Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS FOR THE TREATMENT OF PRESBYOPIA
Document Type and Number:
WIPO Patent Application WO/2019/204401
Kind Code:
A1
Abstract:
The invention provides compositions and methods for the treatment of presbyopia. The compositions preferably comprise aceclidine, oxymetazoline, a cryoprotectant and a non-ionic surfactant. The compositions optionally contain a viscosity enhancer.

Inventors:
HORN GERALD (US)
Application Number:
PCT/US2019/027819
Publication Date:
October 24, 2019
Filing Date:
April 17, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PRESBYOPIA THERAPIES LLC (US)
International Classes:
A61K31/439; A61K31/4164; A61P27/02
Domestic Patent References:
WO2017160548A12017-09-21
Foreign References:
US20160193193A12016-07-07
US5459133A1995-10-17
US20140024642A12014-01-23
US20060177430A12006-08-10
Attorney, Agent or Firm:
RAINCROW, Jeremy, D. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. An ophthalmological composition for the treatment of presbyopia comprising aceclidine, oxymetazoline, a cryoprotectant, and a nonionic surfactant.

2. The composition of claim 1, wherein the cryoprotectant is selected from the group consisting of a polyol, a sugar, an alcohol, a lower alkanol, a lipophilic solvent, a hydrophilic solvent, a bulking agent, a solubilizer, an antioxidant, a cyclodextrin, a maltodextrin, colloidal silicon dioxide, polyvinyl alcohol, glycine, 2-methyl-2,4-pentanediol, cellobiose, gelatin, polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), formamide and antifreeze protein 752.

3. The composition of claim 1, wherein the aceclidine is at a concentration from about 0.25% to about 2.5% w/v, wherein w/v denotes weight by total volume of the composition.

4. The composition of claim 1, wherein the cryoprotectant is at a concentration from about 1% to about 10% w/v, wherein w/v denotes weight by total volume of the composition.

5. The composition of claim 2, wherein the cryoprotectant is a polyol.

6. The composition of claim 5, wherein the polyol is selected from the group consisting of glycerin, pentaerythritol, ethylene glycol, sucrose, mannitol, glycerol, erythritol, lactitol, xylitol, sorbitol, isosorbide, ethylene glycol, propylene glycol, maltitol, threitol, arabitol and ribitol.

7. The composition of claim 6, wherein the polyol is mannitol.

8. The composition of claim 1, wherein the nonionic surfactant is at a concentration from about 1.0% to about 6.0% w/v, wherein w/v denotes weight by total volume of the composition.

9. The composition of claim 1, wherein the nonionic surfactant is selected from the group consisting of a polysorbate, tyloxapol, a poloxamer, a cyclodextrin, vitamin E TPGS and a polyoxyl.

10. The composition of claim 1, wherein the nonionic surfactant is polysorbate 80.

11. The composition of claim 1, wherein the oxymetazoline is at a concentration from about

0.01% to about 2.0% w/v, wherein w/v denotes weight by total volume of the composition.

12. An ophthalmological composition for the treatment of presbyopia comprising: from about 0.25% to about 2.5% w/v aceclidine; from about 0.01% to about 2.0% w/v oxymetazoline; from about 1% to about 10% w/v mannitol; and from about 1% to about 5% w/v polysorbate 80, wherein w/v denotes weight by total volume of the composition.

13. The composition of claim 12, further comprising from about 0.1% to about 2.25% w/v hydroxypropylmethyl cellulose.

14. An ophthalmological composition for the treatment of presbyopia comprising: about 1.75% w/v aceclidine; about 0.125% w/v oxymetazoline; about 2.5% w/v mannitol; about 4.0% w/v polysorbate 80; and about 1.25% w/v hydroxypropylmethyl cellulose, wherein w/v denotes weight by total volume of the composition

15. A method of treating presbyopia comprising administering to a subject in need thereof the ophthalmological composition of claim 1.

16. The method of claim 15, wherein the treatment of presbyopia occurs for more than 4 hours.

17. A method of reducing side effects of ophthalmic aceclidine administration selected from the group consisting of ciliary spasm, ciliary induced brow ache, ciliary induced headache, eye redness a combination thereof comprising administering to a subject in need thereof the ophthalmological composition of claim 1.

Description:
COMPOSITIONS AND METHODS FOR THE TREATMENT OF PRESBYOPIA

BACKGROUND OF THE INVENTION

[001] As a person ages the minimum distance from the eye at which an object will come into focus, provided distance vision is corrected or is excellent unaided, increases. For example, a lO-year-old can focus on an object or a“focal point” only three inches (0.072 meters) from their eye while still retaining excellent distance vision; a 40-year-old at six inches (0.15 meters); and a 60-year-old at an inconvenient 39 inches (1.0 meter). This condition of increasing minimum focal length in individuals with excellent unaided distance vision is called presbyopia, loosely translated as“old-man eye”.

[002] Excellent unaided distance vision is also known as emmetropia. The inability to focus on distant focal points is known as myopia and the inability to focus on near focal points is known as hyperopia. Specifically,“distance” vision is considered any focal point 1 meter or more from the eye and near vision is any focal point less than 1 meter from the eye. The minimum focal length at which an object will come into focus is known as the“near point”. The change in focus from distance to the near point and any focal point in between is called accommodation.

Accommodation is often measured in diopters. Diopters are calculated by taking the reciprocal of the focal length (in meters). For example, the decrease in accommodation from a lO-year-old eye to a 60-year-old eye is about 13 diopters (1 ÷ 0.072 meters = 13.89 diopters; 1 ÷ 1 meter = 1 diopter).

[003] The highest incidence of first complaint of presbyopia occurs in people ages 42-44.

Presbyopia occurs because as a person ages the eye’s accommodative ability which uses near reflex-pupil constriction, convergence of the eyes and particularly ciliary muscle contraction, decreases. This reduction in accommodation results in an inadequate change in the normal thickening and increased curvature of the anterior surface of the lens that is necessary for the shift in focus from distant objects to near objects. Important near focus tasks affected by presbyopia include viewing computer screens (21 inches) and reading print (16 inches).

[004] Presbyopia is a normal and inevitable effect of ageing and is the first unmistakable sign for many in their forties that they are getting older. One study found that more than 1 billion people worldwide were presbyopic in 2005. This same study predicted that number to almost double by the year 2050. If everyone over the age of 45 is considered to be presbyopic, then an estimated 122 million people in the United States alone had presbyopia in 2010. As baby boomers reach the critical age, this number is only going to increase.

[005] Presbyopia carries with it a stigma resulting from the limitation in ability to quickly function at many tasks requiring focusing at both distant and near points, which once occurred almost immediately. In the presbyopic patient, these tasks can be performed only by the use of eyeglasses, contact lenses or after undergoing invasive surgery. One such optical modification, the monovision procedure, can be executed with the use of glasses, contact lenses or even surgery. The monovision procedure corrects one eye for near focus and the other eye for distance focus. However, monovision correction is normally accompanied by loss of depth perception and distance vision particularly in dim light (e.g. night). Other surgical procedures that have been developed to relieve presbyopia include: (1) the implantation of intraocular lenses (INTRACOR ® ; registered trademark of Technolas Perfect Vision GMBH); (2) reshaping of the cornea (PresbyLASIK and conductive keratoplasty); (3) scleral band expansion; and (4) implantation of corneal inlays (Flexivue Microlens ® ; registered trademark of PresbiBio LLC, Kamra ® ; registered trademark of AcuFocus, Inc. and Vue+). Kamra ® corneal inlays

manufactured by AcuFocus work by inlaying a pinhole on the cornea to increase the depth of focus.

[006] A similar effect can be achieved with general miotic agents, such as pilocarpine (a non- selective muscarinic acetylcholine receptor agonist), carbachol (a non-selective muscarinic acetylcholine receptor agonist), and phospholine iodide (an acetylcholinesterase inhibitor).

These general miotics can induce a pinhole pupil at sufficient concentrations to achieve pupils below 2.0 mm and potentially extend depth of focus much like an inlay, but at concentrations sufficient to cause pinhole pupil diameters of 2.0 mm or less these agents trigger increased ciliary muscle contraction and induce accommodation of any remaining reserves, improving near vision at the expense of distance vision in individuals who still retain some accommodative function. The side effects of ciliary spasm induced migraine like brow pain and blurred distance vision from induced myopia beyond the ability of a pinhole pupil to correct then necessitate using weaker concentrations with much shorter acting and more marginal effect, such as found with pilocarpine. In such cases even slight hyperopia helps offset the induced myopia while even very small increments of myopia, which is very common, exacerbate it. In extreme cases, such ciliary muscle spasms may possibly be associated with anterior chamber shallowing and pull on the ora serrata of the retina, resulting in a retinal tear and or retinal detachment.

[007] Miotic agents have been described in various patent and patent applications for the treatment of presbyopia. US Patent Nos. 6,291,466 and 6,410,544 describe the use of pilocarpine to regulate the contraction of ciliary muscles to restore the eye to its resting state and potentially restore its accommodative abilities.

[008] US Patent No. 8,524,758 describes the use of pilocarpine with the non-steroidal anti inflammatory, diclofenac, to reduce brow ache from ciliary spasm and increase the time in which the ciliary muscle contraction is regulated. International PCT Application Publication

WO/2013/041967 describes the use of pilocarpine with oxymetazoline or meloxicam to temporarily overcome ocular conditions such as presbyopia.

[009] US Patent No. 8,299,079 (HEK Development LLC) describes the use of direct acting general miotic agents such as pilocarpine, carbachol and phospholine iodide with the alpha 2 selective vasoconstrictor brimonidine at a concentration from 0.05% to 3.0% w/v. However, the use of brimonidine concentrations of about 0.20% (or any at or above 0.05%) w/v induces ciliary spasm with often migraine intensity brow and/or head aches, and frequently results in increased rebound hyperemia. For example, rebound redness occurs in 25% of patients using brimonidine 0.20% w/v (Alphagan ® , registered trademark of Allergan, Inc.) twice daily.

[010] US Patent Application Publication No. 2014/0113946 describes the use of pilocarpine with the alpha 1 and mild alpha 2 agonist vasoconstrictor oxymetazoline, demonstrating limitations in distance sharpness and duration, whereby a cohort largely restricted to mild hyperopes is required to neutralize the induced myopia (Table 1). Of the 16 eyes treated only three were -0.25 to -0.50 diopters, and eight were mildly hyperopic. Of the -0.50 diopter eyes two were reduced to 20.40 distance. Further, duration was limited as full effect became diminished in about four hours. Pupil size range was from 2.0 mm to 2.7 mm, where enhanced near effect and distance sharpness from depth of focus was minimal to absent.

