Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS FOR THE TREATMENT OF INFLAMMATORY DISEASE
Document Type and Number:
WIPO Patent Application WO/2008/070129
Kind Code:
A2
Abstract:
The invention relates to methods of treating inflammatory disease comprising administering a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound.

Inventors:
GJORSTRUP PER (US)
Application Number:
PCT/US2007/024929
Publication Date:
June 12, 2008
Filing Date:
December 05, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RESOLVYX PHARMACEUTICALS INC (US)
GJORSTRUP PER (US)
International Classes:
A61K31/557; A61K31/202; A61K31/573; A61P29/00
Domestic Patent References:
WO2005123061A12005-12-29
WO2006055965A22006-05-26
WO1999040906A21999-08-19
WO1997044024A11997-11-27
WO2007076531A12007-07-05
WO2007055599A12007-05-18
WO2007116027A12007-10-18
Foreign References:
US20030109509A12003-06-12
US20060058384A12006-03-16
GB1349955A1974-04-10
JPH0892129A1996-04-09
EP0173478A11986-03-05
US20040152682A12004-08-05
JP2000095683A2000-04-04
DE29505230U11995-06-29
Other References:
NIELSEN A A ET AL: "Omega-3 fatty acids inhibit an increase of proinflammatory cytokines in patients with active Crohn's disease compared with omega-6 fatty acids" ALIMENTARY PHARMACOLOGY & THERAPEUTICS, vol. 22, no. 11-12, December 2005 (2005-12), pages 1121-1128, XP002481029 ISSN: 0269-2813
Attorney, Agent or Firm:
HALSTEAD, David, P. et al. (One International PlaceBoston, MA, US)
Download PDF:
Claims:

Claims:

1. A method of treating inflammatory disease in a patient comprising conjointly administering to said patient a glucocorticoid and a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound, or prodrug thereof, or a salt of the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof.

2. The method according to claim 1, further comprising administering to the patient an anti-inflammatory agent other than the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof, or a salt of the compound of formula A, compound of any one of formulae 1- 49, lipoxin compound, or oxylipin compound, or prodrug thereof and the glucocorticoid.

3. The method according to claim 1 or 2, wherein the amount of glucocorticoid administered to the patient is less than an amount that achieves a therapeutic effect when administered in the absence of the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof, or a salt of the compound of formula A, compound of any one of formulae 1 -49, lipoxin compound, or oxylipin compound, or prodrug thereof.

4. The method according to any one of claims 1-3, wherein the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof, or a salt of the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof is administered to the patient in an amount less than an amount that achieves an anti- inflammatory effect in the absence of the glucocorticoid.

5. A method of reducing the dose of a glucocorticoid required to produce an anti- inflammatory effect in a patient, comprising conjointly administering to the patient a compound of formula A, compound of any one of formulae 1 -49, lipoxin compound, or oxylipin compound, or prodrug thereof, or a salt of the compound of formula A,

compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof with the glucocorticoid.

6. The method according to any one of claims 1 to 5, wherein the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof is selected from a compound of any one of Formulae 1 to 132.

7. The method according to any one of claims 1 to 6, wherein the glucocorticoid is selected from alclometasone, amcinonide, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, cortisone, cortivazol, deflazacort, desonide, desoximetasone, desoxycortone, dexamethasone, diflorasone, diflucortolone, difluprednate, fluclorolone, fludroxycortide, flumetasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin, fluocortolone, fluorometholone, fluperolone, fluprednidene, fluticasone, formocortal, halcinonide, halometasone, hydrocortisone/cortisol, hydrocortisone aceponate, hydrocortisone buteprate, hydrocortisone butyrate, loteprednol, medrysone, meprednisone, methylprednisolone, methylprednisolone aceponate, mometasone furoate, paramethasone, prednicarbate, prednisone/prednisolone, prednylidene, rimexolone, tixocortol, triamcinolone, ulobetasol, mometasone, fluticasone propionate, beclomethasone dipropionate, fluocinolone, flunisolide hemihydrate, mometasone furoate monohydrate, desoxymethasone, diflorasone diacetate, hydrocortisone acetate, difluorocortolone, fluorocortisone, flumethasone, flunisolide, fluorocortolone, prednisolone, prednisone, Cortisol, 6a-methylprednisolone, alclometasone dipropionate, fluclorolone acetonide, fluocinolone acetonide, betamethasone benzoate, fluocoritin butyl, betamethasone dipropionate, fluocortolone preparations, betamethasone valerate, fluprednidene acetate, flurandrenolone, clobetasol propionate, clobetasol butyrate, hydrocortisone, hydrocortisone butyrate, methylprednisolone acetate, diflucortolone valerate, flumethasone pivalate, or triamcinolone acetonide, or pharmaceutically acceptable salts thereof.

8. A composition comprising: a compound of formula A, compound of any one of formulae 1 -49, lipoxin compound, or oxylipin compound, or prodrug thereof, or a salt of the compound of

formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof; a glucocorticoid; and a pharmaceutically acceptable carrier.

9. The composition according to claim 8, further comprising an antiinflammatory agent other than a glucocorticoid or a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof, or a salt of the compound of formula A, compound of any one of formulae 1 -49, lipoxin compound, or oxylipin compound, or prodrug thereof.

10. The composition according to claim 8 or 9, wherein the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or prodrug thereof is selected from a compound of any one of Formulae 1 to 132.

1 1. The composition according to any one of claims 8 to 10, wherein the glucocorticoid is selected from alclometasone, amcinonide, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, cortisone, cortivazol, deflazacort, desonide, desoximetasone, desoxycortone, dexamethasone, diflorasone, diflucortolone, difluprednate, fluclorolone, fludroxycortide, flumetasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin, fluocortolone, fluorometholone, fluperolone, fluprednidene, fluticasone, formocortal, halcinonide, halometasone, hydrocortisone/cortisol, hydrocortisone aceponate, hydrocortisone buteprate, hydrocortisone butyrate, loteprednol, medrysone, meprednisone, methylprednisolone, methylprednisolone aceponate, mometasone furoate, paramethasone, prednicarbate, prednisone/prednisolone, prednylidene, rimexolone, tixocortol, triamcinolone, ulobetasol, mometasone, fluticasone propionate, beclomethasone dipropionate, fluocinolone, flunisolide hemihydrate, mometasone furoate monohydrate, desoxymethasone, diflorasone diacetate, hydrocortisone acetate, difluorocortolone, fluorocortisone, flumethasone, flunisolide, fluorocortolone, prednisolone, prednisone, Cortisol, 6a-methylprednisolone, alclometasone dipropionate, fluclorolone acetonide, fluocinolone acetonide, betamethasone benzoate, fluocoritin butyl, betamethasone dipropionate, fluocortolone preparations, betamethasone valerate, fluprednidene

acetate, flurandrenolone, clobetasol propionate, clobetasol butyrate, hydrocortisone, hydrocortisone butyrate, methylprednisolone acetate, diflucortolone valerate, flumethasone pivalate, or triamcinolone acetonide, or pharmaceutically acceptable salts thereof.

12. A method of treating inflammatory disease in a patient comprising conjointly administering to said patient aspirin, an omega-3 fatty acid, and a glucocorticoid.

13. The method according to claim 12, further comprising administering to the patient an anti-inflammatory agent other than aspirin or the glucocorticoid.

14. The method according to claim 12 or 13, wherein the glucocorticoid is administered to the patient in an amount less than an amount that achieves a therapeutic effect when administered in the absence of the aspirin and omega-3 fatty acid.

15. The method according to any one of claims 12 to 14, wherein the aspirin and omega-3 fatty acid are administered to the patient in an amount less than an amount that achieves an anti-inflammatory effect in the absence of the glucocorticoid.

16. A method of reducing the dose of a glucocorticoid required to produce an anti- inflammatory effect in a patient, comprising conjointly administering to the patient aspirin, an omega-3 fatty acid, and the glucocorticoid.

17. The method according to any one of claims 12 to 16, wherein the glucocorticoid is selected from alclometasone, amcinonide, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, cortisone, cortivazol, deflazacort, desonide, desoximetasone, desoxycortone, dexamethasone, diflorasone, diflucortolone, difluprednate, fluclorolone, fludroxycortide, fiumetasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin, fluocortolone, fiuorometholone, fluperolone, fluprednidene, fluticasone, formocortal, halcinonide, halometasone, hydrocortisone/cortisol, hydrocortisone aceponate, hydrocortisone buteprate, hydrocortisone butyrate, loteprednol, medrysone, meprednisone, methylprednisolone, methylprednisolone

aceponate, mometasone furoate, paramethasone, prednicarbate, prednisone/prednisolone, prednylidene, rimexolone, tixocortol, triamcinolone, ulobetasol, mometasone, fluticasone propionate, beclomethasone dipropionate, fluocinolone, flunisolide hemihydrate, mometasone furoate monohydrate, desoxymethasone, diflorasone diacetate, hydrocortisone acetate, difluorocortolone, fluorocortisone, flumethasone, flunisolide, fluorocortolone, prednisolone, prednisone, Cortisol, 6a-methylprednisolone, alclometasone dipropionate, fluclorolone acetonide, fluocinolone acetonide, betamethasone benzoate, fluocoritin butyl, betamethasone dipropionate, fluocortolone preparations, betamethasone valerate, fluprednidene acetate, flurandrenolone, clobetasol propionate, clobetasol butyrate, hydrocortisone, hydrocortisone butyrate, methylprednisolone acetate, diflucortolone valerate, flumethasone pivalate, or triamcinolone acetonide, or pharmaceutically acceptable salts thereof.

18. A composition comprising: an omega-3 fatty acid; a glucocorticoid; and a pharmaceutically acceptable carrier.

19. The composition according to claim 18, further comprising an antiinflammatory agent other than the glucocorticoid.

20. The composition according to claim 18 or 19, wherein the glucocorticoid is selected from alclometasone, amcinonide, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, cortisone, cortivazol, deflazacort, desonide, desoximetasone, desoxycortone, dexamethasone, diflorasone, diflucortolone, difluprednate, fluclorolone, fludroxycortide, flumetasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin, fluocortolone, fluorometholone, fluperolone, fluprednidene, fluticasone, formocortal, halcinonide, halometasone, hydrocortisone/cortisol, hydrocortisone aceponate, hydrocortisone buteprate, hydrocortisone butyrate, loteprednol, medrysone, meprednisone, methylprednisolone, methylprednisolone aceponate, mometasone furoate, paramethasone, prednicarbate, prednisone/prednisolone, prednylidene, rimexolone, tixocortol, triamcinolone, ulobetasol, mometasone, fluticasone propionate,

beclomethasone dipropionate, fluocinolone, flunisolide hemihydrate, mometasone furoate monohydrate, desoxymethasone, diflorasone diacetate, hydrocortisone acetate, difluorocortolone, fluorocortisone, flumethasone, flunisolide, fluorocortolone, prednisolone, prednisone, Cortisol, 6a-methylprednisolone, alclometasone dipropionate, fluclorolone acetonide, fluocinolone acetonide, betamethasone benzoate, fluocoritin butyl, betamethasone dipropionate, fluocortolone preparations, betamethasone valerate, fluprednidene acetate, flurandrenolone, clobetasol propionate, clobetasol butyrate, hydrocortisone, hydrocortisone butyrate, methylprednisolone acetate, diflucortolone valerate, flumethasone pivalate, or triamcinolone acetonide, or pharmaceutically acceptable salts thereof.

Description:

Compositions and Methods for the Treatment of Inflammatory Disease

Related Applications

This application claims the benefit of priority to U.S. Provisional Patent Application No. 60/872,812, filed December 5, 2006, which application is hereby incorporated by reference in its entirety.

Background

The adrenal glands are the physiological source of the corticosteroids. The isolation of distinct corticosteroids that regulate carbohydrate metabolism or electrolyte and fluid balance was the basis for the distinction of two separate classes of corticosteroids, the glucocorticoids and the mineralocorticoids. In addition, the glucocorticoids were found to be potent suppressors of an inflammatory response which led to their further pharmacological development as therapies for use in a wide range of inflammatory and autoimmune disorders. In fact, glucocorticoids currently represent one of the most frequently prescribed classes of drugs. However, their metabolic effects which affect almost every organ system in the body make their clinical use complicated by a number of serious side-effects, some of which can even be life-threatening and which tend to limit their long-term use at efficacious doses. The pharmacological actions of glucocorticoids on either metabolism or as modulators of an immune response seem to be mediated by the same receptors and to date no glucocorticoid for the treatment of inflammatory disorders distinguishes between these actions.

