab, dexamethasone, prednisone, CAL-101, ibritumomab, tositumomab, bortezomib, pentostatin, endostatin, bendamustine, chlorambucil, chlormethine, cyclophosphamide, ifosfamide, melphalan, prednimustine, trofosfamide, busulfan, mannosulfan, treosulfan, carboquone, thiotepa, triaziquone, carmustine, fotemustine, lomustine, nimustine, ranimustine, semustine, streptozocin, etoglucid, dacarbazine, mitobronitol, pipobroman, temozolomide, methotrexate, permetrexed, pralatrexate, raltitrexed, cladribine, clofarabine, fludarabine, mercaptopurine, nelarabine, tioguanine, azacitidine, capecitabine, carmofur, cytarabine, decitabine, fluorouracil, gemcitabine, tegafur, vinblastine, vincristine, vindesine, vinflunine, vinorelbine, etoposide, teniposide, demecolcine, docetaxel, paclitaxel, paclitaxel poliglumex, trabectedin, dactinomycin, aclarubicin, daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, pirarubicin, valrubicin, zorubincin, bleomycin, ixabepilone, mitomycin, plicamycin, carboplatin, cisplatin, oxaliplatin, satraplatin, procarbazine, aminolevulinic acid, efaproxiral, methyl aminolevulinate, porfimer sodium, temoporfm, dasatinib, erlotinib, everolimus, gefitinib, imatinib, lapatinib, nilotinib, pazonanib, sorafenib, sunitinib, temsirolimus, alitretinoin, altretamine, amzacrine, anagrelide, arsenic trioxide, asparaginase, bexarotene, bortezomib, celecoxib, denileukin diftitox, estramustine, hydroxycarbamide, irinotecan, lonidamine, masoprocol, miltefosein, mitoguazone, mitotane, oblimersen, pegaspargase, pentostatin, romidepsin, sitimagene ceradenovec, tiazofurine, topotecan, tretinoin, vorinostat, diethylstilbenol, ethinylestradiol, fosfestrol, polyestradiol phosphate, gestonorone, medroxyprogesterone, megestrol, buserelin, goserelin, leuprorelin, triptorelin, fulvestrant, tamoxifen, toremifene, bicalutamide, flutamide, nilutamide, aminoglutethimide, anastrozole, exemestane, formestane, letrozole, vorozole, abarelix, degarelix, histamine dihydrochloride, mifamurtide, pidotimod, plerixafor, roquinimex, thymopentin, everolimus, gusperimus, leflunomide, mycophenolic acid, sirolimus, ciclosporin, tacrolimus, azathioprine, lenalidomide, methotrexate, thalidomide, iobenguane, ancestim, filgrastim, lenograstim, molgramostim, pegfilgrastim, sargramostim, interferon alfa natural, interferon alfa-2a, interferon alfa-2b, interferon alfacon-l, interferon alfa-nl, interferon beta natural, interferon beta-la, interferon beta-lb, interferon gamma, peginterferon alfa-2a, peginterferon alfa-2b, aldesleukin, oprelvekin, BCG vaccine, glatiramer acetate, histamine dihydrochloride, immunocyanin, lentinan, melanoma vaccine, mifamurtide, pegademase, pidotimod, plerixafor, poly I:C, poly ICLC, roquinimex, tasonermin, thymopentin, abatacept, abetimus, alefacept, antilymphocyte immunoglobulin (horse), antithymocyte immunoglobulin (rabbit), eculizumab, efalizumab, everolimus, gusperimus, leflunomide, muromab-CD3, mycophenolic acid, natalizumab, sirolimus, adalimumab, afelimomab, certolizumab pegol, etanercept, golimumab, infliximab, anakinra, basiliximab, canakinumab, daclizumab, mepolizumab, rilonacept, tocilizumab, ustekinumab, ciclosporin, tacrolimus, azathioprine, lenalidomide, methotrexate, thalidomide, adalimumab, alemtuzumab, bevacizumab, cetuximab, certolizumab pegol, , eculizumab, efalizumab, gemtuzumab, ibritumomab tiuxetan, muromonab-CD3, natalizumab, panitumumab, ranibizumab, rituximab, tositumomab, trastuzumab, catumaxomab, edrecolomab, ofatumumab, muromab-CD3, afelimomab, golimumab, ibritumomab tiuxetan, abagovomab,

adecatumumab, alemtuzumab, anti-CD30 monoclonal antibody Xmab25 l3, anti-MET monoclonal antibody MetMab, apolizumab, apomab, arcitumomab, bispecific antibody 2B1, blinatumomab, brentuximab vedotin, capromab pendetide, cixutumumab, claudiximab, conatumumab, dacetuzumab, denosumab, eculizumab, epratuzumab, epratuzumab, ertumaxomab, etaracizumab, figitumumab, fresolimumab, galiximab, ganitumab, gemtuzumab ozogamicin, glembatumumab, ibritumomab, inotuzumab ozogamicin, ipilimumab, lexatumumab, lintuzumab, lintuzumab, lucatumumab,

mapatumumab, matuzumab, milatuzumab, monoclonal antibody CC49, necitumumab, nimotuzumab, ofatumumab, oregovomab, pertuzumab, ramacurimab, ranibizumab, siplizumab, sonepcizumab, tanezumab, tositumomab, trastuzumab, tremelimumab, tucotuzumab celmoleukin, veltuzumab, visilizumab, volociximab, zalutumumab, a syk inhibitor (e.g., R788), enzastaurin, dasatinib, erlotinib, everolimus, gefitinib, imatinib, lapatinib, nilotinib, pazonanib, sorafenib, sunitinib, temsirolimus, an angiogenesis inhibitor (e.g., GT-l 11, JI-101, R1530), a kinase inhibitors (e.g., AC220, AC480, ACE-041, AMG 900, AP24534, Arry-6l4, AT7519, AT9283, AV-951, axitinib, AZD1152, AZD7762, AZD8055, AZD8931, bafetinib, BAY 73-4506, BGJ398, BGT226, BI 811283, BI6727, BIBF 1120, BIBW 2992, BMS-690154, BMS-777607, BMS-863233, BSK-461364, CAL-101, CEP-11981, CYC116, DCC-2036, dinaciclib, dovitinib lactate, E7050, EMD 1214063, ENMD-2076, fostamatinib disodium, GSK2256098, GSK690693, INCB18424, INNO-406, JNJ-26483327, JX-594, KX2-391, linifanib, LY2603618, MGCD265, MK-0457, MK1496, MLN8054, MLN8237, MP470, NMS-l 116354, NMS-1286937, ON 0l9l9.Na, OSI-027, OSI-930, Btk inhibitor, PF-00562271, PF-02341066, PF-03814735, PF-04217903, PF-04554878, PF-04691502, PF-3758309, PHA-739358, PLC3397, progenipoietin, R547, R763, ramucirumab, regorafenib, R05185426, SAR103168, S3333333CH 727965, SGI-1176, SGX523, SNS- 314, TAK-593, TAK-901, TKI258, TLN-232, TTP607, XL147, XL228, XL281R05126766, XL418, XL765), an inhibitor of mitogen-activated protein kinase signaling (e.g., U0126, PD98059, PD 184352, PD0325901, ARRY-142886, SB239063, SP600125, BAY 43-9006, wortmannin, or LY294002), adriamycin, dactinomycin, bleomycin, vinblastine, cisplatin, acivicin, aclarubicin, acodazole

hydrochloride, acronine, adozelesin, aldesleukin, altretamine, ambomycin, ametantrone acetate, aminoglutethimide, amsacrine, anastrozole, anthramycin, asparaginase, asperlin, azacitidine, azetepa, azotomycin, batimastat, benzodepa, bicalutamide, bisantrene hydrochloride, bisnafide dimesylate, bizelesin, bleomycin sulfate, brequinar sodium, bropirimine, busulfan, cactinomycin, calusterone, caracemide, carbetimer, carboplatin, carmustine, carubicin hydrochloride, carzelesin, cedefmgol, chlorambucil, cirolemycin, cladribine, crisnatol mesylate, cyclophosphamide, cytarabine, dacarbazine, daunorubicin hydrochloride, decitabine, dexormaplatin, dezaguanine, dezaguanine mesylate, diaziquone, doxorubicin, doxorubicin hydrochloride, droloxifene, droloxifene citrate, dromostanolone propionate, duazomycin, edatrexate, eflomithine hydrochloride, elsamitrucin, enloplatin, enpromate, epipropidine, epirubicin hydrochloride, erbulozole, esorubicin hydrochloride, estramustine, estramustine phosphate sodium, etanidazole, etoposide, etoposide phosphate, etoprine, fadrozole hydrochloride, fazarabine, fenretinide, floxuridine, fludarabine phosphate, fluorouracil, flurocitabine, fosquidone, fostriecin sodium, gemcitabine, gemcitabine hydrochloride, hydroxyurea, idarubicin hydrochloride, ifosfamide, iimofosine, interleukin II (including recombinant interleukin II, or rlL2), interferon alfa-2a, int interferon alfa -2b, interferon alfa -nl, interferon alfa -n3, interferon beta-l a, interferon gamma-l b, iproplatin, irinotecan hydrochloride, lanreotide acetate, letrozole, leuprolide acetate, liarozole hydrochloride, lometrexol sodium, lomustine, losoxantrone hydrochloride, masoprocol, maytansine, mechlorethamine

hydrochloride, megestrol acetate, melengestrol acetate, melphalan, menogaril, mercaptopurine, methotrexate, methotrexate sodium, metoprine, meturedepa, mitindomide, mitocarcin, mitocromin, mitogillin, mitomalcin, mitomycin, mitosper, mitotane, mitoxantrone hydrochloride, mycophenolic acid, nocodazoie, nogalamycin, ormaplatin, oxisuran, pegaspargase, peliomycin, pentamustine, peplomycin sulfate, perfosfamide, pipobroman, piposulfan, piroxantrone hydrochloride, plicamycin, plomestane, porfimer sodium, porfiromycin, prednimustine, procarbazine hydrochloride, puromycin, puromycin hydrochloride, pyrazofurin, riboprine, rogletimide, safmgol, safmgol hydrochloride, semustine, simtrazene, sparfosate sodium, sparsomycin, spirogermanium hydrochloride, spiromustine, spiroplatin, streptonigrin, streptozocin, sulofenur, talisomycin, tecogalan sodium, tegafur, teloxantrone

hydrochloride, temoporfm, teniposide, teroxirone, testolactone, thiamiprine, thioguanine, thiotepa, tiazofurin, tirapazamine, toremifene citrate, trestolone acetate, triciribine phosphate, trimetrexate, trimetrexate glucuronate, triptorelin, tubulozole hydrochloride, uracil mustard, uredepa, vapreotide, verteporfm, vinblastine sulfate, vincristine sulfate, vindesine, vindesine sulfate, vinepidine sulfate, vinglycinate sulfate, vinleurosine sulfate, vinorelbine tartrate, vinrosidine sulfate, vinzolidine sulfate, vorozole, zeniplatin, zinostatin, zorubicin hydrochloride. In some embodiments, a therapeutic agent is selected from: 20-epi-l, 25 dihydroxyvitamin D3, 5-ethynyluracil, abiraterone, aclarubicin, acylfulvene, adecypenol, adozelesin, aldesleukin, ALL-TK antagonists, altretamine, ambamustine, amidox, amifostine, aminolevulinic acid, amrubicin, amsacrine, anagrelide, anastrozole, andrographolide, angiogenesis inhibitors, antagonist D, antagonist G, antarelix, anti-dorsalizing morphogenetic protein-l, antiandrogen, prostatic carcinoma, antiestrogen, antineoplaston, antisense oligonucleotides, aphidicolin glycinate, apoptosis gene modulators, apoptosis regulators, apurinic acid, ara-CDP-DL-PTBA, arginine deaminase, asulacrine, atamestane, atrimustine, axinastatin 1, axinastatin 2, axinastatin 3, azasetron, azatoxin, azatyrosine, baccatin III derivatives, balanol, batimastat, BCR/ABL antagonists, benzochlorins, benzoylstaurosporine, beta lactam derivatives, beta-alethine, betaclamycin B, betulinic acid, bFGF inhibitor, bicalutamide, bisantrene, bisaziridinylspermine, bisnafide, bistratene A, bizelesin, breflate, bropirimine, budotitane, buthionine sulfoximine, calcipotriol, calphostin C, camptothecin derivatives, canarypox IL-2, capecitabine, carboxamide-amino-triazole, carboxyamidotriazole, CaRest M3, CARN 700, cartilage derived inhibitor, carzelesin, casein kinase inhibitors (ICOS), castanospermine, cecropin B, cetrorelix, chlorlns, chloroquinoxaline sulfonamide, cicaprost, cis-porphyrin, cladribine, clomifene analogues, clotrimazole, collismycin A, collismycin B, combretastatin A4, combretastatin analogue, conagenin, crambescidin 816, crisnatol, cryptophycin 8, cryptophycin A derivatives, curacin A, cyclopentanthraquinones, cycloplatam, cypemycin, cytarabine ocfosfate, cytolytic factor, cytostatin, dacliximab, decitabine, dehydrodidemnin B, deslorelin, dexamethasone, dexifosfamide, dexrazoxane, dexverapamil, diaziquone, didemnin B, didox, diethylnorspermine, dihydro-5-azacytidine, 9- dioxamycin, diphenyl spiromustine, docosanol, dolasetron, doxifluridine, droloxifene, dronabinol, duocarmycin SA, ebselen, ecomustine, edelfosine, edrecolomab, eflomithine, elemene, emitefur, epirubicin, epristeride, estramustine analogue, estrogen agonists, estrogen antagonists, etanidazole, etoposide phosphate, exemestane, fadrozole, fazarabine, fenretinide, filgrastim, finasteride, flavopiridol, flezelastine, fluasterone, fludarabine, fluorodaunorunicin hydrochloride, forfenimex, formestane, fostriecin, fotemustine, gadolinium texaphyrin, gallium nitrate, galocitabine, ganirelix, gelatinase inhibitors, gemcitabine, glutathione inhibitors, hepsulfam, heregulin, hexamethylene bisacetamide, hypericin, ibandronic acid, idarubicin, idoxifene, idramantone, ilmofosine, ilomastat, imidazoacridones, imiquimod, immunostimulant peptides, insulin-such as for example growth factor- 1 receptor inhibitor, interferon agonists, interferons, interleukins, iobenguane, iododoxorubicin, ipomeanol, 4-, iroplact, irsogladine, isobengazole, isohomohalicondrin B, itasetron, jasplakinolide, kahalalide F, lamellarin-N triacetate, lanreotide, leinamycin, lenograstim, lentinan sulfate, leptolstatin, letrozole, leukemia inhibiting factor, leukocyte alpha interferon, leuprolide+estrogen+progesterone, leuprorelin, levamisole, liarozole, linear polyamine analogue, lipophilic disaccharide peptide, lipophilic platinum compounds,

lissoclinamide 7, lobaplatin, lombricine, lometrexol, lonidamine, losoxantrone, lovastatin, loxoribine, lurtotecan, lutetium texaphyrin, lysofylbne, lytic peptides, maitansine, mannostatin A, marimastat, masoprocol, maspin, matrilysin inhibitors, matrix metalloproteinase inhibitors, menogaril, merbarone, meterelin, methioninase, metoclopramide, MIF inhibitor, mifepristone, miltefosine, mirimostim, mismatched double stranded RNA, mitoguazone, mitolactol, mitomycin analogues, mitonafide, mitotoxin fibroblast growth factor-saporin, mitoxantrone, mofarotene, molgramostim, monoclonal antibody, human chorionic gonadotrophin, monophosphoryl lipid A+myobacterium cell wall sk, mopidamol, multiple drug resistance gene inhibitor, multiple tumor suppressor 1 -based therapy, mustard anticancer agent, mycaperoxide B, mycobacterial cell wall extract, myriaporone, N-acetyldinabne, N-substituted benzamides, nafarebn, nagrestip, naloxone+pentazocine, napavin, naphterpin, nartograstim, nedaplatin, nemorubicin, neridronic acid, neutral endopeptidase, nilutamide, nisamycin, nitric oxide modulators, nitroxide antioxidant, nitrullyn, 06-benzylguanine, octreotide, okicenone, oligonucleotides, onapristone, ondansetron, ondansetron, oracin, oral cytokine inducer, ormaplatin, osaterone, oxaliplatin,

oxaunomycin, palauamine, palmitoylrhizoxin, pamidronic acid, panaxytriol, panomifene, parabactin, pazelliptine, pegaspargase, peldesine, pentosan polysulfate sodium, pentostatin, pentrozole, perflubron, perfbsfamide, perillyl alcohol, phenazinomycin, phenylacetate, phosphatase inhibitors, picibanil, pilocarpine hydrochloride, pirarubicin, piritrexim, placetin A, placetin B, plasminogen activator inhibitor, platinum complex, platinum compounds, platinum-triamine complex, porfimer sodium, porfiromycin, prednisone, propyl bis-acridone, prostaglandin J2, proteasome inhibitors, protein A-based immune modulator, protein kinase C inhibitor, protein kinase C inhibitors, microalgal, protein tyrosine phosphatase inhibitors, purine nucleoside phosphorylase inhibitors, purpurins, pyrazoloacridine, pyridoxylated hemoglobin polyoxyethylerie conjugate, raf antagonists, raltitrexed, ramosetron, ras famesyl protein transferase inhibitors, ras inhibitors, ras-GAP inhibitor, retelliptine demethylated, rhenium Re 186 etidronate, rhizoxin, ribozymes, RII retinamide, rogletimide, rohitukine, romurtide, roquinimex, rubiginone Bl, ruboxyl, safmgol, saintopin, SarCNU, sarcophytol A, sargramostim, Sdi 1 mimetics, semustine, senescence derived inhibitor 1, sense oligonucleotides, signal transduction inhibitors, signal transduction modulators, single chain antigen-binding protein, sizofiran, sobuzoxane, sodium borocaptate, sodium phenylacetate, solverol, somatomedin binding protein, sonermin, sparfbsic acid, spicamycin D, spiromustine, splenopentin, spongistatin 1, squalamine, stem cell inhibitor, stem -cell division inhibitors, stipiamide, stromelysin inhibitors, sulfmosine, superactive vasoactive intestinal peptide antagonist, suradista, suramin, swainsonine, synthetic glycosaminoglycans, tallimustine, tamoxifen methiodide, tauromustine, tazarotene, tecogalan sodium, tegafur, tellurapyrylium, telomerase inhibitors, temoporfm, temozolomide, teniposide, tetrachlorodecaoxide, tetrazomine, thabblastine, thiocoraline, thrombopoietin, thrombopoietin mimetic, thymalfasin, thymopoietin receptor agonist, thymotrinan, thyroid stimulating hormone, tin ethyl etiopurpurin, tirapazamine, titanocene bichloride, topsentin, toremifene, totipotent stem cell factor, translation inhibitors, tretinoin, triacetyluridine, triciribine, trimetrexate, triptorebn, tropisetron, turosteride, tyrosine kinase inhibitors, tyrphostins, UBC inhibitors, ubenimex, urogenital sinus-derived growth inhibitory factor, urokinase receptor antagonists, vapreotide, variobn B, vector system, erythrocyte gene therapy, velaresol, veramine, verdins, verteporfm, vinorelbine, vinxaltine, vitaxin, vorozole, zanoterone, zeniplatin, zilascorb, zinostatin stimalamer, mechloroethamine, cyclophosphamide, chlorambucil, busulfan, carmustine, lomusitne, decarbazine, methotrexate, cytarabine, mercaptopurine, thioguanine, pentostatin, mechloroethamine,

cyclophosphamide, chlorambucil, meiphalan, ethylenimine, methylmelamine, hexamethlymelamine, thiotepa, busulfan, carmustine, lomusitne, semustine, streptozocin, decarbazine, fluorouracil, floxouridine, cytarabine, mercaptopurine, thioguanine, pentostatin, erbulozole (also known as R-55104), Dolastatin 10 (also known as DLS-10 and NSC-376128), Mivobulin isethionate (also known as CI-980), Vincristine, NSC-639829, Discodermolide (also known as NVP-XX-A-296), ABT-751 (Abbott, also known as E-7010), Altorhyrtins (such as Altorhyrtin A and Altorhyrtin C), Spongistatins (such as Spongistatin 1, Spongistatin 2, Spongistatin 3, Spongistatin 4, Spongistatin 5, Spongistatin 6,