[Oil] These attempts at miotic treatment for presbyopia all induce transient myopia of several diopters reducing distance vision to about legal blindness or worse at the expense of improved near vision for the full duration of their action, typically lasting several hours. This myopic effect is amplified by the exponential drop off in distance acuity with even small increments of nominal myopia in terms of unaided untreated vision. For example, a person having mild myopia (e.g. spherical equivalents of -0.25 D, -0.50 D) that is usually associated with glasses free distance vision, typically will have several lines of distance vision loss after instillation of pilocarpine 1% (i.e. spherical equivalent of -0.75 D.).

[012] Miotics historically used to treat glaucoma, other than pilocarpine, particularly aceclidine, are also associated with ciliary spasm, brow and/or headache, and myopic blur. Further, aceclidine is unstable in solution. Normally, aceclidine is stored in a two-bottle system; one bottle containing the lyophilized aceclidine and the second bottle containing the diluent necessary to reconstitute the lyophilized aceclidine before topical instillation. However, the primary issue with its use as a presbyopic miotic is the attendant pain and in some cases distance blur that may be induced.

[013] U.S. Patent No. 9,089,562 describes a composition containing aceclidine combined with a cycloplegic agent, such that in preferred embodiments aceclidine 1.45% is combined with tropicamide 0.042%. The addition of the cycloplegic agent at extremely low concentrations (less than 0.10%) surprisingly still results in pupil miosis and allows for useful distance and improved near vision without ciliary spasm (often a migraine like brow ache that can be extremely painful and disabling), which is induced by the use of aceclidine alone. Further, aceclidine and the cycloplegic agent require particular narrowly defined ratios and ranges of concentrations relative to each other such that complications in the manufacturing and regulatory process, particularly the need for lyophilization of aceclidine to allow its stable storage, and attendant effects of cryoprotectant / lyoprotectant (hereinafter referred to as“cryoprotectant”) required, where it is a discovery of the present invention the addition of a cryoprotectant such as a polyol, in a preferred embodiment mannitol, results in reduced efficacy of the defined ranges and ratios of concentrations of US 9,089,562. Due to these medical and practical inefficiencies, it is discovered an aceclidine composition requiring same or slightly higher concentrations of aceclidine and much lower concentrations than US 9,089,562 or in some cases no cycloplegic agent, while allowing for formulation modifications to lyophilize aceclidine would be preferred for the treatment of presbyopia with necessary commercially stable formulations. However, to date, no aceclidine composition with amounts of cycloplegic agent lower than that claimed in US 9,089,562 has been effective to treat presbyopia because, as mentioned above, aceclidine alone, particularly young and middle-aged presbyopes (ages 45 to 58), severe ciliary spasms and may cause accommodative induced distance blur in some subjects. [014] Historically, ciliary spasm after instillation of a miotic agent is commonplace and can be disabling. Both aceclidine and pilocarpine have been noted to have significant incidence of ciliary spasm with aceclidine having a slightly greater incidence and severity. For a topical miotic agent to alleviate presbyopia it is incumbent to resolve the high incidence and severity of ciliary spasm induced brow ache. In addition, it is well documented that the accommodative agonist effect of miotic agents peaks at about 60 minutes and the pupil response peaks at 90 minutes. Romano J.H., Double-blind cross-over comparison of aceclidine and pilocarpine in open-angle glaucoma, Brit J Ophthal, Aug 1970, 54(8), 510-521. It is highly desirable to effect longer lasting improvement of presbyopia.

[015] Thus, there is a need in the art for a treatment of presbyopia that is non-invasive and convenient with minimal side effects. Specifically, there is a need for an ophthalmological composition that will allow a person suffering from presbyopia to focus on near objects without significant side effects such as diminished distance vision, blurred vision, pain, redness, impaired night driving or incapacitating dim light vision, induced nasal congestion, or risk of retinal detachment. Further, there is a need in the art for a reduction or elimination of the need for a cycloplegic agent to be used with aceclidine potentially enhancing duration and efficacy, as well as for means of storage of stable aceclidine compositions.

SUMMARY OF THE INVENTION

[016] In certain embodiments, the present invention is directed to compositions and methods for the treatment of presbyopia.

[017] In certain preferred embodiments, the present invention is directed ophthalmological compositions for the treatment of presbyopia comprising aceclidine, preferably at a concentration from about 0.25% to about 2.0% w/v, oxymetazoline, preferably from about 0.01% to about 2.0% w/v, more preferably from about 0.05% to about 1.50% w/v and most preferably at about 0.125% w/vv, a cryoprotectant, preferably a polyol, preferably mannitol at a concentration from about 1.0% to about 10.0% w/v, more preferably 2.5% w/v and a nonionic surfactant, preferably at a concentration from about 1.0% to about 6.0% w/v, preferably the nonionic surfactant is selected from a polysorbate, tyloxapol, a poloxamer, a cyclodextrin, vitamin E TPGS and a polyoxyl, more preferably the nonionic surfactant is polysorbate 80, even more preferably from about 1.0% to about 5.0% w/v polysorbate 80 and most preferably from about 2.0% to about 4.0% w/v polysorbate 80. [018] In certain preferred embodiments, the present invention is directed to ophthalmological compositions for the treatment of presbyopia comprising:

from about 0.25% to about 2.5% w/v aceclidine; from about 1% to about 10% w/v mannitol; from about 1% to about 5% w/v polysorbate 80; from about 0.01% to about 2.0% w/v oxymetazoline; and optionally, hydroxypropylmethyl cellulose at a concentration from about 0.1% to about 2.25% w/v more preferably from about 0.75% to about 1.5% w/v hydroxypropylmethyl cellulose and most preferably from about 1.0% to about 1.25% w/v hydroxypropylmethyl cellulose.

[019] In certain preferred embodiments, the present invention is directed to ophthalmological compositions for the treatment of presbyopia comprising:

about 1.75% w/v aceclidine;

about 0.01% to 0.20% w/v oxymetazoline;

about 2.5% w/v mannitol; and

about 1.25% to 5.0% w/v of a nonionic surfactant.

[020] In certain preferred embodiments, the compositions of the present invention further comprise

about 0.10% to about 0.12% w/v sorbic acid; and

about 0.005% to about 0.02% w/v benzalkonium chloride.

[021] In certain preferred embodiments, the compositions of the present invention further comprise one or more antioxidants selected from the group consisting of

ethylenediaminetetraacetic acid (EDTA), ethylenediaminetetraacetic acid dihydrate, sodium citrate and citrate buffer, preferably selected from the group consisting of

ethylenediaminetetraacetic acid dihydrate and sodium citrate or citrate buffer. In certain preferred embodiments, the present invention is directed to ophthalmological compositions for the treatment of presbyopia comprising:

about 1.75% w/v aceclidine; about 0.125% oxymetazoline;

about 1.0% to about 6.0% w/v of a nonionic surfactant;

about 0.1% to about 2.25% w/v hydroxypropylmethyl cellulose;

about 0.10% to about 0.12% w/v sorbic acid; and

about 0.005% to about 0.02% w/v benzalkonium chloride,

and a pH of 6.5 or less.

[022] In certain other embodiments, the present invention is directed to a method of treating presbyopia comprising administering to a subject in need thereof a composition of the present invention.

[023] The present invention is further directed to a method of reducing the side effects of ophthalmic aceclidine administration by modulating the agonist effect on the ciliary body of the eye such that ciliary spasm, ciliary induced brow ache, and/or ciliary induced headache are substantially reduced or eliminated.

[024] The present invention is further directed to a method of reducing eye redness.

[025] The present invention is further directed to a method of allowing binocular physiologic topical presbyopic correction.

[026] The present invention is further directed to a method of eliminating the need for monocular limitation due to distance blur or reduced to treatment of mild hyperopes to counteract induced myopic blur, as typically associated with pilocarpine, or pilocarpine and alpha agonist combinations.

[027] The present invention is further directed to a method of improving near vision by increasing accommodation without reduction in distance vision sharpness. This is achieved by simultaneously increasing incremental accommodation, modulated so that while sufficient to provide additive near vision enhancement, it remains at a rate of induction and total degree of accommodation such that the associated myopic blur does not break through the ability of the simultaneously induced pupil miosis pinhole effect to filter the refractive error and maintain distance sharpness.

[028] The present invention is further directed to a method of increasing the visual depth perception upon improving near vision unaided comprising administering to a subject in need thereof a pharmaceutically effective amount of an ophthalmological composition of the present invention in both eyes (binocular vision), wherein such binocularity further enhances near vision beyond that of either eye separately.

[029] The present invention is further directed to a method of increasing the duration of presbyopic correction by allowing binocular treatment with the frequent benefit of greater relief of presbyopia viewing near targets binocularly due to the well-known phenomenon of‘binocular summation’, by which perceived images are more clearly identified when viewed by both eyes. In a preferred embodiment, the duration of presbyopic correction occurs for more than 4 hours.

[030] The present invention is further directed to a method of improving vision in a subject with ametropia (vision abnormality), comprising administering to a subject in need thereof a pharmaceutically effective amount of a composition of the present invention.

[031] The present invention is further directed to a method of improving vision in a subject with ametropia, comprising administering to a subject in need thereof a pharmaceutically effective amount of a composition of the present invention, wherein ametropia is selected from the group consisting of nearsightedness, farsightedness, regular astigmatism, irregular astigmatism and high degrees of regular astigmatism.

[032] The present invention is further directed to increasing the duration of pinhole induced depth of field/focus of treated eyes by the addition of oxymetazoline.

[033] The present invention is further directed at eliminating optical aberrations induced by corneal irregularity, opacities, or very high degrees of regular astigmatism that include regions adjacent or peripheral to the central 1.5 mm optical zone, and thereby inducing improved visual acuity and quality of vision by filtering out these aberrant optics in those suffering from irregular astigmatism or high degrees of more regular astigmatism, such as occurs in conditions such as keratoconus, photorefractive keratectomy induced corneal haze, diffuse lamellar keratitis (“DLK”) (post-lasik DLK), other iatrogenic corneal induced irregularity such as cataract incision, glaucoma filtering blebs, implanted glaucoma valves, corneal inlays with or without removal, ectasia post corneal surgery (lasik), and secondary to infection.