Glucocorticoids are indicated for almost any inflammatory condition but due to their side-effects, of which the most common are fluid and electrolyte abnormalities, hyperglycemia, increased susceptibility to infection, osteoporosis, myopathy, behavioral disturbancies, cataracts, growth retardation in children, and cataracts, their use is often limited to remission induction following flare-ups in patients with chronic disease. In many of these patients it would be desirable to keep them on a low maintenance dose of corcicostroids, but even low maintaneance therapy tends, over prolonged use, to give similar side-effects as those seen at higher

doses administered over shorter periods. In attempts at prolonging the use of corticosteroids, the further dose reduction often leads to suboptimal therapy with exacerbation of disease. For many patients, however, whose disease cannot be controlled by other conventional immunotherapies, an often undesirable balance between disease control and barely manageable side-effects remains the sole alternative.

Multiple mechanisms are involved in the suppression of inflammation by glucocorticoids, and it is well established that multiple cell types that are involved in an immune response can be regulated by corticosteroids: neutrophils, macrophages and monocytes, dendritic cells, microglial, lymphocytes (both T- and B-cell), endothelial cells, and fibroblasts. This regulation leads to the inhibition of the secretion of proinflammatory cytokines, chemokines, and eicosanoids such as prostaglandins and leukotrienes, to decreased migration of leukocytes to inflamed areas, and reduced antigen presentation. These broad effects of glucocorticoids make them useful in the treatment of a wide range of inflammatory conditions, whether primarily driven by the innate or the adaptive immune systems. Consequently, corticosteroids are commonly used to treat inflammatory disorders as diverse as various forms of arthritides (rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), inflammatory bowel diseases, both Crohn's Disease and ulcerative colitis, multiple sclerosis in acute exacerbations, systemic lupus erythematosus, asthma, chronic obstructive pulmonary disease, psoriasis and other inflammatory skin conditions, uveitis, and a number of acute but temporary inflammatory conditions including acute allegic reactions.

Glucocorticoids are used orally, parenterally, topically, and frequently, intra- and peri-articularly, i.e., injected in and around joints and joint cavities. Generally, prednisone, an alcohol, is used orally, and the corresponding ketone prednisolone (or methyl-prednisolone) is used for parenteral injections. These compounds are five times more effective than naturally occurring cortisone, which tends to minimize toxicity problems. More-developed fluorinated derivatives of corticosteroids (e.g., triamcinolone, dexamethasone, paramethasone, and betamethasone) are three to five times more effective than non-fiuorinated compounds; however, these compounds are also more toxic. Therefore, there remains a need for strategies to reduce the severity

and frequency of side-effects of glucocorticoids that accompany traditional therapy

Summary of Invention

The present invention provides methods for the treatment of inflammatory disease in a patient comprising administering to the patient a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound, or a combination of aspirin and an omega-3 fatty acid conjointly with a glucocorticoid.

The present invention also provides pharmaceutically acceptable compositions comprising a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound disclosed herein, or a combination of aspirin and an omega-3 fatty acid and a glucocorticoid.

Detailed Description of the Invention

The present invention provides a method of treating inflammatory disease in a patient comprising administering to said patient a glucocorticoid conjointly with a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound, or with a combination of aspirin and an omega- 3 fatty acid .

Compounds of formula A, compounds of any one of formulae 1-49, lipoxin comopunds, and oxylipin compounds are capable of resolving inflammation. The combination of aspirin and an omega-3 fatty acid produces active metabolites that are also capable of resolving inflammation. Glucocorticoids are also known for their role in treating inflammation. However, the full anti-inflammatory potential of glucocorticoids is often clinically constrained as a monotherapy due to the rate and severity of treatment-limiting adverse events that accompany high or prolonged dosing regimens. For example, the administration of glucocorticoids can result in side effects that mimic Cushing's disease. These side effects and others associated with glucocorticoid use include increased appetite and weight gain, deposits of fat in the chest, face, upper back, and stomach, water and salt retention leading to swelling and edema, high blood pressure, diabetes, slow healing of wounds, osteoporosis, cataracts,

acne, muscle weakness, thinning of the skin, increased susceptibility to infection, stomach ulcers, increased sweating, mood swings, psychological problems such as depression, and adrenal suppression and crisis. Advantageously, treatment of inflammatory disease with a combination of a glucocorticoid and a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, an oxylipin compound, or a combination of aspirin and an omega-3 fatty acid enhance the antiinflammatory properties of both classes of compounds while reducing the effects associated with high doses of glucocorticoids alone.

Examples of inflammatory conditions, which may be treated or prevented by the conjoint administration of a glucocorticoid and a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, an oxylipin compound, or combination of aspirin and an omego-3 fatty acid, include inflammation of the lungs, joints, connective tissue, eyes, nose, bowel, kidney, liver, skin, central nervous system, vascular system and heart. In certain embodiments, inflammatory conditions which may be treated by the current invention include inflammation due to the infiltration of leukocytes or other immune effector cells into affected tissue. Other relevant examples of inflammatory conditions which may be treated by the present invention include inflammation caused by infectious agents, including but not limited to, viruses, bacteria fungi and parasites.

Inflammatory lung conditions include asthma, adult respiratory distress syndrome, bronchitis, pulmonary inflammation, pulmonary fibrosis, and cystic fibrosis (which may additionally or alternatively involve the gastro-intestinal tract or other tissue(s)). Inflammatory joint conditions include rheumatoid arthritis, rheumatoid spondylitis, juvenile rheumatoid arthritis, osteoarthritis, gouty arthritis and other arthritic conditions. Inflammatory eye conditions include uveitis (including iritis), conjunctivitis, scleritis, and keratoconjunctivitis sicca. Inflammatory bowel conditions include Crohn's disease, ulcerative colitis and distal proctitis.

Inflammatory skin diseases include conditions associated with cell proliferation, such as psoriasis, eczema and dermatitis, (e. g., eczematous dermatitides, topic and seborrheic dermatitis, allergic or irritant contact dermatitis, eczema craquelee, photoallergic dermatitis, phototoxicdermatitis, phytophotodermatitis, radiation dermatitis, and stasis dermatitis). Other inflammatory

skin diseases include, but are not limited to, ulcers and erosions resulting from trauma, burns, bullous disorders, or ischemia of the skin or mucous membranes, several forms of ichthyoses, epidermolysis bullosae, hypertrophic scars, keloids, cutaneous changes of intrinsic aging, photoaging, frictional blistering caused by mechanical shearing of the skin and cutaneous atrophy resulting from the topical use of corticosteroids. Additional inflammatory skin conditions include inflammation of mucous membranes, such as cheilitis, chapped lips, nasal irritation, mucositis and vulvovaginitis.

Inflammatory disorders of the endocrine system include, but are not limited to, autoimmune thyroiditis (Hashimoto's disease), Type I diabetes, and acute and chronic inflammation of the adrenal cortex. Inflammatory conditions of the cardiovascular system include, but are not limited to, coronary infarct damage, peripheral vascular disease, myocarditis, vasculitis, revascularization of stenosis, artherosclerosis, and vascular disease associated with Type II diabetes.

Inflammatory condition of the kidney include, but are not limited to, glomerulonephritis, interstitial nephritis, lupus nephritis, nephritis secondary to Wegener's disease, acute renal failure secondary to acute nephritis, post-obstructive syndrome and tubular ischemia.

Inflammatory conditions of the liver include, but are not limited to, hepatitis (arising from viral infection, autoimmune responses, drug treatments, toxins, environmental agents, or as a secondary consequence of a primary disorder), biliary atresia, primary biliary cirrhosis and primary sclerosing cholangitis.

Inflammatory conditions of the central nervous system include, but are not limited to, multiple sclerosis and neurodegenerative diseases such as Alzheimer's Disease or dementia associated with HIV infection. Other inflammatory conditions include periodontal disease, tissue necrosis in chronic inflammation, endotoxin shock, smooth muscle proliferation disorders, tissue damage following ischemia reperfusion injury, and tissue rejection following transplant surgery.

It should be noted that the current invention may be used to treat or prevent any disease which has an inflammatory component, such as those diseases cited above. Further, the inflammatory conditions cited above are meant to be exemplary rather than exhaustive.

Those skilled in the art would recognize that additional inflammatory

conditions (e. g., systemic or local immune imbalance or dysfunction due to an injury, an insult, infection, inherited disorder, or an environmental intoxicant or perturbant to the subject's physiology) may be treated by the current invention.

The present invention also provides methods for treating or preventing arthritis, inflammatory bowel disease, uveitis, ocular inflammation, asthma, pulmonary inflammation, cystic fibrosis, psoriasis, arterial inflammation, cardiovascular diseases, multiple sclerosis, or neurodegenerative disease by administering an effective amount of a glucocorticoid conjointly with a compound of formula A, a compound of any one of formulae 1 -49, a lipoxin compound, or an oxylipin compound, or with a combination of aspirin and an omega-3 fatty acid.

In methods of the invention, wherein a glucocorticoid is administered conjointly with a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound, or with a combination of aspirin and an omega-3 fatty acid, the glucocorticoid may be chosen from any glucocorticoid known in the art. Glucocorticoids suitable for said conjoint administration include, but are not limited to, alclometasone, amcinonide, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, cortisone, cortivazol, deflazacort, desonide, desoximetasone, desoxycortone, dexamethasone, diflorasone, diflucortolone, difluprednate, fluclorolone, fludroxycortide, flumetasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin, fluocortolone, fluorometholone, fluperolone, fluprednidene, fluticasone, formocortal, halcinonide, halometasone, hydrocortisone/cortisol, hydrocortisone aceponate, hydrocortisone buteprate, hydrocortisone butyrate, loteprednol, medrysone, meprednisone, methylprednisolone, methylprednisolone aceponate, mometasone furoate, paramethasone, prednicarbate, prednisone/prednisolone, prednylidene, rimexolone, tixocortol, triamcinolone, ulobetasol, mometasone, fluticasone propionate, beclomethasone dipropionate, fluocinolone, flunisolide hemihydrate, mometasone furoate monohydrate, desoxymethasone, diflorasone diacetate, hydrocortisone acetate, difluorocortolone, fluorocortisone, flumethasone, flunisolide, fluorocortolone, prednisolone, prednisone, Cortisol, 6a-methylprednisolone, alclometasone dipropionate, fluclorolone acetonide, fluocinolone acetonide, betamethasone benzoate, fluocoritin butyl, betamethasone dipropionate, fluocortolone preparations,

betamethasone valerate, fluprednidene acetate, flurandrenolone, clobetasol propionate, clobetasol butyrate, hydrocortisone, hydrocortisone butyrate, methylprednisolone acetate, diflucortolone valerate, flumethasone pivalate, or triamcinolone acetonide, or pharmaceutically acceptable salts thereof.

Compounds suitable for use in methods of the invention include those of Formula A,

j c-r ' KHkvrK v.K v.-w-G- wherein: each of W and Y' is a bond or a linker independently selected from a ring containing up to 20 atoms or a chain of up to 20 atoms, provided that W and Y 1 can independently include one or more nitrogen, oxygen, sulfur or phosphorous atoms, further provided that W and Y' can independently include one or more substituents independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, chloro, iodo, bromo, fluoro, hydroxy, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, cyano, oxo, thio, alkylthio, arylthio, acylthio, alkylsulfonate, arylsulfonate, phosphoryl, or sulfonyl, further provided that W and Y' can independently contain one or more fused carbocyclic, heterocyclic, aryl or heteroaryl rings, and further provided that when o' is 0, and Vi is

,Y' is connected to Vi via a carbon atom;

V i is selected from

, wherein when q' is 0 and V 3 is a bond, n' is 0 or 1 ; otherwise n' is 1 ;

wherein:

L 1 is selected from -C(R 1003 )(R 1004 )-, wherein each of R 1003 and R 1004 is independently selected from hydrogen, alkyl, alkenyl, alkynyl, perfluoroalkyl, alkoxy, aryl or heteroaryl, or R 1003 and R 1004 are connected together to form a

carbocyclic or heterocyclic ring; when V 3 is , L' is additionally selected from W; and n' is 0 or 1 ;

V 3 is selected from a bond or wherein: each R l00l and R 1002 is independently for each occurrence selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, alkylaryl, alkoxy, or halo, wherein said alkyl- or aryl-containing moiety is optionally substituted with up to 3 independently selected substituents; each of R a and R b is independently for each occurrence selected from -OR' or -N(R') 2 , or adjacent R a and R b are taken together to form an epoxide ring having a cis or trans configuration, wherein each R' is independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, acyl, silyl, alkoxyacyl, aminoacyl, aminocarbonyl, alkoxycarbonyl, or a protecting group;

R 1002 and R b' are both hydrogen;

X 1 is selected from -CN, -C(NH)N(R")(R"), -C(S)-A', -C(S)R", -C(O)-A', -C(O)-R", -C(O)-SR", -C(O)-NH-S(O) 2 -R", -S(O) 2 -A", -S(O) 2 -R", S(O) 2 N(R")(R"), -P(O) 2 -A 1 , -PO(OR")-A', -tetrazole, alkyltetrazole, or -CH 2 OH, wherein A' is selected from -OR", -N(R")(R") or -OM'; each R" is independently selected from hydrogen, alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl or a detectable label molecule, wherein any alkyl-, aryl- or heteroaryl-containing moiety is optionally substituted with up to 3 independently selected substituents; and

M' is a cation;

G' is selected from hydrogen, halo, hydroxy, alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido or a detectable label molecule, wherein any alkyl-, aryl- or heteroaryl-containing moiety is optionally substituted with up to 3 independently selected substituents; o' is O, 1, 2, 3, 4, or 5; p' is O, 1, 2, 3, 4, or 5; q' is O, 1, or 2; and o' + p' + q' is 1, 2, 3, 4, 5 or 6; wherein: if V 2 is a bond, then q' is O, and V 3 is a bond;

if V 3 is then o' is 0, V| is p' is 1 and

any acyclic double bond may be in a cis or a trans configuration or is optionally replaced by a triple bond; and

compound, if

present, is optionally replaced by or one

portion of the compound, if present, is optionally

replaced by , wherein Q' represents one or more substituents and each Q' is independently selected from halo, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, amino, hydroxy, cyano, carboxyl, alkoxycarbonyloxy, aryloxycarbonyloxy or aminocarbonyl.