Spongistatin 7, Spongistatin 8, and Spongistatin 9), Cemadotin hydrochloride (also known as LU-103793 and NSC-D-669356), Epothilones (such as Epothilone A, Epothilone B, Epothilone C (also known as desoxyepothilone A or dEpoA), Epothilone D (also referred to as KOS-862, dEpoB, and

desoxyepothilone B ), Epothilone E, Epothilone F, Epothilone B N-oxide, Epothilone A N-oxide, l6-aza- epothilone B, 2l-aminoepothilone B (also known as BMS-310705), 2l-hydroxyepothilone D (also known as Desoxyepothilone F and dEpoF), 26-fluoroepothilone), Auristatin PE (also known as NSC- 654663), Soblidotin (also known as TZT-1027), LS-4559-P (Pharmacia, also known as LS-4577), LS- 4578 (Pharmacia, also known as LS-477-P), LS-4477 (Pharmacia), LS-4559 (Pharmacia), RPR-l 12378 (Aventis), Vincristine sulfate, DZ-3358 (Daiichi), FR-182877 (Fujisawa, also known as WS-9885B), GS- 164 (Takeda), GS-198 (Takeda), KAR-2 (Hungarian Academy of Sciences), BSF-223651 (BASF, also known as ILX-651 and LU-223651 ), SAH-49960 (Lilly/Novartis), SDZ -268970 (Lilly/Novartis), AM- 97 (Armad/Kyowa Hakko), AM-132 (Armad), AM-138 (Armad/Kyowa Hakko), IDN-5005 (Indena), Cryptophycin 52 (also known as LY -355703), AC-7739 (Ajinomoto, also known as AVE-8063A and CS-39.HCI), AC-7700 (Ajinomoto, also known as AVE-8062, AVE-8062A, CS-39-L-Ser.HCI, and RPR-258062A), Vitilevuamide, Tubulysin A, Canadensol, Centaureidin (also known as NSC-106969), T-138067 (Tularik, also known as T-67, TL-138067 and TI-138067), COBRA-l (Parker Hughes Institute, also known as DDE-261 and WHI-261), H10 (Kansas State University), H16 (Kansas State University), Oncocidin Al (also known as BTO-956 and DIME), DDE-313 (Parker Hughes Institute), Fijianolide B, Laulimalide, SPA -2 (Parker Hughes Institute), SPA-l (Parker Hughes Institute, also known as SPIKET-P), 3-IAABU (Cytoskeleton/Mt. Sinai School of Medicine, also known as MF-569), Narcosine (also known as NSC-5366), Nascapine, D-24851 (Asta Medica), A-105972 (Abbott), Hemiasterlin, 3-BAABU (Cytoskeleton/Mt. Sinai School of Medicine, also known as MF-191), TMPN (Arizona State University), Vanadocene acetylacetonate, T-138026 (Tularik), Monsatrol, lnanocine (also known as NSC-698666), 3-1AABE (Cytoskeleton/Mt. Sinai School of Medicine), A-204197 (Abbott), T- 607 (Tuiarik, also known as T-900607), RPR- 115781 (Aventis), Eleutherobins (such as

Desmethyleleutherobin, Desaetyleleutherobin, lsoeleutherobin A, and Z-Eleutherobin), Caribaeoside, Caribaeolin, Halichondrin B, D-64131 (Asta Medica), D-68144 (Asta Medica), Diazonamide A, A- 293620 (Abbott), NPI-2350 (Nereus), Taccalonolide A, TUB-245 (Aventis), A-259754 (Abbott), Diozostatin, (-)-Phenylahistin (also known as NSCL-96F037), D-68838 (Asta Medica), D-68836 (Asta Medica), Myoseverin B, D-43411 (Zentaris, also known as D-81862), A-289099 (Abbott), A-318315 (Abbott), HTI-286 (also known as SPA-110, trifluoroacetate salt) (Wyeth), D-82317 (Zentaris), D-82318 (Zentaris), SC-12983 (NCI), Resverastatin phosphate sodium, BPR-OY-007 (National Health Research Institutes), and SSR-250411 (Sanofi).

[0137] In some embodiments, a therapeutic agent is an anti-inflammatory agent. In some

embodiments, a therapeutic agent is an anti-TNF agent, an IL-l receptor antagonist, an IL-2 receptor antagonist, a cytotoxic agent, an immunomodulatory agent, an antibiotic, a T-cell co-stimulatory blocker, a B cell depleting agent, an immunosuppressive agent, an alkylating agent, an anti -metabolite, a plant alkaloid, a terpenoids, a topoisomerase inhibitor, an antitumour antibiotic, an antibody, a hormonal therapy, an anti -diabetes agent, a leukotriene inhibitor, or combinations thereof. In some embodiments, a therapeutic agent is selected from: alefacept, efalizumab, methotrexate, acitretin, isotretinoin, hydroxyurea, mycophenolate mofetil, sulfasalazine, 6-Thioguanine, Dovonex, Taclonex, betamethasone, tazarotene, hydroxychloroquine, etanercept, adalimumab, infliximab, abatacept, rituximab, tratuzumab, Anti-CD45 monoclonal antibody AHN-12 (NCI), Iodine-l3 l Anti-Bl Antibody (Corixa Corp.), anti- CD66 monoclonal antibody BW 250/183 (NCI, Southampton General Hospital), anti-CD45 monoclonal antibody (NCI, Baylor College of Medicine), antibody anti-anb3 integrin (NCI), BIW-8962 (BioWa Inc.), Antibody BC8 (NCI), antibody muJ59l (NCI), indium In 111 monoclonal antibody MN-14 (NCI), yttrium Y 90 monoclonal antibody MN-14 (NCI), F105 Monoclonal Antibody (NIAID), Monoclonal Antibody RAV12 (Raven Biotechnologies), CAT-192 (Human Anti-TGF-Betal Monoclonal Antibody, Genzyme), antibody 3F8 (NCI), l77Lu-J59l (Weill Medical College of Cornell University), TB-403 (Bioinvent International AB), anakinra, azathioprine, cyclophosphamide, cyclosporine A, leflunomide, d- penicillamine, amitriptyline, or nortriptyline, chlorambucil, nitrogen mustard, prasterone, LJP 394 (abetimus sodium), LJP 1082 (La Jolla Pharmaceutical), eculizumab, belibumab, rhuCD40L (NIAID), epratuzumab, sirolimus, tacrolimus, pimecrolimus, thalidomide, antithymocyte globulin-equine (Atgam, Pharmacia Upjohn), antithymocyte globulin-rabbit (Thymoglobulin, Genzyme), Muromonab-CD3 (FDA Office of Orphan Products Development), basiliximab, daclizumab, riluzole, cladribine, natalizumab, interferon beta-lb, interferon beta-la, tizanidine, baclofen, mesalazine, asacol, pentasa, mesalamine, balsalazide, olsalazine, 6-mercaptopurine, AIN457 (Anti IL-17 Monoclonal Antibody, Novartis), theophylline, D2E7 (a human anti-TNF mAb from Knoll Pharmaceuticals), Mepolizumab (Anti-IL-5 antibody, SB 240563), Canakinumab (Anti-IL-l Beta Antibody, NIAMS), Anti-IL-2 Receptor Antibody (Daclizumab, NHLBI), CNTO 328 (Anti IL-6 Monoclonal Antibody, Centocor), ACZ885 (fully human anti -interleukin- lbeta monoclonal antibody, Novartis), CNTO 1275 (Fully Human Anti-IL-l2

Monoclonal Antibody, Centocor), (3 S)-N-hydroxy-4-( {4-[(4-hydroxy-2-butynyl)oxy]phenyl} sulfonyl)- 2,2-dimet- hyl-3-thiomorpholine carboxamide (apratastat), golimumab (CNTO 148), Onercept, BG9924 (Biogen Idee), Certolizumab Pegol (CDP870, UCB Pharma), AZD9056 (AstraZeneca), AZD5069 (AstraZeneca), AZD9668 (AstraZeneca), AZD7928 (AstraZeneca), AZD2914 (AstraZeneca), AZD6067 (AstraZeneca), AZD3342 (AstraZeneca), AZD8309 (AstraZeneca), ), [(lR)-3-methyl-l-({(2S)-3-phenyl- 2-[(pyrazin-2-ylcarbonyl)amino]propanoyl}amino)butyl]boronic acid (Bortezomib), AMG-714, (Anti-IL 15 Human Monoclonal Antibody, Amgen), ABT-874 (Anti IL-12 monoclonal antibody, Abbott Labs), MRA(Tocilizumab, an Anti IL-6 Receptor Monoclonal Antibody, Chugai Pharmaceutical), CAT -354 (a human anti-interleukin-l3 monoclonal antibody, Cambridge Antibody Technology, Medlmmune), aspirin, salicylic acid, gentisic acid, choline magnesium salicylate, choline salicylate, choline magnesium salicylate, choline salicylate, magnesium salicylate, sodium salicylate, diflunisal, carprofen, fenoprofen, fenoprofen calcium, flurobiprofen, ibuprofen, ketoprofen, nabutone, ketolorac, ketorolac tromethamine, naproxen, oxaprozin, diclofenac, etodolac, indomethacin, sulindac, tolmetin, meclofenamate, meclofenamate sodium, mefenamic acid, piroxicam, meloxicam, celecoxib, rofecoxib, valdecoxib, parecoxib, etoricoxib, lumiracoxib, CS-502 (Sankyo), JTE-522 (Japan Tobacco Inc.), L-745,337

(Almirall), NS398 (Sigma), betamethasone (Celestone), prednisone (Deltasone), alclometasone, aldosterone, amcinonide, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, cortisone, cortivazol, deflazacort, deoxycorticosterone, desonide, desoximetasone, desoxycortone, dexamethasone, diflorasone, diflucortolone, difluprednate, fluclorolone, fludrocortisone, fludroxycortide, flumetasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin, fluocortolone, fluorometholone, fluperolone, fluprednidene, fluticasone, formocortal, formoterol, halcinonide, halometasone, hydrocortisone, hydrocortisone aceponate, hydrocortisone buteprate, hydrocortisone butyrate, loteprednol, medrysone, meprednisone, methylprednisolone, methylprednisolone aceponate, mometasone furoate, paramethasone, prednicarbate, prednisone, rimexolone, tixocortol, triamcinolone, ulobetasol, Pioglitazone, Rosiglitazone, Glimepiride, Glyburide, Chlorpropamide, Glipizide, Tolbutamide, Tolazamide, Glucophage, Metformin, (glyburide + metformin), Rosiglitazone + metformin, (Rosiglitazone+glimepiride), Exenatide, Insulin, Sitagliptin, (glipizide and metformin), Repaglinide, Acarbose, Nateglinide, Orlistat, cisplatin; carboplatin; oxaliplatin;

mechlorethamine; cyclophosphamide; chlorambucil; vincristine; vinblastine; vinorelbine; vindesine; mercaptopurine; fludarabine; pentostatin; cladribine; 5-fluorouracil (5FU); floxuridine (FUDR); cytosine arabinoside; trimethoprim; pyrimethamine; pemetrexed; paclitaxel; docetaxel; etoposide; teniposide; irinotecan; topotecan; amsacrine; etoposide; etoposide phosphate; teniposide; dactinomycin; doxorubicin; daunorubicin; valrubicine; idarubicine; epirubicin; bleomycin; plicamycin; mitomycin; finasteride;

goserelin; aminoglutethimide; anastrozole; letrozole; vorozole; exemestane; 4-androstene-3,6,l7-trione ("6-OXO"; l,4,6-androstatrien-3,l7-dione (ATD); formestane; testolactone; fadrozole; A-81834 (3-(3- (l,l-dimethylethylthio-5-(quinoline-2- ylmethoxy)- 1 -(4-chloromethylphenyl)indole-2-yl)-2,2- dimethylpropionaldehyde oxime -0-2 -acetic acid; AME103 (Amira); AME803 (Amira); atreleuton; BAU-c-1005 ((R)-(+)-alpha-cyclopentyl-4-(2-quinolinylmethoxy)-Benzeneac etic acid); CJ-13610 (4-(3- (4-(2-Methyl-imidazol-l-yl)-phenylsulfanyl)- phenyl)-tetrahydro-pyran-4-carboxylic acid amide); DG- 031 (DeCode); DG-051 (DeCode); MK886 (l-[(4-chlorophenyl)methyl]3-[(l,l-dimethylethyl)thio]-a,a- dimethyl-5-(l-methylethyl)-lH-indole-2-propanoic acid, sodium salt); MK591 (3-(l-4[(4- chlorophenyl)methyl]-3-[(t-butylthio)-5-((2-quinoly)methoxy) -lH-indole-2]-, dimehtylpropanoic acid); RP64966 ([4-[5-(3-Phenyl-propyl)thiophen-2- yl]butoxy] acetic acid); SA6541 ((R)-S-[[4- (dimethylamino)phenyl]methyl] -N-(3-mercapto-2methyl- 1 -oxopropyl-L-cycteine); SC-56938 (ethyl- 1- [2-[4-(phenylmethyl)phenoxy] ethyl] -4-piperidine- carboxylate); VIA-2291 (Via Pharmaceuticals); WY- 47,288 (2-[(l-naphthalenyloxy)methyl]quinoline); zileuton; ZD-2138 (6-((3-fluoro-5- (tetrahydro-4- methoxy-2H-pyran-4yl)phenoxy)methyl)-l-methyl-2(lH)-quinloli none); doxycycline; or combinations thereof.

[0138] In some embodiments, U is a fragment having the structure of Formula (IA) or Formula (IB):

wherein,

R 2 is -H or optionally substituted Ci-C 8 alkyl;

R 3 is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 4 is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C -€ 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 5 is -H or -CH 3 ;

or R 4 and R 5 jointly form an optionally substituted CGG carbocyclyl;

R 6 is -H or optionally substituted Ci-C 8 alkyl;

R 7 is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3 -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C--C ! 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl; each R 8 is independently selected from -H, -OH, optionally substituted Ci-C 8 alkyl, optionally substituted€ 3 -G 8 carbocyclyl, or -O-optionally substituted Cj-C 8 alkylene;

R 9 is -H or optionally substituted C i -C 8 alkyl;

R 10 is optionally substituted C 6 -Ci 0 aryl or optionally substituted C 3 -C 8 heterocyclyl;

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted C i -C 8 alkyl;

R 11 is -H, optionally substituted Ci-C 20 alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0) t -R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 12 is -C(R 8 ) 2 -C(R 8 ) 2 -(C 6 -C 10 aryl), -C(R 8 ) 2 -C(R 8 ) 2 -(C 3 -C 8 heterocyclyl), or -C(R 8 ) 2 -C(R 8 ) 2 -(C 3 - C 8 carbocyclyl);

R 13 is optionally substituted C i -C 8 alkylene;

R 14 is -H or optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted Cj-C 8 alkyl); each occurrence of R 16 is independently -H, optionally substituted C i -C 8 alkyl, or -(CH 2 ) q -

COOH;

R 18 is -C(R 8 ) 2 -C(R 8 ) 2 -(C 6 -C 10 aryl), -C(R 8 ) 2 -C(R 8 ) 2 -(C 3 -C 8 heterocyclyl), or -C(R 8 ) 2 -C(R 8 ) 2 -(C 3 -

Cs carbocyclyl);

q is an integer ranging between 0 to 6; and

t is an integer ranging between 0 to 6.

[0139] In some embodiments, U is a fragment having the structure of Formula (IA) or Formula (IB):

wherein,

R 2 is -H or optionally substituted Ci-C 8 alkyl;

R 3 is -H, or optionally substituted C | -C 8 alkyl;

R 4 is -H, or optionally substituted C | -C 8 alkyl;

R 5 is -H or -CH 3 ;

or R 4 and R 5 jointly form an optionally substituted C 6 -C 3 carbocyclyl;

R 6 is -H or optionally substituted Ci-C 8 alkyl;

R 7 is -H, optionally substituted Ci-C 8 alkyl, or optionally substituted C -C* carbocyclyl;

each R 8 is independently selected from -H, -OH, optionally substituted Ci-C 8 alkyl, optionally substituted C 3 -C 8 carbocyclyl, or -0-(optionally substituted Ci-C 8 alkyl);

R 9 is -H;

R 10 is optionally substituted C 6 -Ci 0 aryl;

W is -0-;

R 11 is -H; and

R 12 is -C(R 8 ) 2 -C(R 8 ) 2 -(C 6 -C 10 aryl).