[034] The present invention is further directed at improving acuity relative to existing uncorrected refractive error. Upon this improved acuity, patients now requiring toric contact lenses for astigmatism with reduced comfort and optics that may shift during each blink may in many cases require only non-toric soft contact lenses or no contact lenses. Further, those requiring gas permeable contact lenses may no longer require contact lenses or only require much more comfortable soft contact lenses. Patients with high degrees of astigmatism may now require no correction or reduced astigmatic correction. Patients with small to moderate degrees of nearsightedness may require less correction or no longer require correction. Patients with small to moderate degrees of hyperopia (farsightedness) may require no correction or reduced correction.

[035] The present invention is directed to methods and ophthalmological compositions for improving eye sight. In a preferred embodiment the present invention is directed to methods and ophthalmological compositions for the treatment of presbyopia. In a more preferred embodiment the present invention is directed to ophthalmological compositions comprising aceclidine.

[036] The present invention is directed to methods of treating irregular astigmatism, keratoconic ectasia, and low myopia, or hyperopia, with or without astigmatism, comprising administering to a subject in need thereof an ophthalmological composition of the present invention.

[037] The present invention is further directed to a method of inhibiting ciliary spasm induced brow ache comprising the following steps:

providing an ophthalmological composition comprising about 1.75% w/v aceclidine, about 0.125% w/v oxymetazoline, about 2.5% w/v mannitol, about 3.5% to 4.0% w/v polysorbate 80 and optionally, about 1.25% w/v hydroxypropylmethyl cellulose.

BRIEF DESCRIPTION OF THE FIGURES

[038] Figure 1 is a graphical representation of the effects of pilocarpine and aceclidine with or without tropicamide and with or without a carrier on near and distance vision in a patient over the age of 45.

[039] Figure 2 is a graphical representation of the effects of addition of non-ionic surfactants and viscosity enhancers on near vision acuity and duration of effect. Line-Hours denotes lines improved times duration of effect.

[040] Figure 3 is a graphical representation of the Efficacy Index for formulas #L33-#L94

Box color denotes a comfort level of good for white, fair for cross-hatched and poor for black.

DETAILED DESCRIPTION OF THE INVENTION

[041] The Applicant has surprisingly discovered that the addition of oxymetazoline to aceclidine compositions for the treatment of presbyopia enhances the duration of effect and reduces ciliary spasms, eye redness and additional symptoms thereof. [042] The compositions and methods of the present invention treat presbyopia by improving depth of focus in patients with presbyopia by administering an ophthalmological composition to the eye that reduces pupil dilation in the dark or in dim light, produces a particular degree and duration of miosis without accommodation, provides cosmetic whitening and/or induce redness prophylaxis. The compositions and methods of the present invention also do not cause significant pupil rebound, tachyphylaxis, ciliary spasms, induction of myopia or reduction in distance vision. Additionally, the compositions and methods of the present invention allow for the further improvement in visual acuity and depth perception of binocular (both eyes) treatment. The ophthalmological composition of the present invention surprisingly creates a pupil of from about 1.5 to about 2.4 mm at the anterior iris plane and about 2.0 mm at the corneal surface. Not wishing to be held to particular theory the clinical effect appears to involve both with modulated increase in accommodative tone and enhanced pinhole near depth of focus for improved near vision, estimated to be about -1.25 D or less, but restricted in power to remain within the range of pinhole correction for distance, found to be about -1.00 D or less creating a sum increase that may in some cases create a near vision add of +2.00 D or more without distance blur; and with a reduction or ablation of the redness that is otherwise a hallmark of the use of miotic agents. The pupil miosis of the present invention with such modulation and restriction of peak

accommodative tone is superior to the pinhole effect of the Kamra ® and Flexivue Microlens ® corneal inlays, allowing binocular treatment without peak dimming. Pupil miosis of the present invention with modulated accommodation is also superior to inlays because the constriction of the actual pupil does not result in the attendant severe night vision disturbance caused by the light scattering borders of the pre-corneal pinholes created by the inlays. Further pupil miosis provides a greater field of vision and transmission of more focused light, and in a discovered optimal pupil range of about 1.5 mm to 2.1 mm using formulation discoveries of the present invention does so with negligible to mild and very tolerable dimming and enhanced contrast, distance vision, reduced glare at night, and improved near vision.

[043] The use of aceclidine has a minimal effect on the longitudinal ciliary muscle, thus reducing risk of retinal detachment when compared to the use of general muscarinic agonists such as pilocarpine and carbachol. The further inclusion of a cycloplegic agent resulted in only 0.04 mm of anterior chamber shallowing. Aceclidine, particularly as enhanced for the present invention, also has greater magnitude, duration, and control of minimum pupil diameter than conventional pilocarpine with or without alpha agonists, and less anterior chamber inflammation with chronic use. Compositions of the present invention achieve these advantages by allowing both pinhole near vision depth perception benefit and modest accommodative increase below the threshold of induced myopic distance blur through the miotic pupil, whereby, not wishing to be held to particular theory, it is believed the rate of miosis and the rate of accommodative increase maintain a synchronous balance in preferred embodiments allowing pinhole correction of otherwise induced accommodative blur in prior art applications of miotics for presbyopic correction. This combination thus is found to avoid the distance blur typically seen in patients as a response to pilocarpine and/or carbachol induced miosis without the formulation discoveries of the present invention, as well as the excessive accommodative myopia and ciliary spasm manifested as brow ache or generalized migraine-like headache.

[044] Such conventional formulations of pilocarpine, in order to effect any reasonable duration of effect, are still restricted to less than or equal to about 4 hours in most cases, as the high ratio of accommodation to pupillary miosis requires minimal concentrations of pilocarpine of about 1.0% to minimize but not eliminate distance induced myopic blur and ciliary spasm. Further pilocarpine must be instilled monocularly to minimize intolerable distance blur to a still bothersome 2-3 lines of distance blur. Even instilled monocularly, pilocarpine still may create bothersome attendant distance blur and must be restricted to about 1.0%. Upon instillation of 1.0% pilocarpine pupil size is about 2.3 mm or larger in most subjects and thereby restricts any significant pinhole depth perception benefit as well as any pinhole filtering of induced myopic rays. The restriction to about 1.0% for these conventional formulations of pilocarpine with the attendant short duration and still bothersome but reduced distance blur in emmetropes or myopes (somewhat neutralized in low hyperopes) are attempts to prevent extremely strong

accommodation of 5D to 11 D well known to occur at higher concentrations of pilocarpine.

[045] Any effects on accommodation may be further reduced or totally eliminated in preferred embodiments by combining a miotic with a cycloplegic agent in a narrow and particular ratio of miotic to cycloplegic, where such ratios as discovered for US 9, 089,562, such as about 35: 1 for a preferred embodiment, become greatly increased for the present invention in the presence of cryoprotectant as to a factor of about 300% - 700%. Aceclidine is capable of producing the increased depth of focus by both pupil miosis below 2.3 mm and modest accommodation described in the present invention. Particularly enhanced miosis occurs with use of compositions of the present invention. Due to the apparent and surprisingly selective nature of aceclidine, and the commercially stable aceclidine formulation discoveries of the present invention,

administration to the eye of compositions of the present invention result in a net strongly enhanced near vision acuity from both pupil miotic pinhole effect and moderate modulated ciliary accommodation. These beneficial effects are accompanied by a filtering pupil effect, which eliminates any distance blur from the accommodation, correcting residual refractive error and optical aberrations as may exist to in many cases improve distance vision as well. Thus, the administration of aceclidine results in pupil miosis without excessive accommodation and attendant distance blur. However, aceclidine alone may cause substantial redness and brow ache. Without formulation enhancement of the present invention such as requiring a cycloplegic agent, cryoprotectant, oxymetazoline or combinations thereof, aceclidine may produce either less than optimal pupil miosis at low concentrations or at higher concentrations require more than desired peak miosis to attain satisfactory duration of greater than 3-4 hours. However the use of a cycloplegic agent has been found to be highly sensitive to other inactive ingredients in the formulation not usually associated with effects on active agents, and particularly for

cryoprotectants as found to be preferred commercially for aceclidine reduce or eliminate the need for this cycloplegic requirement to extremely low concentrations in a preferred

embodiment, rendering 0.042% sufficiently high when a cryoprotectant is present (e.g. a polyol such as mannitol) to cause substantial loss of efficacy. Further, aceclidine without formulation enhancements of the present invention causes dimming of vision in dim or absent lighting as well as ciliary pain above a reasonably tolerable threshold that may last for an hour or more and be similar to a severe migraine headache.

[046] Certain embodiments of the present invention enhance the discovered preferred degree of pupillary miosis by providing a consistent range of effect of about 1.50 - 2.20 mm for most patients using a preferred embodiment of a nonionic surfactant and viscosity enhancer. Similar benefit may be achieved using other permeation enhancers, particularly hydroxypropylmethyl cellulose, high viscosity carboxymethyl cellulose, Carbopol ® (polyacrylic acid or carbomer), and various viscosity additives that increase drug residence time, such as xanthan gums, guar gum, alginate, and other in situ gels well known to experts in the art. It is well known to experts in the art that the exact concentration of a specific viscosity agent will depend on both the molecular weight for that agent selected and the concentration, such that for increased molecular weight a reduced concentration can have the same viscosity. The present invention further prevents nasal congestion otherwise occurring when substantial aceclidine levels reach the nasal mucosa, due to the rheologic properties of the preferred embodiment.

[047] The combination of aceclidine and oxymetazoline allows for the desired miotic effect with diminished or no redness.

[048] Unexpectedly, the addition of a cycloplegic agent or oxymetazoline results in reduction of any brow ache or associated discomfort by further reducing the degree of ciliary spasms on topical instillation without impairing the miotic response. More unexpectedly and surprisingly, the ratio of 1.40% aceclidine to about 0.040% tropicamide in a preferred embodiment of U.S. Patent No. 9,089,562 (35: 1) becomes about 1.75% aceclidine to about 0.004% to 0.010% tropicamide (350: 1, 175: 1 respectively) in the presence of mannitol, where 2.5% provides better effect than 4.0%.

