Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS USING METHANOTROPHIC S-LAYER PROTEINS FOR EXPRESSION OF HETEROLOGOUS PROTEINS
Document Type and Number:
WIPO Patent Application WO/2019/046446
Kind Code:
A2
Abstract:
In alternative embodiments, provided are compositions and methods for making a chimeric polypeptide comprising an S-layer polypeptide and a heterologous polypeptide or peptide. In alternative embodiments, the compositions and methods comprise recombinantly engineering a methylotrophic or methanotrophic bacteria to recombinantly express a chimeric polypeptide comprising an S-layer polypeptide and a heterologous polypeptide or peptide. Also provided are compositions and methods for displaying or immobilizing proteins on a methanotrophic S-layer. In alternative embodiments, provided are compositions and methods comprising recombinant methylotrophic or methanotrophic bacteria comprising assembled or self-assembled recombinant or isolated chimeric S-layer polypeptides. In alternative embodiments, provided are compositions and methods using recombinant methylotrophic or methanotrophic bacteria, optionally a Methylomicrobium alcaliphilum, optionally a M. alcaliphilum sp. 20Z, for ectoine ((4S)-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid), for the production or synthesis of a protein, e.g., an ectoine, or an enzyme, e.g., a lipase.

Inventors:
KALYUZHNAYA MARINA (US)
DEMIDENKO OLEKSANDR (US)
COLLINS DAVID (US)
Application Number:
PCT/US2018/048576
Publication Date:
March 07, 2019
Filing Date:
August 29, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAN DIEGO STATE UNIV SDSU FOUNDATION DBA SAN DIEGO STATE UNIV RESEARCH FOUNDATION (US)
International Classes:
G01N30/74; G01N21/3504
Domestic Patent References:
WO2015058179A12015-04-23
Foreign References:
US20100221813A12010-09-02
US4458066A1984-07-03
US5721118A1998-02-24
US6025155A2000-02-15
US5217879A1993-06-08
US20160237398A12016-08-18
Other References:
SHCHUKIN ET AL.: "Primary characterization of dominant cell surface proteins of halotolerant methanotroph Methylomicrobium alcaliphilum 20Z", MICROBIOLOGY, 2011
KHMELENINA VN ET AL., ARCH. MICROBIOL., vol. 172, 1999, pages 321 - 329
EGELSEER, E.M. ET AL.: "Microbial, Biotechnological Applications, in: Encyclopedia of Industrial Biotechnology", 2009, JOHN WILEY & SONS, pages: 55 - 86
ADAMS, J. AM. CHEM. SOC., vol. 105, 1983, pages 4424 - 4448
BELOUSOV, NUCLEIC ACIDS RES., vol. 25, 1997, pages 3440 - 3444
FRENKEL, FREE RADIC. BIOL. MED., vol. 19, 1995, pages 373 - 380
BLOMMERS, BIOCHEMISTRY, vol. 33, 1994, pages 7886 - 7896
NARANG, METH. ENZYMOL., vol. 68, 1979, pages 109
BEAUCAGE, TETRA. LETT., vol. 22, 1981, pages 1859
ROSENFELD, NAT. GENET., vol. 1-3, 1997, pages 333 - 335
KROLL, DNA CELL. BIOL., vol. 12, 1993, pages 441 - 53
WOON, GENOMICS, vol. 50, 1998, pages 306 - 316
KERN, BIOTECHNIQUES, vol. 23, 1997, pages 120 - 124
WILLIAMS, BIOCHEMISTRY, vol. 34, 1995, pages 1787 - 1797
DOBELI, PROTEIN EXPR. PURIF., vol. 12, 1998, pages 404 - 414
MATA, TOXICOL. APPL. PHARMACOL., vol. 144, 1997, pages 189 - 197
STRAUSS-SOUKUP, BIOCHEMISTRY, vol. 36, 1997, pages 8692 - 8698
SAMSTAG, ANTISENSE NUCLEIC ACID DRUG DEV, vol. 6, 1996, pages 153 - 156
SHCHUKIN V.N ET AL., MIKROBIOLOGIYA, vol. 80, 2011, pages 595 - 605
SARA, M ET AL., J BACTERIOL., vol. 180, no. 16, August 1998 (1998-08-01), pages 4146 - 4153
SLEYTR, UB ET AL., FEMS MICROBIOL REV., vol. 38, no. 5, September 2014 (2014-09-01), pages 823 - 864
ANTHONY, C.: "The biochemistry of methylotrophs.London ; New York", 1982, ACADEMIC PRESS, pages: 431
DEMIDENKO A ET AL.: "Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1", FRONT MICROBIOL., vol. 17, 2017, pages 2167