Portion Z 2

[0140] In some embodiments, D is an imaging agent. In some embodiments D is Z 2 , wherein Z 2 is an imaging agent. In some embodiments, the imaging agent is a dye. In some embodiments, the imaging agent is a fluorescent moiety. In some embodiments, the fluorescent moiety is selected from: a fluorescent protein, a fluorescent peptide, a fluorescent dye, a fluorescent material or a combination thereof.

[0141] Examples of fluorescent dyes include, but are not limited to, xanthenes (e.g., rhodamines, rhodols and fluoresceins, and their derivatives); bimanes; coumarins and their derivatives (e.g., umbelliferone and aminomethyl coumarins); aromatic amines (e.g., dansyl; squarate dyes); benzofurans; fluorescent cyanines; indocarbocyanines; carbazoles; dicyanomethylene pyranes; polymethine;

oxabenzanthrane; xanthene; pyrylium; carbostyl; perylene; acridone; quinacridone; rubrene; anthracene; coronene; phenanthrecene; pyrene; butadiene; stilbene; porphyrin; pthalocyanine; lanthanide metal chelate complexes; rare-earth metal chelate complexes; and derivatives of such dyes.

[0142] Examples of fluorescein dyes include, but are not limited to, 5-carboxyfluorescein, fluorescein- 5 -isothiocyanate, fluorescein-6-isothiocyanate and 6-carboxyfluorescein.

[0143] Examples of rhodamine dyes include, but are not limited to, tetramethylrhodamine-6- isothiocyanate, 5-carboxytetramethylrhodamine, 5-carboxy rhodol derivatives, tetramethyl and tetraethyl rhodamine, diphenyldimethyl and diphenyldiethyl rhodamine, dinaphthyl rhodamine, and rhodamine 101 sulfonyl chloride (sold under the trade name of TEXAS RED®).

[0144] Examples of cyanine dyes include, but are not limited to, Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7, IRDYE680, Alexa Fluor 750, IRDye800CW, and ICG (Indocyanine greeen).

[0145] Examples of fluorescent peptides include GFP (Green Fluorescent Protein) or derivatives of GFP (e.g., EBFP, EBFP2, Azurite, mKalamal, ECFP, Cerulean, CyPet, YFP, Citrine, Venus, and YPet).

[0146] Fluorescent labels are detected by any suitable method. For example, a fluorescent label may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence, e.g., by microscopy, visual inspection, via photographic film, by the use of electronic detectors such as charge coupled devices (CCDs), photomultipliers, etc.

[0147] In some embodiments, the imaging agent is labeled with a positron-emitting isotope (e.g., 18 F) for positron emission tomography (PET), gamma-ray isotope (e.g., 99m Tc) for single photon emission computed tomography (SPECT), or a paramagnetic molecule or nanoparticle (e.g.,Gd 3+ chelate or coated magnetite nanoparticle) for magnetic resonance imaging (MRI).

[0148] In some embodiments, the imaging agent is labeled with: a gadolinium chelate, an iron oxide particle, a super paramagnetic iron oxide particle, an ultra small paramagnetic particle, a manganese chelate or gallium containing agent.

[0149] Examples of gadolinium chelates include, but are not limited to diethylene triamine pentaacetic acid (DTP A), l,4,7,l0-tetraazacyclododecane-l,4,7,l0-tetraacetic acid (DOTA), and 1,4,7- triazacyclononane-N,N',N"-triacetic acid (NOTA).

[0150] In some embodiments, the imaging agent is a near-infrared fluorophore for near-infra red (near-IR) imaging, a luciferase (firefly, bacterial, or coelenterate) or other luminescent molecule for bioluminescence imaging, or a perfluorocarbon-filled vesicle for ultrasound.

[0151] In some embodiments, the imaging agent is a nuclear probe. In some embodiments, the imaging agent is a SPECT or PET radionuclide probe. In some embodiments, the radionuclide probe is selected from: a technetium chelate, a copper chelate, a radioactive fluorine, a radioactive iodine, and an indium chelate.

[0152] Examples of Tc chelates include, but are not limited to HYNIC, DTPA, and DOTA. [0153] In some embodiments, the imaging agent contains a radioactive moiety, for example a radioactive isotope such as 211 At, 131 1, 125 1, 90 Y, 186 Re, 188 Re, 153 Sm, 212 Bi, 32 P, 64 Cu radioactive isotopes of Lu, and others.

[0154] In some embodiments, Z 2 is a fragment having the structure of Formula (C):

Formula (C); wherein

the dotted lines encircling XX and YY are each independently selected from atoms necessary for the formation of one ring to three fused rings having 4 to 7 atoms in each ring;

at least one atom in the ring comprising C a is an optionally cationic nitrogen;

at least one atom in the ring comprising C b is an optionally cationic nitrogen;

k and j are integers independently selected from 0 to the number of atoms necessary for the formation of XX or YY, with the proviso that k and j cannot both be 0;

each R 23 is independently selected from -H, -OR 34 , -SR 34 , -NR 34 R 34 , halogen, -CN, optionally substituted Ci-C 8 alkyl, optionally substituted C 3~ C g carbocyclyl, optionally substituted C 3 -C 8 heterocyclyl, optionally substituted C 6 -Ci 0 aryl, and optionally substituted C 6 -Ci 0 heteroaryl;

two R 23 groups, together with the atoms to which they are attached, can be optionally joined to form a ring;

h is an integer selected from 0, 1, 2, 3 and 4;

each R 35 and R 36 is independently selected from -H, optionally substituted Ci-C 8 alkyl, optionally substituted C -C 8 carbocyclyl, optionally substituted C 3 -C 8 heterocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 6 -Ci 0 heteroaryl, halogen, -S0 3 ,-S0 3 H, -N0 2 ~ , -CN, -P(0)(0R 24 )(0R 25 ), - D^ 26 , -NR 27 R 28 and -C(D 2 )R 29 ;

R 37 is selected from optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene- C(O)-, optionally substituted Ci-C 8 alkylene-C(0)NHCH 2 CH 2 NH-, optionally substituted Ci-C 8 alkylene-C(0)-(NHCH 2 C(0)) n -, -(CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 -NH) n -, - (NH-CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NH) n -(CH 2 ) m C(0)-;

each D 1 is independently selected from -O- and -S-;

each D 2 is independently selected from -O-, -S- and -NH-;

each R 24 and R 25 is independently selected from H and optionally substituted Ci-C 4 alkyl;

at least one of R 24 and R 25 is -H;

each R 26. R 27 and R 28 is independently selected from -H and optionally substituted C i -C 8 alkyl; each R 27 and R 28 , together with the nitrogen to which they are attached, can be optionally joined to form a member selected from a reactive functional group, -NHNH 2 , -N=N=N, -N=C=S and -N=C=0; each R 29 is independently selected from -H, optionally substituted C | -C 8 alkyl, a reactive functional group, -NR 30 R 31 and -OR 32 ;

each R 30 and R 31 is independently selected from -H and optionally substituted C | -C 8 alkyl; each R 32 is independently selected from -H, optionally substituted C | -C 8 alkyl, optionally substituted C -C 8 carbocyclyl, optionally substituted C 3 -C 8 heterocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 6 -Ci 0 heteroaryl and -C(0)R 33 ;

each R 33 is independently an optionally substituted Ci-C 8 alkyl; and

each R 34 is independently selected from -H and optionally substituted Ci-C 8 alkyl.

[0155] In some embodiments, Z 2 is a cyanine based imaging agent fragment having the structure of Formula (IC):

wherein,

each R 19 and R 20 are independently -H, -S0 3 ~ , -S0 3 H or Ci-C 8 alkyl, wherein at least one of R 19 and R 20 is S0 3 ;

R 21 is -H or Ci-C 8 alkyl; and

p is an integer ranging from 0 to 3.

[0156] In some embodiments, p is 0. In some embodiments, p is 1. In some embodiments, p is 2. In some embodiments, p is 3.

[0157] In some embodiments, Z 2 is the fragment

In some embodiments, Z 2 is the fragment Portion Y

[0158] In some embodiments, Y comprises 1-5 amino acids, e.g., 1, 2, 3, 4, or 5 amino acids. In some embodiments Y comprises 1-3 amino acids, e.g., 1, 2, or 3 amino acids. In some embodiments Y comprises 1-3 L-amino acids (e.g., 1, 2, or 3 L-amino acids), 1-3 D-amino acids (e.g., 1, 2, or 3 D-amino acids), or in which the 1-3 amino acids are a mixture of D- and L-amino acids.

[0159] In some embodiments, the amino acids are selected from polar residues, nonpolar residues, basic residues, or acidic residues. Exemplary polar residues comprise Tyr, Ser, Thr, Asn, Gln, and Cys. Exemplary nonpolar residues comprise Trp, Phe, Gly, Ala, Val, He, Leu, Met, and Pro. Exemplary basic residues comprise Lys, Arg, and His. Exemplary acidic residues comprise Asp and Glu. In some instances, Y comprises a polar residue, a nonpolar residue, a basic residue, an acidic residue, or a combination thereof.

[0160] In some embodiments, Y are selected from: glycine, alanine, valine, serine, threonine, arginine, lysine, aspartic acid, or glutamic acid. In some cases, Y comprises one or more of glycine, alanine, valine, serine, threonine, arginine, lysine, aspartic acid, or glutamic acid. In some embodiments, Y comprises one or more glycine residues. In some embodiments, Y comprises one or more alanine residues. In some embodiments, Y comprises one or more valine residues. In some embodiments, Y comprises one or more serine residues. In some embodiments, Y comprises one or more threonine residues. In some embodiments, Y comprises one or more aspartic acid residues. In some embodiments,

Y comprises one or more glutamic acid residues. In some embodiments, Y comprises one or more lysine residues. In some embodiments, Y comprises one or more arginine residues.

[0161] In some embodiments, Y comprises 1-3 glycine residues, e.g., 1, 2, or 3 glycine residues.

[0162] In some instances, Y comprises 1-3 alanine residues, e.g., 1, 2, or 3 alanine residues. In some instances, Y comprises 1-3 L-alanine residues, e.g., 1, 2, or 3 L-alanine residues. In other instances, Y comprises 1-3 D-alanine residues, e.g., 1, 2, or 3 D-alanine residues. In additional instances, Y comprises 2 or 3 alanine residues, in which the alanine residues are a mixture of L- and D-alanine residues. In some embodiments, Y is an amide. In some embodiments, Y is an amino substituted Ci-C 8 alkylene. In some embodiments, Y is a Ci-C 8 alkoxylene.

[0163] In some embodiments, Y is a bond, -NHCH 2 C(0)-, -NHCH(CH 3 )C(0)-, - NHCH(CH 2 CH 3 )C(0)-, -NHCH(CF 3 )C(0)-, -NHCH(CH(CH 3 ) 2 )C(0)-, -NHCH(CH(OH)CH 3 )C(0)-, - NHCH(CH 2 OH)C(0)-, -NHCH 2 S(0) 2 -, -NHCH 2 CH 2 -,-NHCH(CH 3 )CH 2 -, -OCH 2 CH 2 -, or - NHCH 2 C(0)NHCH 2 CH 2 NH-. In some embodiments, Y is a bond. In some embodiments, Y is - NHCH 2 C(0)-. In some embodiments, Y is -NHCH(CH 3 )C(0)-. In some embodiments, Y is - NHCH(CH 2 CH 3 )C(0)-. In some embodiments, Y is -NHCH(CF 3 )C(0)-. In some embodiments, Y is - NHCH 2 S(0) 2 -. In some embodiments, Y is -NHCH 2 CH 2 -. In some embodiments, Y is -NHCH(CH 3 )CH 2 - . In some embodiments, Y is -OCH 2 CH 2 -. In some embodiments, Y is -NHCH 2 C(0)NHCH 2 CH 2 NH-. In some embodiemtns, Y is -NHCH(CH(CH 3 ) 2 )C(0)-. In some embodiemtns, Y is - NHCH(CH(OH)CH 3 )C(0)-. In some embodiemtns, Y is -NHCH(CH 2 OH)C(0)-. [0164] In some embodiments, Y is a bond, -NHCH 2 C(0)-, -NHCHR'C(O)-. -NHCH 2 S(0) 2 -, - NHCH 2 CH 2 -, -NHCHR'CFF-. -OCH 2 CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 1 is -CH 3 , - CH 2 CH 3 , -CF 3 , -CH(CH 3 ) 2 , -CH(OH)CH 3 , -CH 2 OH, -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 [0165] In some embodiments, Y is -NHCH 2 C(0)-, -NHCHR'C(O)-. -NHCH 2 S(0) 2 -, -NHCH 2 CH 2 -, - NHCH^CHz-, -OCH 2 CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 1 is -CH 3 , -CH 2 CH 3 , -CF 3 ,- CH(CH 3 ) 2 , -CH(OH)CH 3 , -CH 2 OH, -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 .

[0166] In some embodiments, Y is a bond.

[0167] In some embodiments Y is a bond, -NHCH 2 C(0)-, -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 2B is -H, -halogen, - CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , -CH 2 CH 2 C(0)0H, or - CH 2 CH 2 CH 2 NHC(=NH)NH 2 ; and R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , - CH(CH 3 ) 2 , -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2

[0168] In some embodiments, Y is a modifier In some embodiments, Y modifies a therapeutic agent U or Y modifies an imaging agent Z 2 In some embodiments, Y modifies a therapeutic agent U . In some embodiments, Y modifies an imaging agent Z 2 . In some embodiments, the modification of U or Z 2 by Y results in a modulation in the pharmacokinetics of therapeutic agent U or imaging agent Z 2 .

Portion O

[0169] In some embodiments, Q is a linker. In some embodiments, Q is -valine-citrulline-. In some embodiments, Q is -phenylalanine-citrulline-. In some embodiments, Q is -threonine -citrulline-. In some embodiments, Q is -tryptophan-citrulline-.

[0170] In some embodiments, Q is -valine-lysine-. In some embodiments, Q is -phenylalanine -lysine -. In some embodiments, Q is -threonine-lysine -. In some embodiments, Q is -tryptophan-lysine -.

[0171] In some embodiments, Q is -valine-alanine-. In some embodiments, Q is -phenylalanine - alanine -. In some embodiments, Q is -threonine-alanine -. In some embodiments, Q is -tryptophan- alanine -.

[0172] In some embodiments, Q is a bond.

[0173] In some embodiments, Q is a bond or selected from the following group:

wherein,

R 1A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted€>€ ¾ carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3~ C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted C ,-C 8 alkyl, -CH 2 CH 2 CH 2 CH 2 NH 2 or -CH 2 CH 2 CH 2 NHC(0)NH 2 .

[0174] In some embodiments, Q is selected from the following group:

[0175] In some embodiments, Q is a bond. In some embodiments,

some embodiments, some embodiments, Q is some embodiments, some embodiments,

some embodiments, some embodiments, In some embodiments, some embodiments, Q is

[0176] In some embodiments, R 1A is -H. In some embodiments, R 1A is optionally substituted CVC alkyl. In some embodiments, R 1A is optionally substituted CVC S carbocyclyl. In some embodiments, R 1A is optionally substituted C 6 -Ci 0 aryl. In some embodiments, R 1A is optionally substituted C 7 -Ci 2 aralkyl.

In some embodiments, R 1A is optionally substituted C 3 -C 8 heterocyclyl [0177] In some embodiments, R 2A is -H. In some embodiments, R 2A is optionally substituted Ci-C 8 alkyl. In some embodiments, R 2A is optionally substituted C 3~ C ¾ carbocyclyl. In some embodiments, R 2A is optionally substituted C 6 -Ci 0 aryl. In some embodiments, R 2A is optionally substituted C 7 -Ci 2 aralkyl.

In some embodiments, R 2A is optionally substituted C 3 -C 8 heterocyclyl. In some embodiments, R 2A is amino substituted C | -C 8 alkyl. In some embodiments, R 2A is -CH 2 CH 2 CH 2 CH 2 NH 2 . In some

embodiments, R 2A is -CH 2 CH 2 CH 2 NHC(0)NH 2 . In some embodiments R 2A is - CH 2 CH 2 CH 2 NHC(=NH)NH 2 .

Portion T

[0178] In some embodiments, T is a spacer. In some embodiments, T is an optionally substituted Ci- C 8 alkylene, optionally substituted C i -C 8 alkylene-C(O)-, optionally substituted C 3 -C 8 carbocyclylene, optionally substituted C 3 -C 8 carbocyclylene-C(O)-, optionally substituted C | -C 8 alkylene- C(0)NHCH 2 C(0)-, optionally substituted C i -C 8 alkylene-C(0)-(NHCH 2 C(0) n -, optionally substituted C 6 -Cio arylene, optionally substituted C 6 -Ci 0 arylene -C(O)-, -(CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n - (CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 -CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B - CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-, wherein each R 1B is independently is -H, -CH 3 , - CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;. In some embodiments, each n is independently an integer ranging from 1 to 30 In some embodiments, each n is independently an integer ranging from 1 to 25 In some

embodiments, each n is independently an integer ranging from 1 to 20 In some embodiments, each m is independently an integer ranging from 1 to 15. In some embodiments, each m is independently an integer ranging from 1 to 10. In some embodiments, each m is independently an integer ranging from 1 to 8. In some embodiments, each m is independently an integer ranging from 1 to 5.

[0179] In some embodiments, T is an optionally substituted Ci-C 8 alkylene. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)-. In some embodiments, T is an optionally substituted carbocyclyl. In some embodiments, T is an optionally substituted ( : ··( x carbocyclyl-C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(0)NHCH 2 C(0)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(0)-(NHCH 2 C(0) n -. In some embodiments, T is an optionally substituted C 6 -Ci 0 arylene. In some embodiments, T is an optionally substituted C 6 -Ci 0 arylene -C(O)-. In some embodiments, T is -(CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)- or optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-. In some embodiments, T is -(CH 2 -CH 2 -NR 1B ) n -. In some embodiments T is -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -. In some embodiments T is -(CH 2 -CH 2 -NR 1B ) n - (CH 2 ) m C(0)-. In some embodiments, R 1B is -H. In some embodiments, R 1B is -CH 3 . In some

embodiments, R 1B is -CH 2 CH 3 . In some embodiments, R 1B is -CH 2 CH 2 NH 2 .In some embodiments, each n is independently an integer ranging from 1 to 30. In some embodiments, each n is independently an integer ranging from 1 to 25. In some embodiments, each n is independently an integer ranging from 1 to 20. In some embodiments, each m is independently an integer ranging from 1 to 15. In some

embodiments, each m is independently an integer ranging from 1 to 10. In some embodiments, each m is independently an integer ranging from 1 to 8. In some embodiments, each m is independently an integer ranging from 1 to 5.