[049] The lack of impairment of the miotic response is an unexpected surprising discovery, as particular cycloplegic agents, such as tropicamide, have known pupil dilating effects at concentrations as low as 0.01% w/v (Griinberger J. et ah, The pupillary response test as a method to differentiate various types of dementia, Neuropsychiatr, 2009, 23(1), pg 57). More specifically cycloplegic agents cause pupil mydriasis (i.e. dilation of the radial muscle of the iris). Further, the addition of a cycloplegic agent to the miotic agent unexpectedly increases the time at which the pupil maintains the desired size range without becoming too restricted. Peak miotic effect at 30 - 60 minutes can be titrated in inverse relation to the cycloplegic

concentration. The concentrations of tropicamide discovered in the present invention apparently cause more relaxation of the ciliary muscle than the iris radial musculature. In fact, iris mydriasis is discovered to be suppressed by the addition of tropicamide to compositions containing concentrations of aceclidine used in the present invention, with instead a more consistent level of miosis for the duration of the miotic effect. Additionally, and quite surprisingly, unexpectedly, and beneficially the addition of tropicamide can reduce the degree of peak pupil miosis without inducing mydriasis thereby creating a more constant and ideal pupil size throughout the drug induced miosis. This more consistent pupil size allows for beneficial near and distance vision without the adverse dimming or loss of resolution due to diffraction limits at the very reduced pupil sizes seen at peak pupil miosis (e.g. 1.25 mm). [050] Several additional discoveries of the present invention allow for commercially stable aceclidine formulations with enhanced efficacy and duration:

[051] Equally or more surprising than the synergistic effects of cycloplegics of 0.040% added to aceclidine 1.40%, is the discovery of the present invention that combination of aceclidine 1.50% -2.0%, and preferably about 1.75% and a cryoprotectant, preferably a polyol, in a preferred embodiment mannitol, particularly at 0.5% to 4.0% and most preferably about 2.5%, can achieve a similar pupil range with reduced ciliary side effects. The cryoprotectant when combined with aceclidine can then be combined to allow lyophilization without degradation of aceclidine and simultaneously further reduce or eliminate the need for a cycloplegic agent for the present invention vs. the teachings of cycloplegic concentration ranges required in US 9,089,562. Optionally, the addition of a cryoprotectant can therefore also be used to greatly reduce (i.e. no more than 0.025% w/v cycloplegic agent, preferably 0.004% to 0.015% and most preferably 0.005% to 0.010%) the concentration of cycloplegic required to further eliminate mild, but potentially bothersome, ciliary side effects particularly in younger presbyopes and further modulate pupil miosis over aceclidine and a cryoprotectant combinations alone, reducing and in most cases eliminating any bothersome peak concentration dimming, as found in preferred embodiments of the present invention. In preferred embodiments it is discovered that aceclidine about 1.50% - 2.0% and more preferably 1.75% and mannitol about 0.5% - 4.0% and more preferably 2.5% provide optimal concentration combinations for the present invention, that are necessary but not sufficient for about 3 lines of near improvement and 5 or more hours duration desired for an effective topical presbyopic composition, where additional formulation discoveries can further enhance the desired clinical near improvement magnitude and duration;

[052] It is surprisingly discovered that adding a viscosity agent to compositions described in a. above only modestly improves magnitude and duration, however when first adding a nonionic surfactant, such as polyoxyl stearate or polysorbate 80, optimal concentrations are discovered that provide greatly improved magnitude and duration for the present invention, to which viscosity may then provide added duration much more substantially than when added alone. For polysorbate 80 or polyoxyl 40 stearate concentrations of 1.0% to 10.0%, and more preferably about 2.5% to 5.0% w/v have been found to be beneficial;

[053] When improvements of formulations above are combined, preferred embodiments such as aceclidine 1.75%, mannitol 2.5%, and polysorbate 80 2.75% result. Viscosity agents such as high viscosity carboxymethyl cellulose (“CMC”) are surprisingly discovered to moderately enhance magnitude and greatly enhance duration, unlike with formulations in a. above alone. High molecular weight CMC concentrations of 0.75% to 1.75%, and most preferably about 1.40%, or hydroxypropylmethyl cellulose (“HPMC”) at about 0.25% to 2.0%, more preferably about 0.50% or 1.50%, and most preferably about 1.0% to 1.25%, when combined result now in about +3 lines of near vision improvement or greater, at a duration of 5 - 10 hours, at a mean of about 7 hours or greater vs. pilocarpine 1.0% of about less than 4 hours;

[054] Not wishing to be held to particular theory citrate in combination with EDTA as a preferred embodiment buffer appears to 1) reduce redness; 2) enhance sorbate preservative shelf life, and in combination of the above with BAK 0.005% to 0.02% (0.02% preferred) further enhances near vision lines to about 4 lines and duration to about 8 to 12 hours.

[055] Additionally, 0.5% or 1.5% sodium chloride is added in a preferred embodiment.

Optionally, sodium chloride may be substituted with boric acid, preferably at 0.35% or potassium borate, preferably at 0.47%;

[056] Not wishing to be held to particular theory, it appears the addition of nonionic surfactant at optimized concentration of about 2.5% to 5.0% enhances permeation of aceclidine into the eye, which may relate to optimal micellar size particularly once of micromicaller or nanomicellar range. This increased permeation coincides with the desirable increase in magnitude and duration and absent tropicamide but in the presence of mannitol with slight increases in ciliary sensation and dimming. Therefore, in the presence of the combined formulation enhancements of a-d. above, where a cycloplegic agent is no longer required for a-d. above, addition of a nonionic surfactant at concentrations found to be preferred may be further improved with much lower concentrations of a cycloplegic agent than those found in US 9.089,562, such as the use of about 0.042% tropicamide with aceclidine 1.40%. For the present invention then preferred

embodiments include aceclidine of about 1.75%, mannitol 2.5%, polysorbate 80 of about 2.5% to 5.0%, CMC of about 1.42%, or HPMC of about 1.8% and tropicamide of about 0.004% - 0.010%, more preferably about 0.005% to 0.007%, and most preferably about 0.005% - 0.006%. Micelle formation above the critical micellar concentration may allow for micelles to spread across the tear film surface and spread at low concentrations to cover this surface, while at higher concentrations these micelles becoming increasingly contracted and“squeezed” along the surface. Not wishing to be held to particular theory, it is believed at an optimal concentration a minimal micelle diameter is achieved before significant multiple lamellae (layering) occurs. It is believed that at the optimal concentration nanomicelles of about 100 to 250 nm along the surface are achieved surrounding the highly charged and hydrophilic aceclidine, facilitating its penetration through the very lipophilic epithelium;

[057] Not wishing to be held to particular theory the addition of BAK 0.02% to sorbate about 0.10%, EDTA about 0.10%, in a preferred composition of aceclidine 1.75%, mannitol 2.5%, tropicamide 0.01%, and citrate buffer (1 to 100 mM 3-5 mM preferred) is above the BAK critical micellar concentration. BAK, being a cationic surfactant, and BAK micelles, creating an ionic micellar gradient with + charge NH4+ quaternary nitrogen bring on the polar heads aggregating outside and lipophilic alkyl chain on the hydrophobic tails aggregating on the inside may cause significant similar aceclidine alignment due to its dipole with quaternary NH3 nucleophilic or NH4 protonated nitrogens oriented along the outside polar heads and more hydrophobic carbonyls C=0 along hydrophobic BAK micellar tails these preventing, greatly reducing, or moderately reducing collisions of any nonionic aceclidine molecules - the nucleophiles - which if oriented in solution such that randomly they collide with another aceclidine carbonyl will result in chemical conversion of that aceclidine via nucleophilic attack at its targeted carbonyl, which can recur from such nucleophiles to other aceclidines so oriented repeatedly and cause loss of stability without such BAK orientation via 0.005% and preferably 0.01% to 0.02% most preferred micelles. The concentration of such nonionic nucleophiles at a preferred pH in the preferred embodiment is relatively low, but the ability of these nonionic nucleophiles to destabilize adjacent aceclidines repeatedly without themselves degrading is otherwise high. The result may be improved potency for 1 month plus of a mixed solution once opened in a dual chamber bottle and mixing occurs of lyophilized aceclidine/mannitol with the remainder of the formulation in the diluent and or improved stability sufficient for commercialization in solution, either at room temperature or via cold chain;

[058] It is discovered that BAK alone does not provide sufficient bacterial and fungal preservative efficacy but that BAK and sorbate, or sorbate alone satisfactorily preserve diluent and or mixed solutions of the invention;

[059] Not to be wishing to be held to particular theory preferred embodiments of the present invention such as containing 1.25% hydroxypropyl methyl cellulose may have a viscosity of about 400 cps prior to instillation, yet unlike conventional high viscosity artificial tear formulations such as Celluvisc® at about 400 cps, which may blur vision for 10-20 minutes or Liquigel® at about 100 cps, which causes similar but slightly reduced blurring causes only about 60 seconds of blur dissipating rapidly with an influx of tear secretion; where both a

nonnewtonian reduction in viscosity at high shear (such as about 1/1000 sec during a blink, and aceclidine parasympathetic trigger of tear secretion as a sialogen may contribute.

[060] General miotic agents, such as pilocarpine, carbachol and phospholine diesterase, are capable of causing pupil miosis resulting in improved near vision of presbyopic patients.

However, there is an inverse reduction in distance vision associated with these general miotic agents from miosis at peak effect and accommodation that is not seen with aceclidine. The co- administration of a cycloplegic agent with aceclidine surprisingly results in an attenuation of this reduction in distance vision.

[061] Comfort, safety, and efficacy of a preferred embodiment of an ophthalmological composition of the present invention results from the presence of a nonionic surfactant, such as cyclodextrin alpha, beta, or gamma chains, preferably 2-hydroxypropyl beta-cyclodextrin (“HPPCD”), and, sulfobutylether ether derivative of b-cyclodextrin (Captisol ® ), a polyoxyl alkyl such as polyoxyl 40 stearate and polyoxyl 35 castor oil, or a poloxamer such as poloxamer 108 and poloxamer 407, a polysorbate such as polysorbate 80 or Brij® 35(Brij is a registered trademark of Uniqema Americas LLC); a viscosity enhancing agent, such as carboxymethyl cellulose (“CMC”); a tonicity adjustor, such as sodium chloride; a preservative, such as benzalkonium chloride and a pH from about 5.0 to about 8.0. Further, an increase in the concentration of the nonionic surfactant may result in reduced redness. Specifically, increasing polysorbate from 0.10% to 0.50 - 1.0% results in reduced redness. Further, increasing CMC or Carbopol ® 940 from 0.50% to 1.5% w/v (preferably 1.40 - 1.43% w/v) results in enhanced near vision, both quantitative improvement and duration improvement.

[062] The viscosity of compositions of the present invention comprising a viscosity enhancer may be from about 1 to about 10,000 cps prior to topical instillation in the eye. As a result of the shear force applied to the composition as it exits the device used for administration the viscosity is lowered to a range from about 1 to about 25 cps at the high shear of blinking, and 50 cps to 200 cps at the low shear between blinks, allowing greater drop retention with less spillage and less nasolacrimal drainage and systemic absorption upon topical instillation. [063] Unexpectedly, the addition of oxymetazoline results in reduction of any brow ache or associated discomfort by further reducing the degree of ciliary spasms on topical instillation without impairing the miotic response.