In certain embodiments, V| is selected from

In certain embodiments, V 2 is selected from a bond,

In certain embodiments, when q' is O and V 3 is a bond, n' is O or 1 ; otherwise n' is 1.

In certain embodiments, p' is O, 1 , 2, 3, or 5. In certain embodiments, q' is 0 or 1.

In certain embodiments, if V then o' is 0 or

1 , p' is 1 or 2, o' + p 1 is 1 or 2, V 2 is and V 3 is a bond.

In certain embodiments, if Vi is , then o' is 3, 4 or 5, p' is 0, 1 or 2, o' + p' is 4 or 5, and V 2 is a bond.

In certain embodiments, if V 2 is a bond, then o' is 0, 3, 4 or 5; p' is 0, 1, 2 or 5, o' + p' is 4 or 5, q' is 0, and V 3 is a bond.

In certain embodiments, each of W and Y' is independently selected from a bond or lower alkyl or heteroalkyl optionally substituted with one or more substituents independently selected from alkenyl, alkynyl, aryl, chloro, iodo, bromo, fluoro, hydroxy, amino, or oxo.

Compounds suitable for use in methods of the invention include those of Formula 1,

wherein

Carbons a' and b' are connected by a double bond (e.g., a cis or trans double bond) or a triple bond;

Carbons c' and d' are connected by a double bond (e.g., a cis or trans double bond) or a triple bond;

Re, Rf, and Rg are independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, acyl (e.g., alkoxyacyl, aminoacyl), aminocarbonyl, alkoxycarbonyl, or silyl;

Rh, Ri and Rj are independently selected from hydrogen, alkyl, alkenyl, alkynyl, perfluoroalkyl, aryl or heteroaryl;

I is selected from -C(O)-E, -SO 2 -E, -PO(OR)-E, where E is hydroxy, alkoxy, aryloxy, amino, alkylamino, dialkylamino, or arylamino; and R is hydrogen or alkyl;

J, L and H are linkers independently selected from a ring containing up to 20 atoms or a chain of up to 20 atoms, provided that J, L and H can independently include one or more nitrogen, oxygen, sulfur or phosphorous atoms, and further provided that J, L and H can independently include one or more substituents selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, chloro, iodo, bromo, fluoro, hydroxy, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, cyano, oxo, thio, alkylthio, arylthio, acylthio, alkylsulfonate, aryl sulfonate, phosphoryl, and sulfonyl, and further provided that J, L and H can also contain one or more fused carbocyclic, heterocyclic, aryl or heteroaryl rings, and provided that linker J is connected to the adjacent C(R)OR group via a carbon atom;

G is selected from hydrogen, alkyl, perfluoroalkyl, alkenyl, alkynyl, aryl, heteroaryl, chloro, iodo, bromo, fluoro, hydroxy, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, or carboxamido;

or pharmaceutically acceptable salts thereof.

In certain embodiments, a pharmaceutically acceptable salt of the compound is formed by derivatizing E, wherein E is -OM, where M is a cation selected from ammonium, tetra-alkyl ammonium, Na, K, Mg, and Zn.

In certain embodiments, a compound of formula 1 is represented by formula 2,

wherein

E, Re, Rf, and Rg are as defined above.

In certain embodiments, a pharmaceutically acceptable salt of the compound is formed by derivatizing E, wherein E is -OM, where M is a cation selected from ammonium, tetra-alkyl ammonium, Na, K, Mg, and Zn.

Exemplary compounds of formula 2 include:

In certain embodiments, a compound of formula 1 is represented by formula 3,

wherein

E, Re, Rf, and Rg are as defined above.

In certain embodiments, a pharmaceutically acceptable salt of the compound is formed by derivatizing E, wherein E is -OM, where M is a cation selected from ammonium, tetra-alkyl ammonium, Na, K, Mg, and Zn.

Exemplary compounds of formula 3 include:

Further exemplary compounds of formula 1 include Compound X,

Other compounds suitable for use in methods of the invention include those of Formula 4,

wherein

A is H or -OP 4 ;

Pi 1 P 2 and P 4 each individually is a protecting group or hydrogen atom;

R i and R 2 each individually is a substituted or unsubstituted, branched or unbranched alkyl, alkenyl, or alkynyl group, substituted or unsubstituted aryl group, substituted or unsubstituted, branched or unbranched alkylaryl group, halogen atom, hydrogen atom;

Z is -C(O)OR d , -C(O)NR C R C , -C(O)H, -C(NH)NR C R C , -C(S)H, -C(S)OR d ,

-C(S)NR 0 R 0 , -CN, preferably a carboxylic acid, ester, amide, thioester, thiocarboxamide or a nitrile; each R a , if present, is independently selected from hydrogen, (C1-C6) alkyl, (C2-C6) alkenyl, (C2-C6) alkynyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered heterocyclyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-1 1 membered heterocyclyl alkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl; each R b , if present, is a suitable group independently selected from =0, -OR d , (Cl- C3) haloalkyloxy, -OCF 3 , =S, -SR d , =NR d , =N0R d , -NR 0 R 0 , halogen, -CF 3 , -CN, -NC, -OCN, -SCN, -NO, -NO 2 , =N 2 , -N 3 , -S(O)R d , -S(O) 2 R d , -S(O) 2 OR", -S(O)NR C R°, -S(O) 2 NR 0 R 0 , -OS(O)R d , -OS(O) 2 R d , -OS(O) 2 OR d , -OS(O) 2 NR 0 R 0 , -C(0)R d , -C(O)OR d , -C(O)NR 0 R 0 , -C(NH)NR 0 R 0 , -C(NR a )NR°R°, -C(NOH)R 3 , -C(NOH)NR 0 R 0 , -OC(O)R d , -OC(O)OR d , -OC(O)NR 0 R 0 , -OC(NH)NR 0 R 0 , -0C(NR a )NR°R°, -[NHC(0)] n R d , -[NR a C(0)] n R d , -[NHC(O)] π OR d , -[NR a C(O)] n OR d , [NHC(0)] n NR°R c ,

-[NR 3 C(O)J n NR 0 R 0 , -[NHC(NH)] n NR°R c and -[NR a C(NR 3 )] n NR°R c ;

each R c , if present, is independently a protecting group or R a , or, alternatively, two R c taken together with the nitrogen atom to they are bonded form a 5 to 8- membered heterocyclyl or heteroaryl which optionally including one or more additional heteroatoms and optionally substituted with one or more of the same or different R a or suitable R b groups; each n independently is an integer from 0 to 3; each R d independently is a protecting group or R a ;

or pharmaceutically acceptable salts thereof.

Other compounds suitable for use in methods of the invention include those of Formula 5,

or pharmaceutically acceptable salts thereof, wherein

P 3 is a protecting group or hydrogen atom; and Pi, P 2 , Ri and Z are as defined above in formula 4.

Other compounds suitable for use in methods of the invention include those of Formula 6,

or pharmaceutically acceptable salts thereof, wherein

each X represents hydrogen or taken together both X groups represent one substituted or unsubstituted methylene, an oxygen atom, a substituted or unsubstituted N atom, or a sulfur atom such that a three-membered ring is formed; and

Pi, P 2 , P 3 , Ri and Z are as defined above.

In certain embodiments, X represents hydrogen or taken together both X groups represent one substituted or unsubstituted methylene.

Other compounds suitable for use in methods of the invention include those of Formula 7,

or pharmaceutically acceptable salts thereof, wherein

Carbons e' and f are connected by a double bond or a triple bond, and when carbon e' is connected to carbon f through a double bond the stereochemistry is cis or trans;

Carbons g' and h 1 are connected by a double bond or a triple bond and when carbon g' is connected to carbon h' through a double bond the stereochemistry is cis or trans;

m is 0 or 1 ;

T' is hydrogen, (C1-C6) alkyl, (C2-C6) alkenyl, (C2-C6) alkynyl, (C5-C14) aryl, (C6- C16) arylalkyl, 5-14 membered heteroaryl, 6-16 membered heteroaryl alkyl, or -CH=CHCH 2 CH 3 ;

T is -(CH 2 ) 9 - or -(CH 2 )^-O-, where q is an integer from 0 to 6;

Z' is (C1-C6) alkylene optionally substituted with 1, 2, 3, 4, 5 or 6 of the same or different halogen atoms, -(CH 2 ) P -O-CH 2 - or -(CH 2 )^-S-CH 2 -, where p is an integer from 0 to 4;

Ri i, R] 2 and Ri 3 each individually is substituted or unsubstituted, branched or unbranched alkyl, alkenyl, or alkynyl group, substituted or unsubstiruted aryl group, substituted or unsubstiruted, branched or unbranched alkylaryl group, Ci -4 alkoxy, halogen atom, -CH 2 Ri 4 , -CHRi 4 R) 4 , -CRi 4 Ri 4 Ri 4, or a hydrogen atom;

Ri 4 is independently for each occurrence selected from -CN, -NO 2 or halogen;

Pi, P 2 , P 3 , and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 8,

or pharmaceutically acceptable salts thereof, wherein

the stereochemistry of the carbon i' to carbon j' bond is cis or trans;

m is 0 or 1 ;

D' is CH 3 , -CH=CHCH 2 U or -CH=CHCH 2 CH 2 A;

U is a branched or unbranched, substituted or unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkoxy, aryloxy, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, alkoxycarbonyloxy, and aryloxycarbonyloxy group;

A is H or -OP 4 ;

Pi, P 2 , P 4 , R|, R 2 and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 9,

or pharmaceutically acceptable salts thereof, wherein

Carbons k' and 1' are connected by a double bond or a triple bond;

the stereochemistry of the carbon m' to carbon n' double bond is cis or trans;

m is 0 or 1 ;

D is -CH 3 or -CH=CHCH 2 CH 3 ;

Pi, P 2 , P 3 , Ri, X, and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 10,

or pharmaceutically acceptable salts thereof, wherein

Pi, ?2, P3, R 1 and Z are as defined above; and

Q represents one or more substituents and each Q individually, if present, is a halogen atom or a branched or unbranched, substituted or unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkoxy, aryloxy, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, amino, hydroxy, cyano, carboxyl, alkoxycarbonyloxy, aryloxycarbonyloxy or aminocarbonyl group.

Other compounds suitable for use in methods of the invention include those of Formula 1 1 ,

or pharmaceutically acceptable salts thereof, wherein

Pi, P 2 , P 3 , Ri, and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 12,

or pharmaceutically acceptable salts thereof, wherein

Pi, P 2 , P 3 , Q, Ri, and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 13,

13

or pharmaceutically acceptable salts thereof, wherein

Pi, P 2 , Ri, R 2 , U, and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 14,

or pharmaceutically acceptable salts thereof, wherein

Pi, P 2 , Ri, R 2 , Q, and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 15,

or pharmaceutically acceptable salts thereof, wherein

Pi, P 2 , and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 16,

16

or pharmaceutically acceptable salts thereof, wherein

P I and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 17,

or pharmaceutically acceptable salts thereof, wherein

Carbons o' and p' are connected by a single or a double bond (e.g., a cis or trans double bond);

Carbons q 1 and r 1 are connected by a single or a double bond (e.g., a cis or trans double bond); and

Pi, P 2 , and Z are as defined above.

