Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS FOR THE TREATMENT OF VENTRICULAR ARRHYTHMIAS AND CARDIOVASCULAR DISEASES
Document Type and Number:
WIPO Patent Application WO/2014/049471
Kind Code:
A1
Abstract:
The invention relates to the compounds of formula I and formula II or its pharmaceutical acceptable salts, as well as polymorphs, solvates, enantiomers, stereoisomers and hydrates thereof. The pharmaceutical compositions comprising an effective amount of compounds of formula I or formula II; and methods for treating or preventing ventricular arrhythmias and cardiovascular diseases may be formulated for oral, buccal, rectal, topical, transdermal transmucosal, intravenous, parenteral administration, syrup, or injection. Such compositions may be used to treatment of supraventricular, ventricular arrhythmias, new-onset atrial fibrillation, Wolff- Parkinson -White syndrome.

Inventors:
KANDULA MAHESH (IN)
Application Number:
PCT/IB2013/058257
Publication Date:
April 03, 2014
Filing Date:
September 03, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KANDULA MAHESH (IN)
International Classes:
C07C211/46; A61K31/136; A61P9/00; A61P9/06; A61P25/16; A61P25/28
Foreign References:
EP0351385A21990-01-17
EP1314723A12003-05-28
Download PDF:
Claims:
CLAIMS

I A compound of Formula I

Formula I

and pharmaceutically acceptable salts, hydrates, solvates, prodrugs, enantiomers, and stereos somers thereof;

Wherein,

R1 independently represents H, D, CHjCO-, CD3CO-,

68

a is independently 1, 2, 3, 4 or 5;

a is independently 2,3 or 7:

each b is independently 3, 5 or 6;

e is independently L 2 or 6;

c and d are each independently R D, -OH, -OD, CpC aikyL -T^H. or -COCH3.

A compound of Formul I I:

Formula 11 and pharmaceutically acceptable salts, hydrates, solvates, prodrugs, enantiorriers, and stereoisomers thereof;

Wherein,

R1 independently represents H, D, CH3CO-, CD3CO-,

73

74

75

J5 is independently 1, 2, 3, 4 or 5;

a is independently 2,3 or 7:

each b is independently 3, 5 or 6;

e is iiuiepeftdcfttly L 2 or 6;

c and d are each independently R D. -OH, -OD, C - -alkyl, -ΉΉι or -COCH3.

A Pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

A Pharmaceutical composition comprising a compound of claim 2 and a pharmaceutical iy acceptable carrier.

The pharmaceutical composition of claim 3, which is formulated to treat the underlying etiology with an effective amount administering the patient in need by oral administration, delayed release or sustained release, transmucosal, syrup, topical, parenteral administration, injection, subdermal, oral solution, rectal administration, buccal administration or transdermal administration. The pharmaceutical composiiion of claim 4, whicli is formulated to treat the underlying etiology with an effective amount administering the patient in need by oral administration, delayed release or sustained release, transmucosal, syrup, topical, parenteral administration, injection, subderma!, oral solution, rectal administration, buccal administration or transdermal administration.

Compounds and compositions of claim 5 axe formulated for the treatment of supraventricular, ventricular arrhythmias, new-onset atrial fibrillation, Wolff- Parkinson ~ Whi te syndrome.

Compounds and compositions of claim 6 are formulated for the treatment of supraventricular, ventricular arrhythmias, new-onset atrial fibrillation, Wolff- Parkinson-White syndrome.

Description:
COMPOSITIONS AND METHODS FOR THE

TREATMENT OF VENTRICULAR ARRHYTHMIAS

AND CARDIOVASCULAR DISEASES

PRIORITY

[0001 J The present application claims the benefit of Indian Provisional Patent Application No. 4086/CHE/2012 filed on 29-Sep-2012, the entire disclosure of which is relied on for all purposes and is incorporated into this application by reference.

FIELD OF THE INVENTION

[0002] This disclosure generally relates to compounds and compositions for the treatment of ventricular arrhythmias and cardiovascular diseases. More particularly, this invention relates t treating subjects with a phamiaceiitically acceptable dose of compounds, crystals, solvates, enantiomer, stereoisomer, esters, salts, hydrates, prodrugs, or mixtures thereof.

BACKGROUND OF THE INVENTION

[0003] Antiarrhythmic drugs have been used extensively in the treatment of patients with life-threatening ventricular arrhythmias in the cardiovascular diseases category. However, the effects of antiarrhythmic drugs on the wave-front dynamics during ventricular fibrillation (VF) are poorly understood. According to the multiple wavelet hypothesis, cardiac fibrillation is maintained by spontaneous wave breaks that constantly regenerate daughter wandering wavelet However, it is unclear whether spontaneous wave breaks occur during VF and whether antiarrhythmic drugs prevent the spontaneous wave breaks. One factor that contributes to these gaps of knowledge is that the patterns of activation during VF are complex, and change from time to time. St is difficult to study these complicated patterns of activation with conventional records ng techniques. [0004 [ Most former studies included only smaller patient populations and their results were not unifomi. Intravenously given disopyramide in patients with induced atrial flutter of short duration or intravenous procainamide in spontaneously occurring atrial flutter resulted in a high success rate of rapid atrial pacing in those patients in whom pacing failed before drug administration. In contrast, a recently published study showed no beneficial effect of intravenous procainamide after a primary unsuccessful pacing attempt,

[00051 Retrospective nonrandomized studies showed a higher success rate of overdrive pacing in patients with spontaneous atrial flutter after acute intravenous application of disopyramide or procainamide intravenously and flecainide given oraiiy or in comparison to patients not receiving antiarrhythmic drugs. Two prospective and two retrospecti ve studies showed no influence of previous long-term administration of antiarrhythmic drugs on the pacing result.

| ' 0006J Procainamide is a mainstay of cardiac antiarrhythmic therapy. lis effects on the electrocardiogram and especial ly changes that reflect drug toxicity have been studied extensively. Procainamide plasma levels also have been the subject of much clinical research. It has been established that a concentration of 4-10 ug/m! encompasses the usual range of therapeutic plasma levels although lower concentrations may he associated with cessation of clinical arrhythmias. Concentrations higher than lO ug/ml most often are associated with cardiac toxicity.

(00O7J Managing acute pathology of often relies on the addressing underlying pathology and symptoms of the disease. There is currently a need in the art tor new compositions to treatment or delay of the onset, of ventricular arrhythmias and cardiovascular diseases as well as acute side effects of procainamide and its associated complications progression. SUMMARY OF THE INVENTION

[0008] The present invention provides compounds, compositioiis containing these compounds and methods for using the same to treat, prevent and/or ameliorate the effects of the conditions such as ventricular arrhythmias and cardiovascular diseases.