Definitions

[064] As used herein, the term“composition” is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from a combination of the specified ingredients in the specified amounts.

[065] The term“stabilizing”, as used herein, refers to any process which facilitates and/or enables an active agent to remain in solution. The term“stabilizing”, as used herein, also refers to any means or process which inhibits and/or reduces the tendency of a muscarinic agonist, including aceclidine, to degrade.

[066] As used herein, all numerical values relating to amounts, weights, and the like, that are defined as“about” each particular value is plus or minus 10%. For example, the phrase“about 5% w/v” is to be understood as“4.5% to 5.5% w/v.” Therefore, amounts within 10% of the claimed value are encompassed by the scope of the claims.

[067] As used herein“% w/v” refers to the percent weight of the total composition.

[068] As used herein the term“subject” refers but is not limited to a person or other animal.

[069] The term muscarinic receptor agonist (“muscarinic agonist”) encompasses agonists that activate muscarinic acetylcholine receptors (“muscarinic receptors”). Muscarinic receptors are divided into five subtypes named M1-M5. Muscarinic agonists of the present invention include those muscarinic agonists that preferentially activate Ml and M3 receptors over M2, M4 and M5 receptors (“M1/M3 agonists”). M1/M3 agonists include but are not limited to aceclidine, xanomeline, talsaclidine, sabcomeline, cevimeline, alvameline, arecoline, milameline, SDZ-210- 086, YM-796, RS-86, CDD-0102A (5-[3-ethyl-l,2,4-oxasdiazol-5-yl]-l,4,5,6- tetrahydropyrimidine hydrochloride), N-ary lurea- substituted 3-morpholine arecolines, VU0255- 035 (N-[3-oxo-3-[4-(4-pyridinyl)-l-piperazinyl]propyl]-2,l,3-ben zothiadiazole-4-sulfonamide), benzylquinolone carboxylic acid (BQCA), WAY-132983, AFB267B (NGX267), AC-42, AC- 260584, chloropyrazines including but not limited to L-687, 306, L-689-660, 77-LH-28-1, LY593039, and any quinuclidine ring with one or more carbon substitutions particularly that include an ester, sulfur, or 5 or 6 carbon ring structure including with substituted nitrogen(s) and or oxygen(s), or any pharmaceutically acceptable salts, esters, analogues, prodrugs or derivatives thereof. A preferred M1/M3 agonist is aceclidine. In a preferred embodiment, muscarinic agonists of the present invention include those muscarinic agonists that preferentially activate Ml and M3 over M2, M4, and M5; and even more preferably activate Ml over M3. In a more preferred embodiment muscarinic agonist of the present invention include those muscarinic agonists that only activate Ml.

[070] The term“aceclidine” encompasses its salts, esters, analogues, prodrugs and derivatives including, but not limited to, aceclidine as a racemic mixture, aceclidine (+) enantiomer, aceclidine (-) enantiomer, aceclidine analogues, including, but not limited to, highly Ml selective 1,2,5 thiadiazole substituted analogues like those disclosed in Ward. J.S. et ah, l,2,5-Thiadiazole analogues of aceclidine as potent ml muscarinic agonists, JMed Chem , 1998, Jan. 29, 41(3), 379-392 and aceclidine prodrugs including but not limited to carbamate esters.

[071] The terms“treating” and“treatment” refer to reversing, alleviating, inhibiting, or slowing the progress of the disease, disorder, or condition to which such terms apply, or one or more symptoms of such disease, disorder, or condition.

[072] The term“pharmaceutically acceptable” describes a material that is not biologically or otherwise undesirable (i.e. without causing an unacceptable level of undesirable biological effects or interacting in a deleterious manner).

[073] As used herein, the term“pharmaceutically effective amount” refers to an amount sufficient to effect a desired biological effect, such as a beneficial result, including, without limitation, prevention, diminution, amelioration or elimination of signs or symptoms of a disease or disorder. Thus, the total amount of each active component of the pharmaceutical composition or method is sufficient to show a meaningful subject benefit. Thus, a "pharmaceutically effective amount" will depend upon the context in which it is being administered. A

pharmaceutically effective amount may be administered in one or more prophylactic or therapeutic administrations.

[074] The term "prodrugs" refers to compounds, including, but not limited to, monomers and dimers of the compounds of the invention, which have cleavable groups and become, under physiological conditions, compounds which are pharmaceutically active in vivo.

[075] As used herein“salts” refers to those salts which retain the biological effectiveness and properties of the parent compounds and which are not biologically or otherwise harmful at the dosage administered. Salts of the compounds of the present inventions may be prepared from inorganic or organic acids or bases.

[076] The term“higher order aberrations” refers to aberrations in the visual field selected from starbursts, halos (spherical aberration), double vision, multiple images, smeared vision, coma and trefoil.

[077] The compounds of the present invention can be used in the form of pharmaceutically acceptable salts derived from inorganic or organic acids or bases. The phrase "pharmaceutically acceptable salt" means those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well-known in the art. For example, S. M. Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences. 1977. 66: 1 et seq.

[078] The salts can be prepared in situ during the final isolation and purification of the compounds of the invention or separately by reacting a free base function with a suitable organic acid. Representative acid addition salts include, but are not limited to acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphor sulfonate, di gluconate, glycerophosphate, hemi sulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isothionate), lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmitoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, phosphate, glutamate, bicarbonate, p-toluenesulfonate and undecanoate. Also, the basic nitrogen- containing groups can be quaternized with such agents as lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl and diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; arylalkyl halides like benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained. Examples of acids which can be employed to form pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, hydrobromic acid, hyaluronic acid, malic acid, sulphuric acid and phosphoric acid and such organic acids as oxalic acid, malic acid, maleic acid, methanosulfonic acid, succinic acid and citric acid. [079] Basic addition salts can be prepared in situ during the final isolation and purification of compounds of this invention by reacting a carboxylic acid-containing moiety with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia or an organic primary, secondary or tertiary amine. Pharmaceutically acceptable salts include, but are not limited to, cations based on alkali metals or alkaline earth metals such as lithium, sodium, potassium, calcium, magnesium and aluminum salts and the like and nontoxic quaternary ammonia and amine cations including ammonium, tetramethylammonium, tetraethylammonium, methyl ammonium, dimethylammonium, trimethylammonium,

triethylammonium, diethylammonium, and ethylammonium among others. Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, piperazine and the like.

[080] The term“ester” as used herein is represented by the formula— OC(0)A 1 or— C(0)OA 1 , where A 1 can be alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, a heteroaryl group or other suitable substituent.

Compositions of the Invention

[081] In one embodiment, the present invention is directed to an ophthalmological composition comprising aceclidine. In a preferred embodiment, aceclidine is at a concentration from about 0.25% to about 2.0% w/v, more preferably from about 0.50% to about 1.90% w/v, still more preferably from about 1.65% to about 1.85% w/v, and most preferably about 1.75% w/v. As aceclidine is a tertiary amine with asymmetry, both a + and - optical isomer exists (where in some studies (+) is more potent and in others it is felt (-) may be more potent). For the above concentrations polarimetry demonstrated an exactly equal ratio of (+) and (-) isomer for these concentrations. Altering this ratio could therefore alter this concentration range proportional to a change in ratio.

[082] The present invention is further directed to an ophthalmological composition comprising a muscarinic agonist, oxymetazoline, a cryoprotectant and preferably a nonionic surfactant above its critical micellar concentration for the composition, and, optionally, a viscosity enhancing agent; or alternatively an in-situ gelling agent. In preferred embodiments the initial viscosity of the composition on topical application is above 20 cps, preferably 50 cps, and more preferably above 70 cps at low shear (l/s). [083] Cryoprotectants are compounds that either prevent freezing or prevent damage to compounds during freezing. As used herein, the term“cryoprotectant” or“cryoprotectants” include lyoprotectants. Cryoprotectants suitable for use in the subject invention include, but are not limited to, a polyol, a sugar, an alcohol, a lower alkanol, a lipophilic solvent, a hydrophilic solvent, a bulking agent, a solubilizer, a surfactant, an antioxidant, a cyclodextrin, a

maltodextrin, colloidal silicon dioxide, polyvinyl alcohol, glycine, 2-methyl-2,4-pentanediol, cellobiose, gelatin, polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), formamide, antifreeze protein 752 or a combination thereof.

[084] As used herein the term“polyol” refers to compounds with multiple hydroxyl functional groups available for organic reactions such as monomeric polyols such as glycerin,

pentaerythritol, ethylene glycol and sucrose. Further, polyols may refer to polymeric polyols including glycerin, pentaerythritol, ethylene glycol and sucrose reacted with propylene oxide or ethylene oxide. In a preferred embodiment, polyols are selected from the group consisting of mannitol, glycerol, erythritol, lactitol, xylitol, sorbitol, isosorbide, ethylene glycol, propylene glycol, maltitol, threitol, arabitol and ribitol. In a more preferred embodiment, the polyol is mannitol.

[085] Sugars suitable for use in the present invention as cryoprotectants include, but are not limited to, glucose, sucrose, trehalose, lactose, maltose, fructose and dextran.

[086] In another preferred embodiment, alcohols include, but are not limited to, methanol.

[087] In one embodiment, the present invention individually excludes each cryoprotectant from the definition of cryoprotectant.

[088] Cryoprotectants may be at present in compositions of the present invention at a concentration from about 0.1% to about 99% w/v, preferably from about 1% to about 50% w/v, more preferably from about 1% to about 10% w/v.

[089] As used herein“lower alkanols” include C1-C6 alkanols. Lower alkanols, suitable for use in the present invention include, but are not limited to, amyl alcohol, butanol, sec-butanol, t- butyl alcohol, n-butyl alcohol, ethanol, isobutanol, methanol isopropanol and propanol.

[090] Bulking agents suitable for use in the present invention include, but are not limited to, saccharide, polyvinylpyrrolidone, cyclodextrin and trehalose.

[091] Solubilizers suitable for use in the present invention include, but are not limited to, cyclic amide, gentisic acid and cyclodextrins. [092] In a preferred embodiment, surfactants suitable for use in the present invention include, but are not limited to, nonionic surfactants, more preferably surfactants with a hydrophilic- lipophilic balance (“HLB”) value of 1 to 18.

[093] In a preferred embodiment, antioxidants suitable for use in the present invention include, but are not limited to, bisulfite, ascorbic acid, disodium- or tetrasodium

ethylenediaminetetraacetic acid, citrate, butylated hydroxyanisole (“BHA”), butylated hydroxytoluene (“BHT”), a sulfoxylate, propyl gallate, an amino acid containing a thio group, and a thiol.