Portion G

[0180] In some embodiments, G is a substituent that is capable of forming a bond with a nucleophile. A nucleophile is a polarized atom or molecule with at least a partial negative charge. In some embodiments, G is a Michael acceptor. A Michael acceptor is an electrophilic substituent capable of forming a bond with a nucleophile. In some embodiments, G is a Michael acceptor and capable of forming a bond with a Michael donor through a chemical reaction known as a Michael addition. In some embodiments, G is a substituent that contains a carbon atom exhibiting a partial positive charge. In some embodiments, G is a substituent capable of forming a bond with an atom or molecule exhibiting an at least partially anionic charge. In some embodiments, G is a substituent capable of forming a bond with an atom or molecule exhibiting an anionic charge. In some embodiments, G is a substituent capable of forming a bond through a nucleophilic addition. In some embodiments, G is an electrophile.

[0181] In some embodiments, the substituent to be added to G through nucleophilic addition contains a thiol. In some embodiments, the substituent to be added to G through nucleophilic addition contains an amine. In some embodiments, the substituent to be added to G through nucleophilic addition contains an alcohol. In some embodiments, the substituent to be added to G through nucleophilic addition contains an alkoxide. In some embodiments, the substituent to be added to G through nucleophilic addition contains an ester. In some embodiments, the substituent to be added to G through nucleophilic addition contains a carboxylic acid. In some embodiments, the substituent to be added to G through nucleophilic addition contains a phosphate. In some embodiments, the substituent to be added to G through nucleophilic addition contains a selenol. In some embodiments, the substituent to be added to G through nucleophilic addition contains a carbanion or a carbon atom with partial negative polarity.

[0182] In some embodiments, G is selected from the following substituents:

wherein wherein each X is independently -

Cl, -Br, -I, or -S-phenyl.

[0183] In some embodiments, G is selected from the following substituents:

some embodiments, G is O . In some embodiments, G is O . In some embodiments,

G is H in some embodiments, G is H . In some embodiments, G is H o

. In some embodiments, G i . x-Al . In some embodiments, G isc . In some

O embodiments, G is AAl . In some embodiments, G is . In some embodiments, G is

Portion G When Bound to M

[0184] In some embodiments, G is bound to M. In some embodiments, G is the substituent formed from a nucleophilic addition.

[0185] In some embodiments, G is bound to M. In some embodiments, G is selected from the following substituents:

wherein

J is -O-, -S-, -C(R 22 ) 2 - or -NR 22 -, wherein each R 22 is independently H or optionally substituted Ci-C 8 alkyl. In some embodiments, J is -O-, -NH- and -S-.

[0186] In some embodiments, G is bound to M. In some embodiments, some

embodiments, some embodiments, some embodiments, , . In some embodiments, G is

some embodiments, G is . In some embodiments, G is

^ n l

. some embodiments, G is * J O . In some embodiments, G is

OH in some embodiments, G is OH

[0187] In some embodiments, J is -0-. In some embodiments, J is -S-. In some embodiments, J is - C(R 22 ) 2 -. In some embodiments, J is -NR 22 -.

[0188] In some embodiments -R 22 - is -H. In some embodiments -R 22 - is optionally substituted Ci-C 8 alkyl.

Portion M [0189] In some embodiments, M is a carrier. In some embodiments, the carrier is selected from a macromolecule such as a protein, a synthetic or natural polymer, or a dendrimer. In some embodiments, the carrier is selected from dextran, a PEG polymer (e.g., a PEG polymer having an average molecular weight of approximately 0.5kDa (PEG 0.5kDa), approximately lkDa (PEG lkDa), approximately 2kDa (PEG 2kDa), approximately (PEG 3kDa), approximately 4kDa (PEG 4kDa), approximately 5kDa (PEG 5kDa), approximately lOkDa (PEG lOkDa), approximately l2kDa (PEG l2kDa), approximately l5kDa (PEG l5kDa), approximately 20kDa (PEG 20kDa), approximately 30kDa (PEG 30kDa), or

approximately 40kDa (PEG 40kDa)), albumin, or a combination thereof. In some embodiments, the carrier is a PEG polymer.

[0190] Polymers are characterized by a distribution of molecular weights, and, as such, the molecular weight, presented herein for polymers, is only an approximate average molecular weight of a distribution of molecular weights of individual polymers. Unless stated otherwise, the molecular weight of a polymeric component will have a typical (i.e., as known in the art) error and standard deviation.

[0191] In some embodiments, the molecular weight of a polyethylene glycol substitutent (PEG) is about 200; 300; 400; 500; 600; 700; 800; 900; 1000; 1100; 1200; 1300; 1400; 1450; 1500; 1600; 1700; 1800; 1900; 2000; 2100; 2200; 2300; 2400; 2500; 2600; 2700; 2800; 2900; 3000; 3250; 3350; 3500; 3750; 4000; 4250; 4500; 4600; 4750; 5000; 5500, 6000; 6500, 7000; 7500, 8000; 10,000; 12,000;

20,000; 35,000; 40,000; 50,000; 60,000; or 100,000 Da.

[0192] In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 500 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 1,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 2,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 3,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 4,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 5,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 10,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 15,000 Daltons. In some embodimens, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 20,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 25,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 30,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 35,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 40,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 45,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 50,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of at least 100,000 Daltons.

[0193] In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of approximately 500 to approximately 100,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of approximately 1,000 to approximately 50,000 Daltons. In some embodiments, M is a carrier comprising a polyethylene glycol substituent with a substituent mass of approximately 2,000 to approximately 40,000 Daltons.

[0194] In some embodiments, M is a discrete PEG, in which the discrete PEG is a polymeric PEG comprising more than one repeating ethylene oxide units. In some instances, thea discrete PEG (dPEG) comprises from 2 to 60, from 2 to 50, or from 2 to 48 repeating ethylene oxide units. In some instances, a dPEG comprises about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 35, 40, 42, 48, 50 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 2 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 3 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 4 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 5 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 6 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 7 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 8 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 9 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 10 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 11 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 12 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 13 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 14 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 15 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 16 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 17 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 18 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 19 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 20 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 22 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 24 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 26 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 28 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 30 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 35 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 40 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 42 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 48 or more repeating ethylene oxide units. In some instances, a dPEG comprises about 50 or more repeating ethylene oxide units. In some cases, a dPEG is synthesized as a single molecular weight compound from pure (e.g., about 95%, 98%, 99%, or 99.5%) staring material in a step-wise fashion. In some cases, a dPEG has a specific molecular weight, rather than an average molecular weight. In some cases, a dPEG described herein is a dPEG from Quanta Biodesign, LMD.

[0195] In some embodiments, a carrier modulates plasma half-life of a selective delivery molecule disclosed herein. In some embodiments, a carrier modulates solubility of a selective delivery molecule disclosed herein. In some embodiments, a carrier modulates bio-distribution of a selective delivery molecule disclosed herein.

[0196] In some embodiments, a carrier decreases uptake of a selective delivery molecule by non-target cells or tissues. In some embodiments, a carrier decreases uptake of a selective delivery molecule into cartilage. In some embodiments, a carrier decreases uptake of a selective delivery molecule into joints relative to target tissue.

[0197] In some embodiments, a carrier increases uptake of a selective delivery molecule by target cells or tissues. In some embodiments, a carrier decreases uptake of a selective delivery molecule into the liver relative to target tissue. In some embodiments, a carrier decreases uptake of a selective delivery molecule into kidneys. In some embodiments, a carrier enhances uptake into cancer tissue. In some embodiments, a carrier enhances uptake into lymphatic channels and/or lymph nodes.

[0198] In some embodiments, a carrier increases plasma half-life by reducing glomerular filtration. In some embodiments, a carrier modulates plasma half-life by increasing or decreases metabolism or protease degradation. In some embodiments, a carrier increases tumor uptake due to enhanced permeability and retention (EPR) of tumor vasculature. In some embodiments, a carrier increases the aqueous solubility of a selective delivery molecule.

[0199] In some embodiments, M is selected from a protein, a synthetic or natural polymer, or a dendrimer. In some embodiments, M is selected from dextran, a PEG polymer (e.g., a PEG polymer having an average molecular weight of approximately 0.5kDa (PEG 0.5kDa), approximately lkDa (PEG lkDa), approximately 2kDa (PEG 2kDa), approximately (PEG 3kDa), approximately 4kDa (PEG 4kDa), approximately 5kDa (PEG 5kDa), approximately lOkDa (PEG lOkDa), approximately l2kDa (PEG l2kDa), approximately l5kDa (PEG l5kDa), approximately 20kDa (PEG 20kDa), approximately 30kDa (PEG 30kDa), or approximately 40kDa (PEG 40kDa)), albumin, or a combination thereof. In some embodiments, M is a PEG polymer. The PEG groups are polydisperse and have a distribution of molecular weights. Thus, any characterization of a PEG group should be interpreted in light of the polydispersity of PEG, unless otherwise stated.

[0200] In some embodiments, M is an albumin protein. In some embodiments, M is mouse serum albumin. In other embodiments, M is human serum albumin. In certain instances, albumin is excluded from the glomerular filtrate under normal physiological conditions. In some embodiments, the G comprises a reactive group such as maleimide that forms a covalent conjugate with an albumin. A selective delivery molecule comprising albumin results in enhanced accumulation of cleaved selective delivery molecules in tumors in a cleavage dependent manner. In some embodiments, albumin conjugates have good pharmacokinetic properties. Albumin is a carrier for tumor targeting because it accumulates in solid tumors due to the pathophysiology of tumor tissue, characterized by a high metabolic turnover, angiogenesis, hypervasculature, a defective vascular architecture and an impaired lymphatic drainage. The unique free sulfhydryl group (Cys-34) of albumin, which is not present in the majority of circulating serum proteins, is accessible for selective modifications. Albumin -drug conjugates show improved the pharmacokinetic profiles. However, albumin conjugates have limited tumor penetration and distribution due to their big molecular size and the tumor tissue’s microenvironment, such as increased interstitial fluid pressure and dense extracellular matrix. In some embodiments, thiol- reactive SDMs provided herein form albumin conjugates in vivo. In some embodiments, the albumin carrier increases the drug’s tumor penetration. In some embodiments, the albumin carrier improves the drug’s distribution and activity. In some embodiments, after injected into blood stream, thiol -reactive SDMs react with the free Cys34 thiol of the circulating albumin. The albumin-SDM conjugate is then transported and accumulated in the tumor tissues.

[0201] In some embodiments of the disclosure, is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula (III):

M-G-T-Q-Y-D (III).

[0202] In some embodiments of Formula (

[0203] Disclosed here are compounds, or a pharmaceutically acceptable salts thereof, having the structure of Formula (IV):

G-T-Q-Y-U (IV)

wherein,

G is selected from the following substituents:

T is an optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C carbocyclylene, optionally substituted CYC S carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)NHCH 2 C(0)-, optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0)) n -, optionally substituted C 6 -Ci 0 arylene, optionally substituted C 6 -Ci 0 arylene -C(O)-, - (CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-;

each R 1B is independently -H, -CH 3 , -CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R 1A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3~ C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted Ci-C 8 alkyl, -C H 2 C H 2 CH 2 CH 2 N H 2 -CH2CH 2 CH 2 NHC(=NH)NH2, or - CH 2 CH 2 CH 2 NHC(0)NH 2 ;

Y is a bond, -NHCH 2 C(0)-, -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, - NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-;

R 2B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , -CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2;

U is a fragment having the structure of Formula (IV A) or Formula (IVB):

wherein,

R 2 is -H or optionally substituted Ci-C 8 alkyl;

R 3 is -H, or optionally substituted C 3 -C 8 alkyl;

R 4 is -H, or optionally substituted C 3 -C 8 alkyl;

R 5 is -H or -CH 3 ;

or R 4 and R 5 jointly form an optionally substituted C 3 -C 8 carbocyclyl;

R 6 is -H or optionally substituted C i -C 8 alkyl;

R 7 is -H, optionally substituted C i -C 8 alkyl, or optionally substituted C 3~ C 8 carbocyclyl;

each R 8 is independently selected from -H, -OH, optionally substituted Cj-C 8 alkyl, optionally substituted C -C 8 carbocyclyl, or -0-(optionally substituted Cj-C 8 alkyl)-;

R 9 is -H;

R 10 is optionally substituted C 6 -Ci 0 aryl;

W is -0-;

R 11 is -H; and

R 12 is -C(R 8 ) 2 -C(R 8 ) 2 -(C 6 -C 10 aryl).

[0204] In some embodiments, Y is a bond. In some embodiments, Y is -NHCH 2 C(0)-, -NHCH 2 CH 2 - ,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, or -NHCR 2B R 3B CH 2 -. In some embodiments, Y is, - NHCR 2B R 3B C(0)-, or -NHCR 2B R 3B CH 2 -. In some embodiments, Y is -NHCH 2 CH 2 -, -NHCH 2 C(0)- or - NHCH(CH 3 )C(0)-. In some embodiments, Q is a bond. In some embodiments, Q and Y are a bond.

[0205] In some embodiments, Q is selected from the group consisting of:

[0206] In some embodiments, Q is selected from the group consisting of:

[0207] In some embodiments, R 2B is -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,- CH(CH 3 ) 2 , -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 . [0208] In some embodiments, Q is selected from the group consisting of:

[0210] In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted€ ? -C 8 carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)-(NHCH 2 C(0) n -, optionally substituted C 6 -Ci 0 arylene -C(O)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -,-(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C 3 -C 3 carbocyclylene-C(O)-, optionally substituted C 6 -Ci 0 arylene -C(O)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)- or optionally substituted C 6 -Ci 0 arylene -C(O)-. In some embodiments, T is an optionally substituted Ci-C 8 alkylene-C(O)-. In some embodiments, T is selected from the group consisting of: some embodiments, T is In some embodiments, T is an optionally substituted C 6 -Cio arylene -C(O)-. In some embodiments, T is some embodiments, G is selected from the group consisting of:

some embodiments, G is selected from the group consisting of:

some embodiments, U is monomethyl auristatin E (MMAE). In some

embodiments, U is monomethyl auristatin E (MMAF). In some embodiments,

Y is -NHCH 2 CH 2 -, -NHCH 2 C(0)- or -NHCH(CH 3 )C(0)-; and

U is MMAE or MMAF. [0211] In some embodiments, Y is -NHCH 2 CH 2 . In some embodiments, Y is -NHCH 2 C(0)-. In some embodiments, Y is -NHCH(CH 3 )C(0). In some embodiments, U is MMAF. In some embodiments, U is MMAF.

[0212] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (V):

G-T-Q-C (V)

Portion C

[0213] In some embodiments, C is a small molecule cytotoxic agent. In some embodiments, a small molecule cytotoxic agent is a derivative of actinomycin; bleomycin; bortezomib; daunorubicin;

docetaxel; doxifluridine; doxorubicin; epirubicin; epothilone; etoposide; irinotecan; paclitaxel;

teniposide; topotecan; valrubicin; vinblastine; vincristine; vindesine; vinorelbine, desoxyvincaminol, vincaminol, vincamajine, vineridine, vinbumine, vinpocetine, vincamine, 2-methoxyestradiol, chalcones, colchicine, combretastatin, dictyostatin, discodermolide, eleutherobin, laulimalide, peloruside, podophyllotoxin, taxane, cryptophycin, halichondrin, maytansine, phomopsin, rhizoxin, spongistatin, tubulysin, vinca alkaloid, noscapinoid, auristatin, dolastain, ombrabulin, epothilone B, patupilone, ixabepilone, sagopilone, ansamitocin, auristatin E (AE), auristatin F (AF), auristatin E5-benzoylvaleric acid ester (AEVB), monomethyl auristatin E (MMAE), monomethyl auristatin F (MMAF), monomethyl auristatin D (MMAD), auristatin PE, auristatin PYE, amsacrine, anthracycline, camptothecin, duocarmycin, enediyne, indolinobenzodiazepine, netropsin, idarubicin, mitomycin-C, dactinomycin, mithramycin, nemorubicin, pixantrone, sabarubicin, silatecan, cositecan, exatecan, lurtotecan, gimatecan, belotecan, rubitecan, duocarmycin A, duocarmycin Bl, duocarmycin B2, duocarmycin Cl, duocarmycin C2, duocarmycin D, duocarmycin SA, calicheamicin, esperamicin, dynemicin A, pyrrolobenzodiazepine, pyrrolobenzodiazepine dimer anthramycin, abbeymycin, chicamycin, mazethramycin, neothramycins A, neothramycin B, porothramycin, prothracarcin, sibanomicin, sibiromycin, or tomaymycin.

[0214] In some embodiments, a cytotoxin is a derivative of a microtubule disrupting agent, dolastatin, auristatin, DNA modifying agent, or pyrrolobenzodiazepine.

Microtubule disrupting agent

[0215] In some embodiments, the small molecule cytotoxic agent comprises a microtubule disrupting agent. Exemplary microtubule disrupting agents include, but are not limited to, 2-methoxyestradiol, chalcones, colchicine, combretastatin, dictyostatin, discodermolide, eleutherobin, epothilone, laulimalide, peloruside, podophyllotoxin, taxane, cryptophycin, halichondrin, maytansine, phomopsin, rhizoxin, spongistatin, tubulysin, vinca alkaloid, noscapinoid, auristatin, dolastain, or derivatives or analogs thereof. In some embodiments, the small molecule cytotoxic agent is combretastatin or a derivative or analog thereof. In some embodiments, an analog of combretastatin is ombrabulin. In some embodiments, the epothilone is epothilone B, patupilone, ixabepilone, sagopilone, BMS-310705, or BMS-247550. In some embodiments, the tubulysin is a tubulysin analog or derivative such as described in U.S. Patent Nos. 8580820 and 8980833 and in U.S. Publication Nos. 20130217638, 20130224228, and 201400363454. In some embodiments, the maytansine is a maytansinoid. In some embodiments, the maytansinoid is DM1, DM4, or ansamitocin. In some embodiments, the maytansinoid is DM1. In some embodiments, the maytansinoid is DM4. In some embodiments, the maytansinoid is ansamitocin. In some embodiments, the maytansinoid is a maytansionid derivative or analog such as described in U.S. Patent Nos. 5208020, 5416064, 7276497, and 6716821 or U.S. Publication Nos. 2013029900 and US20130323268. In some embodiments, the taxane is paclitaxel or docetaxel. In some embodiments, the vinca alkaloid is vinblastine, vincristine, vindesine, vinorelbine, desoxyvincaminol, vincaminol, vincamajine, vineridine, vinbumine, vinpocetine, or vincamine.