[0009] The invention herein provides compositions comprising of formula 1 or pharmaceutical acceptable salts thereof The invention also provides pharmaceiitical compositioiis comprising one or more compounds of formula I or intermediates thereof and one or more of pharmaceutically acceptable carriers, vehicles or diluents. These compositions may be used in the treatment of ventricular arrhythmias and cardiovascular dise

Formula ί

[0010] In certain embodiments, the present: invention relates to the compounds and compositions of formula Ϊ, or pharmaceutically acceptable salts thereof.

Formula I

and pharmaceutically acceptable salts, hydrates, solvates, prodrugs, ena tiomers, stereoisom ers thereof;

100.1 ! J Wherein,

n is independently 1 , 2, 3, 4 or 5;

a is independently 2,3 or 7;

each b is independently 3, 5 or 6;

e is independently L 2 or 6;

c and ά are each independently H, D, -OH, -OD, (VCe-alkyL -N¾ or -COC¾.

[0012) In one aspect, compounds of the Formula Π are described:

Formula 0 and pharmaceutically acceptable salts, hydrates, solvates, prodrugs, enantiomers, and stereoisomers thereof;



» is independently 1 , 2. 3, 4 or 5;

a is independently 2,3 or 7;

each b is indepeadeatly 3, or 6;

e is independently I , 2 or 6;

c and ά are each independentl H, D. -OH, -OD, C i -C ( i-a!kyL -N¾ or ~COCH-¾. jOQ1 ] Herein the application also provides a kit comprising any of the pharmaceutical com positions disclosed herein. The kit may comprise instructions for use in the treatment of ventricular arrhythmias and cardiovascuiar diseases or its r el atecl com pi i cat! on s -

10015) The application also discloses a pharmaceutical composition comprising a pharmaceutically acceptable carrier and any of the compositions herein. In some aspects, the pharmaceutical composition is formulated for systemic administration, oral administration, sustained release, parenteral administration, injection., subdermal administration, or transdermal administration.

[00 J 6] Herein, the application additionally provides kits comprising the pharmaceutical compositions described herein. The kits may further comprise instructions for use in the treatment of ventricular arrhythmias and cardiovascular diseases or its related complications.

100.171 The compositions described herein have several uses. The present application provides, for example, methods of treating a patient suffering from ventricular arrhythmias and cardiovascuiar diseases or its related complications manifested from metabolic or genetic conditions or disorders, metabolic diseases, chronic diseases or disorders; neurodegenerative disorders, metabolic condition, Hepato!ogy, Cancer, Respiratory, Hematological, Orthopedic, Cardiovascular, Renal, Skin, Vascular or Ocul ar compl i cati oris .

DETAILED DESCRIPTION OF THE IN VENTION

Definitions

10019 J As used herein, the following terms and phrases shall have the meanings set forth below. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art.

[ 020J The compounds of the present invention can be present in the form of pharmaceutically acceptable salts. The compounds of the present invention can also be present in the form of pharmaceutically acceptable esters (i.e., the methyl and ethyl esters of the acids of formula I and formula II to be used as prodrugs). The compounds of the present invention can also be solvaied, i .e. hydrated. The solvation can be affected in the course of the manufacturing process or can take place i.e. as a consequence of hygroscopic properties of an initially anhydrous compound of formula ί and formula If (hydration),

[00211 Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed "isomers." somers that differ in the arrangement of their atoms in space are termed "stereoisomers." Diastereomers are stereoisomers with opposite configuration at one or more chiral centers which are not enantiomers. Stereoisomers bearing one or more asymmetric centers that are non- superimposable mirror images of each other are termed "enantiomers," When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center or centers and is described by the R- and S-sequencing rules of Cahn, Ingold and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or ievorotatory (i.e., as (+) or (-)-isomers respectively). A chiral compound can exist as either individual enantiomer or as a mixture thereof A mixture containing equal proportions of the enantiomers is called a "racemic mixture".

[0022 As used herein, the term "metabolic condition" refers to an inborn errors of metabolism (or genetic metabolic conditions) are genetic disorders that result from a defect in one or more metabolic pathways; specifically, the function of an enzyme is affected and is either deficient or completely absent,

[0023] The terra "polymorph" as used herein is art-recognized and refers to one crystal structure of a given compound.

[0024] The phrases "parenteral administration" and "administered parenteral! y T ' as used herein refer to modes of administration other than enteral and topical administration, such as injections, and include without limitation intravenous, intramuscular, intrapleural, intravascular, intraperi cardial, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradennai, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal and intrastemal injection and infusion.

[0025] A "patient," "subject," or "host" to be treated by the subject method may mean either a human or non-human animal, such as primates, mammals, and vertebrates.

[0026] The phrase "pharmaceutically acceptable" is art-recognized hi certain embodiments, the term includes compositions, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of mammals, human beings and animals without excessive toxicity, irritation, allergic response, or oilier problem or complication, commensurate wi h a reasonable benefit/risk ratio. [0027] The phrase "pharmaceutically acceptable carrier" is art-recognized, and includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid o solid filler, diluent solvent or encapsulating material involved in carrying or transporting any subject composition, from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of a subject composition and not injurious to the patient. In certain embodiments, a pharmaceutically acceptable carrier is non-pyrogerrie Some examples of materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose., glucose and sucrose; (2) starches, such as co n starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyt cellulose, ethyl cel lulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil olive oil, corn oil and soybean oil; { 10} glycols, such as propylene glycol; (1 1) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl !aurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; {19) ethyl alcohol; (20) phosphate buffer solutions; and (21.) other non-toxic compatible substances employed in pharmaceutical formulations.

[0028] The term "prodrug" is intended to encompass compounds that, under physiological conditions, are converted into the therapeutically active agents of the present invention. A common method for making a prodrug is to include selected moieties that are hydroiyzed under physiological conditions to reveal the desired molecule. In other embodiments, the prodrug is converted by an enzymatic activity of the host animal. (00291 The term "prophylactic or therapeutic" treatment is art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e.. it protects the host against developing the unwanted condition, whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition o side effects thereof).

[003 J The term "predicting" as used herein refers to assessing the probability related diseases patient will suffer from abnormalities or complication, and/or terminal platelet aggregation or failure and/or death (i.e. mortality) within a defined time window (predictive window) in the future. The mortality may be caused by the central nervous system or complication. The predictive window is an interval in which the subject will develop one or more of the said complications according to the predicted probability. The predictive window may be the entire remaining lifespan of the subject upon analysis by the method of the present invention.