GRAF R ET AL.: "The multifunctional role of ectoine as a natural cell protectant.", CLIN DERMATOL., vol. 26, 2008, pages 326 - 33, XP023610827, DOI: 10.1016/j.clindermatol.2008.01.002
HENARD CA ET AL.: "Bioconversion of methane to lactate by an obligate methanotrophic bacterium.", SCI REP., vol. 6, 2016, pages 21585, XP055409866, DOI: 10.1038/srep21585
HE Y-Z ET AL.: "High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli.", MICROBIAL CELL FACTORIES, vol. 14, 2015, pages 55, XP021214822, DOI: 10.1186/s12934-015-0238-0
JEFFRIES PWILKINSON JF: "Electron Microscopy of the cell wall complex of Methylomonas albus.", ARCH MICROBIOL, vol. 119, 1978, pages 227 - 29
KALYUZHNAYA M.G.PURI A.LIDSTROM M.E.: "Metabolic engineering in methanotrophic bacteria.", METAB ENG., vol. 29, 2015, pages 142 - 52, XP029590699, DOI: 10.1016/j.ymben.2015.03.010
KIM HK ET AL.: "Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1", BIOSCI BIOTECHNOL BIOCHEM., vol. 62, no. 1, 1998, pages 66 - 71
KIM MH ET AL.: "Thermostable lipase of Bacillus Stearothermophilus: high-level production, purification, and calcium-dependent thermostability", BIOSCI BIOTECHNOL BIOCHEM., vol. 64, 2000, pages 280 - 6
KHMELENINA, V.N. ET AL.: "The synthesis of polysaccarides by Methylococcus capsulatus under various conditions of cultivation.", MIKROBIOLOGIIA (RUSSIAN)., vol. 61, 1992, pages 404 - 410
KHMELENINA VNKALYUZHNAYA MGSAKHAROVSKY VG ET AL.: "Osmoadaptation in halophilic and alkaliphilic methanotrophs", ARCH MICROBIOL, vol. 172, 1999, pages 321 - 29, XP055781908
KHMELENINA VN ET AL.: "Structural and functional features of methanotrophs from hypersaline and alkaline lakes.", MICROBIOLOGY (RUSSIA, vol. 9, 2010, pages 472 - 82
MUSTAKHIMOV I. I. ET AL.: "Identification and characterization of EctR, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z.", J. BACTERIOL., vol. 192, 2010, pages 410 - 7
OJALA, D.S. ET AL.: "Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium.", METHODS ENZYMOL. METHODS ENZYMOL., vol. 495, pages 99 - 118
PASTOR JM ET AL.: "Ectoines in cell stress protection: uses and biotechnological production.", BIOTECHNOL. ADV., vol. 28, 2010, pages 782 - 801, XP027331818
PURI, A.W. ET AL.: "Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense.", APPL ENVIRON MICROBIOL., vol. 81, 2015, pages 1775 - 81
RESHETNIKOV AS ET AL.: "Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs", METHODS IN ENZYMOL., vol. 495, 2011, pages 15 - 30
RIIS, V. ET AL.: "Highly sensitive determination of ectoine and other compatible solutes by anion-exchange chromatography and pulsed amperometric detection.", ANAL. BIOANAL. CHEM., vol. 377, 2003, pages 203 - 207
STRONG PJ ET AL.: "A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.", BIORESOUR TECHNOL., vol. 215, 2016, pages 314 - 23, XP029597390, DOI: 10.1016/j.biortech.2016.04.099
TROTSENKO, Y. A. ET AL.: "Biotechnological potential of aerobic methylotrophic bacteria: a review of current state and future prospects.", APPL. BIOCHEM. MICROBIOL., vol. 41, 2005, pages 433 - 441, XP019293816
VUILLEUMIER S. ET AL.: "Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z", J BACTERIOL., vol. 194, 2012, pages 551 - 2, XP055289368, DOI: 10.1128/JB.06392-11
Attorney, Agent or Firm:
EINHORN, Gregory P. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method for making a chimeric polypeptide comprising an S-layer polypeptide, or a self-aggregating or self-assembling fragment thereof, and a heterologous polypeptide or peptide, the method comprising recombinantly engineering a methylotrophic or methanotrophic bacteria to recombinantly express a chimeric polypeptide comprising an S-layer polypeptide and a heterologous polypeptide or peptide,