Dolastatin and Auristatin

[0216] In some embodiments, the small molecule cytotoxic agent is a dolastatin, or a derivative or analog thereof. In some embodiments, the dolastatin is dolastatin 10 or dolastatin 15, or derivatives or analogs thereof. In some embodiments, the dolastatin 10 analog is auristatin, soblidotin, symplostatin 1, or symplostatin 3. In some embodiments, the dolastatin 10 analog is auristatin or an auristatin derivative. In some embodiments, the auristatin or auristatin derivative is auristatin E (AE), auristatin F (AF), auristatin E5 -benzoyl valeric acid ester (AEVB), monomethyl auristatin E (MMAE), monomethyl auristatin F (MMAF), or monomethyl auristatin D (MMAD), auristatin PE, or auristatin PYE. In some embodiments, the auristatin derivative is monomethyl auristatin E (MMAE). In some embodiments, the auristatin derivative is monomethyl auristatin F (MMAF). In some embodiments, the auristatin is an auristatin derivative or analog such as described in U.S. Patent No. 6884869, 7659241, 7498298, 7964566, 7750116, 8288352, 8703714 and 8871720. In some embodiments, the dolastatin 15 analog is cemadotin or tasidotin.

DNA modifying agent

[0217] In some embodiments, the small molecule cytotoxic agent comprises a DNA modifying agent. In some embodiments, the DNA modifying agent comprises amsacrine, anthracycline, camptothecin, doxorubicin, duocarmycin, enediyne, etoposide, indolinobenzodiazepine, netropsin, teniposide, pyrrolobenzodiazepine, or derivatives or analogs thereof. In some embodiments, the anthracycline is doxorubicin, daunorubicin, epirubicin, idarubicin, mitomycin -C, dactinomycin, mithramycin, nemorubicin, pixantrone, sabarubicin, or valrubicin. In some embodiments, the analog of camptothecin is topotecan, irinotecan, silatecan, cositecan, exatecan, lurtotecan, gimatecan, belotecan, rubitecan, or SN-38. In some embodiments, the duocarmycin is duocarmycin A, duocarmycin Bl, duocarmycin B2, duocarmycin Cl, duocarmycin C2, duocarmycin D, duocarmycin SA, or CC-1065. In some

embodiments, the enediyne is a calicheamicin, esperamicin, or dynemicin A. Pyrrolobenzodiazepine .

[0218] Pyrrolobenzodiazepine (PBDs) are a class of sequence -selective DNA minor-groove binding crosslinking agents. PBD dimers are particularly potent because of their cell cycle -independent activity and because their integration minimally distorts DNA, increasing the likelihood of evasion of DNA damage repair responses.

[0219] In some embodiments, the small molecule cytotoxic agent is pyrrolobenzodiazepine. In some embodiments, the pyrrolobenzodiazepine is anthramycin, abbeymycin, chicamycin, DC-81, mazethramycin, neothramycins A, neothramycin B, porothramycin, prothracarcin, sibanomicin (DC- 102), sibiromycin, or tomaymycin. In some embodiments, the pyrrolobenzodiazepine is a tomaymycin derivative, such as described in U.S. Patent Nos. 8404678 and 8163736. In some embodiments, the pyrrolobenzodiazepine is such as described in U.S. Patent Nos. 8426402, 8802667, 8809320, 6562806, 6608192, 7704924, 7067511, US7612062, 7244724, 7528126, 7049311, 8633185, 8501934, and 8697688 and U.S. Publication No. US20140294868.

[0220] In some embodiments, the pyrrolobenzodiazepine is a pyrrolobenzodiazepine dimer. In some embodiments, the PBD dimer is a symmetric dimer. Examples of symmetric PBD dimers include, but are not limited to, SJG-136 (SG-2000), ZC-423 (SG2285), SJG-720, SJG-738, ZC-207 (SG2202), and DSB- 120 (Table 2). In some embodiments, the PBD dimer is an unsymmetrical dimer. Examples of unsymmetrical PBD dimers include, but are not limited to, SJG-136 derivatives such as described in U.S. Patent Nos. 8697688 and 9242013 and U.S. Publication No. 20140286970.

[0221] In some embodiments, C is not monomethyl auristatin E (MMAE). In some embodiments, C is not monomethyl auristatin F (MMAF).

[0222] In some embodiments, C is Y-U. In some embodiments, C is a derivative of MMAE. In some embodiments, C is derivative of MMAF.

Formulas VI and VII

[0223] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VIA):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or an optionally substituted Ci-C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 2 o alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0),-R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted Ci-C 8 alkylene;

R 14 is -H or an optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted Ci-C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted Ci-C 8 alkyl, or -(CH 2 ) q -

COOH;

R 39 is -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 - NHCH 2 C(0)NHCH 2 CH 2 -, or -NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-;

R 2B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 -C(0)CH 2 NR 2B R 3B -, -C(0)CH(CH3)-NH2- - NHCH 2 C(0)-, -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or - NHCH 2 C(0)NHCH 2 CH 2 NH-;

R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , -CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 -H;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

wherein R 2B and R 3B cannot both be H when W is -O- and R 11 is H.

[0224] In some embodiments, W is -O- . In some embodiments, W is -O- and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -CH 3 .

[0225] In some embodiments, W is -NR 12 -. In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and

R 1 1 1 1 is -H. In some embodiments, W is -NR 12 -, R12 is -H, and R 11 is optionally substituted Ci-C 20 alkyl .

In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 . In some embodiments, W is -NR 12 -, R 12 is -CH 3 , and R 11 is -CH 3 .

[0226] In some embodiments, W is -S-. In some embodiments, W is -S- and R 11 is H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -H. In some embodiments, W is -S- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -CH 3 .

[0227] In some embodiments, R 39 is -NHCH 2 CH 2 -, -OCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, - NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-. In some embodiments, R 39 is -NHCH 2 CH 2 -, - NHCR 2B R 3B C(0)-, or -NHCR 2B R 3B CH 2 -.

[0228] In some embodiments, R 39 is -NHCH(CF 3 )C(0)-. In some embodiments, R 39 is -NHCH 2 S(0) 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 -. In some embodiments, R 39 is -OCH 2 CH 2 -. In some embodiments, R 39 is -NHCH(CH 3 )C(0)-. In some embodiments, R 39 is is -NHCH(CH 2 CH 3 )C(0)-. In some embodiments, R 39 is -NHCH(CH(CH 3 ) 2 )C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 2 C(0)0H)C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-.

[0229] In some embodiments, R 39 is -NHCH 2 C(0)-, -NHCHR 2A C(0)-, -NHCH 2 S(0) 2 -, -NHCH 2 CH 2 -, -NHCHR 2B CH 2 -, -OCH 2 CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 2B is -CH 3 , -CH 2 CH 3 , -CF 3 , - CH(CH 3 ) 2 , -CH(OH)CH 3 , -CH 2 OH, -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 .

[0230] In some embodiments, R 39 is -NHCH 2 C(0)-, -NHCHR 2B C(0)-, -NHCH 2 S(0) 2 -, -NHCH 2 CH 2 -, -NHCHR^Hz-, -OCH 2 CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 2B is -CH 3 , -CH 2 CH 3 , -CF 3 ,- CH(CH 3 ) 2 , -CH(OH)CH 3 , -CH 2 OH, -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 .

[0231] In some embodiments R 39 is -NHCH 2 C(0)-, -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, - NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 2B is -H, -halogen, - CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , -CH 2 CH 2 C(0)0H, or - CH2CH 2 CH 2 NHC(=NH)NH2; and R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , - CH(CH 3 ) 2 , -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2

[0232] In some embodiments, R 3B is not H.

[0233] In some embodiments, R 2B and R 3B are not both H at the same time.

[0234] In some embodiments, R 2B and R 3B cannot both be H when W is -O- and R 11 is H. In some embodiments, R 2B and R 3B cannot both be H when -W-R 11 is -OH.

[0235] In some embodiments, each R 2B and R 3B is independelty in either stereochemical configuration D or L.

[0236] In some embodiments, R 39 is an amino acid, for example, -NHCH(CH 3 )C(0)- corresponds to the amino acid Alanine (Ala). In some embodiments, the amino acid is a D-amino acid. In some embodiments, the amino acid is an L-amino acid.

[0237] In some embodiments, v is 0.

[0238] In some embodiments, v is 1. In such instances, when v is 1, the amio acid is D-amino acid (e.g., D-Ala). In other instances, the amino acid is L-amino acid (e.g., L-Ala).

[0239] In some embodiments, v is 2. When v is 2, both R 39 groups are linked end to end in a linear arraingement. In some embodiments, v is 2 and each R 39 is independently a D- or an L-amino acid. In some embodiments, v is 2 and both R 39 are a D-amino acid. In some embodiments, v is 2 and both R 39 are an L-aminoacid. In some embodiments, v is 2 and each R 39 is -NHCH(CH 3 )C(0)- (Ala). In some embodiments, each R 39 is Ala and each Ala is a D-Ala or D-Ala-D-Ala. In some embodiments, each R 39 is Ala and each Ala is an L-Ala or L-Ala-L-Ala.

[0240] In some embodimetns, v is 3. When v is 3, the R 39 groups are linked end to end in a linear arraingement. In some embodiments, v is 3 and each R 39 is independently a D- or an L-amino acid. In some embodiments, the D and L-amino acids can be linked in any order. In some embodiments, v is 3 and each R 39 is a D-amino acid. In some embodiments, v is 3and each R 39 is an L-amino acid. In some embodiments, v is 3 and each R 39 is -NHCH(CH 3 )C(0)- (Ala). In some embodiments, each R 39 is Ala and each Ala is a D-Ala or D-Ala-D-Ala-D-Ala. In some embodiments, each R 39 is Ala and each Ala is an L-Ala or L-Ala-L-Ala-L-Ala.

[0241] In some embodiments, the compound of Formula (VIA), or a pharmceutically acceptable salt thereof, is selected from Table 1.

TABLE 1

[0242] In some embodiments disclosed herein, the compound having the structure of of Formula (VIA) is ACC-l, ACC-2, ACC-3, ACC-4, ACC-6, ACC-7, ACC-8, ACC-9, ACC-10, ACC-l 1, ACC-12, ACC-13, ACC-14, ACC-15, ACC-16, ACC-17, ACC-18, or ACC-19.

[0243] In some embodiments disclosed herein, the compound having the structure of of Formula (VIA) is ACC-2, ACC-8, or ACC-10.

[0244] In some embodiments disclosed herein, the compound having the structure of of Formula (VIA) is ACC-5.

[0245] In some embodiments disclosed herein, the compound having the structure of of Formula (VIA) is ACC-2.

[0246] In some embodiments disclosed herein, the compound having the structure of of Formula (VIA) is ACC-8. [0247] In some embodiments disclosed herein, the compound having the structure of of Formula

(VIA) is ACC-10.

[0248] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VI):

G-T-Q-K (VI)

wherein,

G is selected from the following substituents:

wherein each X is independently -Cl, -Br, -I, or -S-phenyl;

T is an optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C 3 -C 3 carbocyclylene, optionally substituted C 6 -C ¾ carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)NHCH 2 C(0)-, optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0)) n -, optionally substituted C 6 -Ci 0 arylene, optionally substituted C 6 -Ci 0 arylene -C(0)-, - (CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-;

each R 1B is independently is -H, -CH 3 , -CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R 1A is -H, an optionally substituted Ci-C 8 alkyl, optionally substituted€ 3 -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -C 12 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, an optionally substituted Ci-C 8 alkyl, optionally substituted C -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -C 12 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted C i -C 8 alkyl, -C H 2 C H 2 CH 2 CH 2 N H 2 -CH 2 CH 2 CH 2 NHC(=NH)NH 2 , or - CH 2 CH 2 CH 2 NHC(0)NH 2 ;

K is a fragment having the structure of Formula (VIA):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or an optionally substituted Ci-C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 2 o alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0),-R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted Ci-C 8 alkylene;

R 14 is -H or an optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted Ci-C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted C i -C 8 alkyl, or -(CH 2 ) q -

COOH;

R 39 is -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 - NHCH 2 C(0)NHCH 2 CH 2 -, or -NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-;

R 2B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , -CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

wherein R 2B and R 3B cannot both be H when W is -O- and R 11 is H.

Fragment K

[0249] In some embodiments, fragment K is conjugated to Q. In some embodiments, K is attached to Q covalently or non-co valently. In some embodiments, K is attached to Q through an ionic bond. In some embodiments, K is covalently attached to Q. In some embodiments, K is attached through an amine nitrogen. In some embodimetns, K is attached to Q through a terminal amine nitrogen. In some embodiments, K is attache to Q through W or through R 11 . In some embodiments, K is attached to Q through W. In some embodiments, fragment K is not conjugated to Q.

[0250] In some embodiments, K is a fragment having the structure of Formula (VIA):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted Ci-C 8 alkyl;

R 11 is -H, optionally substituted Ci-C 2 o alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0) t -R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is optionally substituted Ci-C 8 alkylene;

R 14 is -H or optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted Ci-C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted Ci-C 8 alkyl, or -(CH 2 ) q -

COOH;

q is and integer ranging between 0 to 6;

v is an integer ranging between 0 to 3;

t is and integer ranging between 0 to 6; and

wherein R 2B and R 3B cannot both be H when W is -O- and R 11 is H..

[0251] In some embodiments, W is -O- . In some embodiments, W is -O- and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -CH 3 .

[0252] In some embodiments, W is -NR 12 -. In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and R is -H. In some embodiments, W is -NR -, R is -H, and R is optionally substituted Ci-C 20 alkyl . In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 . In some embodiments, W is - NR 12 -, R 12 is -CH 3 , and R 11 is -CH 3 .

[0253] In some embodiments, W is -S-. In some embodiments, W is -S- and R 11 is H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -H. In some embodiments, W is -S- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -CH 3 .

[0254] In some embodiments, R 39 is -NHCH 2 CH 2 -, -OCH 2 CH 2 -, -NHCR 2B R 3B C(0)-, - NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-. In some embodiments, R 39 is -NHCH 2 CH 2 -, - NHCR 2B R 3B C(0)-, or -NHCR 2B R 3B CH 2 -.

[0255] In some embodiments, R 39 is -NHCH(CF 3 )C(0)-. In some embodiments, R 39 is -NHCH 2 S(0) 2 -. In some embodiments, R 39 is -NHCH 2 CH 2 -. In some embodiments, R 39 is -OCH 2 CH 2 -. In some embodiments, R 39 is -NHCH(CH 3 )C(0)-. In some embodiments, R 39 is is -NHCH(CH 2 CH 3 )C(0)-. In some embodiments, R 39 is -NHCH(CH(CH 3 ) 2 )C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 2 C(0)0H)C(0)-. In some embodiments, R 39 is - NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-.

[0256] In some embodiments, R 39 is -NHCH 2 C(0)-, -NHCHR 2A C(0)-, -NHCH 2 S(0) 2 -, -NHCH 2 CH 2 -, -NHCHR 2B CH 2 -, -OCH 2 CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 2B is -CH 3 , -CH 2 CH 3 , -CF 3 , - CH(CH 3 ) 2 , -CH(OH)CH 3 , -CH 2 OH, -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 . [0257] In some embodiments, R 39 is -NHCH 2 C(0)-, -NHCHR 2B C(0)-, -NHCH 2 S(0) 2 -, -NHCH 2 CH 2 -, -NHCHR^Hz-, -OCH 2 CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 2B is -CH 3 , -CH 2 CH 3 , -CF 3 ,- CH(CH 3 ) 2 , -CH(OH)CH 3 , -CH 2 OH, -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 .

[0258] In some embodiments R 39 is -NHCH 2 C(0)-, -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, - NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -, or -NHCH 2 C(0)NHCH 2 CH 2 NH-, wherein R 2B is -H, -halogen, - CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , -CH 2 CH 2 C(0)0H, or - CH 2 CH 2 CH 2 NHC(=NH)NH 2 ; and R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , - CH(CH 3 ) 2 , -CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2

[0259] In some embodiments, R 3B is not H.

[0260] In some embodiments, R 2B and R 3B are not both H at the same time.

[0261] In some embodiments, R 2B and R 3B cannot both be H when W is -O- and R 11 is H. In some embodiments, R 2B and R 3B cannot both be H when -W-R 11 is -OH.

[0262] In some embodiments, the fragment -C(0)-W-R n is replaced with -OH. In some

embodiments, R 2B and R 3B cannot both be H when -C(0)-W-R n is replaced with -OH.

[0263] In some embodiments, each R 2B and R 3B is independelty in either stereochemical configuration D or L.

[0264] In some embodiments, R 39 is an amino acid, for example, -NHCH(CH 3 )C(0)- corresponds to the amino acid Alanine (Ala). In some embodiments, the amino acid is a D-amino acid. In some embodiments, the amino acid is an L-amino acid.

[0265] In some embodiments, v is 0.

[0266] In some embodiments, v is 1. In such instances, when v is 1, the amio acid is D-amino acid (e.g., D-Ala). In other instances, the amino acid is L-amino acid (e.g., L-Ala).

[0267] In some embodiments, v is 2. When v is 2, both R 39 groups are linked end to end in a linear arraingement. In some embodiments, v is 2 and each R 39 is independently a D- or an L-amino acid. In some embodiments, v is 2 and both R 39 are a D-amino acid. In some embodiments, v is 2 and both R 39 are an L-aminoacid. In some embodiments, v is 2 and each R 39 is -NHCH(CH 3 )C(0)- (Ala). In some embodiments, each R 39 is Ala and each Ala is a D-Ala or D-Ala-D-Ala. In some embodiments, each R 39 is Ala and each Ala is an L-Ala or L-Ala-L-Ala.