[0031] The term "treating" is art -recognized and includes preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; inhibiting the disease, disorder or condition, e.g., impeding its progress; and relieving the disease, disorder, or condition, e.g., causing regression of the disease, disorder and/or condition. Treating the disease or condition includes ameliorating at least one symptom of the particular disease or condition, even if the underlying pathophysiolog is not affected, such as treating the supraventricular, ventricular arrhythmias, new-onset atrial fibrillation, Wolff-Parkinson-White syndrome of a subject by administration of an agent even though such agent does not treat the cause of the condition. The term "treatina". "treat" or "treatment" as used herein includes curative, preventative (e.g., prophylactic), adjunct and palliative treatment. (0032| The phrase "therapeutically effective amount" is an art-recognized term. In certain embodiments, the terra refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment, in certain embodiments, the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for a period of time. The effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experimentation.

[00331 ftt certain embodiments, the pharmaceutical compositions described herein are formulated in a manner such that said compositions will be delivered to a patient in a therapeutically effective amount, as part of a prophylactic or therapeutic treatment. The desired amount of the composition to be administered to a patient will depend on absorption, inactivation, and excretion rates of the drug as well as the delivery rate of the salts and compositions from the subject compositions. If is to be noted that dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled i the art, j 00341 Additionally, the optima! concentration and/or quantities or amounts of any particular salt or composition may be adjusted to accommodate variations in the treatment parameters. Such treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-human, adult or child, and the nature of the disease or condition. [0035] In certain embodiments, the dosage of the subject compositions provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials. For example, the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time 0 to infinity may be used.

|Ό036] When used with respect to a pharmaceutical composition or other material, the term "sustained release" is art-recognized. For example, a subject composition which releases a substance over time may exhibit sustained release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time. For example, in particular embodiments, upon contact with body fluids including blood, spinal fluid, mucus secretions, lymph or the like, one or more of the pharmaceutically acceptable exeipients may undergo gradual or delayed degradation (e.g., through hydrolysis) with concomitant release of any material incorporated therein, e.g., an therapeutic and/or biologically active salt and/or composition, for a. sustained or extended period (as compared to the release from a bolus). This release may result in prolonged delivery of therapeutically effective amounts of any of the therapeutic agents disclosed herein.

[0037] The phrases "systemic administration," "administered systemicaliy," "peripheral administration" and "administered peripherally" are art-recognized, and include the administration of a. subject composition, therapeutic or other material at a site remote from the disease being treated. Administration of an agent tor the disease being treated, even if the agent is subsequently distributed systemicaliy, may be termed "local" or "topical" or "regional" administrati n, other than directly into the central nervous system, e.g., by subcutaneous administration, such that it enters the patient's system and, thus, is subject to metabolism and other like processes.

[0038] The phrase "therapeutically effective amount " is an art-recognized term. In certain embodiments, the term refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment, in certain embodiments, the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for a period of time. The effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experimentation.

[0039J The present disclosure also contemplates prodrugs of the compositions disclosed herein, as well as pharmaceutically acceptable salts of said prodrugs.

[00401 This application also discloses a pharmaceutical composition comprising a pharmaceutically acceptable carrier and the composition of a compound of Formula 1 and formula II may be formulated for systemic or topical or oral administration. The pharmaceutical composition may be also formulated for oral administration, oral solution, injection, subdermal administration, or transdermal administration. The pharmaceutical composition may further comprise at least one of a pharmaceutically acceptable stabilizer, diluent surfactant filler, binder, and lubricant.

[00411 In many embodiments, the pharmaceutical compositions described herein will incorporate the disclosed compounds and compositions (Formula 1 and Formula li s to be delivered in an amount sufficient to deliver to a patient a therapeutically effective amount of a compound of formula 1 and formula Π or composition as part of a prophylactic or therapeutic treatment. The desired concentration of formula 1 and formula 11 or its pharmaceutical acceptable salts will depend on absorption, inactivatiort, and excretio rates of the drug as well as the delivery 1 rate of the salts and compositions from the subject compositions, it is to be noted that, dosage values may also vary with the severity of the condition io be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.

10042) Additionally, the optima! concentration and/or quantities or amounts of any particular compound of formula I and formula i l may be adjusted to accommodate variations in the treatment parameters. Such treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-hitman, adult or child, and the nature of the disease or condition.

[00431 The concentration and/or amount of any compound of formula I and formula II may be readily identified by routine screening in animals, e.g., rats, by screening a range of concentration and/or amounts of the material in question using appropriate assays. Known methods are also available to assay local tissue concentrati ns, diffusion rates of the salts or compositions, and local blood flow before and after adm nistration of therapeutic formulations disclosed herein. One such method is microdialysis, as reviewed by T. E. Robinson et al, 1991. microdialysis in the neurosciences. Techniques, volume 7. Chapter 1 . The methods reviewed by Robinson may be applied, in brief, as follows. A microdialysis loop is placed in situ in a test animal. Dialysis fluid is pumped through the loop. When compounds with formula 1 and formula 11 such as those disclosed herein are injected adjacent to the loop, released drugs are collected in the dialysate in proportion to their local tissue concentrations. The progress of diffusion of the salts or compositions may be determined thereby with suitable calibration procedures using known concentrations of salts or compositions.

[0044] In certain embodiments, the dosage of the subject compounds of formula I and formula II provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials. For example, the maximum plasma concentration (Cmax) and the area under the plasma concentrati on-time curve from time 0 to infinity may be used.

|0 45| Generally, in carrying out the methods detailed in this application, an effective dosage for the compounds of Formulas Ϊ is in the range of about 0.0.1 mg kg/day to about 100 mg/kg/day in single or divided doses, for instance 0.0.1 mg/kg/day to about 50 rag/kg/day in single or divided doses. The compounds of Formulas I may be administered at a dose of, for example, less than 0.2 mg/kg/day, 0.5 mg kg/day, 1. 0 mg kg day, 5 mg kg/day, 10 mg kg/day, 20 mg/kg/day, 30 mg/kg day, or 40 mg/kg/day. Compounds of Formula Ϊ and formula Π may also be administered to a human patient at a dose of, for example, between 0.1 mg and 1000 mg, between 5 mg and SO mg, or less than 1.0, 9.0, 12.0, 20.0, 50.0, 75.0, 100, 300, 400, 500, 800, 1000, 2000, 5000 mg per day. I certain embodiments, the compositions herein are administered at an amount that is less than 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10% of the compound of formula 1 and formula 0. required for the same therapeutic benefit,

[0046] An effective amount of the compounds of formula i and formula i t described herein refers to the amount of one of said salts or compositions which is capable of inhibiting or preventing a disease.