wherein optionally the S-layer polypeptide is on the carboxy terminal end of the heterologous polypeptide or peptide,

and optionally the recombinant or isolated chimeric polypeptide has assembled or is self-assembled to form a monomolecular layer.

2. A method for displaying or immobilizing proteins on a methanotrophic S- layer protein, or a self-aggregating or self-assembling fragment thereof, comprising recombinantly engineering a methylotrophic or methanotrophic bacteria to recombinantly express a chimeric polypeptide comprising an S-layer polypeptide or a self-aggregating or self-assembling fragment thereof and a heterologous polypeptide or peptide,

wherein optionally the S-layer polypeptide or self-aggregating or self- assembling fragment thereof is on the carboxy terminal end of the heterologous polypeptide or peptide,

wherein optionally the recombinant or isolated chimeric S-layer polypeptide or self-aggregating or self-assembling fragment thereof has assembled or is self- assembled to form a monomolecular layer.

3. A recombinant or isolated chimeric S-layer polypeptide, wherein the recombinant or isolated chimeric S-layer polypeptide comprises an S-layer polypeptide or self-aggregating or self-assembling fragment thereof and a heterologous polypeptide or peptide, wherein optionally the S-layer polypeptide is on the carboxy terminal end of the heterologous polypeptide or peptide,

wherein optionally the recombinant or isolated chimeric S-layer polypeptide has assembled or is self-assembled to form a monomolecular layer.

4. A recombinant or isolated monomolecular layer comprising a chimeric S- layer polypeptide, wherein the recombinant or isolated chimeric S-layer

polypeptide comprises an S-layer polypeptide or a self-aggregating or self- assembling fragment thereof, and a heterologous polypeptide or peptide,

wherein optionally the S-layer polypeptide self-aggregating or self- assembling fragment thereof is on the carboxy terminal end of the heterologous polypeptide or peptide,

wherein optionally the recombinant or isolated chimeric S-layer polypeptide self-aggregating or self-assembling fragment thereof has assembled or is self- assembled to form a monomolecular layer.

5. A recombinant or genetically engineered methylotrophic or

methanotrophic bacteria comprising the recombinant or isolated chimeric S-layer polypeptide or a self-aggregating or self-assembling fragment thereof of claim 3, or comprising a recombinant or chimeric polypeptide made by the method of claim 1 , wherein optionally the recombinant or chimeric polypeptide has assembled or is self-assembled to form a monomolecular layer on the extracellular surface of the recombinant methylotrophic or methanotrophic bacteria, and optionally the heterologous polypeptide or peptide is at least partially exposed, or is fully exposed, to an extracellular environment or milieu.