In certain embodiments, carbons o' and p' are connected by a double bond (e.g., a cis or trans double bond). In certain embodiments, carbons q' and r' are connected by a double bond (e.g., a cis or trans double bond).

Other compounds suitable for use in methods of the invention include those of Formula 18,

or pharmaceutically acceptable salts thereof, wherein

the stereochemistry of the carbon s' to carbon t' double bond is cis or trans;

the stereochemistry of the carbon u' to carbon v' double bond is cis or trans; and

Pi, P 2 , Ri, R 2 , and Z are as defined above.

Other compounds suitable for use in methods of the invention include those of Formula 19,

or pharmaceutically acceptable salts thereof, wherein

Carbons w' and x' are connected by a single or a double bond;

Carbons y' and z' are connected by a single or a double bond; and

P 1 , P 2 , and Z are as defined above.

In certain embodiments of formulae 4 to 19, each R b , if present, is a suitable group independently selected from =O, -OR d , (C1-C3) haloalkyloxy, -OCF 3 , =S, -SR d , =NR d , =NOR d , -NR C R C , halogen, -CF 3 , -CN, -NC, -OCN, -SCN, -NO, -NO 2 , =N 2 , -N 3 , -S(O)R d , -S(O) 2 R d , -S(O) 2 OR", -S(O)NR C R C , -S(O) 2 NR C R C , -OS(O)R d , -OS(O) 2 R", -OS(O) 2 OR", -OS(O) 2 NR C R C , -C(0)R d , -C(O)OR", -C(O)NR 0 R 0 , -C(NH)NR 0 R 0 , -C(NR a )NR°R°, -C(NOH)R 3 , -C(NOH)NR 0 R 0 , -0C(0)R d , -OC(O)OR d , -OC(O)NR 0 R 0 , -OC(NH)NR 0 R 0 , -OC(NR a )NR°R°, -[NHC(O)] n R d , -[NR a C(O)] n R d , -[NHC(O)] n OR d , [NHC(O)] n NR°R c , -[NR a C(O)] n NR°R c , -[NHC(NH)J n NR 0 R 0 and -[NR a C(NR a )] n NR°R°.

Other compounds suitable for use in methods of the invention include those of Formula 20,

Formula 21,

Formula 22,

Formula 23,

Formula 24,

Formula 25,

Formula 26,

Formula 27,

or Formula 28,

28 OP , or pharmaceutically acceptable salts of

any of the above, wherein

each P is individually selected from H or a protecting group; and

R is H, Ci -6 alkyl (e.g., methyl, ethyl, glycerol), C 2 . 6 alkenyl or C 2-6 alkynyl.

Other compounds suitable for use in methods of the invention include those of Formula 29,

R -X h 2 °1 R"lE0 '1x 5° A H λ 1 W 1

Gi ^7< Y 1 RiO3 OH

29

and pharmaceutically acceptable salts, hydrates and solvates thereof, wherein:

Di-Ei and F]-Gi are independently are cis or trans -C=C- or -C≡C-;

Rioi, Ri 0 2 and R1 03 are independently selected from hydrogen, (C1-C4) straight- chained or branched alkyl, (C2-C4) alkenyl, (C2-C4) alkynyl, (C1-C4) alkoxy, -CH 2 Ri 04 , -CHR104R104 and -CR104R104R104;

each R 104 is independently selected from CN, -NO 2 and halogen;

W] is selected from -Rιo 5 , -ORi 05 , -SRios and -NRiO 5 Ri 05 ;

each R) 05 is independently selected from hydrogen, (Cl -C6) alkyl, (C2-C6) alkenyl or (C2-C6) alkynyl optionally substituted with one or more of the same or different R groups, (C5-C14) aryl optionally substituted with one or more of the same or different R groups, phenyl optionally substituted with one or more of the same or different R groups, (C6-C16) arylalkyl optionally substituted with one or more of the same or different R groups, 5-14 membered heteroaryl optionally substituted with one or more of the same or different R groups, 6-16 membered heteroarylalkyl optionally substituted with one or more of the same or different R groups and a detectable label molecule;

A| is selected from (Cl -C6) alkylene optionally substituted with 1 , 2, 3, 4, 5 or 6 of the same or different halogen atoms, -(CH 2 ) m -O-CH 2 - and -(CH 2 ^ n -S-CH 2 -, where m is an integer from 0 to 4;

Xι is selected from -(CH 2 ),,- and -(CH 2 ),,-O-, where n is an integer from 0 to 6;

Yi is selected from hydrogen, (C1-C6) alkyl, (C2-C6) alkenyl, or (C2-C6) alkynyl, optionally substituted with one or more of the same or different Ri 00 groups, (C5-C14) aryl optionally substituted with one or more of the same or different Rioo groups, phenyl, optionally substituted with one or more of the same or different Ri 00 groups, (C6-C16) arylalkyl optionally substituted with one or more of the same or different Rioo groups, 5-14 membered heteroaryl optionally substituted with one or more of the same or different Rioo groups, 6- 16 membered heteroaryl alkyl optionally substituted with one or more of the same or different Rioo groups and a detectable label molecule;

each Rioo is independently selected from an electronegative group, =O, -OR al ,

(C1-C3) haloalkyloxy, =S, -SR al , =NR al , =NONR al , -NR cl R c l , halogen, ,-CF 3 , -CN, -NC, -OCN, -SCN, -NO, -NO 2 , =N 2 , -N 3 , -S(O)R al , -S(O) 2 R 3 ', -S(O) 2 OR 3 ', -S(O) 2 NR cl R c l , -OS(O)R 3 ', -OS(O) 2 R 3 ', -OS(O) 2 OR 3 ', -OS(O) 2 NR cl R c l , -C(O)R al , -C(O)OR 3 ', -C(O)NR cl R cl , -C(NH)NR cl R cl , -OC(O)R 3 ', -OC(O)OR 3 ', -OC(O)NR cl R cl , -OC(NH)NR 0 'R C I , -NHC(O)R 3 ', -NHC(O)OR 3 ', -NHC(O)NR cl R cl and -NHC(NH)NR 01 R 0 ';

each R al is independently selected from hydrogen, (Cl -C4) alkyl, (C2-C4) alkenyl or (C2-C4) alkynyl; and

each R 0 ' is independently an R al or, alternatively, R c l R cl taken together with the nitrogen atom to which it is bonded forms a 5 or 6 membered ring.

In certain embodiments of Formula 29, when Xi-Yi is -CH 2 CH 3 , then at least one of Rioi, R1 0 2 or Ri 03 is other than hydrogen.

In certain embodiments, a compound of Formula 29 is represented by Formula 30,

W 1

30

Other compounds suitable for use in methods of the invention include those of Formulae 31 to 37

34

and pharmaceutically acceptable salts, hydrates and solvates thereof,

wherein

R 106 is -OH, -OCH 3 , -OCH(CH 3 ) 2 or -NHCH 2 CH 3 ; and

Other compounds suitable for use in methods of the invention include those of Formula 38,

wherein

Carbons aa 1 and bb' are connected by a double bond (e.g., a cis or trans double bond) or a triple bond;

Carbons cc' and dd' are connected by a double bond (e.g., a cis or trans double bond) or a triple bond;

Re, Rf, and Rg are independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, acyl (e.g., alkoxyacyl, aminoacyl), aminocarbonyl, alkoxycarbonyl, or silyl;

E is hydroxyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, or arylamino;

Rh, Ri and Rj are independently selected from hydrogen, alkyl, alkenyl, alkynyl, perfluoroalkyl, aryl or heteroaryl;

R 4 is selected from hydrogen, alkyl, perfluoroalkyl, alkenyl, alkynyl, aryl, heteroaryl, fluoro, hydroxyl, alkoxy, aryloxy;

R 5 is selected from i-iv as follows: i) CH 2 CH(R 6 )CH 2 , where R 6 is hydrogen, alkyl, alkenyl, alkynyl, perfluoroalkyl, aryl, heteroaryl, fluoro, hydroxyl or alkoxy; ii) CH 2 C(R 6 R 7 )CH 2 , where R 6 and R 7 are each independently alkyl, alkenyl, alkynyl, perfluoroalkyl, aryl, or fluoro, or R 6 and R 7 are connected together to form a carbocyclic or heterocyclic ring; iii) CH 2 OCH 2 , CH 2 C(O)CH 2 , or CH 2 CH 2 ; or iv) R 5 is a carbocyclic, heterocyclic, aryl or heteroaryl ring; and

R 8 and Rg are independently selected from hydrogen, alkyl, alkenyl, alkynyl, perfluoroalkyl, alkoxy, aryl or heteroaryl, or R 8 and R 9 are connected together to form a carbocyclic or heterocyclic ring;

or pharmaceutically acceptable salts thereof.

In certain embodiments Rg and R 9 are hydrogen.

In certain embodiments, a pharmaceutically acceptable salt of the compound is formed by derivatizing E, wherein E is -OM, where M is a cation selected from ammonium, tetra-alkyl ammonium, Na, K, Mg, and Zn.

Other compounds suitable for use in methods of the invention include those of Formulae 39-44,

and pharmaceutically acceptable salts thereof, wherein

Re, Rf, E, Ri, R 5 , R 8 and R 9 are as defined above.

Exemplary compounds of formulae 39, 41, and 43 include:

Other compounds suitable for use in methods of the invention include those of Formula 46,

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

each independently designates a double or triple bond;

R 1 , R 2 , and R 3 are each independently OR, OX 1 , SR, SX 2 , N(R) 2 , NHX 3 , NRC(O)R,

NRC(O)N(R) 2 , C(O)OR, C(O)N(R) 2 , SO 2 R, NRSO 2 R, C(O)R, or SO 2 N(R) 2 ;

each R is independently selected from hydrogen or an optionally substituted group selected from Ci -6 aliphatic, a 3-8 membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or;

two R on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring having 1 -3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

each X 1 is independently a suitable hydroxyl protecting group;

each X 2 is independently a suitable thiol protecting group;

each X 3 is independently a suitable amino protecting group; and

R 4 is NRC(O)R, NRC(O)N(R) 2 , C(O)OR, C(O)N(R) 2 , SO 2 R, NRSO 2 R, C(O)R, or SO 2 N(R) 2 .

Other compounds suitable for use in methods of the invention include those of Formula 47:

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

Y' is a bond or a linker selected from a ring containing up to 20 atoms or a chain of up to 20 atoms, provided that Y' can include one or more nitrogen, oxygen, sulfur or phosphorous atoms, further provided that Y' can include one or more substituents independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, chloro, iodo, bromo, fluoro, hydroxy, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, cyano,

oxo, thio, alkylthio, arylthio, acylthio, alkylsulfonate, arylsulfonate, phosphoryl, or sulfonyl, flirther provided that Y' can contain one or more fused carbocyclic, heterocyclic, aryl or heteroaryl rings;

is selected from -CN, -C(NH)N(R")(R"), -C(S)-A', -C(S)R", -C(O)-A 1 , -C(O)-R", -C(O)-SR", -C(O)-NH-S(O) 2 -R", -S(O) 2 -A 1 , -S(O) 2 -R", S(0) 2 N(R")(R"), -P(O) 2 -A 1 , -PO(OR")-A', -tetrazole, alkyltetrazole, or -CH 2 OH, wherein

A 1 is selected from -OR", -N(R")(R") or -OM 1 ;

each R" is independently selected from hydrogen, alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl or a detectable label molecule, wherein any alkyl-, aryl- or heteroaryl-containing moiety is optionally substituted with up to 3 independently selected substituents; and

M' is a cation.

In certain embodiments, a compound of formula 47 is represented by formula

In certain embodiments, a compound of formula 47 is represented by formula

In certain embodiments, a pharmaceutically acceptable salt of the compound is formed by derivatizing E, wherein E is -OM, where M is a cation selected from ammonium, tetra-alkyl ammonium, Na, K, Mg, and Zn.

The compounds above (e.g., compounds of formula A or formulae 1 to 49) are known to be useful in the treatment or prevention of inflammation or inflammatory disease. Examples of such compounds are disclosed in the following patents and applications: US 2003/0191 184, WO 2004/014835, WO 2004/078143, US 6670396, US 2003/0236423, US 2005/0228047, US 2005/0238589, US2005/0261255, PCT/US2007/016338, WO 2007/127377, and PCT/US2007/022715. These compounds are suitable for use in methods of the present invention.