(0( 7| An effective amount may be sufficient to prohibit, treat, alleviate, ameliorate, halt, restrain, slow or reverse the progression, or reduce the severity of a complication resulting from nerve damage or demyelization and/or elevated reactive oxidattve- nitrosative species and/or abnormalities in neurotransmitter homeostasis' s, in patients who are at risk for such complications. As such, these methods include both medical therapeutic (acute) and/or prophylactic {prevention) administration as appropriate. The amount and timing of compositions administered will, of course, be dependent on the subject being treated, on the severity of the affliction, on the manner of administration and on the judgment of the prescribing physician. Thus, because of patient-to-patient variability, the dosages given above are a guideline and the physician may titrate doses of the drug to achieve, the treatment that the physician considers appropriate for the patient, in considering the degree of treatment desired, the physician must balance a variety of factors such as age of the patient, presence of preexisting disease, as well as presence of other diseases.

|Ό048] The compositions provided by this application may be administered to a subject in need of treatment by a variety of conventional routes of administration, including orally, topically, parenterally, e.g., intravenously, subcutaneous! y or intramedullary. Further, the compositions may be administered intranasallv, as a rectal suppository, or using a "flash" formulation, i.e., allowing the medication to dissolve in the mouth without the need to use water. Furthermore, the compositions may be administered to a subject in need of treatment by controlled release dosage forms, site specific drug delivery, transdermal drug delivery, patch (active/passive) mediated datg delivery, by stereotactic injection, or in nanoparticles.

|0049] The compositions may be administered alone or in combination with pharmaceutically acceptable carriers, vehicles or diluents, in either single or multiple doses. Suitable pharmaceutical carriers, vehicles and diluents include inert solid diluents or fillers, sterile aqueous solutions and various organic solvents. The pharmaceutical compositions formed by combining the compositions and the pharmaceutically acceptable carriers, vehicles or diluents are then readily administered in a variety of dosage forms such as tablets, powders, lozenges, syrups, injectable solutions and the like. These pharmaceutical compositions can, if desired, contain additional ingredients such as flavorings, binders, exciptents and the like. Thus, for purposes of oral administration, tablets containing various excipients such as L-arginine, sodium citrate, calcium carbonate and calcium phosphate may be employed along with various disintegrates such as starch, alginic acid and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often useful for tabletting purposes. Solid com ositions of a similar type may also be employed as fillers in soft and hard filled gelatin capsules. Appropriate materials for this include lactose or milk sugar and high molecular weight polyethylene glycols. When aqueous suspensions or elixirs are desired for oral administration, the essentia! active ingredient therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if desired, emulsifying or suspending agents, together with diluents such as water, eihanol, propylene glycol, glycerin and combinations thereof. The compounds of formula Ϊ and formula II may also comprise enterical!y coated comprising of various excipients, as is well known in the pharmaceutical art.

[0050] For parenteral administration., solutions of the composi ions may be prepared in (for example) sesame or peanut oil, aqueous propylene glycol, or in sterile aqueous solutions may be employed. Such aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration, in this connection, the sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.

10051] ' The formulations, for instance tablets, may contain e.g. 10 to 100, 50 to 250, 150 to 500 mg, or 350 to 800 mg e.g. 10, 50, 100, 300, 500, 700, 800 mg of the compounds of formula I and formula O disclosed herein, for instance, compounds of formula 1 and formula 11 or pharmaceutical acceptable salts of a compounds of Formula L

[0052] Generally, a composition as described herein may be administered orally, or parenteral I y (e.g., intravenous, intramuscular., subcutaneous or intramedullary). Topical administration may also be indicated, for example, where the patient is suffering from gastrointestinal disorder that prevent oral administration, or whenever the medication is best applied to the surface of a tissue or organ as determined by the attending physician. ' Localized administration may also be indicated, for example, when a high dose is desired at the target tissue or organ. For buccal administration the active composition may take the form of tablets or lozenges formulated in a conventional manner.

[0053) The dosage administered will be dependent upon the identity of the ventricular arrhythmias and cardiovascular diseases; the type of host, involved, including its age, health and weight; the kind of concurrent treatment, if any, the frequency of treatment and therapeutic ratio,

(0054] Illustratively, dosage levels of the administered active ingredients are: intravenous, 0.1 to about 200 mg kg; intramuscular, 1 to about 500 mg/kg; orally, 5 to about 1000 mg/kg; intranasal instillation, 5 to about 1000 mg/kg; and aerosol, 5 to about .1000 mg/kg of host body weight.

[0055| Expressed in terms of concentration . , an acti ve ingredient can be present in the compositions of the present invention for localized use about the cutis, intranasa!ly, pharyngolaryngeally, bronchi ally, intravaginally, rectaiiy, or ocularly in a concentration of from about 0.01 to about 50% w/w of the composition; preferably about I to about 20% w/w of the composition; and for parenteral use in a concentration of from about 0.05 to about 50% w/v of the composition and preferably from about 5 to about 20% w/v.