[094] Nonionic surfactants suitable for the present invention include cyclodextrins, polyoxyl alkyls, poloxamers or combinations thereof, and may include in addition combinations with other nonionic surfactants such as polysorbates. Preferred embodiments include polyoxyl 40 stearate and optionally Poloxamer 108, Poloxamer 188, Poloxamer 407, Polysorbate 20, Polysorbate 80, ionically charged (e.g. anionic) beta - cyclodextrins with or without a butyrated salt (Captisol ® ) 2-hydroxypropyl beta cyclodextrin (“HPpCD”), alpha cyclodextrins, gamma cyclodextrins, Polyoxyl 35 castor oil, and Polyoxyl 40 hydrogenated castor oil or combinations thereof.

Further, substitution of other nonionic surfactants compatible with ophthalmological use allows for similar formulation advantages, which may include but is not limited to one or more of a nonionizing surfactant such as poloxamer, poloxamer 103, poloxamer 123, and poloxamer 124, poloxamer 407, poloxamer 188, and poloxamer 338, any poloxamer analogue or derivative, polysorbate, polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 80, any polysorbate analogue or derivative, cyclodextrin, hydroxypropyl-b- cyclodextrin, hydroxypropyl- g- cyclodextrin, randomly methylated b-cyclodextrin, b-cyclodextrin sulfobutylether ether, g- cyclodextrin sulfobutylether ether or glucosyl- b- cyclodextrin, any cyclodextrin analogue or derivative, polyoxyethylene, polyoxypropylene glycol, an polysorbate analogue or derivative, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene (200) , polyoxypropylene glycol (70), polyoxyethylene hydrogenated castor oil, polyoxyethylene hydrogenated castor oil 60, polyoxyl, polyoxyl stearate, nonoxynol, octyphenol ethoxylates, nonyl phenol ethoxylates, capryols, lauroglycol, polyethylene glycol (“PEG”), Brij ® 35, 78, 98, 700 (polyoxyethylene glycol alkyl ethers), glyceryl laurate, lauryl glucoside, decyl glucoside, or cetyl alcohol; or zwitterion surfactants such as palmitoyl carnitine, cocamide DEA, cocamide DEA derivatives cocamidopropyl betaine, or trimethyl glycine betaine, N-2(2-acetamido)-2-aminoethane sulfonic acid (ACES), N-2-acetamido iminodiacetic acid (ADA), N,N-bis(2-hydroxyethyl)-2- aminoethane sulfonic acid (BES), 2-[Bis-(2 -hydroxy ethyl)-amino]-2-hydroxymethyl-propane- l,3-diol (Bis-Tris), 3 -cyclohexylamino-l -propane sulfonic acid (CAPS), 2-cyclohexylamino-l- ethane sulfonic acid (CHES), N,N-bis(2-hydroxyethyl)-3-amino-2-hydroxypropane sulfonic acid (DIPSO), 4-(2-hy droxy ethyl)- 1 -piperazine propane sulfonic acid (EPPS), N-2- hydroxyethylpiperazine-N'-2-ethane sulfonic acid (HEPES), 2-(N-morpholino)-ethane sulfonic acid (MES), 4-(N-morpholino)-butane sulfonic acid (MOBS), 2-(N-morpholino)-propane sulfonic acid (MOPS), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO), l,4-piperazine- bis-(ethane sulfonic acid) (PIPES), piperazine-N,N'-bis(2-hydroxypropane sulfonic acid) (POPSO), N-tris(hydroxymethyl)methyl-2-aminopropane sulfonic acid (TAPS), N- [tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropane sulfonic acid (TAPSO), N- tris(hydroxymethyl) methyl-2-aminoethane sulfonic acid (TES), 2-Amino-2-hydroxymethyl- propane-l,3-diol (Tris), tyloxapol, Solulan™ C-24 (2-[[l0,l3-dimethyl-l7-(6-methylheptan-2- yl)-2,3,4,7,8,9,l l,l2,l4,l5,l6,l7-dodecahydro-lH-cyclopenta[a]phenanthren-3-y l]oxy]ethanol) and Span ® 20-80 (sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, and sorbitan monooleate). In certain embodiments the addition of an anionic surfactant such as sodium lauryl sulfate and or sodium ester lauryl sulfate may be preferred. In other embodiments the addition of polysorbate 80 is preferred. In addition to the above nonionic surfactants any nonionic surfactant is suitable for use in the present invention as long as the concentration of the nonionic surfactant is such that it is above the critical micellar concentration for that non-ionic surfactant. Preferably, the nonionic surfactants used in the present invention achieve submicron diameter micelles, more preferably less than 200 nanometers and more preferably less than 150 nanometers in diameter.

[095] Ophthalmological in situ gels which may be substituted for or added in addition to one or more nonionic surfactants include but are not limited to gelatin, carbomers of various molecular weights including carbomer 934 P and 974 P, xanthan gums, alginic acid (alginate), guar gums, locust bean gum, chitosan, pectins and other gelling agents well known to experts in the art.

[096] In other preferred embodiments, the nonionic surfactant is polysorbate 80 at a concentration from about 0.5% to about 10% w/v, more preferably from about 1% to about 6% w/v and even more preferably from about 1% to about 5% w/v, yet more preferably from about 2.5% to about 4% w/v and most preferably at about 2.5% or 2.75% or 3% or 4% or 5% w/v. [097] Viscosity enhancers suitable for the present invention include, but are not limited to gums such as guar gum, hydroxypropyl-guar (“hp-guar”), and xanthan gum, alginate, chitosan, gelrite, hyaluronic acid, dextran, Carbopol ® (polyacrylic acid or carbomer) including Carbopol ® 900 series including Carbopol® 940 (carbomer 940), Carbopol ® 910 (carbomer 910) and Carbopol ® 934 (carbomer 934), cellulose derivatives such as carboxymethyl cellulose (“CMC”), methylcellulose, methyl cellulose 4000, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, hydroxyl propyl methyl cellulose 2906, carboxypropylmethyl cellulose, hydroxypropylethyl cellulose, and hydroxyethyl cellulose, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, gellan, carrageenan, alginic acid, carboxyvinyl polymer or combinations thereof.

[098] In a preferred embodiment the viscosity enhancer will have an equilibration viscosity less than 100 cps, preferably from about 15 to about 35 cps, and most preferably at about 30 cps. In a preferred embodiment the viscosity enhancer is Carbopol ® 940 (carbomer 940) at a concentration from about 0.05% to about 1.5% w/v, preferably from about 0.09% to about 1.0% w/v, more preferably at 0.09%, 0.25%, 0.5%, 0.75%, 0.9% or 1.0% w/v. In certain combinations it has been surprisingly discovered nonionic surfactant / viscosity combinations may result in phase separation over time with precipitate formation. In such situations, particularly for polyoxyls, in a preferred embodiment polyoxyl 40 stearate, and cellulose derivatives, particularly

hydroxypropylmethyl cellulose, use of a nonpolysaccharide derivative for viscosity

enhancement, such as polyacrylic acid derivatives (carbomers, carbomer 934 or 940 in preferred embodiments) may prevent such separation; or alternatively use of a non polyoxyl nonionic surfactant, such as polysorbate 80 with either a cellulose derivative or noncellulose derivative viscosity agent may be substituted.

[099] In another preferred embodiment, the viscosity enhancer is carboxymethyl cellulose at a concentration from about 1% to about 2% w/v, more preferably from 1.35% to about 1.45% w/v and most preferably 1.42% w/v or 1.40% w/v.

[0100] In another preferred embodiment, the viscosity enhancer is hydroxypropylmethyl cellulose at a concentration from about 0.5% to about 1.75%, and more preferably about 0.75% or 1.5%, still more preferably from about 1.0% to about 1.5%, and most preferably at about 1.25%. [0101] Not wishing to be held to particularly theory, it appears the quinuclidine nucleus of the heterocyclic nitrogen on aceclidine is so electron rich it easily attacks surrounding compounds as well as itself.

[0102] In another preferred embodiment a pH less than physiologic pH is found to enhance the whitening effect, preferably pH 4.5 to 6.5, and more preferably pH 5.5 to 6.0. However, redness reduction is achieved at all pHs, and enhancement of aceclidine absorption occurs at alkaline pH, such that more effect occurs from a given concentration, and therefore while effective at pH ranges from 4.5 to 8.0, pH range of 6.5 to 7.5 is preferred for the present invention, and 7.0 to 7.5 most preferred.

[0103] The present invention is further directed to an ophthalmological composition further comprising a cycloplegic agent. It is a surprising and totally unexpected discovery of the present invention that certain cycloplegic agents can be combined with miotic agents, particularly for the present invention, aceclidine, without reducing miotic onset, magnitude, or duration; and further blunt the normally attendant spike in miotic effect coinciding with time of peak absorption in aqueous formulations to provide a constant miosis versus time after onset from 15 to 30 minutes to 6 to 10 hours depending on the desired formulation. The addition of the cycloplegic agent also reduces any residual associated discomfort that may otherwise occur soon after topical instillation, which presumably is a result of ciliary spasms or excessive pupillary miosis.