Other compounds useful in this invention are compounds that are chemically similar variants to any of the compounds of formula A or formulae 1-49 set forth above. The term "chemically similar variants" includes, but is not limited to, replacement of various moieties with known biosteres; replacement of the end groups of one of the a compounds of formula A or compounds of any one of formulae 1-49, above with a corresponding end group of any other compound of formula A or compound of any one of formulae 1-49, modification of the orientation of any double bond in a compound of formula A or a compound of any one of formulae 1-49, the replacement of any double bond with a triple bond in any compound of formula A or compound of any one of formulae 1-49,, and the replacement of one or more substituents present in one of the compounds of formula A or compounds of any one of formulae 1-49 above with a corresponding substituent of any other compound of formula A or compound of any one of formulae 1-49.

Lipoxin compounds suitable for use in this invention include those of formula 50:

s wherein:

X is R 3O ι, OR 30 I, or SR 30 ι ;

R 3 Oi is

(a) a hydrogen atom;

(b) an alkyl of 1 to 8 carbons atoms, inclusive, which may be straight chain or branched;

(c) a cycloalkyl of 3 to 10 carbon atoms;

(d) an aralkyl of 7 to 12 carbon atoms;

(e) phenyl;

(f) substituted phenyl wherein Z 1 Z n , Z 1n , Z, v and Z v are each independently selected from -NO 2 , -CN, -C(=O)-R 30 i, -SO 3 H, a hydrogen atom, halogen, methyl, -OR x , wherein R x is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl, wherein when any of Z 1 Z 11 , Z 111 , Z,v or Z v is C(=O)-R 30 i, said Z 1 Z 11 , Z 111 , Z 1V or Z v is not substituted with another C(=O)-R 30 i.

(g) a detectable label molecule; or

(h) a straight or branched chain alkenyl of 2 to 8 carbon atoms, inclusive;

=O), SO 2 or (CN), provided when Q, is CN, then X is absent; Q 3 and Q 4 are each independently O, S or NH; one Of R 302 and R 303 is a hydrogen atom and the other is:

(a) H;

(b) an alkyl of 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched;

(c) a cycloalkyl of 3 to 6 carbon atoms, inclusive;

(d) an alkenyl of 2 to 8 carbon atoms, inclusive, which may be straight chain or branched; or

(e) RkQ 2 Ri wherein Q 2 is -O- or -S-; wherein R^ is alkylene of 0 to 6 carbons atoms, inclusive, which may be straight chain or branched and wherein R| is alkyl of 0 to 8 carbon atoms, inclusive, which may be straight chain or branched, provided when Ri is 0, then Ri is a hydrogen atom;

R 3 04 is

(a) H;

(b) an alkyl of 1 to 6 carbon atoms, inclusive, which may be a straight chain or branched;

R 305 is , wherein Z 1 Z 11 , Z 111 , Z 1V and Z v are defined as above;

R 306 is

(a) H;

(b) an alkyl from 1 to 4 carbon atoms, inclusive, straight chain or branched;

wherein Y 301 is -OH, methyl, -SH, an alkyl of 2 to 4 carbon atoms, inclusive, straight chain or branched, an alkoxy of 1 to 4 carbon atoms, inclusive, or (CH) p (Z) q , where p+q=3, p=0 to 3, q=0 to 3 and Z is cyano, nitro or a halogen; and

T is O or S, and pharmaceutically acceptable salts thereof.

Lipoxin compounds suitable for use in this invention include those of formulae 51, 52, 53 or 54:

(51),

(52),

53),

(54), wherein: each R 307 is independently selected from hydrogen and straight, branched, cyclic, saturated, or unsaturated alkyl having from 1 to 20 carbon atoms; R308, R309, R310, R319, and R 320 are independently selected from:

(a) hydrogen;

(b) straight, branched, cyclic, saturated, or unsaturated alkyl having from 1 to 20 carbon atoms;

(c) substituted alkyl having from 1 to 20 carbon atoms, wherein the alkyl is substituted with one or more substituents selected from halo, hydroxy, lower alkoxy, aryloxy, amino, alkylamino, dialkylamino, acylamino, arylamino, hydroxyamino, alkoxyamino, alkylthio, arylthio, carboxy, carboxamido, carboalkoxy, aryl, and heteroaryl;

(d) substituted aryl or heteroaryl, wherein the aryl or heteroaryl is substituted with one or more substituents selected from alkyl, cycloalkyl, alkoxy, halo, aryl, heteroaryl, carboxyl, and carboxamido; and

(e) Z-Y, wherein:

Z is selected from a straight, branched, cyclic, saturated, or unsaturated alkyl having from 1 to 20 carbon atoms; substituted lower alkyl, wherein the alkyl is substituted with one or more substituents selected from halo, hydroxy, lower alkoxy, aryloxy, amino, alkylamino, dialkylamino, acylamino, arylamino, hydroxyamino, alkoxyamino, alkylthio, arylthio, carboxy, carboxamido, carboalkoxy, aryl, and heteroaryl; and substituted aryl or heteroaryl, wherein the aryl or heteroaryl is substituted with one or more substituents selected from alkyl, cycloalkyl, alkoxy, halo, aryl, heteroaryl, carboxyl, and carboxamido; and

Y is selected from hydrogen; alkyl; cycloalkyl; carboxyl; carboxamido; aryl; heteroaryl; substituted aryl or heteroaryl, wherein the aryl or heteroaryl is substituted with one or more substituents selected from alkyl, cycloalkyl, alkoxy, halo, aryl, heteroaryl, carboxyl, and carboxamido; and

R 3 ι i to R 3 18 are independently selected from:

(a) hydrogen;

(b) halo;

(c) straight, branched, cyclic, saturated, or unsaturated alkyl having from 1 to 20 carbon atoms;

(d) substituted alkyl having from 1 to 20 carbon atoms, wherein the alkyl is substituted with one or more substituents selected from halo, hydroxy, lower alkoxy, aryloxy, amino, alkylamino, dialkylamino, acylamino, arylamino, hydroxyamino, alkoxyamino, alkylthio, arylthio, carboxy, carboxamido, carboalkoxy, aryl, and heteroaryl;

(e) substituted aryl or heteroaryl, wherein the aryl or heteroaryl is substituted with one or more substituents selected from alkyl, cycloalkyl, alkoxy, halo, aryl, heteroaryl, carboxyl, and carboxamido; or

R 308 to R 320 are independently a bond that forms a carbon-carbon double bond, a carbon-carbon triple bond, or a ring with the lipoxin backbone; or

any two of R 307 to R 320 are taken together with the atoms to which they are bound and optionally to 1 to 6 oxygen atoms, 1 to 6 nitrogen atoms, or both 1 to 6 oxygen atoms and 1 to 6 nitrogen atoms, to form a ring containing 3 to 20 atoms.

Lipoxin compounds suitable for use in this invention include those of formula

55:

(55) wherein:

R 4 01 is selected from:

R 402 is selected from:

Xio is R 4 H , OR 4 H, or SR 41 1 ; R 4 H is

(a) a hydrogen atom;

(b) an alkyl of 1 to 8 carbons atoms, inclusive, which may be straight chain or branched;

(c) a cycloalkyl of 3 to 10 carbon atoms;

(d) an aralkyl of 7 to 12 carbon atoms;

(e) phenyl;

(f) substituted phenyl wherein Z 1 Z 11 , Z 111 , Z 1V and Z v are each independently selected from -NO 2 , -CN, -CC=O)-R 4H , -SO 3 H, a hydrogen atom, halogen, methyl, -OR x , wherein R x is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl; wherein when any of Z 1 Z 11 , Z 1n , Z 1V or Z v is C(=O)-R 4 i 1 , said Z 1 Z 11 , Z 1n , Z 1V or Z v is not substituted with another CC=O)-R 4H .

(g) a detectable label molecule; or

(h) a straight or branched chain alkenyl of 2 to 8 carbon atoms, inclusive;

Q 3 is O, S or NH; one Of R 4 I2 and R 4I 3 is a hydrogen atom and the other is selected from: (a) H;

(b) an alkyl of 1 to 8 carbon atoms, inclusive, which can be straight chain or branched;

(c) a cycloalkyl of 3 to 6 carbon atoms, inclusive;

(d) an alkenyl of 2 to 8 carbon atoms, inclusive, which can be straight chain or branched; or

(e) R 43 ]Q 2 R 432 wherein Q 2 is -O- or -S-; wherein R 43 I is alkyl ene of 0 to 6 carbons atoms, inclusive, which can be straight chain or branched and wherein R 43 ) is alkyl of 0 to 8 carbon atoms, inclusive, which can be straight chain or branched;

R 4 I 33 and R 4 ^ b are each independently:

(a) H;

(b) an alkyl of 1 to 8 carbon atoms, inclusive, which can be straight chain or branched;

(c) a cycloalkyl of 3 to 6 carbon atoms, inclusive;

(d) an alkenyl of 2 to 8 carbon atoms, inclusive, which can be straight chain or branched; or

(e) R 43 ]Q 2 R 432 wherein R 43 I , Q 2 , and R 432 are as defined above;

R 4I4 is

(a) H;

(b) an alkyl of 1 to 6 carbon atoms, inclusive, can be straight chain or branched;

R 4I 5 is

(a) an alkyl of 1 to 9 carbon atoms which can be straight chain or branched;

(b) -(CH 2 )-R,

wherein n=0 to 4 and Rj is

(i) a cycloalkyl of 3 to 10 carbon atoms, inclusive;

(ii) a phenyl; or

(iii) substituted phenyl , wherein Z 1 through Zv are as defined above;

(b) R 43 I Q 2 R 432 , wherein R 43 I , Q 2 , and R 432 are as defined above;

wherein R 111 and R 1V are each independently:

(i) a hydrogen atom;

(ii) (CH) p (Z) q , wherein Z, p, and q are as defined above;

(e) a haloalkyl of 1 to 8 carbon atoms, inclusive, and 1 to 6 halogen atoms, inclusive, straight chain or branched;

(a) H;

(b) an alkyl from 1 to 4 carbon atoms, inclusive, straight chain or branched;

(c) a halogen;

one ofY 40 | or Y 402 is -OH, methyl, or -SH, and wherein the other is selected from:

(a) H;

(b) (CH) p (Z) q where p+q=3, p=0 to 3, q=0 to 3 and each Z, independently, is cyano, nitro or a halogen;

(c) an alkyl of 2 to 4 carbon atoms, inclusive, straight chain or branched; or

(d) an alkoxy of 1 to 4 carbon atoms, inclusive,

or Y 4 oι and Y 402 taken together are:

(d) =NH; or

(e) =O;

one Of Y 403 or Y 404 is -OH, methyl, or -SH, and wherein the other is selected from:

(a) H;

(b) (CH) p (Z) q wherein Z, p, and q are as defined above;

(c) an alkyl of 2 to 4 carbon atoms, inclusive, straight chain or branched; or

(d) an alkoxy of 1 to 4 carbon atoms, inclusive,

or Y 4 oi and Y 402 taken together are:

(a) =NH; or

(b) -O;

one OfY 405 or Y 406 is -OH, methyl, or -SH, and wherein the other is selected from:

(a) H

(b) (CH) p (Z) q wherein Z, p, and q are as defined above;

(c) an alkyl of 2 to 4 carbon atoms, inclusive, straight chain or branched; or

(d) an alkoxy of 1 to 4 carbon atoms, inclusive,

or Y 40I and Y 402 taken together are:

(a) =NH; or

(b) =O;

R 42 I is

(a) H; or

(b) alkyl of 1 to 8 carbon atoms;

R 422 and R 423 are each independently:

(a) H;

(b) a hydroxyl, or a thiol;

(c) a methyl or a halomethyl;

(d) a halogen; or

(e) an alkoxy of 1 to 3 carbon atoms;

R 424 and R 42S are each independently:

(a) H;

(b) a hydroxyl, or a thiol;

(c) a methyl or a halomethyl;

(d) a halogen;

(e) an alkoxy of 1 to 3 carbon atoms; or

(f) an alkyl or haloalkyl of 2 to 4 carbon atoms inclusive, which can be straight chain or branched; and

R 426 Is

(a) a substituted phenyl , wherein Z 1 through Z v are as defined above;

(b) a substituted phenoxy wherein Z, through Z v are as defined above; or

(C) wherein Z 1 through Z v are as defined above.