[0056] The compositions of the present invention are preferably presented for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, suppositories, sterile parenteral solutions or suspensions, sterile non-parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantiiies of an active ingredient. For oral administration either solid or fluid unit, dosage forms can be prepared. (005?| As discussed above, the tablet core contains one or more hydrophi!ic polymers. Suitable hydrophilic polymers include, but are not limited to, water swell able cellulose derivatives, polyalkylene glycols, thermoplastic polyalkylene oxides, acrylic polymers, hydrocolloids, clays, gelling starches, swelling cross-linked polymers, and mixtures thereof. Examples of suitable water swellabte cellulose derivatives include, but are not limited to, sodium carboxymeihyicellulose, cross- linked ydroxypropylcellulose, hydroxypropyl cellulose (HPC), hydroxypropylmetbyiceilulose (HPMC), ydroxyisopropy I cellulose, hydroxy butylce!lulose, hydroxypheny lceil ulose, hydroxy ethyl cellulose (HEC), hydroxy penty 1 eel 1 ul ose, hydroxy rop lethy lcell ulose, hydrox ropylbut i eel ί ulose, and hydroxypropySeihySceSiulose, and mixtures thereof. Examples of suitable polyalkylene glycols Include, but are not limited to, polyethylene glycol. Examples of suitable thermoplastic polyalkylene oxides include, but are not limited to, poly (ethylene oxide). Examples of suitable acrylic polymers include, but are not limited to, potassium methacryiatedivinylbenzene copolymer, polymethylmethacrylate, high-molecular weight crosslinked acrylic acid homopolymers and copolymers such as those commercially available from Noveon Chemicals under the tradename CARBOPOL , :Vl . Examples of suitable hydrocolloids include, but are not limited to, alginates, agar, guar gum, locust bean gum, kappa carrageenan, iota carrageenan, tara, gum arable, tragacanth, pectin, xanthati gum, gel lan gum, maltodex rin, galactoniannan, pirsstulan, iaminarin, scleroglucan, gum arabic, inulin, pectin, gelatin, whelan, rhamsan, zooglan, methyUm, chltin, cyclodexlrin, chitosan, and mixtures thereof. Examples of suitable clays include, but are not limited to, smectites such as bent.onite, kaolin, and laponite; magnesium in silicate, magnesium aluminum silicate; and mixtures thereof. Examples of suitable gelling starches include, but are not limited to, acid hydfolyzed starches, swelling starches such as sodium starch alveolate and derivatives thereof, and mixtures thereof. Examples of suitable swelling cross-linked polymers include, but are not limited to, cross-linked polyvinyl pyrrolidone, cross-linked agar, and cross-linked earboxyniethylcellutose sodium, and mixtures thereof.

[0058] The carrier may contain one or more suitable excipients for the formulation of tablets. Examples of suitable excipients include, but are not. limited to, fillers, adsorbents, binders, disi egrants, lubricants, glidants, release-modifying excipients, superdi si ntegrants, antioxidants, and mixtures thereof.

[0059] Suitable binders include, but are not limited to, dry binders such as polyvinyl pyrrolidone and hydroxypropylmethylcellulose; wet binders such as water-soluble polymers, including hydrocolloids such as acacia, alginates, agar, guar gum, locust bean, carrageenan, carboxymethyl cellulose, tara, gum arabic, tragacanth, pectin, xanthan, aellan. aelattn. maltodextrin. aalactomannan. pusstuian, iaminaxin, scleroglucan, inulin, whelan, rhamsan, zooglan, meth l an, cnitln. cyclodextrin, chitosan, polyvinyl pyrrolidone, ceiluiosics, sucrose, and starches; and mixtures thereof. Suitable disintegrants include, but are not limited to, sodium starch glycolate, cross-linked polyvinylpyrrolidone, cross-linked earboxymethylcellulose, starches, microcrystalline cellulose, and mixtures thereof.

[0060] Suitable lubricants include, but arc not limited to, long chain fatty acids and their salts, such as magnesium stearate and stearic acid, talc, glycerides waxes, and mixtures thereof. Suitable glidants include, but are not limited to, colloidal silicon dioxide Suitable release-modifying excipients include, but are not limited to, insoluble edible materials, pH -dependent polymers, and mixtures thereof.

[0061] Suitable insoluble edible materials for use as release-modifying excipients include, but are not limited to, water-insoluble polymers and low-melting hydrophobic materials, copolymers thereof and mixtures thereof. Examples of suitable water-insoluble polymers include, bu are not limited to, ethy!ce!iulose, polyvinyl alcohols, polyvinyl acetate, polycaprolaciones, cellulose acetate and its derivatives, acrylates, metliacrylates, acrylic acid copolymers, copolymers thereof, and mixtures thereof. Suitable low-melting hydrophobic materials include, but are not limited to, fats, fatty acid esters, phospholipids, waxes, and mixtures thereof. Examples of suitable fats include, but are not limited to, hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil , hydrogenated sunflower oil, and hydrogenated soybean oil, free fatty acids and their salts, and mixtures thereof. Examples of suitable fatty acid esters include, but are not limited to, sucrose fatty acid esters, mono-, di-, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristase, GiycoWax-932, lauroyl macrogol- 32 glycerides, stearoyl macrogo!-32 glycerides, and mixtures thereof. Exampies of suitable- phospholipids include phosphotidvl choline, phosphatidyl serene, phosphotidvl enositol, phosphotidic acid, and mixtures thereof. Examples of suitabSe waxes include, but are not limited to, carnauba wax, spermaceti wax, beeswax, candelilia wax, shellac wax, macrocrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate, and mixtures thereof. Examples of super disintegrants include, but are not limited to, croscarmellose sodium, sodium starch glycolate and cross-linked povidone (crospovidone). In one embodiment the tablet core contains up to about 5 percent by wei ght of such super disintegrant,

[0062 Examples of antioxidants include, but are not limited to, tocopherols, ascorbic acid, sodium pyrosulfite, butylhydroxytoluene, buiylated hydroxyamso!e, edetic acid, and edetate salts, and mixtures thereof. Examples of preservatives include, but are not limited to, citric acid, tartaric acid, lactic acid, malic acid, acetic acid, benzoic acid, and sorbic acid, and mi tures thereof.

[0063] In one embodiment, the immediate release coating has an average thickness of at least 50 microns, such as from about 50 microns to about 2500 microns; e.g., from about 250 microns to about 1000 microns. In embodiment, the immediate release coating is typi cally compressed at a density of more than about 0.9 g cc, as measured by the weight and. volume of that, specific layer.

{00641 In one embodiment, the immediate release coating contains a first portion and a second portion, wherein at least one of the portions contains the second pharmaceutically active agent, in one embodiment, the portions contact, each other at a center axis of the tablet. In one embodiment., the first portion includes the first pharmaceutically active agent and the second portio includes! the second pharniaceutically active agent.

[00651 to one embodiment, the first portion contains the first pharmaceutically active agent and the second portion contains the second pharmaceutically active agent. In one embodiment, one of the portions contains a third pharmaceutically active agent. In one embodiment one of the portions contains a second immediate release portion of the same pharmaceutically acti e agent as that contained in the tablet core.

[00661 on e embodiment, the outer coating portion is prepared as a dry blend of materials prior to addition to the coated tablet core, in another embodiment the outer coating portion is included of a dried granulation, including the pharmaceutically active agent.

[0067J Formulations with different drug release mechanisms described above could be combined in a final dosage form containing single or multiple units. Examples of multiple units include multilayer tablets, capsules containing tablets, beads, or granules in a solid or liquid form.. Typical, immediate release formulations include compressed tablets, gels, films, coatings, liquids and particles that can be encapsulated, for example, in a gelatin capsule. Man methods for preparing coatings, covering or incorporating drugs, are known in the art. (0068| The immediate release dosage, unit of the dosage form, i.e., a tablet, a plurality of drug-containing beads, granules or particles, or an outer layer of a coated core dosage form, contains a therapeutically effective quantity of the active agent with conventional pharmaceutical excipienis. The immediate release dosage unit may or may not be coated, and ma or may not be admixed with the delayed release dosage unit or units (as in an encapsulated mixture of immediate release drug- containing granules, particles or beads and delayed release drug-containing granules or beads).