[0268] In some embodiments, v is 3. When v is 3, the R 39 groups are linked end to end in a linear arraingement. In some embodiments, v is 3 and each R 39 is independently a D- or an L-amino acid. In some embodiments, the D and L-amino acids can be linked in any order. In some embodiments, v is 3 and each R 39 is a D-amino acid. In some embodiments, v is 3and each R 39 is an L-amino acid. In some embodiments, v is 3 and each R 39 is -NHCH(CH 3 )C(0)- (Ala). In some embodiments, each R 39 is Ala and each Ala is a D-Ala or D-Ala-D-Ala-D-Ala. In some embodiments, each R 39 is Ala and each Ala is an L-Ala or L-Ala-L-Ala-L-Ala.

[0269] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VI):

G-T-Q-K (VI) wherein,

G is selected from the following substituents:

wherein each X is independently -Cl, -Br, -I, or -S-phenyl;

T is an optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C;-C 8 carbocyclylene, optionally substituted C -C» carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)NHCH 2 C(0)-, optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0)) n -, optionally substituted C 6 -Ci 0 arylene, optionally substituted C 6 -Ci 0 arylene -C(O)-, - (CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-;

each R 1B is independently is -H, -CH 3 , -CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R 1A is -H, an optionally substituted Ci-C 8 alkyl, optionally substituted ( ' V C K carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, an optionally substituted Ci-C 8 alkyl, optionally substituted C 3 -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -C 12 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted C i -C 8 alkyl, -C H 2 C FFCFFCFFN H 2 -CH 2 CH 2 CH 2 NHC(=NH)NH 2 , or - CH 2 CH 2 CH 2 NHC(0)NH 2 ;

K is a fragment having the structure of Formula (VIB):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or an optionally substituted C | -C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 20 alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0) t -R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted C i -C 8 alkylene;

R 14 is -H or an optionally substituted C | -C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted Ci-C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted Ci-C 8 alkyl, or -(CH 2 ) q -

COOH;

q is an integer ranging between 0 to 6;

t is an integer ranging between 0 to 6; and

v is an integer ranging between 0 to 3.

[0270] In some embodiments, K is a fragment having the structure of Formula (VIB):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted Ci-C 8 alkyl;

R 11 is -H, optionally substituted Ci-C 2 o alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0),-R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is optionally substituted Ci-C 8 alkylene;

R 14 is -H or optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted C | -C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted C i -C 8 alkyl, or -(CH 2 ) q -

COOH;

q is and integer ranging between 0 to 6;

v is an integer ranging between 0 to 3; and

t is and integer ranging between 0 to 6.

[0271] In some embodiments, W is -O- . In some embodiments, W is -O- and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -CH 3 .

[0272] In some embodiments, W is -NR 12 -. In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and R is -H. In some embodiments, W is -NR -, R is -H, and R is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 . In some embodiments, W is - NR 12 -, R 12 is -CH 3 , and R 11 is -CH 3 .

[0273] In some embodiments, W is -S-. In some embodiments, W is -S- and R 11 is H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -H. In some embodiments, W is -S- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -CH 3 .

[0274] In some embodimetns, v is 0.

[0275] In some embodiments, v is 1.

[0276] In some embodiments, v is 2.

[0277] In some embodimetns, v is 3.

[0278] Disclosed herein are compounds, or a pharmaceutically acceptable salt thereof, having the structure of Formula (VII):

M-G-T-Q-K (VII)

wherein,

M is a carrier;

G is selected from the following substituents:

J is -0-, -NH-, or -S-;

T is an optionally substituted Ci-C 8 alkylene, optionally substituted Ci-C 8 alkylene-C(O)-, optionally substituted C; r C 8 carbocyclylene, optionally substituted C 3~ C 8 carbocyclylene-C(O)-, optionally substituted Ci-C 8 alkylene-C(0)NHCH 2 C(0)-, optionally substituted Ci-C 8 alkylene-C(O)- (NHCH 2 C(0)) n -, optionally substituted C 6 -Ci 0 arylene, optionally substituted C 6 -Ci 0 arylene -C(O)-, - (CH 2 -CH 2 -0) n -, -(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, optionally substituted C 6 -Ci 0 arylene-C(0)NH-(CH 2 -CH 2 - 0) n -(CH 2 ) m C(0)-, optionally substituted Ci-C 8 alkylene -C(0)NH-(CH 2 -CH 2 -0) n -(CH 2 ) m C(0)-, -(CH 2 - CH 2 -NR 1B ) n -, -(CH 2 ) m -(NR 1B -CH 2 -CH 2 ) n -, or -(CH 2 -CH 2 -NR 1B ) n -(CH 2 ) m C(0)-;

each R 1B is independently -H, -CH 3 , -CH 2 CH 3 , or -CH 2 CH 2 NH 2 ;

each n is independently an integer ranging from 1 to 25;

each m is independently an integer ranging from 1 to 10;

Q is a bond or selected from the group consisting of:

R 1A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -Ci 2 aralkyl, or optionally substituted C 3 -C 8 heterocyclyl;

R 2A is -H, optionally substituted Ci-C 8 alkyl, optionally substituted C 3 -C 8 carbocyclyl, optionally substituted C 6 -Ci 0 aryl, optionally substituted C 7 -C 12 aralkyl, optionally substituted C 3 -C 8 heterocyclyl, amino substituted Ci-C 8 alkyl, -CH 2 CH 2 CH 2 CH 2 NH 2 -CH 2 CH 2 CH 2 NHC(=NH)NH 2 , or - CH 2 CH 2 CH 2 NHC(0)NH 2 ;

K is a fragment of having the structure of Formula (VIIA) or (VIIB):

wherein,

W is -0-, -S-, or -NR 12 -, wherein R 12 is -H or optionally substituted Ci-C 8 alkyl;

R 11 is -H, an optionally substituted Ci-C 20 alkyl, C 6 -Ci 0 aryl, C 3 -C 8 heterocyclyl, -(R 13 0),-R 14 , or - (R 13 0) t -CH(R 15 ) 2 ;

R 13 is an optionally substituted Ci-C 8 alkylene;

R 14 is -H or an optionally substituted Ci-C 8 alkyl;

each occurrence of R 15 is independently -H, -COOH, -(CH 2 ) q -N(R 16 ) 2 , -(CH 2 ) q -S0 3 H, or -(CH 2 ) q - S0 3 -(optionally substituted C | -C 8 alkyl);

each occurrence of R 16 is independently -H, optionally substituted Ci-C 8 alkyl, or -(CH 2 ) q - COOH; R 39 is -NHCH 2 CH 2 -,-OCH 2 CH 2 -, -NHCH 2 S(0) 2 -, -NHCR 2B R 3B C(0)-, -NHCR 2B R 3B CH 2 -

NHCH 2 C(0)NHCH 2 CH 2 -, or -NHCH(CH 2 CH 2 CH 2 NHC(=NH)NH 2 )C(0)-;

R 2B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 ,-CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2 ;

R 3B is -H, -halogen, -CH 3 , -CH 2 CH 3 , -CH(OH)CH 3 , -CH 2 OH, -CF 3 , -CH(CH 3 ) 2 , - CH 2 CH 2 C(0)0H, or -CH 2 CH 2 CH 2 NHC(=NH)NH 2;

q is an integer ranging between 0 to 6;

v is an integer ranging between 0 and 3;

t is an integer ranging between 0 to 6; and

provided that R 2B and R 3B are not both H when W is -O- and R 11 is H.

[0279] In some embodiments, K is a fragment having the strucrure of Formula (VIIA) or Formula (VIIB).

[0280] In some embodiments , K is a fragment having the structure of Formula (VIIA).

[0281] In some embodiments , K is a fragment having the structure of Formula (VIIB).

[0282] In some embodiments, K is a fragment having the strucrure of Formula (VIIA) or Formula (VIIB) wherein W is -O- and and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -H. In some embodiments, W is -O- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -O- and R 11 is -CH 3 .

[0283] In some embodiments, W is -NR 12 -. In some embodiments, W is -NR 12 -, wherein R 12 is -H, and R 11 is -H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -NR 12 -, R 12 is -H, and R is -H. In some embodiments, W is -NR -, R is -H, and R is optionally substituted Ci-C 20 alkyl . In some embodiments, W is -NR 12 -, R 12 is -H, and R 11 is -CH 3 . In some embodiments, W is - NR 12 -, R 12 is -CH 3 , and R 11 is -CH 3 .

[0284] In some embodiments, W is -S-. In some embodiments, W is -S- and R 11 is H or an optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -H. In some embodiments, W is -S- and R 11 is optionally substituted Ci-C 20 alkyl. In some embodiments, W is -S- and R 11 is -CH 3 .

[0285] In some embodiments, v is 0. In some embodimements, v is 1. In some embodiments, v is 2. In some embodiments, v is 3.

Exemplary Compounds

[0286] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 2.

TABLE 2

[0287] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 3.

TABLE 3

[0288] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 4.

TABLE 4

[0289] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 5.

TABLE 5 [0290] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 6.

TABLE 6

[0291] Table 7 shows SDM-155. SDM-155 is a control molecule.

TABLE 7

[0292] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 8.

TABLE 8

[0293] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 9.

TABLE 9

[0294] In some embodiments, the selective delivery molecule described herein has a structure provided in Table 10.

TABLE 10

[0295] In some embodiments, the selective delivery molecule described herein is selected from SDM- 154, SDM-156, SDM-157, SDM-158, SDM-159, SDM-160, SDM-161, SDM-162, SDM-163, SDM-164, SDM-165, SDM-166, SDM-167, SDM-168, SDM-169, SDM-170, SDM-171, SDM-267, SDM-268, SDM-269, SDM-270, SDM-271, SDM-272, SDM-273, SDM-274, SDM-300, SDM-301, SDM-302, SDM-303, SDM-304, SDM-305, SDM-306, SDM-307, SDM-308, SDM-309, SDM-310, SDM-311, SDM-312, SDM-313, SDM-314, SDM-315, SDM-316, SDM-317, SDM-318, SDM-319, and SDM-320.

[0296] In some embodiments, the selective delivery molecule described herein is selected from SDM- 174, SDM-175, SDM-196, SDM-197, SDM-198, SDM-207, SDM-238, SDM-239, SDM-240, SDM-241, SDM-242, SDM-243, SDM-244, SDM-245, SDM-246, SDM-247, and SDM-248. [0297] In some embodiments, the selective delivery molecule described herein is selected from SDM- 206, SDM-249, SDM-250, SDM-251, and SDM-252.

[0298] In some embodiments, the selective delivery molecule described herein is selected from SDM- 172, SDM-205, SDM-253, SDM-254, SDM-255, and SDM-256.

[0299] In some embodiments, the selective delivery molecule described herein is selected from SDM- 237, and SDM-194.

[0300] In some embodiments, the selective delivery molecule described herein is selected from SDM- 154, SDM-160, SDM-162, SDM-311, SDM-362, and SDM-370.

[0301] In some embodiments, the selective delivery molecule described herein is selected from SDM- 154, SDM-160, and SDM-162.

Pharmaceutical Compositions

[0302] Disclosed herein, in certain embodiments, are pharmaceutical compositions comprising any of the selective delivery molecules as disclosed herein. In some embodiments, the pharmaceutical compositions comprises a selective delivery molecule of Formula (I), (II), (III), (IV), (V), (VI), or (VII) and a pharmaceutically acceptable carrier.

[0303] Pharmaceutical compositions herein are formulated using one or more physiologically acceptable carriers including excipients and auxiliaries which facilitate processing of the active agents into preparations which are used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. A summary of pharmaceutical compositions is found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington’s Pharmaceutical Sciences, Mack Publishing Co., Easton, Pennsylvania 1975; Liberman, H.A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins, 1999).

[0304] In certain embodiments, a pharmaceutical composition disclosed herein further comprises a pharmaceutically acceptable diluent(s), excipient(s), or carrier(s). In some embodiments, the

pharmaceutical compositions includes other medicinal or pharmaceutical agents, carriers, adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure, and/or buffers. In addition, the pharmaceutical compositions also contain other therapeutically valuable substances.

[0305] In certain embodiments, a pharmaceutical composition disclosed herein is administered to a subject by any suitable administration route, including but not limited to, parenteral (intravenous, subcutaneous, intraperitoneal, intramuscular, intravascular, intrathecal, intravitreal, infusion, or local) administration.

[0306] Formulations suitable for intramuscular, subcutaneous, peritumoral, or intravenous injection include physiologically acceptable sterile aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and non-aqueous carriers, diluents, solvents, or vehicles including water, ethanol, polyols (propyleneglycol, polyethylene-glycol, glycerol, cremophor and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity is maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. Formulations suitable for subcutaneous injection also contain optional additives such as preserving, wetting, emulsifying, and dispensing agents.

[0307] For intravenous injections, an active agent is optionally formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank’s solution, Ringer’s solution, or physiological saline buffer.

[0308] Parenteral injections optionally involve bolus injection or continuous infusion. Formulations for injection are optionally presented in unit dosage form, e.g., in ampoules or in multi dose containers, with an added preservative. In some embodiments, the pharmaceutical composition described herein are in a form suitable for parenteral injection as a sterile suspensions, solutions or emulsions in oily or aqueous vehicles, and contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical formulations for parenteral administration include aqueous solutions of an active agent in water soluble form. Additionally, suspensions are optionally prepared as appropriate oily injection suspensions.

[0309] In some embodiments, the pharmaceutical composition described herein is in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of an active agent disclosed herein. In some embodiments, the unit dosage is in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules. In some embodiments, aqueous suspension compositions are packaged in single-dose non-reclosable containers. Alternatively, multiple-dose reclosable containers are used, in which case it is typical to include a preservative in the composition. By way of example only, formulations for parenteral injection are presented in unit dosage form, which include, but are not limited to ampoules, or in multi dose containers, with an added preservative.

Methods of Use

[0310] The selective delivery molecule of Formula (I), (II), (III), (IV), (V), (VI), or (VII) allows the delivery of a therapeutic agent and/or imaging agent to specific cells and/or tissues. In some

embodiments, a molecule of Formula (I), (II), (III), (IV), (V), (VI), or (VII) enables targeted delivery of one or more cargos (e.g., therapeutic agents or imaging agents) to a cell tissue.

[0311] Disclosed herein, in certain embodiments, are methods of delivering the selective delivery molecule to a tissue of interest, comprising contacting the tissue of interest with a compound of Formula (I), (II), (III), (IV), (V), (VI), or (VII). [0312] In some embodiments, the selective delivery molecule of Formula (I), (II), (III), (IV), (V),

(VI), or (VII) allows the delivery of a therapeutic agent and/or imaging agent to a tissue of interest.In some embodiments, the tissue of interest is cancerous tissue (or, cancer). In some embodiments, the cancerous tissue comprises breast cancer tissue, colorectal cancer tissue, squamous cell carcinoma tissue, skin cancer tissue, prostate cancer tissue, melanoma tissue, thyroid cancer tissue, ovarian cancer tissue, cancerous lymph node tissue, cervical cancer tissue, lung cancer tissue, pancreatic cancer tissue, head and neck cancer tissue, esophageal cancer tissue, or sarcoma tissue. In some embodiments, the cancerous tissue comprises breast cancer tissue, colon cancer tissue, squamous cell carcinoma tissue, prostate cancer tissue, melanoma tissue, or thyroid cancer tissue. In some embodiments, the cancerous tissue is breast cancer tissue. In some embodiments, the cancerous tissue is colon cancer tissue. In some embodiments, the cancerous tissue is prostate cancer tissue. In some embodiments, the cancerous tissue is ovarian cancer tissue. In some embodiments, the cancerous tissue is thyroid cancer tissue. In some embodiments, the cancerous tissue is sarcoma tissue. In some embodiments, the cancerous tissue is soft sarcoma tissue. In some embodiments, the cancerous tissue is fibrosarcoma tissue. In some embodiments, the cancerous tissue is skin cancer tissue. In some embodiments, the cancerous tissue is squamous cell carcinoma tissue. In some embodiments, the cancerous tissue is cancerous lymph node tissue. In some embodiments, the cancerous tissue is breast cancer tissue. In some embodiments, the cancerous tissue is inflamed breast cancer tissue. In some embodiments, the cancerous tissue is inflamed breast cancer tissue.

[0313] In some embodiments, the cancerous tissue is tissue affected by AIDS-related cancers (e.g., AIDS-related lymphoma), anal cancer, basal cell carcinoma, bile duct cancer (e.g., extrahepatic), bladder cancer, bone cancer, (osteosarcoma and malignant fibrous histiocytoma), breast cancer, cervical cancer, colon cancer, colorectal cancer, endometrial cancer (e.g., uterine cancer), ependymoma, esophageal cancer, eye cancer (e.g., intraocular melanoma and retinoblastoma), gastric (stomach) cancer, germ cell tumor, (e.g., extracranial, extragonadal, ovarian), head and neck cancer, leukemia, lip and oral cavity cancer, liver cancer, lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), ovarian cancer, pancreatic cancer, pituitary tumor, prostate cancer, renal cancer, sarcoma, skin cancer, small intestine cancer, squamous cell cancer, testicular cancer, throat cancer, thyroid cancer, urethral cancer, post-transplant lymphoproliferative disorder (PTLD), lymphoid cancer, or B-cell cancer.

[0314] In some embodiments, the cancerous tissue is tissue affected by precursor B-cell cancers (e.g., precursor B -lymphoblastic leukemia/lymphoma), peripheral B-cell cancers (e.g., B-cell chronic lymphocytic leukemia/prolymphocytic), leukemia/small lymphocytic lymphoma (small lymphocytic (SL) NHL), lymphoplasmacytoid lymphoma/immunocytoma, mantel cell lymphoma, follicle center lymphoma, follicular lymphoma (e.g., cytologic grades: I (small cell), II (mixed small and large cell), III (large cell) and/or subtype: diffuse and predominantly small cell type), low grade/follicular non- Hodgkin’s lymphoma (NHL), intermediate grade/follicular NHL, marginal zone B-cell lymphoma (e.g., extranodal (e.g., MALT-type +/- monocytoid B cells) and/or Nodal (e.g., +/- monocytoid B cells)), splenic marginal zone lymphoma (e.g., +/- villous lymphocytes), Hairy cell leukemia,

plasmacytoma/plasma cell myeloma (e.g., myeloma and multiple myeloma), diffuse large B-cell lymphoma (e.g., primary mediastinal (thymic) B-cell lymphoma), intermediate grade diffuse NHL, Burkitt’s lymphoma, High-grade B-cell lymphoma, Burkitt-like, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, AIDS-related lymphoma, or Waldenstrom’s macroglobulinemia.