Lipoxin compounds suitable for use in this invention include those of formula

56:

(56), wherein:

E is hydroxy, alkoxy, aryloxy, amino, alkylamino, dialkylamino or -OM, where M is a cation selected from ammonium, tetra-alkyl ammonium, and the cations of sodium, potassium, magnesium and zinc;

W is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, halo, hydroxy, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, or sulfonamide; each Of R 5O i-R 503 are independently selected from hydrogen, alkyl, aryl, acyl or alkoxyacyl; n is 0, 1 or 2; m is 1 or 2; and the two substituents on the phenyl ring are ortho, meta, or para.

Lipoxin compounds suitable for use in this invention include those of formula

57:

(57), wherein:

I is selected from: -C(O)-E, -SO 2 -E, -PO(OR)-E, where E is hydroxy, alcoxy, aryloxy, amino, alkylamino, dialkylamino, or -OM, where M is a cation selected from ammonium, tetra-alkyl ammonium, Na, K, Mg, and Zn; and R is hydroxyl or alkoxy

J' and K' are linkers independently selected from a chain of up to 20 atoms and a ring containing up to 20 atoms, provided that J' and K' can independently include one or more nitrogen, oxygen, sulfur or phosphorous atoms, and further provided that J' and K' can independently include one or more substituents selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, chloro, iodo, bromo, fluoro, hydroxy, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, cyano, oxo, thio, alkylthio, arylthio, acylthio, alkylsulfonate, aryl sulfonate, phosphoryl, and sulfonyl, and further provided that J' and K' can also contain one or more fused carbocyclic, heterocyclic, aryl or heteroaryl rings, and provided that linkers J' and K' are connected to the adjacent C(R)OR group via a carbon atom or a C-heteroatom bond where the heteroatom is oxygen, sulfur, phosphorous or nitrogen;

G is selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, chloro, iodo, bromo, fluoro, hydroxy, alkoxy, aryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, and carboxamido.

Re, Rf and Rg, are independently selected from hydrogen, alkyl, aryl, heteroaryl, acyl, silyl, alcoxyacyl and aminoacyl;

Rβoi, Rό02 and R 603 are independently selected from hydrogen, alkyl, aryl and heteroaryl, provided that R 6 Oi 5 R 602 and R 6O3 can independently be connected to linkers J' or K';

R 6 o4 and R 6O5 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, fluoro, and provided that R 6O4 and R 6O5 can be joined together to form a carbocyclic, heterocyclic or aromatic ring, and further provided that

R 6O4 and R 6O5 can be replaced by a bond to form a triple bond.

Other compounds suitable for use in methods of the invention are the oxylipins described in international applications WO 2006055965 and WO 2007090162, the compounds in which are incorporated herein by reference. Examples of such compounds are those of formulae 58-132, as shown in Table 1. These compounds include long chain omega-6 fatty acids, docosapentaenoic acid (DPAn-6) (compounds 58-73) and docosatetraenoic acid (DTAn-6) (compounds 74- 83), and the omega-3 counterpart of DPAn-6, docosapentaenoic acid (DPAn-3) (compounds 84-97). Further compounds are the docosanoids 98-1 15, the γ-linolenic acids (GLA) (compounds 1 16-122), and the stearidonic acids (SDA) (compounds 123-132). Table 1

7,16,17-Trihydroxy DTRAn-6 (108)

15-epi-lipoxin A4(109)

16,17-epoxyDHA (110)

7,8-epoxyDPA(111)

10,11 epoxyDPA(112)

19,20 epoxy DPA (113)

-hydroxyDHA(114)

3,14 epoxy DPA (115)

-hydroxyGLA(116)

0-hydroxyGLA(117)

-hydroxyGLA(118)

2-hydroxyGLA(119)

-hydroxyGLA(120)

3-hydroxyGLA(121)

,13 dihydroxy GLA (122)

-hydroxySDA(123)

0-hydroxySDA(124)

-hydroxySDA(125)

2-hydroxySDA(126)

-hydroxySDA(127)

3-hydroxySDA(128)

5-hydroxySDA(129)

6-hydroxySDA(130)

,13 dihydroxy SDA (131)

6,16 dihydroxy SDA (132)

Other oxylipin compounds that are suitable for use in methods of the invention include analogs of the compounds shown in Table 1. Such compounds include but are not limited to those analogs wherein one or more double bonds are replaced by triple bonds, those wherein carboxy groups are derivatized to form esters, amides or salts, those wherein the hydroxyl-bearing carbons are further derivatized (with, for example, a substituted or unsubstituted, branched or unbranched alkyl, alkenyl, or alkynyl group, substituted or unsubstituted aryl group, substituted or unsubstituted, branched or unbranched alkylaryl group, halogen atom) to form tertiary alcohols (or ethers, esters, or other derivatives thereof), those wherein one or more hydroxyl groups are derivatized to form esters or protected alcohols, or those having combinations of any of the foregoing modifications.

Further oxylipin compounds suitable for use in methods of the invention include the following: isolated docosanoids of docosapentaenoic acid (DPAn-6); monohydroxy, dihydroxy, and trihydroxy derivatives of DPAn-6; isolated docosanoids of docosapentaenoic acid (DPAn-3); monohydroxy, dihydroxy, and trihydroxy derivatives of DPAn-3; isolated docosanoids of docosapentaenoic acid (DTAn-6); or monohydroxy, dihydroxy, and trihydroxy derivatives of DTAn-6.

As used herein, the term "corticosteroid" refers to any of the adrenal corticosteroid hormones isolated from the adrenal cortex or produced synthetically, and derivatives thereof that are used for treatment of inflammatory diseases, as described herein. Corticosteroids include those that are naturally occurring, synthetic, or semi-synthetic in origin, and such compounds are characterized by the presence of a steroid nucleus of four fused rings, e.g., as found in cholesterol, dihydroxycholesterol, stigmasterol, and lanosterol structures.

The term "acyl" is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)-, preferably alkylC(O)-.

The term "acylamino" is art-recognized and refers to an amino group substituted with an acyl group and may be represented, for example, by the formula hydrocarbylC(O)NH-.

The term "acyloxy" is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)O-, preferably alkylC(O)O-.

The term "alkoxy" refers to an alkyl group, preferably a lower alkyl group, having an oxygen attached thereto. Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like.

The term "alkoxyalkyl" refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.

The term "alkenyl", as used herein, refers to an aliphatic group containing at least one double bond and is intended to include both "unsubstituted alkenyls" and "substituted alkenyls", the latter of which refers to alkenyl moieties having substituents replacing a hydrogen on one or more carbons of the alkenyl group. Such substituents may occur on one or more carbons that are included or not included in one or more double bonds. Moreover, such substituents include all those contemplated for alkyl groups, as discussed below, except where stability is prohibitive. For example, substitution of alkenyl groups by one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is contemplated.

The term "alkyl" refers to the radical of saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups. In preferred embodiments, a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., Ci-C 30 for straight chains, C 3 -C 30 for branched chains), and more preferably 20 or fewer. Likewise, preferred cycloalkyls have from 3-10 carbon atoms in their ring structure, and more preferably have 5, 6 or 7 carbons in the ring structure.

Moreover, the term "alkyl" (or "lower alkyl") as used throughout the specification, examples, and claims is intended to include both "unsubstituted alkyls"

and "substituted alkyls", the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents, if not otherwise specified, can include, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate. For instance, the substituents of a substituted alkyl may include substituted and unsubstituted forms of amino, azido, imino, amido, phosphoryl (including phosphonate and phosphinate), sulfonyl (including sulfate, sulfonamido, sulfamoyl and sulfonate), and silyl groups, as well as ethers, alkylthios, carbonyls (including ketones, aldehydes, carboxylates, and esters), -CF 3 , -CN and the like. Exemplary substituted alkyls are described below. Cycloalkyls can be further substituted with alkyls, alkenyls, alkoxys, alkylthios, aminoalkyls, carbonyl- substituted alkyls, -CF 3 , -CN, and the like.

The term "C x-y " when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups that contain from x to y carbons in the chain. For example, the term "C x - y alkyl" refers to substituted or unsubstituted saturated hydrocarbon groups, including straight-chain alkyl and branched-chain alkyl groups that contain from x to y carbons in the chain, including haloalkyl groups such as trifluoromethyl and 2,2,2-tirfluoroethyl, etc. C 0 alkyl indicates a hydrogen where the group is in a terminal position, a bond if internal. The terms "C 2 . y alkenyl" and "C 2-y alkynyl" refer to substituted or unsubstituted unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.

The term "alkylamino", as used herein, refers to an amino group substituted with at least one alkyl group.

The term "alkylthio", as used herein, refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkylS-.

The term "alkynyl", as used herein, refers to an aliphatic group containing at least one triple bond and is intended to include both "unsubstituted alkynyls" and "substituted alkynyls", the latter of which refers to alkynyl moieties having substituents replacing a hydrogen on one or more carbons of the alkynyl group. Such substituents may occur on one or more carbons that are included or not included in one or more triple bonds. Moreover, such substituents include all those contemplated for alkyl groups, as discussed above, except where stability is prohibitive. For example, substitution of alkynyl groups by one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is contemplated.

The term "amide", as used herein, refers to a group

wherein each R 10 independently represent a hydrogen or hydrocarbyl group, or two R 10 are taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.

The terms "amine" and "amino" are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by

wherein each R 10 independently represents a hydrogen or a hydrocarbyl group, or two R 10 are taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.

The term "aminoalkyl", as used herein, refers to an alkyl group substituted with an amino group.

The term "aralkyl", as used herein, refers to an alkyl group substituted with an aryl group.

The term "aryl" as used herein include substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon. Preferably the ring is a 5- to 7-membered ring, more preferably a 6-membered ring. The term "aryl" also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.

The term "carbamate" is art-recognized and refers to a group

wherein each R , 10 independently represent hydrogen or a hydrocarbyl group, or both R 10 groups taken together with the intervening atom(s) complete a heterocycle having from 4 to 8 atoms in the ring structure..

The terms "carbocycle", "carbocyclyl", and "carbocyclic", as used herein, refers to a non-aromatic saturated or unsaturated ring in which each atom of the ring is carbon. Preferably a carbocycle ring contains from 3 to 10 atoms, more preferably from 5 to 7 atoms.

The term "carbocyclylalkyl", as used herein, refers to an alkyl group substituted with a carbocycle group.

The term "carbonate" is art-recognized and refers to a group -OCO 2 -R 10 , wherein R 1 represents a hydrocarbyl group.

The term "carboxy", as used herein, refers to a group represented by the formula -CO 2 H.

The term "ester", as used herein, refers to a group -C(O)OR 10 wherein R 10 represents a hydrocarbyl group.

The term "ether", as used herein, refers to a hydrocarbyl group linked through an oxygen to another hydrocarbyl group. Accordingly, an ether substituent of a hydrocarbyl group may be hydrocarbyl-O-. Ethers may be either symmetrical or unsymmetrical. Examples of ethers include, but are not limited to, heterocycle-O- heterocycle and aryl-O-heterocycle. Ethers include "alkoxyalkyl" groups, which may be represented by the general formula alkyl-O-alkyl.

The terms "halo" and "halogen" as used herein means halogen and includes chloro, fluoro, bromo, and iodo.

The terms "hetaralkyl" and "heteroaralkyl", as used herein, refers to an alkyl group substituted with a hetaryl group.

The term "heteroalkyl", as used herein, refers to a saturated or unsaturated chain of carbon atoms and at least one heteroatom, wherein no two heteroatoms are adjacent.

The terms "heteroaryl" and "hetaryl" include substituted or unsubstituted aromatic single ring structures, preferably 5- to 7-membered rings, more preferably 5- to 6-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms "heteroaryl" and "hetaryl" also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.

The term "heteroatom" as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.

The terms "heterocyclyl", "heterocycle", and "heterocyclic" refer to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-

membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms "heterocyclyl" and "heterocyclic" also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heterocyclyl groups include, for example, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.

The term "heterocyclylalkyl", as used herein, refers to an alkyl group substituted with a heterocycle group.

The term "hydrocarbyl", as used herein, refers to a group that is bonded through a carbon atom that does not have a =0 or =S substituent, and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include heteroatoms. Thus, groups like methyl, ethoxyethyl, 2-pyridyl, and trifluoromethyl are considered to be hydrocarbyl for the purposes of this application, but substituents such as acetyl (which has a =0 substituent on the linking carbon) and ethoxy (which is linked through oxygen, not carbon) are not. Hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.

The term "hydroxyalkyl", as used herein, refers to an alkyl group substituted with a hydroxy group.