(0069J Extended release fomiitiations are generally prepared as diffusion or osmotic systems, for example, as described in "Remington The Science and Practice of

Pharmacy", 20th. Ed., Lippincott Williams & Wllkins, Baltimore, Md. } 2000). A diffusion system typically consists of one of two types of devices, reservoir and matrix, which are weilknown and described in die art. The matrix devices are generally prepared by compressing the daig with a slowly dissolving polymer carrier into a tablet form.

(0O7OJ An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core; using coating or compression processes or in a multiple unit system such as a capsule containing extended and immediate release beads.

[0071] Delayed release dosage formulations are created by coating a solid dosage form with a film of a polymer which is insoluble in the acid environment of the stomach., but soluble in the .neutral environment of small intestines. The delayed release dosage units can be prepared, for example, by coating a drug or a drug- containing composition with a selected coating material. The drug-containing composition may be a tablet for incorporation into a capsule, a tablet for use as an nner core in a "coated core" dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or capsule.

[0072 A pulsed release dosage form is one that mimics a multiple dosing profile without repeated dosing and typically allows at least a twofold reduction in dosing frequency as compared to the drug presented as a conventional dosage form (e.g., as a solution or prompt drug-releasing, conventional solid dosage form). A pulsed release profile is characterized by a lime period of no release (lag time) or reduced release followed by rapid drug release.

[0073) Each dosage form contains a therapeutically effective amount of active agent. In one embodiment of dosage forms that mimic a twice daily dosing profile, approximately 30 wt. % to 70 wt. , preferably 40 wt. % to 60 wt. %„ of the total amount of active agent in the dosage form is released in the initial pulse, and, correspondingly approximately 70 wt, % to 3.0 wt. %, preferably 60 wt. % to 40 wt. %, of the total amount of active agent in the dosage form is released in the second poise. For dosage forms mimicking the twice daily dosing profile, the second pulse is preferably released approximately 3 hours to less than 14 hours, and more preferably approximately 5 hours to 12 hours, following administration.

|0074| Another dosage form contains a compressed tablet or a capsule having a drug-containing immediate release dosage unit, a delayed release dosage unit and an optional second delayed release dosage unit. In this dosage form, the immediate release dosage unit contains a plurality of beads, granules particles that release drug substantially immediately following oral administration to provide an initial dose The delayed release dosage unit contains a plurality of coated beads or granules, which release drug approximately 3 hours to 14 hours following oral administration to provide a second dose. [0075] For purposes of transdermal (e.g., topical) administration, dilute sterile, aqueous or partially aqueous solutions (usually in about 0.1% to 5% concentration), otherwise similar to the above parenteral solutions, may be prepared. i 00761 Methods of preparing various pharmaceutical compositions with a certain amount of one or more compounds of formula I and formula 11 or other active agents are known, or will be apparent in light of this disclosure, to those skilled in this art. For examples of methods of preparing pharmaceutical compositions, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 19th Edition (1995).

[0077) In addition, in certain embodiments, subject: compositions of the present application maybe lyophilized or subjected to another appropriate drying technique such as spray drying. The subject compositions may be administered once, or may be divided into a number of smaller doses to be admi istered at varying intervals of time, depending in part on the release rate of the compositions and the desired dosage.

[0078] Formulations useful in the methods provided herein include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the an of pharmacy. The amount of a subject composition which may be combined with a carrier material to produce a single dose may vary depending upon the subject being treated, and the particular mode of administration.

[0079J Methods of preparing these formulations or compositions include the step of bringing into association subject compositi ns with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a subject composition with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

100801 The compounds of formula I and formula II described herein may be administered in inhalant or aerosol formulations. The inhalant or aerosol formulations may comprise one or more agents, such as adjuvants, diagnostic agents, imaging agents, or therapeutic agents useful in inhalation therapy. The final aerosol formulation may for example contain 0.005-90% w/w, for instance 0.005-50%, 0.005-5% w/w, or 0.01-1.0% w/w, of .medicament relative to the total weight of the formulation.

[0081) In solid dosage forms for oral administration (capsules, tablets, pills, dragees. powders, granules and the like), the subject composition is mixed with one or more pharmaceutically acceptable carriers and/or any of the following; (1) fillers or extenders, such as starches, lactose, sucrose, glucose, manmtol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pynOhdone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and benton te clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents, hi the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugars, as well as high molecular weigh polyethylene glycols and the like. (0082| Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the subject compositions, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emul sifters, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1 ,3- butylene glycol, oils (in particular, cottonseed, corn, peanut, sunflower, soybean, olive, castor, and sesame oils), glycerol, tetrahydrofury! alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

[0083] Suspensions, in addition to the subject compositions, may contain suspending agents such as. for example, ethoxylaled isosiearyl alcohols, polyox ethylene sorbitol, and sorbitan esters, macrocrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragaeanth, and mixtures thereof

|0O84| Formulations for rectal or vaginal administration may be presented as a suppository, whic may be prepared by mixing subject composition with one or more suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition^). Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams, or spray formulations containing such carriers as are known in the art to be appropriate,

[0085] Dosage forms for transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants. A subject composition may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservati es, buffers, or propellents that may be required. For transdermal administration, the complexes may include lipophilic and hydrophilic groups to achieve the desired water solubility and transport properties.

[0086 The ointments, pastes, creams and gels may contain, in addition to subject compositions, other carriers, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof. Powders and sprays may contain, in addition to a subject, composition, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and poly amide powder, or mixtures of such substances. Sprays may additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

1 08? I Methods of delivering a composition or compositions via a transdermal patch are known in the art. Exemplary patches and methods of patch delivery are described in US Patent Mos. 6,974,588, 6,564,093, 6,3 12,716, 6,440,454, 6,267,983, 6,239,180, and 6,103,275. jOOSSj In another embodiment, a transdermal patch may comprise: a substrate sheet comprising a composite film formed of a resin composition comprising 100 parts by weight, of a polyvinyl ch!oride-poJyureihane composite and 2-10 parts by weight of a styrene-ethylene-butylene-styrene copolymer, a first adhesive layer on the one side of the composite film, and a polyalkyiene tereph thai ate film adhered to the one side of the composite film by means of the first adhesive layer, a primer layer which comprises a saturated polyester resin and is formed on the surface of the polyalkyiene tefephthalate film; and a second adhesive layer comprising a styrene-diene-styrene block copolymer containing a pharmaceutical agent layered on the primer layer, A. method for the manufacture of the above-mentioned substrate sheet comprises preparing the above resin composition molding the resin composition into a composite film by a calendar process, and then adhering a polyalkylene terephthalate film on one side of the composite film by means of an adhesive layer thereby forming the substrate sheet, and forming a primer layer comprising a saturated polyester resin on the outer surface of the polyalkylene terephthalate film.