[0315] In some embodiments, the cancerous tissue is affected by the cancer is a T-cell and/or putative NK-cell cancer. In some embodiments, the cancer is precursor T-cell cancer (precursor T-lymphoblastic lymphoma/leukemia) and peripheral T-cell and NK-cell cancers (e.g., T-cell chronic lymphocytic leukemia/prolymphocytic leukemia, and large granular lymphocyte leukemia (LGL) (e.g., T-cell type and/or NK-cell type), cutaneous T-cell lymphoma (e.g., mycosis fungoides/Sezary syndrome), primary T-cell lymphomas unspecified (e.g., cytological categories (e.g., medium-sized cell, mixed medium and large cell), large cell, lymphoepitheloid cell, subtype hepatosplenic gd T-cell lymphoma, and

subcutaneous panniculitic T-cell lymphoma), angioimmunoblastic T-cell lymphoma (AILD), angiocentric lymphoma, intestinal T-cell lymphoma (e.g., +/- enteropathy associated), adult T-cell lymphoma/leukemia (ATL), anaplastic large cell lymphoma (ALCL) (e.g., CD30+, T- and null-cell types), anaplastic large-cell lymphoma, or Hodgkin’s like).

[0316] In some embodiments, the tissue of interest is an inflamed tissue. In some embodiments, some embodiments, the inflamed tissue is the result if acute or chronic inflammation. In some embodiments, the inflamed tissue is caused by an inflammatory disease is or is associated with an inflammatory disease . In some embodiments, the inflamed tissue is caused by an inflammatory disease is or is associated with rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, sepsis, erythema nodosum leprosum, multiple sclerosis, psoriasis, systemic lupus erythematosis, type I diabetes, atherosclerosis, encephalomyelitis, Alzheimer's disease, stroke, traumatic brain injury,

Parkinson's disease or septic shock.

Therapeutic Uses

[0317] The selective delivery molecule of Formula (I), (II), (III), (IV), (V), (VI), or (VII) allows the targeted delivery of a therapeutic agent or imagine agent to specific cells and/or tissues (e.g., cancerous tissues). In some embodiments, targeted delivery of a therapeutic agent or imaging agent to a cell or tissue enables a medical professional to treat a specific tissue.

[0318] In some embodiments, targeted delivery of a therapeutic agent or imaging agent to a cell or tissue enables a medical professional to treat a specific tissue (e.g., cancerous tissue). In some embodiments, targeted delivery of a therapeutic agent or imaging agent to a cell or tissue decreases the dosage of the therapeutic agent. In some embodiments, targeted delivery of a therapeutic agent or imaging agent to a cell or tissue decreases contact of the therapeutic agent with healthy tissue. In some embodiments, targeted delivery of a therapeutic agent or imaging agent to a cell or tissue decreases unwanted side-effects arising from use of high concentrations of a therapeutic agent or contact. In some embodiments, targeted delivery of a therapeutic agent or imaging agent to a cell or tissue decreases unwanted side-effects arising from contact between the therapeutic agent and healthy tissue.

[0319] In some embodiments, the selective delivery molecule of Formula (I), (II), (III), (IV), (V),

(VI), or (VII) is employed for the treatment of cancer.

[0320] In some embodiments, the cancer is AIDS-related cancers (e.g., AIDS-related lymphoma), anal cancer, basal cell carcinoma, bile duct cancer (e.g., extrahepatic), bladder cancer, bone cancer,

(osteosarcoma and malignant fibrous histiocytoma), breast cancer, cervical cancer, colon cancer, colorectal cancer, endometrial cancer (e.g., uterine cancer), ependymoma, esophageal cancer, eye cancer (e.g., intraocular melanoma and retinoblastoma), gastric (stomach) cancer, germ cell tumor, (e.g., extracranial, extragonadal, ovarian), head and neck cancer, leukemia, lip and oral cavity cancer, liver cancer, lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), ovarian cancer, pancreatic cancer, pituitary tumor, prostate cancer, renal cancer, sarcoma, skin cancer, small intestine cancer, squamous cell cancer, testicular cancer, throat cancer, thyroid cancer, urethral cancer, and post-transplant lymphoproliferative disorder (PTLD). In some embodiments, the cancer is inflammatory breast cancer. In some embodiments, the cancer is triple negative breast cancer. In some embodiments, the cancer is sarcoma. In some embodiments, the cancer is soft sarcoma. In some embodiments, the cancer is fibrosarcoma. In some embodiments, the cancer is ovarian cancer.

[0321] In some embodiments, the cancer is breast cancer. In some instances, the breast cancer comprises invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), ductal carcinoma in situ (DCIS), inflammatory breast cancer, lubular carcinoma in situ (LCIS), male breast cancer, molecular subtypes of breast cancer, Paget’s disease of the Nipple, phyliodes tumors of the breast, and metastatic breast cancer. In some cases, IDC is further subdivided into tubular carcinoma of the breast, medullary carcinoma of the breast, mucinous carcinoma of the breast, papillary carcinoma of the breast, and cribriform carcinoma of the breast. In some cases, the molecular subtypes of breast cancer comprises luminal A, luminal B, triple-negative/basal-like, HER2 -enriched, or normal-like breast cancer.

[0322] In some embodiments, the cancer is a lymphoid cancer (e.g., lymphoma).

[0323] In some embodiments, the cancer is a B-cell cancer. In some embodiments, the cancer is precursor B-cell cancers (e.g., precursor B -lymphoblastic leukemia/lymphoma) and peripheral B-cell cancers (e.g., B-cell chronic lymphocytic leukemia/prolymphocytic leukemia/small lymphocytic lymphoma (small lymphocytic (SL) NHL), lymphoplasmacytoid lymphoma/immunocytoma, mantel cell lymphoma, follicle center lymphoma, follicular lymphoma (e.g., cytologic grades: I (small cell), II (mixed small and large cell), III (large cell) and/or subtype: diffuse and predominantly small cell type), low grade/follicular non-Hodgkin’s lymphoma (NHL), intermediate grade/follicular NHL, marginal zone B-cell lymphoma (e.g., extranodal (e.g., MALT-type +/- monocytoid B cells) and/or Nodal (e.g., +/- monocytoid B cells)), splenic marginal zone lymphoma (e.g., +/- villous lymphocytes), Hairy cell leukemia, plasmacytoma/plasma cell myeloma (e.g., myeloma and multiple myeloma), diffuse large B- cell lymphoma (e.g., primary mediastinal (thymic) B-cell lymphoma), intermediate grade diffuse NHL, Burkitt’s lymphoma, High-grade B-cell lymphoma, Burkitt-like, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, AIDS-related lymphoma, and Waldenstrom’s macroglobulinemia).

[0324] In some embodiments, the cancer is a T-cell and/or putative NK-cell cancer. In some embodiments, the cancer is precursor T-cell cancer (precursor T-lymphoblastic lymphoma/leukemia) and peripheral T-cell and NK-cell cancers (e.g., T-cell chronic lymphocytic leukemia/prolymphocytic leukemia, and large granular lymphocyte leukemia (LGL) (e.g., T-cell type and/or NK-cell type), cutaneous T-cell lymphoma (e.g., mycosis fungoides/Sezary syndrome), primary T-cell lymphomas unspecified (e.g., cytological categories (e.g., medium-sized cell, mixed medium and large cell), large cell, lymphoepitheloid cell, subtype hepatosplenic gd T-cell lymphoma, and subcutaneous panniculitic T- cell lymphoma), angioimmunoblastic T-cell lymphoma (AILD), angiocentric lymphoma, intestinal T-cell lymphoma (e.g., +/- enteropathy associated), adult T-cell lymphoma/leukemia (ATL), anaplastic large cell lymphoma (ALCL) (e.g., CD30+, T- and null-cell types), anaplastic large-cell lymphoma, and Hodgkin’s like).

[0325] In some embodiments, the cancer is Hodgkin’s disease.

[0326] In some embodiments, the cancer is leukemia. In some embodiments, the cancer is chronic myelocytic I (granulocytic) leukemia, chronic myelogenous, and chronic lymphocytic leukemia (CLL), acute lymphoblastic leukemia (ALL), acute myeloid leukemia, acute lymphocytic leukemia, and acute myelocytic leukemia (e.g., myeloblastic, promyelocytic, myelomonocytic, monocytic, and

erythroleukemia) .

[0327] In some embodiments, the cancer is a liquid tumor or plasmacytoma. In some embodiments, the cancer is extramedullary plasmacytoma, a solitary myeloma, and multiple myeloma. In some embodiments, the plasmacytoma is multiple myeloma.

[0328] In some embodiments, the cancer is lung cancer.

[0329] In some embodiments, the cancer is prostate cancer. In some embodiments, the prostate cancer is an adenocarcinoma. In some embodiments, the prostate cancer is a sarcoma, neuroendocrine tumor, small cell cancer, ductal cancer, or a lymphoma. In some embodiments, the prostate cancer is stage A prostate cancer (the cancer cannot be felt during a rectal exam). In some embodiments, the prostate cancer is stage B prostate cancer (i.e., the tumor involves more tissue within the prostate, it can be felt during a rectal exam, or it is found with a biopsy that is done because of a high PSA level). In some embodiments, the prostate cancer is stage C prostate cancer (i.e., the cancer has spread outside the prostate to nearby tissues). In some embodiments, the prostate cancer is stage D prostate cancer. In some embodiments, the prostate cancer is androgen independent prostate cancer (AIPC). In some

embodiments, the prostate cancer is androgen dependent prostate cancer. In some embodiments, the prostate cancer is refractory to hormone therapy. In some embodiments, the prostate cancer is substantially refractory to hormone therapy. In some embodiments, the prostate cancer is refractory to chemotherapy. In some embodiments, the prostate cancer is metastatic prostate cancer. In some embodiments, the individual is a human who has a gene, genetic mutation, or polymorphism associated with prostate cancer (e.g, RNASEL/HPC1, ELAC2/HPC2, SR-A/MSR1, CHEK2, BRCA2, PON1, OGG1, MIC-l, TLR4, and PTEN) or has one or more extra copies of a gene associated with prostate cancer. In some embodiments, the prostate cancer is HER2 positive. In some embodiments, the prostate cancer is HER2 negative.

[0330] In some embodiments, the cancer is characterized by circulating tumor cells. In some embodiments, the cancer has metastasized and is characterized by circulating tumor cells.

[0331] In some embodiments, a tissue of interest is a tissue with upregulated protease activity (e.g., a tissue undergoing inflammatory response).

[0332] In some embodiments, the selective delivery molecule of Formula (I), (II), (III), (IV), (V),

(VI), or (VII) is employed for the treatment of inflammation or an inflammatory disease. In some embodiments, the inflammation is chronic inflammation. In some embodiments, the inflammation is acute inflammation. In some embodiments, inflammation or inflammatory disease is or is associated with rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, sepsis, erythema nodosum leprosum, multiple sclerosis, psoriasis, systemic lupus erythematosis, type I diabetes, atherosclerosis, encephalomyelitis, Alzheimer's disease, stroke, traumatic brain injury,

Parkinson's disease or septic shock.

[0333] In some embodiments, the selective delivery molecule of Formula (I), (II), (III), (IV), (V),

(VI), or (VII) is employed for the treatment of an autoimmune disease. In some embodiments, the autoimmune disease is Celiac disease, diabetes mellitus type 1, Sarcoidosis, systemic lupus

erythematosus (SLE), Sjogren's syndrome, Churg-Strauss Syndrome, Hashimoto's thyroiditis, Graves' disease, idiopathic thrombocytopenic purpura, Addison's Disease, rheumatoid arthritis (RA),

Polymyositis (PM), or Dermatomyositis (DM).

Imaging Uses

[0334] The imaging compound of Formula (I), (II), (III), (IV), (V), (VI), or (VII) allows the targeted delivery of aimaging agent to specific cells and/or tissues (e.g., cancerous tissues). In some embodiments, the imaging compounds enable targeted delivery of one or more imaging agents to a cell or tissue. In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to visualize/image a specific tissue.

[0335] In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to visualize/image a specific tissue (e.g., cancerous tissue). In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to remove (or, surgically excise) the tissue of interest (e.g., cancerous tissue). In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to remove (or, surgically excise) the tissue of interest (e.g., cancerous tissue) with a decrease in surgical margins. In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to remove (or, surgically excise) a tumor/cancerous tissue and decreases the chance that some of the tumor/cancerous tissue will not be removed. In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to maximally debulk a tumor/cancerous tissue. In some embodiments, targeted delivery of an imaging agent to cancerous tissue decreases the chances of an unnecessary operations and re-operations. In some embodiments, the cancerous tissue is breast cancer tissue. In some embodiments, the cancerous tissue is colon cancer tissue. In some embodiments, the cancerous tissue is prostate cancer tissue. In some embodiments, the cancerous tissue is ovarian cancer tissue. In some embodiments, the cancerous tissue is thyroid cancer tissue. In some embodiments, the cancerous tissue is sarcoma tissue. In some embodiments, the cancerous tissue is soft sarcoma tissue. In some embodiments, the cancerous tissue is fibrosarcoma tissue. In some embodiments, the cancerous tissue is skin cancer tissue. In some embodiments, the cancerous tissue is squamous cell carcinoma tissue. In some embodiments, the cancerous tissue is cancerous lymph node tissue. In some

embodiments, the cancerous tissue is breast cancer tissue. In some embodiments, the cancerous tissue is inflamed breast cancer tissue. In some embodiments, the cancerous tissue is inflamed breast cancer tissue.

[0336] In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to more accurately sample (e.g., biopsy (e.g., excision biopsy, incision, biopsy, aspiration biopsy, or needle biopsy)) tissue of interest (e.g., cancerous tissue). In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to visualize/image a specific tissue (e.g., cancerous tissue) within an excised tissue containing healthy tissue. Enabling identification of target tissue (e.g., cancerous tissue) can guide the pathologist on where to section of pathological evaluation and decreases the chances of a pathologist missing unhealthy tissue (e.g., cancerous tissue) and sampling healthy tissue which may produce a false negative. In some

embodiments, tissue (e.g., cancerous tissue) removed following use of a compound of Formula (I), (II), (III), (IV), (V), (VI), or (VII) is used to prepare a pathology section or slide. In some embodiments, cancerous tissue removed following use of a compound of Formula (I), (II), (III), (IV), (V), (VI), or (VII) is used to prepare a pathology section or slide which is used to diagnose a tissue as malignant or benign.

[0337] In some embodiments, targeted delivery of an imaging agent to cancerous breast tissue enables a medical professional to accurately stage cancer enabling medical treatment decisions. In some embodiments, targeted delivery of an imaging agent to cancerous tissue enables a medical professional to observe the size of a tumor (cancerous tissue) or the spread (e.g., metastatic lesions) of cancerous tissue. In some embodiments, targeted delivery of an imaging agent to a cell or tissue enables a medical professional to design an efficacious treatment regimen.

[0338] In some embodiments, a selective delivery molecule according to Formula (I), (II), (III), (IV), (V), (VI), or (VII) comprising an imaging agent is employed in guided surgery. In some embodiments, the selective delivery molecule preferentially localized to cancerous, or other pathological tissues with up-regulated protease activity (e.g. tissues undergoing inflammatory response). In some embodiments, a selective delivery molecule according to Formula (I), (II), (III), (IV), (V), (VI), or (VII) comprising an imaging agent is employed in a guided surgery to remove colorectal cancer. In some embodiments, guided surgery employing the selective delivery molecule allows a surgeon to excise as little healthy (i.e., non-cancerous) tissue as possible. In some embodiments, guided surgery employing the selective delivery molecule allows a surgeon to visualize and excise more cancerous tissue than the surgeon would have been able to excise without the presence of the selective delivery molecule. In some embodiments, the surgery is fluorescence-guided surgery.

EXAMPLES

[0339] The following examples are provided for illustrative purposes only and not to limit the scope of the claims provided herein.

I. Chemical Synthesis

Materials and Methods

[0340] All reaction solvents were freshly opened Aldrich“Sure-Seal” quality. All the reagents were reagent-grade and used without further purification unless otherwise indicated. HPLC-grade acetonitrile was purchased from Fisher Scientific (Phillipsburg, PA). Water used in HPLC was collected through Milli-Q water purification system (Millipore, Bedford, MA). PBS-EDTA buffer was purchased from Teknova (Hollister, CA). a-Mercaptoethyl-co -methoxy, poly-oxyethylene (average molecular weight around 2,000, 5,000, 20,000 and 40,000) [mPEG(2K)-SH, mPEG(5K)-SH, mPEG(20K)-SH, mPEG(40K)-SH] and a-aminoxyl-w -methoxy, polyoxyethylene (average molecular weight approximately 2,000, 5,000, 20,000 and 40,000) [mPEG(2K)-ONH 2 , mPEG(5K)-ONH 2 , mPEG(20K)- ONH 2 , mPEG(40K)-ONH 2 ] were purchased from NOF America Corporation (Irvine, CA). Mouse serum albumin (MSA) was purchased from Sigma or Innovative Research (Novi, MI).

[0341] LC-MS analysis was carried out on a Waters 2695 separation module equipped with a Waters 2487 dual l absorbance detector in combination with Finnigan LCQ Deca XP mass spectrometer. The equipment is associated with Xcalibur analytical software and a Peeke Scientific column (Titan 200 5 pm, C18-MC, 50 x 2.1 mm) or a Phenomenex column (Kinetex 5pm, EVO C18 IOqA, 50 x 4.6 mm).

[0342] Preparation HPLCs were carried out on a Waters PrepLC System equipped with a Waters 2487 dual l absorbance detector, Fraction Collector III, Masslynx software and a Thermo Scientific column (Hypersil Gold C18, 5p, 250 x 10 mm) or a Phenomenex column (luna, Cl8(2), 5p, 100A AX 150 x 30 mm). The mobile phase consisted of a water (0.05% TFA)(solvent A)/acetonitrile (0.05% TFA)(solvent B) gradient unless otherwise specified. Centrifugation was carried out at 4 °C on an Eppendorf centrifuge 5417R or a Beckman Microfuge® 18. Lyophilization was carried out on a Labconco FreeZone 4.5.