The term "lower" when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups where there are ten or fewer non-hydrogen atoms in the substituent, preferably six or fewer. A "lower alkyl", for example, refers to an alkyl group that contains ten or fewer carbon atoms, preferably six or fewer. In certain embodiments, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy substituents defined herein are respectively lower acyl, lower acyloxy, lower alkyl, lower alkenyl, lower alkynyl, or lower alkoxy, whether they appear alone or in combination with other substituents, such as in the recitations

hydroxyalkyl and aralkyl (in which case, for example, the atoms within the aryl group are not counted when counting the carbon atoms in the alkyl substituent).

The terms "polycyclyl", "polycycle", and "polycyclic" refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are "fused rings". Each of the rings of the polycycle can be substituted or unsubstituted. In certain embodiments, each ring of the polycycle contains from 3 to 10 atoms in the ring, preferably from 5 to 7.

The term "silyl" refers to a silicon moiety with three hydrocarbyl moieties attached thereto.

The term "substituted" refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that "substitution" or "substituted with" includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term "substituted" is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. Substituents can include any substituents described herein, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art

that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate.

Unless specifically stated as "unsubstituted," references to chemical moieties herein are understood to include substituted variants. For example, reference to an "aryl" group or moiety implicitly includes both substituted and unsubstituted variants.

The term "sulfate" is art-recognized and refers to the group -OSO 3 H, or a pharmaceutically acceptable salt thereof.

The term "sulfonamide" is art-recognized and refers to the group represented by the general formulae

wherein each R 10 independently represents hydrogen or hydrocarbyl, or both R 1 groups taken together with the intervening atom(s) complete a heterocycle having from 4 to 8 atoms in the ring structure..

The term "sulfoxide" is art-recognized and refers to the group -S(O)-R 10 , wherein R 10 represents a hydrocarbyl.

The term "sulfonate" is art-recognized and refers to the group SO 3 H, or a pharmaceutically acceptable salt thereof.

The term "sulfone" is art-recognized and refers to the group -S(O) 2 -R 10 , wherein R 10 represents a hydrocarbyl.

The term "thioalkyl", as used herein, refers to an alkyl group substituted with a thiol group.

The term "thioester", as used herein, refers to a group -C(O)SR 10 or -SC(O)R 10 wherein R 10 represents a hydrocarbyl.

The term "thioether", as used herein, is equivalent to an ether, wherein the oxygen is replaced with a sulfur.

The term "urea" is art-recognized and may be represented by the general formula

wherein each R 10 independently represent hydrogen or a hydrocarbyl, or two occurrences of R 10 taken together with the intervening atom(s) complete a heterocycle having from 4 to 8 atoms in the ring structure.

The term "prodrug" is intended to encompass compounds which, under physiologic conditions, are converted into the therapeutically active agents of the present invention (e.g., a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound). A common method for making a prodrug is to include one or more selected moieties which are hydrolyzed under physiologic conditions to reveal the desired molecule. In other embodiments, the prodrug is converted by an enzymatic activity of the host animal. For example, esters (e.g., esters of alcohols or carboxylic acids) are preferred prodrugs of the present invention. In certain embodiments, some or all of the compounds of formula A, compounds of any one of formulae 1-49, lipoxin compounds, or oxylipin compounds, or a portion of a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound in a formulation represented above can be replaced with the corresponding suitable prodrug, e.g., wherein a hydroxyl or carboxylic acid present in the parent compound is presented as an ester.

"Protecting group" refers to a group of atoms that, when attached to a reactive functional group in a molecule, mask, reduce or prevent the reactivity of the functional group. Typically, a protecting group may be selectively removed as desired during the course of a synthesis. Examples of protecting groups can be found in Greene and Wuts, Protective Groups in Organic Chemistry, 3 rd Ed., 1999, John Wiley & Sons, NY and Harrison et al., Compendium of Synthetic Organic Methods, VoIs. 1- 8, 1971-1996, John Wiley & Sons, NY. Representative nitrogen protecting groups include, but are not limited to, formyl, acetyl, trifluoroacetyl, benzyl,

benzyloxycarbonyl ("CBZ"), tert-butoxycarbonyl ("Boc"), trimethylsilyl ("TMS"), 2- trimethylsilyl-ethanesulfonyl ("TES"), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylmethyloxycarbonyl ("FMOC"), nitro- veratryloxycarbonyl ("NVOC") and the like. Representative hydroxylprotecting groups include, but are not limited to, those where the hydroxyl group is either acylated (esterifϊed) or alkylated such as benzyl and trityl ethers, as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers (e.g., TMS or TIPPS groups), glycol ethers, such as ethylene glycol and propylene glycol derivatives and allyl ethers.

The term "healthcare providers" refers to individuals or organizations that provide healthcare services to a person, community, etc. Examples of "healthcare providers" include doctors, hospitals, continuing care retirement communities, skilled nursing facilities, subacute care facilities, clinics, multispecialty clinics, freestanding ambulatory centers, home health agencies, and HMO's.

The term "treating" refers to: preventing a disease, disorder or condition from occurring in a cell, a tissue, a system, animal or human which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; stabilizing a disease, disorder or condition, i.e., arresting its development; and relieving one or more symptoms of the disease, disorder or condition, i.e., causing regression of the disease, disorder and/or condition.

As used herein, a therapeutic that "prevents" a disorder or condition refers to a compound that, in a statistical sample, reduces the occurrence of the disorder or condition in the treated sample relative to an untreated control sample, or delays the onset or reduces the severity of one or more symptoms of the disorder or condition relative to the untreated control sample.

The synthesis of each of the glucocorticoids and each of the compounds of formula A, compounds of any one of formulae 1-49, lipoxin compounds, or oxylipin compounds set forth above can be achieved by methods well-known in the art. For example, the synthesis of compounds of formula A or compounds of any one of formulae 1-49 is set forth in US 2003/0191184, WO 2004/014835, WO 2004/078143, US 6670396, US 2003/0236423 and US 2005/0228047, all of which are herein incorporated by reference. The synthesis of lipoxin compounds is set forth in US

2002/0107289, US 2004/00191 10, US 2006/0009521, US 2005/0203184, US 2005/01 13443. The preparation of oxylipin compounds is set forth in WO 2006/055965 and WO 2007/090162.

In certain embodiments, the patient to be treated by a method of the invention may already be receiving an anti-inflammatory drug (other than a glucocorticoid). In one preferred embodiment, the patient is already taking a glucocorticoid, such as one of the glucocorticoids described above, and will continue to take that drug conjointly with a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, or an oxylipin compound, or a combination of aspirin and an omega-3 fatty acid. Alternatively, the compound of formula A, compound of any one of formulae 1 -49, lipoxin compound, or oxylipin compound, or the combination of aspirin and an omega-3 fatty acid may be used as a replacement for the previously administered anti-inflammatory drug.

In a related embodiment, the invention provides a method of reducing the dose of a glucocorticoid required to achieve a desired anti-inflammatory effect. Reducing the dose of glucocorticoid while maintaining potent anti-inflammatory properties is highly desirable due to side effects associated with certain glucocorticoids. Side effects of glucocorticoids include increased appetite and weight gain, deposits of fat in the chest, face, upper back, and stomach, water and salt retention leading to swelling and edema, high blood pressure, diabetes, slow healing of wounds, osteoporosis, cataracts, acne, muscle weakness, thinning of the skin, increased susceptibility to infection, stomach ulcers, increased sweating, mood swings, psychological problems such as depression, and adrenal suppression and crisis.

In this embodiment, the dose of a glucocorticoid is reduced by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at lest 90%, or more. The actual reduction in glucocorticoid dose will depend upon the nature and amount of the compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid being administered, the reduction in inflammation desired, and other factors set forth elsewhere in this application that are typically considered in treating a disease or condition. The amount of compound of formula A, compound of any one of formulae 1 -49, lipoxin compound, or oxylipin compound, or combination of aspirin and an

omega-3 fatty acid administered in this method will also depend upon the factors set forth above, as well as the nature and amount of glucocorticoid being administered. In certain embodiments, the amount of compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or combination of aspirin and an omega-3 fatty acid administered in this method is less than 5%, less than 10%, less than 15%, less than 20%, less than 25%, less than 30%, less than 40%, less than 50%, less than 60%, less than 70%, less than 80%, or less than 90% of the dose of compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid required to produce an anti-inflammatory effect without conjoint administration with a glucocorticoid.

In yet another embodiment, the invention provides a composition comprising a glucocorticoid and a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or a combination of aspirin and an omega- 3 fatty acid, and a pharmaceutically acceptable carrier. In these compositions, the glucocorticoid may be selected from any glucocorticoid known in the art, preferably one of the glucocorticoids set forth above. Similarly, the compound of formula A or compound of any one of formulae 1-49 may be selected from any such compound known in the art, preferably one of the compounds of formula A or compounds of any one of formulae 1-49 set forth above. Similarly, the lipoxin may be selected from any lipoxin known in the art, preferably one of the lipoxins set forth above. Similarly, the oxylipin may be selected from any oxylipin known in the art, preferably one of the oxylipins set forth above. The amount of glucocorticoid in this combination composition is less than 5%, less than 10%, less than 15%, less than 20%, less than 25%, less than 30%, less than 40%, less than 50%, less than 60%, less than 70%, less than 80%, less than 90%, or less than 100% of the amount of glucocorticoid normally administered in a single dosage (monotherapy) to produce an anti-inflammatory effect. Preferably, the amount of glucocorticoid is less than 90%, more preferably less than 80%, and most preferably, less than 70% of the recommended monotherapy dosage amount. The amount of compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or combination of aspirin and an omega-3 fatty acid in the combination composition of this invention is less than 5%, less than 10%, less than 15%, less than 20%, less than 25%, less than 30%,

less than 40%, less than 50%, less than 60%, less than 70%, less than 80%, less than 90%, or less than 100% of the dose of compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid administered in a single dosage to produce an antiinflammatory effect. Preferably, the amount of compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid is less than 100%, preferably less than 90%, more preferably less than 80% and most preferably, less than 70% of the dose of compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid administered in a single dosage to produce an anti-inflammatory effect.

The compositions and methods of the present invention may be utilized to treat an individual in need thereof. In certain embodiments, the individual is a mammal such as a human, or a non-human mammal. When administered to an animal, such as a human, the composition or the compound is preferably administered as a pharmaceutical composition comprising, for example, a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or aspirin and/or an omega-3 fatty acid and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known in the art and include, for example, aqueous solutions such as water or physiologically buffered saline or other solvents or vehicles such as glycols, glycerol, oils such as olive oil or injectable organic esters. In a preferred embodiment, when such pharmaceutical compositions are for human administration, the aqueous solution is pyrogen free, or substantially pyrogen free. The excipients can be chosen, for example, to effect delayed release of an agent or to selectively target one or more cells, tissues or organs. The pharmaceutical composition can be in dosage unit form such as tablet, capsule, sprinkle capsule, granule, powder, syrup, suppository, injection or the like. The composition can also be present in a transdermal delivery system, e.g., a skin patch.

A pharmaceutically acceptable carrier can contain physiologically acceptable agents that act, for example, to stabilize or to increase the absorption of a compound such as a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or aspirin and/or an omega-3 fatty acid. Such

physiologically acceptable agents include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients. The choice of a pharmaceutically acceptable carrier, including a physiologically acceptable agent, depends, for example, on the route of administration of the composition. The pharmaceutical composition (preparation) also can be a liposome or other polymer matrix, which can have incorporated therein, for example, a compound of the invention. Liposomes, for example, which comprise phospholipids or other lipids, are nontoxic, physiologically acceptable and metabolizable carriers that are relatively simple to make and administer.

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

The phrase "pharmaceutically acceptable carrier" as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (1 1) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.

A pharmaceutical composition (preparation) can be administered to a subject by any of a number of routes of administration including, for example, orally (for example, drenches as in aqueous or non-aqueous solutions or suspensions, tablets, boluses, powders, granules, pastes for application to the tongue); sublingually; anally, rectally or vaginally (for example, as a pessary, cream or foam); parenterally (including intramusclularly, intravenously, subcutaneously or intrathecally as, for example, a sterile solution or suspension); nasally; intraperitoneally; subcutaneously; transdermally (for example as a patch applied to the skin); and topically (for example, as a cream, ointment or spray applied to the skin). The compound may also be formulated for inhalation. In certain embodiments, a compound may be simply dissolved or suspended in sterile water. Details of appropriate routes of administration and compositions suitable for same can be found in, for example, U.S. Pat. Nos. 6,110,973, 5,763,493, 5,731,000, 5,541,231, 5,427,798, 5,358,970 and 4,172,896, as well as in patents cited therein. The most preferred route of administration is the oral route.