[0104] Cycloplegic agents suitable for the present invention include, but are not limited to, atropine, Cyclogyl ® (cyclopentolate hydrochloride), hyoscine, pirenzepine, tropicamide, atropine, 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP), AF-DX 384, methoctramine, tripitramine, darifenacin, solifenacin (Vesicare), tolterodine, oxybutynin, ipratropium, oxitropium, tiotropium (Spriva), and otenzepad (a.k.a. AF-DX 116 or l l-{[2- (diethylamino)methyl]-l-piperidinyl}acetyl]-5, l l-dihydro-6H-pyrido[2,3b][l,4]benzodiazepine- 6-one). In a preferred embodiment the cycloplegic agent is tropicamide at a concentration from about 0.004% to about 0. 025% w/v, more preferably from about 0.005% to about 0.015% w/v and still more preferably from about 0.005% to about 0.011% w/v, from about 0.005% to about 0.007 % w/v and from about 0.005% to about 0.006% w/v. In another preferred embodiment the cycloplegic agent is a mixture of tropicamide at a concentration from about 0.04% to about 0.07% w/v or pirenzepine or otenzepad at a concentration from about 0.002% to about 0.05% w/v. [0105] In a preferred embodiment, tropicamide 0.01% w/v was found to slightly reduce brow ache, 0.030% w/v to further reduce brow ache and from 0.04% to about 0.07% w/v to completely eliminate brow ache without reduction of the average pupillary miosis diameter over duration of effect. Tropicamide in preferred embodiments has demonstrated completely unexpected sensitivity of effect, where at about 0.04% w/v unexpectedly and very effectively reduces or eliminates brow ache and ciliary spasm pain, becoming very noticeably further reduced at 0.042% w/v and absent at 0.044% w/v in a preferred embodiment with no cycloplegia (surprising due to its common use as a pupil dilating agent). Yet, tropicamide did not reduce the mean degree of pupil miosis, the time of onset of pupil miosis or the subsequent visual benefits. On the contrary, tropicamide blunted the peak miosis seen in aqueous formulations to create a smooth consistent miotic effect over time. It allowed modulation of peak pupil miosis to achieve a more even effect over time with no dilation as has been found with its prior use. Specifically, tropicamide is useful to prevent transient constriction below 1.50 mm at 30 to 60 minutes following aceclidine in some embodiments and to reduce transient excessive and undesirable dimming of vision that may otherwise occur at peak onset of about 30 minutes. As an example, an ophthalmological composition comprising 1.53% w/v aceclidine, 5% w/v HRbOϋ, 0.75% w/v CMC, 0.25% w/v NaCl , 0.01% w/v BAK and a phosphate buffer at pH 7.0; or 1.45% w/v aceclidine; 5.5% w/v polyoxyl 40 stearate; 0.80% w/v CMC; 0.037% w/v NaCl; 0.015% w/v EDTA; 0.007% w/v BAK and 5mM phosphate buffer at a pH 7.0; was varied from 0.040% w/v tropicamide, where moderate dimming was noted, to 0.044% w/v tropicamide where dimming became almost undetectable other than in extremely dim light conditions. This additional pupil size modulation with a cycloplegic agent allows aceclidine concentrations sufficient for prolonged effect while blunting the attendant peak excessive constriction that is undesirable as well as any uncomfortable brow ache. Surprisingly and due to its short-acting nature, tropicamide achieves this blunting effect without causing mydriasis. Further, in a preferred embodiment, tropicamide 0.014% w/v was found to reduce brow ache, 0.021% w/v to further reduce brow ache and from 0.028% to 0.060% w/v and in some embodiments up to 0.09% w/v to completely eliminate brow ache without cycloplegia (i.e. paralysis of ciliary muscle of the eye).

[0106] It has been found for a racemic 50:50 mixture of (+) and (-) aceclidine optical isomers (where in some studies (+) is more potent and in others it is felt (-) may be more potent) tropicamide effects may vary depending on the ratio of aceclidine to tropicamide. For example, in an ophthalmological composition of the present invention comprising 1.55% w/v aceclidine, 5.5% w/v HPpCD or in a preferred embodiment polyoxyl 40 stearate, 0.75% w/v CMC (1% = 2,500 centipoise), 0.25% w/v NaCl, and 0.01% w/v BAK and at pH 7.5, 0.042% w/v tropicamide can be differentiated from even 0.035% w/v, with the former demonstrating normal indoor night vision and the latter slight dimming that becomes more noticeable at still lower concentrations.

At higher concentrations, such as from about 0.075% to about 0.090% w/v tropicamide, loss of optimal range pupil constriction 1.50 mm to 1.80 mm range begins, and frank mydriasis at higher concentrations begins to occur. As isomer ratio may alter the effective concentration, this must be factored into the clinical efficacy anticipated using aceclidine; for preferred embodiments of the present invention a polarimeter was used to determine an exact 50:50 isomer ratio was used (personal communication Toronto Research Chemicals).

[0107] FIG. 1 shows the effect of a miotic agent with or without a cycloplegic agent and with or without a carrier. Subject is an emmetrope over the age of 45 with a baseline near vision of 20.100 and baseline distance vision of 20.20. Topical administration to the eye of 1% w/v pilocarpine in saline solution results in an improvement of near vision to 20.40 (8a), however this improvement comes at the expense of a reduction in distance vision to 20.100 (8b). The addition of 0.015% w/v tropicamide results in an improvement of near vision to 20.25 (9a) and a lessening of the reduction of distance vision to 20.55 (9b), though in certain instances with some induced irregular astigmatism (mildly blotched areas in reading field of vision). Topical administration of 1.55% w/v aceclidine in saline solution results in an improvement of near vision to 20.40 for an extended time period of 6 hours (lOa) without any effect on the baseline distance vision (lOb). lOc and lOd show the effects of administering aceclidine in a carrier composed of 5.5% w/v 2-hydroxypropyl beta cyclodextrin, 0.75% w/v CMC (1% = 2,500 centipoise), 0.25% w/v NaCl, and 0.01% w/v BAK. As seen in lOc the carrier increases the beneficial effect of aceclidine resulting in better than 20.20 near vision. As seen in lOd a similar increase in distance vision occurs. lOe and lOf show the effects of adding 0.042% w/v tropicamide to the aceclidine in the carrier. As seen in lOe near vision is improved to 20.15 with a quicker onset of maximum visual acuity. As seen in lOf a similar improvement is seen in distance vision. Taken together, FIG. 1 shows that aceclidine is capable of temporarily correcting near vision in a presbyopic subject without affecting the baseline distance vision. Similar results can be achieved with a different miotic agent, pilocarpine, with the addition of a cycloplegic agent such as tropicamide. A proper drug carrier can also have a beneficial effect.

[0108] The present invention is further directed to an ophthalmological composition further comprising a tonicity adjustor and a preservative.

[0109] A tonicity adjustor can be, without limitation, a salt such as sodium chloride (“NaCl”), potassium chloride, mannitol or glycerin, or another pharmaceutically or ophthalmologically acceptable tonicity adjustor. In certain embodiments the tonicity adjustor is 0.037% w/v NaCl,

[0110] Preservatives that can be used with the present invention include, but are not limited to, benzalkonium chloride (“BAK”), sorbic acid, oxychloro complex, citric acid, chlorobutanol, thimerosal, phenylmercuric acetate, disodium ethylenediaminetetraacetic acid, phenylmercuric nitrate, perborate or benzyl alcohol. In a preferred embodiment the preservative is BAK, sorbic acid, oxychloro complex or a combination thereof. In a yet more preferred embodiment BAK is at a concentration of about 0.001% to about 1.0% w/v, more preferably at a concentration of about 0.007%, 0.01% or 0.02% w/v. In another preferred embodiment the preservative is perborate at a concentration of 0.01% to about 1.0% w/v, more preferably at a concentration of about 0.02% w/v.

[0111] Various buffers and means for adjusting pH can be used to prepare ophthalmological compositions of the invention. Such buffers include, but are not limited to, acetate buffers, citrate buffers, phosphate buffers and borate buffers. It is understood that acids or bases can be used to adjust the pH of the composition as needed, preferably of 1 to 10 mM concentration, and more preferably about 3 mM or 5 mM. In a preferred embodiment the pH is from about 4.0 to about 8.0, in a more preferred embodiment the pH is from about 5.0 to about 7.0.

[0112] The present invention is further directed to an ophthalmological composition further comprising an antioxidant. Antioxidants that can be used with the present invention include but are not limited to disodium ethylenediaminetetraacetic acid at a concentration from about 0.005% to about 0.50% w/v, citrate at a concentration from about 0.01% to about 0.3% w/w, dicalcium diethylenetriamine pentaacetic acid (“Ca2DTPA”) at a concentration from about 0.001% to about 0.2% w/v, preferably about 0.01% w/v Ca2DTPA which can be formulated by adding 0.0084% w/v Ca(OH) 2 and 0.0032% w/v pentetic acid to the formulation and mixing slowly. Further combinations of antioxidants can be used. Other antioxidants that can be used with the present invention include those well known to experts in the art such as

ethylenediaminetetraacetic acid at a concentration from about 0.0001% to about 0.015% w/v.

[0113] In preferred embodiments, an ophthalmological composition of the present invention comprises aceclidine, oxymetazoline, a cryoprotectant, optionally a cycloplegic agent, a nonionic surfactant at a concentration from about 1% to about 5% w/v and a viscosity enhancer at a concentration of about 0.75% to about 1.6% w/v, preferably about 1.25% to about 1.5% w/v.

[0114] The following representative embodiments are provided solely for illustrative purposes and are not meant to limit the invention in any way.

REPRESENTATIVE EMBODIMENTS

[0115] In another embodiment, the ophthalmological compositions for the treatment of presbyopia comprise:

about 1.75% w/v aceclidine;

about 2.5% w/v mannitol;

about 4.0% w/v polysorbate 80;

about 1.25% w/v hydroxypropylmethyl cellulose;

about 0.12% w/v sorbic acid;

about 0.1% w/v ethylenediaminetetraacetic acid dihydrate;

about 0.02% w/v benzalkonium chloride;

about 0.1% w/v sodium citrate or citrate buffer; and

about 0.125% w/v oxymetazoline.

[0116] The following Examples are provided solely for illustrative purposes and are not meant to limit the invention in any way.

EXAMPLES

Example 1 Effect of aceclidine in saline Method

[0117] 1.75% w/v aceclidine was formulated in 0.9% w/v saline with 0.02% w/v BAR. Drops were instilled binocularly into a 65-year-old subject. Near vision testing was performed at 16 inches on a Precision Vision 16” near test card. All near vision testing was binocular.

Results [0118] Distance vision went from a 20.20+2 at baseline to 20.15+2 60 minutes post instillation. Near vision went from 20.50 - at baseline to 20.25-2 60 minutes post instillation. 3 hours after instillation subject returned to baseline. Side effects included ciliary /brow ache of 2.75 out of 4 at 60 minutes post instillation.

Example 2 Effects of compositions of the present invention on aceclidine induced side effects (Prophetic)

Method

[0119] A subject was administered the formulation of Example 1, above into each eye followed by a l-week washout period. Following the washout period, the subject was administered the following formulation:

about 1.75% w/v aceclidine;

about 2.5% w/v mannitol;

about 3.5% w/v polysorbate 80;

about 1.25%; 1.0% - 1.80% w/v hydroxypropylmethyl cellulose (depending on its molecular weight); 0.35 % w/v sodium chloride, about 0.02% w/v benzalkonium chloride, about 0.10% w/v sorbate, about 0.01% w/v ethylenediaminetetraacetic acid (EDTA) and 0.10% w/v citric acid. Results

[0120] Distance vision went from a 20.20+2 at baseline to 20.15+2 60 minutes post instillation. Near vision went from 20.50 - at baseline to 20.25-2 60 minutes post instillation. 5 hours after instillation subject was at about 20.40 near vision acuity. Ciliary /brow ache was reduced to 0.75 out of 4 at 60 minutes post instillation.