Example 1: General procedure of synthesis of SDM-154 to SDM-172. SDM-267 to SDM-273. SDM-330 to SDM-335 SDM-350 SDM-354 SDM-355 SDM-357 SDM-364 SDM-365 SDM-367 SDM-370

SDM-374 SDM-378 SDM-381 and SDM-382

[0343] The following peptides were synthesized using standard Fmoc chemistry. After cleavage from the CTC resin in DMF (95%TFA, 2.5% thioanisole, 2.5% H20), the peptides were precipitated and washed by cold tert-butyl methyl ester. Purification of the precipitate by RP-HPLC afforded product.

Example 2: Synthesis of SDM-175

NH

H,N L

SDM-175

[0344] The solution of SDM-154 (13.8 mg, 11.1 mmol) and mPEG(5k)-SH (70 mg, 13.6 miho1) ίh phosphate buffered saline (PBS, 0.8 mL, pH 7.4) and acetonitrile (0.4 mL) was stirred at room temperature for 0.5 h. The mixture was purified by reverse phase high performance liquid chromatography (RP-HPLC) to afford SDM-175 (48.2 mg, 84%).

Example 3 : Synthesis of SDM-207

SDM-207

[0345] The mixture of peptide SDM-154 (2 mg, 1.5 pmol) and mouse serum albumin (MSA, 100 mg, 1.5 pmol) in PBS (pH 7.4, 0.2 M, 1.0 mL) was incubated at room temperature for 5h. The reaction was followed by LC-MS. The product SDM-207 was aliquoted after the reaction was complete.

Example 4: Synthesis of SDM-237

[0346] To a stirred solution of Compound 1 (20.0 mg, 29.7 pmol) and Cy5 amine Compound 2 (20.0 mg, 28.6 pmol) in DMF (0.4 mL) was added A-methylmorpholine (NMM, 5.0 pL, 45.5 pmol). The reaction mixture was stirred at room temperature for 15 h. Purification by RP-HPLC afforded SDM-237 as a blue powder after lyophilization (3l.0 mg, 90%). MS (ESI): m/e 1205.51 [M + H] + .

Example 5: Synthesis of SDM-238

SDM-238

[0347] To a stirred solution of SDM-170 (11 mg, 11.2 mihoΐ) and mPEG(2k)-SH (21 mg, 10 mihoΐ) in DMF (0.5 mL) was added L'-m c th y 1 m o rph o 1 i n c (NMM, 4 mE, 36.4 mmol). The reaction mixture was stirred at room temperature for 1 h and purified by high performance liquid chromatography (HPLC) to afford SDM-238 (25 mg, 81%).

Example 6: Synthesis of SDM-274

SDM-274

[0348] A mixture of Fmoc-Val-Cit (9.6 mg, 0.019 mmol), disuccinimidyl carbonate (5.44 mg, 0.02lmmol) and Et 3 N (2.68 mΐ, 0.019 mmol) was stirred at room temperature for 10 h. Then Gly-MMAF (15.2 mg, 0.019 mmol) and Et 3 N (8.0 mΐ, 0.058 mmol) was added and the mixture was stirred at room temperature overnight. The crude product was purified by prep HPLC. Compound 3 was obtained as a white powder after lyophilization (12.8 mg, 52 %). MS (ESI): m/e 1267.5 [M+H] + .

[0349] A mixture of 3 (12.8 mg, 0.01 mmol) and diethylamine (15.5 mΐ, 0.15 mmol ) in DMF (lml) was stirred at room temperature for 4 h. The solvent was removed under reduced pressure. To the residue was added Mal-PEG4-NHS (6.2 mg, 0.012 mmol) and triethylamine (4.2 mΐ, 0.03 mmol) and the mixture was stirred at room temperature overnight. The crude product was purified by prep HPLC to afford SDM-274 as a white powder after lyophilization (4.0 mg, 28 %). MS (ESI): m/e 1443.5 [M+H] + .

[0350] SDM-280 was synthesized according to the procedure described for SDM-274.

Example 7: Synthesis of SDM-344

[0351] A mixture of MMAF-OMe (10.7 mg, 0.014 mmol), (R)-tert-Butyl (l-oxopropan-2-yl) carbamate (3.2 mg, 0.019 mmol) and sodium aceatate (9.1 mg, 0.11 mmolO in methanol (1 ml) was stirred at room temperature for 30 min, then Sodium cyanoborohydride was (2.3 mg, 0.036 mmol) added. The mixture was stirred at room temperature overnight. Then crude product was purified by prep HPLC. MS (ESI): m/e 903.5 [M+H] + , 925.6 [M+Na] + . A mixture of 4 (12.2 mg, 0.013 mmol) and 4N HCl/dioxane was stirred at room temperature for 3 h. It was concentrated in vacuo and the crude product 5 was used without further purification. A mixture of 5 (0.013 mmol), Boc-VC-OH (6.3 mg, 0.017 mmol), HATU (6.4 mg, 0.0l7mmol) and triethylamine (9 mΐ, 0.08 mmol) in DMF (2 ml) was stirred at room temperature overnight. The crude product was purified by prep HPLC and 6 was obtained as white solid. MS (ESI): m/e 1159.7 [M+H] + ,

1181.7 [M+Na] + . A mixture of 6 (5.6 mg, 0.0048 mmol) and 4M HC1 in dioxane was stirred at room temperature for 4 hours. It was concentrated in vacuo and the crude product 7 was used without further purification. A mixture of 7 (0.0048 mmol), N-Succinimidyl 6-maleimidohexanoate (1.9 mg, 0.0062 mmol) and DIEA (4.2 mΐ, 0.024 mmol) in DMF (1 ml) was stirred at room temperature overnight. The crude product was purified by prep. HPLC to afford SDM-344 as white solid after lyophilization (1.7 mg, 28 %). MS (ESI): m/e 1252.7 [M+H] + .

[0352] SDM-336, SDM-337 and SDM-380 were prepared according to the procedure described for SDM-334.

Example 8: Synthesis of SDM-311

[0353] Resin bound MMAF 8 (0.46 mmol/g, 250 mg) were loaded in a 12 ml SPPS vessel and swelled in 5 ml of DMF for 10 min twice. Then the resin was reacted overnight with a solution of Fmoc-D-Ala-aldehyde (2.0 eq.), Sodium Acetate (7.6 eq.) and Sodium Cyanoborohydride (2.9 eq.) in methanol to achieve compound 9. Next morning the resin was drained, washed twice with methanol and twice with DMF.

[0354] The resin with compound 9 then was treated twice for 15 min with a 20% solution of Piperidine/DMF and washed six times with 5 ml of DMF to obtain compound 10. After draining the resin was reacted with a solution of Fmoc- Cit-OH (5eq.), HBTU (5eq.) and DIEA (20eq.) in 5ml DMF for 1 hour, then drained and washed 6 times with 5ml of DMF obtaining compound

11

[0355] The resin with compound 11 then was treated twice for 15 min with a 20% solution of Piperidine/DMF and washed six times with 5 ml of DMF to obtain compound 5. After draining the resin was reacted with a solution of Fmoc-Val-OH (5eq.), HBTU (5eq. MW.379.3) and DIEA (20eq.) in 5 ml DMF for 1 hour, then drained and washed 6 times with 5ml of DMF obtaining compound 12.

[0356] The resin with compound 12 then was treated twice for 15 min with a 20% solution of Piperidine/DMF and washed six times with 5 ml of DMF to obtain compound 13. After draining the resin was reacted with a solution of N-Succinimidyl 6-maleimidohexanoate (5eq.), and DIEA (2eq.) in 5ml DMF for 1 hour, then drained and washed 6 times with 5ml of DMF, 3 times with 5 ml of DCM and dried under vacuum obtaining compound SDM-310 which was released from the resin by treatment with 5 ml of a 50% TFA/DCM solution for 30 min. The crude product was purified by prep HPLC. SDM-310 was obtained as a white powder after lyophilization (27 mg, 20 %). MS (ESI): m/e 1238.6 [M+H] + .

[0357] SDM-310, SDM-312 to SDM-317, SDM-340 to SDM-343, SDM-345, SDM-346 to SDM-349, SDM-351 to SDM-353, SDM-356, SDM-358, SDM-360 to SDM-363, SDM-366, SDM-368 to SDM-373, SDM-375 to SDM-377 and SDM-379 were prepared according to the procedure described for SDM-311.

II. Biological Evaluation

Example 1: Test compound activity in cancer cell viability assay using human HT1080 fibrosarcoma cells [0358] Method: Plate cells one day prior to start of assay in 96 well black with clear bottom plates (Coming #3603), 2 X 10 4 cells per well in 100 pL of standard growth media (according to ATCC). Grow cells to ~90 % confluency.

[0359] Before start of assay rinse cells IX with DPBS. Add compounds in a 3 -fold serial dilution in triplicate (range e.g. 40 pM - 18 nM), 100 pL per well in standard growth media.

[0360] Incubate four days then assay cell viability as described below. Remove media and rinse IX with DPBS, then add 100 pL per well 10% Prestoblue Cell viability reagent (Thermo Fisher Scientific #Al326l) in complete media. Return to incubator for two hours then read plate on SpectraMax M2e, bottom read excitation 555 emission 585 cut-off 570 which measures number of live cells. Cell viability was plotted versus compound concentrationand data were fit to Log inhibitors vs response curve in GraphPad Prism and EC 50 were determined.

[0361] Table 11 provides cellular activity data for SDMs (compound EC 50 for reduction of viable cells).

TABLE 11

EC 50 Efficacy: High defined as <300 nM;

Med defined as 300-1500 nM; Low defined as >1500 nM

Example 2: HT-1080 human fibrosarcoma tumor xenograft therapeutic model

[0362] Female athymic nude mice (8-10 weeks old) purchased from Charles River (Wilmington, 01887, MA) were used after 4-7 day of acclimatization period. Institutional Animal Care and Use Committee (IACUC) approved protocols # EB11-002-009-1 and CP-17-09. HT-1080 human

fibrosarcoma tumor cells from ATCC (CCL-121™) were grown using standard cell culture techniques. Tumor cells (1 x 10 8 tumor cells/mL) were suspended in DPBS/Matrigel™ (1: 1 vol) and implanted subcutaneously (50 pL tumor cell suspension/mouse) into the upper mammary fat pad or right flank of mice with individual identification number (ear tag). Four to seven days later when the average tumor volume was about 50-100 mm 3 , mice were randomized into different experimental groups to have similar averaged (Mean + SEM) tumor volume and dosed with (i) vehicle and (ii) different doses of test compounds. Each group typically had 4 mice. For each involved tumor-bearing mouse, the tumor volume (mm 3 ) was measured using a caliper and calculated as follows: tumor volume = width 2 x length/2. Test compounds were administered intravenously (tail vein) twice (two administrations 3 days apart) in conscious restrained tumor-bearing mice throughout the study. Individual tumor volume, body weight as well as clinical signs were recorded during the study. Each study was terminated on day 12 post-dosing initiation. Mice were euthanized by intracardiac ketamine -xylazine overdose after recording the last individual body weight and tumor volume. For each experimental group and study day, the tumor volumes from all mice were averaged and expressed as Mean + SD. In order to directly and objectively compare anti-tumor activity of candidate SDM’s, tumor volume was assessed at the same Day 9 timepoint (6 days after the cessation of test compound administration) for each experimental cohort of test compound-treated group(s) and vehicle. Graphs show tumor volume in cubic millimeters versus time. Statistical analysis was done on these data using one way ANOVA, Tukey’s multiple comparisons test. Compound administration is indicated by downward arrow over data point on day 0 and 3. In order to capture the activity of compounds that shrink tumors below the volume on day 0 before compound dosing, the percentage of tumor volume inhibition was calculated using the value of vehicle -treated group at each time point as 0% inhibition and starting tumor volume (at day 0) as 100% inhibition.

%Inhibition in data table was calculated according to the following formula: [(tumor volume vehicle at day 9) - (tumor volume test compound at day 9) ]/ [(tumor volume vehicle at day 9) - (tumor volume vehicle at day 0)]x 100.

[0363] FIGS. 1A and 1B each provide respectively the efficacy and tolerability of SDM-154 and SDM-155 in a human HT1080 fibrosarcoma xenograft model. FIG. 1A shows the efficacy of each SDM compared to the vehicle control to reduce tumor burden. The efficacy measure is tumor volume in cubic millimeters as a function of time. Compounds were doses twice, via IV, on days 0 and 3 as indicated by downward arrows. The error bars are standard deviations. Both SDM 154 and SDM 155 were dosed at a 1 mg/kg of the cytotoxic agent component. From these results, both SDM-154 and SDM-155 significantly reduce tumor volume compared to control (SDM-154: P<0.00l for day 3 and P<0.000l for days 6, 9, and l2)(SDM-l55: P<0.0l for day 3 and P<0.000l for days 6, 9, and 12). FIG. 1B shows each SDM’s effect on body weight as % body weight change from day 0. Body weight is a measure of health. A loss of body weight is a measure of tolerability and toxicity. Generally, a weight loss of more 15% is an indication of toxicity. The data in Figure 1B show that SDM-155 is not tolerated and has significant weight loss compared to SDM-154 (P<0.0l for day 3, P<0.00l for days 6 and 9, and P<0.05 for day 12) and the vehicle (P<0.0l for day 3, P<0.00l for day 6, and P<0.05 for day 9). Greater than 15% weight loss was observed in the SDM-155 group at days 6, 9, and 12. Further evidence that SDM- 155 is not tolerated at 1 mg/kg dose is that a mouse died at day 9 and day 12 timepoints and no animals died in either the SDM-154 or vehicle groups. Due to the loss of animals in the SDM-155 group, significance compared to vehicle was not achieved. A one way ANOVA, Tukey’s multiple comparisons test statistical analysis was performed to generate P-values and assess statistical significance.

[0364] Table 12 shows SDM-154 and SDM-155. SDM 154 is a compound of the disclosure. SDM- 155 is not a compound of the disclosure.

TABLE 12

[0365] Table 13 provides efficacy data for SDM Compounds in HT1080 human fibrosarcoma subcutaneous tumor xenograft model. All compounds were dosed at 0.6 to 3.0 mg/kg of cytotoxic agent component.

TABLE 13

Efficacy defined as percent tumor growth inhibition versus vehicle

High: > 80% inhibition

Medium: > 29% inhibition to < 80% inhibition

Low: < 29% inhibition

[0366] SDM-154 was dosed at 6.0 mg/kg in the HT1080 human fibrosarcoma subcutaneous tumor xenograft model described above. The generation of MMAF and glycine-MMAF (GMMAF) was monitored, the results of which are presented in Fig. 2. The MMAF and GMMAF observed was not bound to the citrulline linker present in SDM-154. The data show that GMMAF is present in high concentration, while MMAF concentrations remain negligible. In vitro HT-1080 tumor homogenate experiments have yielded analogous results.

[0367] FIG. 3A and FIG. 3B provide the experimental results from dose escalation of SDM-154 in HT-1080 human fibrosarcoma xenograft model. FIG. 3A illustrates the change in tumor volume. FIG.

3B illustrates the percentage change in body weight. All three dose concentrations provided complete tumor reduction. At l8mg/kg dose, the body weight change remains only around 10% loss. Overall, the data from FIGS. 3 A and 3B indicate that SDM-154 is much more tolerated than the control molecule SDM-155, and further has a wider therapeutic index (TI) that is at least 18-fold greater than the TI of SDM-155.

[0368] FIGS. 4A-8B illustrate the efficacy and tolerability of exemplary SDMs comprising a derivatized MMAF. These SDMs are dosed at 1 mg/kg in a HT1080 human fibrosarcoma xenograft model, respectively. In all of the figures, the respective SDM induced a tumor volume reduction and maintained a body weight change of less than 10%, in contrast to about 25% body weight loss change of SDM-155 (control) at 1 mg/kg.

[0369] FIG. 9A-FIG. 9B show the respective tumor volume change and body weight change of SDM- 320, those structure is maleimidocaproyl-valine-citrulline-GlyMMAE. SDM-320 is dosed at 1 mg/kg in a HT1080 human fibrosarcoma xenograft model. FIG. 9C shows the difference between SDM-320 and SDM-154.

[0370] FIG. 10A - FIG. 10D provide the experimental results from dosing of exemplary SDMs in HT- 1080 human fibrosarcoma xenograft model. FIG. 10A and FIG. 10C illustrate the change in tumor volume of SDM-166, SDM-167, SDM-154, and SDM-165, respectively. FIG. 10B and FIG. 10D illustrate the percentage change in body weight of SDM-166, SDM-167, SDM-154, and SDM-165, respectively. SDM- 167, SDM- 166, and SDM- 165 exhibited very low or no activity compared to SDM- 154. This data illustrates that the bulky and branched moiety such as Arg, Glu, and Leu as shown by SDM- 165, SDM- 166, and SDM- 167 provided lower activity (lower EC 50 ) than the SDMs comprising the Gly derivatization (SDM-154).

Example 3 Active Cellular Cytotoxic (ACC) molecules efficacy in HT1080 cells in vitro assay

[0371] Method: Plate cells one day prior to start of assay in 96 well black with clear bottom plates

(Coming #3603), 2 X 10 4 cells per well in 100 pL of standard growth media (according to ATCC). Grow cells to ~90 % confluency. [0372] Before start of assay rinse cells IX with DPBS. Add compounds in a 3 -fold serial dilution in triplicate (range e.g. 40 mM - 18 nM), 100 pL per well in standard growth media.

[0373] Incubate four days then assay cell viability as described below. Remove media and rinse IX with DPBS, then add 100 pL per well 10% Prestoblue Cell viability reagent (Thermo Fisher Scientific #Al326l) in complete media. Return to incubator for two hours then read plate on SpectraMax M2e, bottom read excitation 555 emission 585 cut-off 570 which measures number of live cells. Cell viability was plotted versus compound concentrationand data were fit to Log inhibitor vs response curve in GraphPad Prism and EC 50 were determined.

[0374] Table 14 provides cellular activity data for exemplary ACCs (compound EC 50 for reduction of viable cells).

TABLE 14

[0375] EC 50 values have average error of 38% based on multiple EC 50 determinations.

[0376] FIG. 11 illustrates the cell viability of exemplary ACCs.

[0377] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.