The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient that can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.

Methods of preparing these formulations or compositions include the step of bringing into association an active compound, such as a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or aspirin and/or an omega-3 fatty acid, with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient. Compositions or compounds may also be administered as a bolus, electuary or paste.

To prepare solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets

may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.

The tablets, and other solid dosage forms of the pharmaceutical compositions, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions that can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.

Liquid dosage forms useful for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifϊers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.

Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and

sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar- agar and tragacanth, and mixtures thereof.

Formulations of the pharmaceutical compositions for rectal, vaginal, or urethral administration may be presented as a suppository, which may be prepared by mixing one or more active compounds with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound.

Formulations of the pharmaceutical compositions for administration to the mouth may be presented as a mouthwash, or an oral spray, or an oral ointment.

Alternatively or additionally, compositions can be formulated for delivery via a catheter, stent, wire, or other intraluminal device. Delivery via such devices may be especially useful for delivery to the bladder, urethra, ureter, rectum, or intestine.

Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.

Dosage forms for the topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required.

The ointments, pastes, creams and gels may contain, in addition to an active compound, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.

Powders and sprays can contain, in addition to an active compound, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

Transdermal patches have the added advantage of providing controlled delivery of a compound of the present invention to the body. Such dosage forms can

be made by dissolving or dispersing the active compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the compound in a polymer matrix or gel.

Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.

The phrases "parenteral administration" and "administered parenterally" as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.

Pharmaceutical compositions suitable for parenteral administration comprise one or more active compounds in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.

Examples of suitable aqueous and nonaqueous carriers that may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the

injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.

In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in rum, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.

Injectable depot forms are made by forming microencapsuled matrices of the subject compounds in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly( anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissue.

For use in the methods of this invention, active compounds can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.

Methods of introduction may also be provided by rechargeable or biodegradable devices. Various slow release polymeric devices have been developed and tested in vivo in recent years for the controlled delivery of drugs, including proteinacious biopharmaceuticals. A variety of biocompatible polymers (including hydrogels), including both biodegradable and non-degradable polymers, can be used to form an implant for the sustained release of a compound at a particular target site.

Actual dosage levels of the active ingredients in the pharmaceutical compositions may be varied so as to obtain an amount of the active ingredient that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.

The selected dosage level will depend upon a variety of factors including the activity of the particular compound or combination of compounds employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the

rate of excretion of the particular compound(s) being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound(s) employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.

A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the therapeutically effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the pharmaceutical composition or compound at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. By "therapeutically effective amount" is meant the concentration of a compound that is sufficient to elicit the desired therapeutic effect. It is generally understood that the effective amount of the compound will vary according to the weight, sex, age, and medical history of the subject. Other factors which influence the effective amount may include, but are not limited to, the severity of the patient's condition, the disorder being treated, the stability of the compound, and, if desired, another type of therapeutic agent being administered with the compound of the invention. A larger total dose can be delivered by multiple administrations of the agent. Methods to determine efficacy and dosage are known to those skilled in the art (Isselbacher et al. (1996) Harrison's Principles of Internal Medicine 13 ed., 1814-1882, herein incorporated by reference).

In general, a suitable daily dose of an active compound used in the compositions and methods of the invention will be that amount of the compound that is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above.

If desired, the effective daily dose of the active compound may be administered as one, two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. In certain embodiments of the present invention, the active compound may be administered two or three times daily. In preferred embodiments, the active compound will be administered once daily.

The patient receiving this treatment is any animal in need, including primates, in particular humans, and other mammals such as equines, cattle, swine and sheep; and poultry and pets in general.

In certain embodiments, the method of treating inflammatory disease may comprise administering a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, or oxylipin compound, or a combination of aspirin and an omega-3 fatty acid conjointly with a glucocorticoid and optionally conjointly with another therapeutic agent. As used herein, the phrase "conjoint administration" refers to any form of administration of two or more different therapeutic compounds such that the second compound is administered while the previously administered therapeutic compound is still effective in the body (e.g., the two compounds are simultaneously effective in the patient, which may include synergistic effects of the two compounds). For example, the different therapeutic compounds can be administered either in the same formulation or in a separate formulation, either concomitantly or sequentially. Thus, an individual who receives such treatment can benefit from a combined effect of different therapeutic compounds.

In one embodiment, the method of treating inflammatory disease according to this invention may comprise the additional step of conjointly administering to the patient another anti-inflammatory agent including, for example, a non-steroidal antiinflammatory drug (NSAID), a mast cell stabilizer, or a leukotriene modifier.

In certain embodiments, the use of a composition comprising both a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or a combination of aspirin and an omega-3 fatty acid and a glucocorticoid according to this invention in the treatment of inflammatory disease, does not preclude the separate but conjoint administration of another corticosteroid.

In certain embodiments, different compounds of formula A, compounds of any one of formulae 1-49, lipoxin compounds, or oxylipin compounds may be conjointly administered with one another while conjointly administering a glucocorticoid. Moreover, such combinations may be conjointly administered with other therapeutic agents, such as other anti-inflammatory agents. In certain embodiments, different compounds of formula A, compounds of any one of formulae 1 -49, lipoxin compounds, or oxylipin compounds may be conjointly administered with a

combination of aspirin and an omega-3 fatty acid while conjointly administering a glucocorticoid. Such combinations may further be conjointly administered with other therapeutic agents, such as other anti-inflammatory agents.

In embodiments where a combination of aspirin and an omega-3 fatty acid are administered, the aspirin and omega-3 fatty acid can be administered simultaneously, e.g., as a single formulation comprising both components or in separate formulations, or can be administered at separate times, provided that, at least at certain times during the therapeutic regimen, both the aspirin and omega-3 fatty acid are present simultaneously in the patient at levels that allow the omega-3 fatty acid to be metabolized as described in Serhan, et. al., 2002, J. Exp. Med., 196: 1025-1037. In certain such embodiments, the omega-3 fatty acid is provided in the form of a partially purified natural extract, such as fish oil, while in other embodiments, the omega-3 fatty acid may be provided as a substantially pure preparation of one or more omega-3 fatty acids, such as a Cl 8:3, C20:5, or C22:6 fatty acid, particulary eicosapentaenoic acid or docosahexaenoic acid. A substantially pure preparation of one or more omega-3 fatty acids refers to a composition wherein the fatty acid component is at least 90%, at least 95%, or even at least 98% of one or more omega-3 fatty acids, such as one or more specificed omega-3 fatty acids. Non-fatty acid components, such as excipients or other materials added during formulation, are not considered for the purpose of determining whether the fatty acid component meets the desired level of purity.

In certain embodiments, a COX-2 inhibitor other than aspirin, such as celecoxib, rofecoxib, valdecoxib, lumiracoxib, etoricoxib, NS-398, or parecoxib, may be used in combination with an omega-3 fatty acid for the treatment of inflammatory disease in any of the various embodiments discussed herein. In certain embodiments, a non-selective NSAID other than aspirin, such as diclofenac, diflunisal, etodolac, fenoprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, salsalate, sulindac, or tolmetin, may be used in combination with an omega-3 fatty acid for the treatment of inflammatory disease in any of the various embodiments discussed herein. The combination of different COX-2 inhibitors with an omega-3 fatty acid may result in the production of different subsets or proportions of active omega-3 metabolites.

This invention includes the use of pharmaceutically acceptable salts of compounds of formula A, compounds of any one of formulae 1-49, lipoxin compounds, or oxylipin compounds and/or glucocorticoids in the compositions and methods of the present invention. In certain embodiments, contemplated salts of the invention include alkyl, dialkyl, trialkyl or tetra-alkyl ammonium salts. In certain embodiments, contemplated salts of the invention include Na, Ca, K, Mg, Zn or other metal salts.

The pharmaceutically acceptable acid addition salts can also exist as various solvates, such as with water, methanol, ethanol, dimethylformamide, and the like. Mixtures of such solvates can also be prepared. The source of such solvate can be from the solvent of crystallization, inherent in the solvent of preparation or crystallization, or adventitious to such solvent.

Wetting agents, emulsifϊers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.

Examples of pharmaceutically acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.

The present invention provides a kit comprising:

a) a pharmaceutical formulation (e.g., one or more single dosage forms) comprising a compound of formula A, a compound of any one of formulae 1 - 49, a lipoxin compound, an oxylipin compound, or a combination of aspirin and an omega-3 fatty acid; and

b) instructions for the administration of the pharmaceutical formulation with a glucocorticoid for the treatment of inflammatory disease.

In certain embodiments, the kit further comprises instructions for the administration of the pharmaceutical formulation comprising a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid and the glucocorticoid conjointly with another anti-inflammatory agent as mentioned above. In certain embodiments, the kit further comprises a second pharmaceutical formulation (e.g., as one or more single dosage forms) comprising a glucocorticoid as mentioned above.

In certain embodiments, the present invention provides a kit comprising:

a) a pharmaceutical formulation (e.g., one or more single dosage forms) comprising a glucocorticoid; and

b) instructions for the administration of the pharmaceutical formulation with a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid for the treatment of inflammatory disease.

In certain embodiments, the kit further comprises instructions for the administration of a compound of formula A, compound of any one of formulae 1-49, lipoxin compound, oxylipin compound, or combination of aspirin and an omega-3 fatty acid and the pharmaceutical formulation comprising a glucocorticoid conjointly with another anti-inflammatory agent as mentioned above.

In certain embodiments, the invention relates to a method for conducting a pharmaceutical business, by manufacturing a formulation of a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, an oxylipin compound, or a combination of aspirin and an omega-3 fatty acid to be administered conjointly with a glucocorticoid, or a kit as described herein, and marketing to healthcare providers the benefits of using the formulation or kit for the treatment of inflammatory disease.

In certain embodiments, the invention relates to a method for conducting a pharmaceutical business, by providing a distribution network for selling a formulation of a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, an oxylipin compound, or a combination of aspirin and an omega-3 fatty

acid to be administered conjointly with a glucocorticoid, or kit as described herein, and providing instruction material to patients or physicians for using the formulation for the treatment of inflammatory disease.

In certain embodiments, the invention comprises a method for conducting a pharmaceutical business, by determining an appropriate formulation and dosage of a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, an oxylipin compound, or a combination of aspirin and an omega-3 fatty acid to be administered conjointly with a glucocorticoid for the treatment of inflammatory disease, conducting therapeutic profiling of identified formulations for efficacy and toxicity in animals, and providing a distribution network for selling an identified preparation as having an acceptable therapeutic profile. In certain embodiments, the method further includes providing a sales group for marketing the preparation to healthcare providers.

In certain embodiments, the invention relates to a method for conducting a pharmaceutical business by determining an appropriate formulation and dosage of a compound of formula A, a compound of any one of formulae 1 -49, a lipoxin compound, an oxylipin compound, or a combination of aspirin and an omega-3 fatty acid to be administered conjointly with a glucocorticoid for the treatment of inflammatory disease, and licensing, to a third party, the rights for further development and sale of the formulation.

The biological activity, such as anti-inflammatory activity, of a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, an oxylipin compound, a combination of aspirin and an omega-3 fatty acid, or a glucocorticoid can be assessed using techniques well known in the art, such as those discussed below.

Assay for anti-inflammatory effect

Human leukocytes (e.g., monocytes, lymphocytes, and neutrophils) are subjected in vitro to one or more proinflammatory and/or proliferative stimuli and secreted mediators of inflammation, such as cytokines, chemokines, and/or components involved in intracellular kinase pathways involved in their formation, are

measured. Differences in these measurements between control cells and cells preincubated with a test anti-inflammatory composition, such as a composition comprising a compound of formula A, a compound of any one of formulae 1-49, a lipoxin compound, an oxylipin compound, or a combination of aspirin and an omega- 3 fatty acid and a glucocorticoid, in inhibiting the formation of these mediators can be determined over different time courses and/or using a wide range of concentrations of the test composition.

Incorporation by Reference

All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In particular, compounds disclosed in the following patents and applications are incorporated by reference as suitable for use in methods of the present invention: US 2003/0191184, WO 2004/014835, WO 2004/078143, US 6670396, US 2003/0236423, US 2005/0228047, US 2002/0107289, US 2004/00191 10, US 2006/0009521, US 2005/0203184, US 2005/0113443, WO2006/055965. In case of conflict, the present application, including any definitions herein, will control.

Equivalents

While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.