Example 3 Effects of oxymetazoline on aceclidine induced side effects (Prophetic)

Method

[0121] A subject was administered the formulation of Example 2, above, with the addition of 0.125% oxymetazoline into each eye. 5 hours after instillation subject was at about 20.30-2 near vision acuity.

Example 4 Effect of aceclidine on vision of subjects aged 47 to 67 years

[0122] Table 1 demonstrates the effect on the near focus ability of presbyopic subjects before and after ophthalmological administration of a composition containing aceclidine. Each composition included aceclidine in the concentrations indicated and 5.5% w/v HPpCD, 0.75% w/v CMC, 0.25% w/v NaCl and 0.01% w/v BAK Additionally, compositions administered to subjects 4 and 5 included 0.125% w/v tropicamide. As aceclidine is an enantiomer, the clinical effectiveness may vary with different ratios. For the present studies a nearly exact 50:50 ratio of stereoisomers was measured as best determined by polarimetry.

Table 1. Effects of aceclidine on vision of presbyopic patients.

[0123] As seen in Table 1 all subjects had less than perfect near vision (20.20) in both the left and right eye (object at 15 inches from the eye) and most subjects had less than perfect distance vision before administration of the composition. After administration of the composition all subjects experienced an improvement in their near vision that lasted from 7 to 12 hours.

Surprisingly, the majority of subjects also experienced improvement of their distance vision for the same time period. Still more surprisingly the improvement in near point was much closer than 16” typically required for comfortable reading, in some cases to about 8.5” more commonly seen in individuals 30 or less. The addition of tropicamide, a cycloplegic agent, had no additive or deleterious effect on vision correction.

Example 5 Use of compositions containing little or no cycloplegic agent

[0124] Aceclidine alone causes incidence migraine-like severe ciliary spasm (brow ache) and myopic blur. These effects are inversely correlated to age with subjects age 40 reporting the highest incidence and subject age 60+ reporting the lowest incidence. The addition of a cycloplegic agent reduces ciliary spasms and attendant brow ache, migranious headache, squeezing pressure around eyes or other symptoms of ciliary spasms. The addition of the cycloplegic agent, surprisingly, does not reduce the myopic effect of aceclidine. The addition of 2.5% w/v mannitol however does reduce the myopic effect of aceclidine. Increasing the aceclidine concentration overcomes this reduction in myopic effect seen with the addition of mannitol. Surprisingly, however, the increase in aceclidine is not coincident with an increase in ciliary spasm. Even more surprising, the concentration of the cycloplegic agent can be reduced or even eliminated in the presence of mannitol without an increase in ciliary spasm. Thus, combining a higher concentration of aceclidine with little to no cycloplegic agent in the presence of mannitol results in an improvement of near vision acuity without attendant side effects on par with lower concentrations of aceclidine and higher concentrations of the cycloplegic agent in the absence of a cycloplegic agent.

[0125] Further and unexpectedly, the addition of a nonionic surfactant increases both the quantitative measure of near vision improvement and the duration. This effect is concentration sensitive. In a preferred embodiment the non-ionic surfactant is at least 1%, preferably at least 2%, more preferably from about 1% to about 5%, and most preferably about 5%. For example, polysorbate 80 or polyoxyl 40 stearate at a concentration from about 1% to about 5% w/v results in about 1.5 to about 2.0 lines of improvement and a duration from about 4 to about 5 hours.

[0126] Not to be held to particular theory, the increase in concentration of a surfactant may crowd the surface of the cornea, and at an optimal concentration this crowding result in small and probably nanometer diameters, which given the dual polarity of surfactants, where nonionic are most preferred, enhances corneal absorption of the entrapped highly polar aceclidine molecules.

[0127] The further addition of a viscosity enhancer by itself does not enhance duration.

Surprisingly, the addition of a viscosity enhancer in a formulation with optimal ratios of aceclidine, tropicamide and a non-ionic surfactant dramatically improves duration. For example, a formulation of the present invention comprising 1.75% aceclidine, 2.5% mannitol, 0.01% tropicamide, 5% polysorbate 80 improves near vision in a presbyopic patient by up to 3 lines of vision acuity for about 4 to about 5 hours. The addition of 1.4% CMC further increases the near vision improvement to from about 7 to about 10 hours. Not to be held to a particular theory, a threshold above the critical micellar threshold greatly enhances permeation through the cornea by reducing micelle size from micrometers to nanometers. See Figure 2.

[0128] Examples of compositions containing little or no cycloplegic agent are shown in Table 2 below.

Table 2. Compositions containing little or no cycloplegic agent

Table 2. (continued)

Table 2. (continued)

Table 2. (continued)

Table 2. (continued)

Table 2. (continued)

Table 2. (continued)

Table 2. (continued)

All concentration in weight by volume

mm denotes millimeters

cm denotes centimeters

min denotes minutes.

%* denotes amount can optionally vary from about 0.01% to about 1% w/v. # denotes formulation can include polysorbate 80 or not include polysorbate 80.

Ciliary spasms scores correspond to the following: 0=no discomfort; 0.5=slight sting; l=noticeable squeeze/discomfort; 2=pain for less than 30 minutes; 3=pain for 1 hour or more; and 4=severe to intolerable pain.

[0129] The efficacy index is demonstrated in Figure 3. In brief, the score is calculated by multiplying the lines of improvement in near visual acuity by the number of hours the improvement lasts. For example a score of: 5 is equal to +1 lines of improvement in near visual acuity for 5 hours; 10 is equal to +1.5 lines of improvement for 6.7 hours; 15 is equal to 2 lines of improvement for 7.5 hours; 20 is equal to 2.5 lines of improvement for 8 hours; 25 is equal to 3+ lines of improvement for 8.3 hours and 35 is equal to 3.75+ lines of improvement for 9 hours.

[0130] As demonstrated by comparing the Reading vs. Baseline at 40 cm and Efficacy Indexes of formulas #L33-#L37, formulas containing 1.40% or more aceclidine are better at correcting presbyopia than those formulas containing 1.25% aceclidine. Inversely, the lower concentration of aceclidine results in better overall comfort to the user. The addition of 2.5% mannitol to formulas with 1.45% aceclidine improves overall comfort but at the expense of reducing the presbyopic correcting effect (compare #L37 with #L47.) This reduction in near vision improvement is exacerbated with the addition of 4.0% mannitol (compare #L47 with #L48.) Increasing aceclidine concentrations to 1.65% or 1.75% overcome the reduction in near vision improvement seen with the addition of mannitol (compare #L47 with #L49 and #L50.)

[0131] Further, formulas containing 1.75% aceclidine and 2.5% mannitol have an increased efficacy and duration in treating presbyopia that is correlated with an increase in polysorbate 80 up to 5.0% and then inversely correlated with a decrease in CMC from 1.45% to 1.40%

(compare formulas #L66 to #L78.) Optimal formulations are demonstrated by #L77, #L78 and #L85-#L94, which each have the highest improve reading at 40 cm at between 3.5 and 3.75 visual acuity lines and the highest Efficacy Index scores of 25 to 34, and the longest duration from 7 to 9 hours. The increase in effectiveness and duration of formulas from #L66 to #L78 are also inversely correlated with a decrease in tropicamide from 0.0275% to 0.01%. This same trend is demonstrated by the increase in effectiveness (i.e. Reading vs. Baseline 40 cm) when comparing #L85 through #L94.

[0132] This data demonstrates that mannitol can effectively reduce ciliary spasms caused by aceclidine, thus reducing the need for a cycloplegic agent such as tropicamide. Further, this data demonstrates that the addition of a non-ionic surfactant and viscosity enhancer can further enhance the efficacy and duration of compositions containing aceclidine, mannitol and low tropicamide. This data also demonstrates that the use of a cycloplegic agent in aceclidine compositions containing polysorbate 80 and CMC is most beneficial to presbyopic correction when the cycloplegic agent is closer to 0.006% than 0.025%. Finally, this data demonstrates that compositions comprising aceclidine and mannitol are sufficient to correct presbyopia with tolerable pain.

[0133] Example 6 Use of a compound containing mannitol with various nonionic surfactants Compositions

[0134] Table 3 lists the active ingredients, excipients and their concentrations for compositions with both tested and prophetic examples of nonionic surfactants.

Methods

[0135] The subject independently instilled 2 drops of the above compositions in each eye and the excess wiped from lids and lashes.

Results

[0136] All nonionic surfactants tested demonstrate substantial near vision improvement. Of those tested only Brij® 35 was marginal due to the significant corneal irritation, hyperemia and reduced duration that resulted. Polysorbate 80 and poly 35 castor oil were most preferred, polyoxyl 40 stearate and poloxamer 407 excellent as well. However, polyoxyl 40 stearate caused a precipitate reaction with cellulose viscosity agents and added other stability issues.

[0137] Comfort and duration for each non-ionic surfactant were also tested and are noted in Table 3. Stinging and Redness are based on a scale of 0 to 4 with 0 being none and 4 being the most severe. Other than Brij® 35 stinging and redness were mild to nearly absent. Duration was excellent for each nonionic surfactant tested.

Table 3. Comparing efficacy and comfort of various nonionic surfactants

Example 7 Use of a compound containing optimizing nonionic surfactant and antioxidant additives and concentrations

Compositions

Aceclidine 1.75% w/v

Tropicamide 0.010% w/v

Mannitol 2.50% w/v

Polysorbate 80 4.00% w/v

NaCl 0.00% w/v

HPMC 1.25% w/v (high MW equaling viscosity of about 400 cps units)

BAK 0.02% w/v Sorb ate 0.12% w/v

BAK 0.02% w/v

EDTA 0.01%

Citrate buffer 3 mM

pH 5.00

Method

[0138] 2 subjects instilled 2 drops each of the above formulation in each eye about 5 minutes apart.

Results:

Comfort, duration and efficacy were assessed. Stinging upon instillation and over the first hour was minimal for each subject with a score of 0.50 out of 4 for about 15 seconds. Redness over the first hour was also minimal for each subject with a score of 0.25 out of 4 assessed at 20 minutes. Onset of vision improvement occurred with the first 20 to 25 minutes after instillation. For subject 1 baseline near vision (i.e. 40 centimeters) was improved by 4.0 - 4.25 lines of visual acuity and lasted for 11.5 hours. For subject 2 baseline near vision was improved by 3.5 lines of visual acuity and lasted for 9.5 hours. The Efficacy Index score was 47.38 and 33.25, among the highest achieved for any formulation.