[0089] Another type of patch comprises incorporating the drug directly in a pharmaceutically acceptable adhesive and laminating the drug-containing adhesive onto a suitable backing member, e.g. a polyester backing membrane. The drug should be present at a concentration which will not affect the adhesive properties, and at the same time deliver the required clinical dose.

[0090] Transdermal patches may be passive or active. Passive transdermal drug delivery systems currently available, such as the nicotine, estrogen and nitroglycerine patches, deliver small-molecule drugs. Many of the newly developed proteins and peptide drugs are too large to be delivered through passive transdermal patches and may be delivered using technology such as electrical assist (iontophoresis) for large- molecule drugs. f 0091 j Iontophoresis is a technique employed for enhancing the flux of ionized substances through membranes by application of electric current. One example of an iontophoretic membrane is given in U.S. Pat, No. 5,080,646 to Theeuvves. The principal mechanisms by which iontophoresis enhances molecular transport across the skin are (a) repelling a charged ion from an electrode of the same charge, (b) electroosmosis, the connective movement of solvent that occurs through a charged pore in response the preferential passage of counter-ions when an electric field is applied or (c) increase skin permeability due to application of electrical current.

|00921 m some cases, it may be desirable to administer in the form of a kit, it may comprise a container for containing the separate compositions such as a divided bottle or a divided foil packet. Typically the kit comprises directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., orai and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician

|0 93j An example of such a kit is a so-called blister pack Blister packs are well known in the packaging industry and are widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a plastic material that may be iransparent

[0094] Methods and compositions for the treatment of ventricular arrhythmias and cardiovascular diseases, among other things, herein is provided a method of treating ventricular arrhythmias and cardiovascular diseases , comprising administering to a patient i need thereof a therapeutically effective amount of compound of Formula 1:

Formula Ϊ

and pharmaceutically acceptable salts, hydrates, solvates, prodrugs, enantiomers. and stereos soraers thereof;

[00951 Wherein,

R 1 independently represents H, D, Cf¾CC acetyl, CD3CO-,

44

» is independently 1. 2, 3, 4 or 5;

a is independently 2,3 or 7;

each b is independently 3, 5 or 6;

e is i ndcpendently 1 , 2 or 6;

c and d are each independently R Ό, -OR -OD, CVtValkyl, -NR or -€OCH 5 . [0096] Methods and compositions for the treatment of ventricular arrhythmias and cardiovascular diseases . among other things, herein is provided a method of treating ventricular arrhythmias and cardiovascular diseases , comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula 0.

Formula II and pharmaceutically acceptable salts, hydrates, solvates, prodrugs, enantioraer stereos somers thereof;

[00971 Wherein,

R ! independently represents H, D, CHjCO-, acetyl, CD 3 CO-,

50

51

54

in is independently 1. 2, 3. 4 or 5:

a is independently 2.3 or 7;

each b is independently 3, 5 or 6;

e is independently 1, 2 or 6;

c md ά are each independently H, D, -OH, -00, d-Cs-alkyl, ~NH 2 or -COCHj.

METHODS OF MAKING

100981 Examples of synthetic pathways useful for making compounds of formula 1 and formula. II are set forth in example below and generalized in scheme 1 through scheme 2: Scheme-1 :

0099J Step-1 : Synthesis of compound 2:

*

(00100J To a solution of 1 { 2.3 mmol) in 10% aq AcOH (20 mL) was added a solution of B0C2O (2.4 ramol) in 1 ,4- dioxane (20 mL). After oveniiglrt stirring at r.t., water ( 100 mL) was added and the mixture was washed with Et20 (3 ·-· 50 mL). The aqueous phase was basicified with 2 N NaOH to pH 14 and extracted with E¾0 (3 · < ■ 75 ni.L). The combined extract was washed with H20 (2 χ 40 ml,), dried (Na2S04), filtered and concentrated under reduced pressure to yield the intermediate 2,

[0 101 Step-2: Synthesis of compound 4:

4

jO0302| To a solution of 605 mg of 5,8,1. L, 14, i 7-eieosapemaenie acid 3 in 6 ml of dry chloroform xvas added 0.25 ml of oxalyichloride under argon at room temperature. The mixture was kept for 2 hours. From the reaction mixture were removed the chloroform and the remaining oxalyl chloride by distillation under reduced pressure to give 5,8,11 , 14J 7-eicosapentaenoyl chloride 4, which was then directly used for the next step.

I -3: Synthesis of compound 5:

(00104 Compound 2 (0.4 g, 1 .0 mmol) in 2.5 mL of CH 2 C 3 2 and 2,5 ml of CH 3 CN is cooled to 0 °C. Lithium t-butoxide (1.0 M jn hexan.es, 1 .1 mL, 1.1 mmol) is added and the mixture is stirred, at 0 °C for 15 min and then at RT for 10 min. The mixture is re-cooled to 0 °C and compound 4 (1 .2 mmol) is added drop w se. The mixture stirred for 10 min at 0 °C and then allowed to stir at RT overnight. The solution is diluted with CH3CJ 2 and water and the layers are separated. The organic layer is washed with water, brine, dried over Na2S04, and concentrated in vacuo. Purification by silica gel chromatography afforded the intermediate 5.

(00J05| Step-3; Synthesis of compound 6:

(001061 Compound S (0.895 mmol) and 4 mi of a 40% solution of trifiuoroacetic acid in dichloromethane were stirred at room temperature overnight. The solvent was then evaporated from the reaction mixture. The residue was dissolved in water and basified with saturated aqueous NaHCQs, extracted with DCM, concentrated and purified by column chromatography to yield the final product 6. Chemical Formula: C27H36N202; Molecular Weight 420.59; Elemental Analysis: C, 77.10; H, 8.63; , 6.66; O, 7.61. Scheme-2:

(00 J 071 Step-1 : Synthesis of compound 2: [00108] Protected ρ-aminobenzoic acid was prepared by dissolving 24 g (0. 1 7 mol) p~ammo~benzoic acid and 1 1.5 g (0.288 mol) sodium hydroxide in 300 ml water. Di~ t-butyi di carbonate (42 g; 0.193 mol) was added to the solution, but failed to dissolve, giving a nonhomogeneous mixture. Tetrahydrofuran (300 ml ) and methanol (150 ml) were added to the mixture, the solids dissolved and a homogeneous solution was obtained. The solution was stirred for 5.5 hours while monitoring pH, with 5.5 g aOH added to the solution after the pH dropped to about 7.0. The organic solvents were removed from the reaction mixture with a rotary- evaporator, and the remaining aqueous soitition was poured into 1000 ml water and acidified with 75 mi 6 N HQ to a pH of between 3 and 4 with mechanical stirring. The white solid, which precipitated, was recovered by filtration and dried in an oven under high vacuum. The dried solid, identified as the t-butyl carbamate, 2 was obtained with a yield of 28.1 1 g (68%).

[00109] tep-2: Synthesis of compound 3 :

[00110] The t-butyi carbamate of p-aminobenzoic acid 2(9.48 g; 40 mmol) and Ν,Ν'-disuccinimidyl carbonate (11.26 g: 44 mmol) were combined with 14 ml triethylamine in 200 ml tetrahydrofuran (TBF). The reaction mixture was stirred under nitrogen atmosphere at room temperature for three hours. Thin layer chromatography (TLC) was then performed using a solvent mixture of 50% hexane and 50% ethyl acetate to confirm that the reaction had readied completion. The reaction mixture was next added to 100 ml of a saturated aqueous aHCO.i solution, and extracted three times with 250 ml ethyl acetate. The organic extracts were combined, and dried over anhydrous sodium sulfate. The solvent was removed in a rotary evaporator, and the solid residue was dissolved in a mixture of 40 ml ethyl acetate and 60 ml hexane. The solution was allowed to stand overnight at room temperature, and a solid material recrystalli ed from the solution. This product, identified as activated ester 3 was isolated in a yield of 10.3 g (77%).

[001111 Step-3 Synthesis of compound 5:

[00 J 12J Activated ester, intermediate 3 (1.077 g, 3.22 mmol), was dissolved in 6 nil dichlorom ethane (DCM). The solution of was then added drop-wise to a room temperature solution of N-ethylethylenediamine (0.284 g; 3.22 mmol) in DCM under a nitrogen atmosphere. The reaction mixture was stirred for 5.5 hours. Dichloromethane (100 mi) was then added to the reaction mixture., and the resulting solution was extracted with a saturated aqueous solution of sodium bicarbonate (20 nil). The organic phase was separated from the aqueous phase and dried over sodium sulfate. The solvent was then evaporated, leaving a solid residue identified as intermediate 5,

[00113} Step-4. Synthesis of compound 6:

[00114} NaH (15 mmol) was taken in a RB, added DMl\cooled to 0°C and added Compound 5 in DMF (10 mmol) dropwise with stirring. The stirring was continued for 20 min and then added ethyl chloroformate (CI COOEt, 12 mmol), stirred the reaction mixture at room temperature for 4h. After completion of the reaction the mixture was cooled to 0"C and added ice cold water dropwise. The reaction mixture was extracted with diethyl ether and the organic layer was dried over Na^SC^ and evaporated to get the crude product which was purified through column to obtain the compound 6.

[00115| Step-5 Synthesis of compound 7:

[00 16] To a suspension of NaB¾ (48 mmol) in anhydrous THF (200 ml.) was added dropwise a solution of 6 (24 mmol) in THF (20 raL) at 0 °C. The mixture was stirred at 60 °€ for 1 h and then re-cooled to 0 °€. To the resultant mixture were added successively water (5,5 ml.)., 15% NaOH (5.5 mL), and water (16.5 mL). The mixture was filtered through Celite. The filtrate was concentrated in vacuo and the residue was chromatographed to obtain compound 7,

[00117 } Step-6: Synthesis of compound 9:

1001181 Stirring a mixture of a solution of compound 7 ( 18.0 mmol; 1.0 eq) and acid 8 ( " 18.0 mmol; 1.0 eq)in Dichloromethane (DCMX200mL;LR-grade); l-ethyl-3

(3'dimethylaminopropyl)carbodiimide.HCl. (EDCl.HCl) (527.0 mmol; 1.5 eq) and 4- Di methyl ami nopyridine(DMAP) (18.0 mmol; 1.0 eq) at room temperature (RT) for 24 hours Reaction was monitored by TLC. On completion of the reaction, the reaction mixture was diluted with DCM (200 mL), washed with water (2x300 mL) followed by brine solution (300 mL) and dried over anhydrous a^SC and evaporated under reduced pressure The crude was purified by column chromatography over 100-200 mesh silica gel by using ethyl acetate-pet ether to obtain compound 9, -7. Synthesis of compound S O.

Compound 9 (0.895 mmol), and 4 ml of 40% solution of tril uoroaeetic acid in dichi o om ethane were stirred ai room temperature overnight. The solvent was then evaporated from the reaction mixture. The residue was dissolved in water and basified with saturated aqueous NaHC03, extracted with DCM, concentrated and purified by column chromatography to yiefd the final product 10. Chemical Formula: C M H4?N 3 Ch ; Molecular Weight: 521 .73; Elemental Analysis: C, 73.67; H, 9.08; N, 8.05; O, 9.20.

[00120] The term "sample" refers to a sample of a body fluid, to a sample of separated cells or to a sample from a tissue or an organ. Samples of body fluids can be obtained by well known techniques and include, preferably, samples of blood, plasma, serum., or urine, mor preferably, samples of blood, plasma or serum. Tissue or organ samples may be obtained from any tissue or organ by, e.g., biopsy. Separated cells may be obtained from the body fluids or the tissues or organs by separating techoiques such as centrifugation or cell sorting. Preferably, cell-, tissue- or organ samples are obtained from those cells, tissues or organs which express or produce the peptides referred to herein. liEJi ALJNTS

[00121 j The present disclosure provides among other things compositions and methods for treating ventricular arrhythmias and cardiovascular diseases and their complications. While specific embodiments of the subject disclosure have been discussed, the above specification is illustrative and not restrictive. Many variations of the systems and methods herein wiii become apparent to those skilled in the art upon review of this specification. The full scope of the claimed systems and methods should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.

INCORPORATION BY REFERENCE

[ 00122 j Ail publications and patents mentioned herein, including those items listed above, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.