6. The method, or the recombinant or isolated chimeric S-layer polypeptide, of any of the preceding claims, wherein the S-layer polypeptide or self-aggregating or self-assembling fragment thereof comprises or is a lipoprotein.

7. The method, or the recombinant or isolated chimeric S-layer polypeptide or self-aggregating or self-assembling fragment thereof, or the recombinant methylotrophic or methanotrophic bacteria, of any of the preceding claims, wherein the methylotrophic or methanotrophic bacteria is selected the group consisting of a Methylococcus, a Methylomonas, a Methylomicrobium, a

Methylobacter, a Methylomarinum, a Methylovulum, a Methylocaldum, a

Methylothermus, a Methylomarinovum, a Methylosphaera, a Methylocystis , and a Methylosinus bacteria; or, the S-layer polypeptide is derived from a methylotrophic or methanotrophic bacteria, or a Methylococcus, a Methylomonas, a

Methylomicrobium, a Methylobacter, a Methylomarinum, a Methylovulum, a

Methylocaldum, a Methylothermus, a Methylomarinovum, a Methylosphaera, a

Methylocystis, or a Methylosinus bacteria. 8. The method, or the recombinant or isolated chimeric S-layer polypeptide self-aggregating or self-assembling fragment thereof, or the recombinant methylotrophic or methanotrophic bacteria, of any of the preceding claims, wherein the methylotrophic or methanotrophic bacteria is a Methylomicrobium alcaliphilum (M alcaliphilum), or a M. alcaliphilum sp. 20Z.

9. The method, or the recombinant or isolated chimeric S-layer polypeptide, or the recombinant methylotrophic or methanotrophic bacteria, of any of the preceding claims, wherein the chimeric polypeptide, or the recombinant or isolated chimeric S-layer polypeptide or self-aggregating or self-assembling fragment thereof, is expressed on the surface of a methylotrophic or

methanotrophic bacteria, and the heterologous polypeptide, or the recombinant or isolated chimeric S-layer polypeptide or self-aggregating or self-assembling fragment thereof, is at least in part (partially) exposed to an extracellular environment or milieu.

10. The method, or the recombinant or isolated chimeric S-layer polypeptide or self-aggregating or self-assembling fragment thereof, of any of the preceding claims, wherein the methanotrophic S-layer polypeptide or self-assembling fragment thereof is isolated from the methylotrophic or methanotrophic bacteria.

1 1. The method, or the recombinant or isolated chimeric S-layer

polypeptide, or the recombinant methylotrophic or methanotrophic bacteria, of any of the preceding claims, wherein the heterologous polypeptide or peptide, or recombinant or isolated chimeric S-layer polypeptide, comprises or is an enzyme, a structural protein, a fluorescent or a chemiluminescent protein, a ligand, a receptor, an antibody or antigen binding protein, or an antigen, a tolerogen or an immunogen.

12. The method, or the recombinant or isolated chimeric S-layer polypeptide, or the recombinant methylotrophic or methanotrophic bacteria, of claim 1 1 , wherein the enzyme is an industrial enzyme, or the enzyme is a lipase, a protease, a nitrogenase, a hydrogenase, a monooxygenase, an amylase, an isomerase, a cellulase or hemicellulase, a laccase, an epimerase, a decarboxylase, a glucanase or a fl- glucanase, a glucosidase, a phosphorylase, a phosphatase, a halogenase or a dehalogenase, a GlcNAc transferase, an N-acetylglucosamine, a GlcNAc transferase, a neuraminidase or sialidase, a nuclease, a peroxidase or an oxidase, or a

metalloproteinase.

13. The method, the recombinant or isolated chimeric S-layer polypeptide, the recombinant or isolated monomolecular layer, or the recombinant methylotrophic or methanotrophic bacteria, of any of the preceding claims, wherein the chimeric protein, the recombinant or isolated chimeric S-layer polypeptide or self-assembling fragment thereof, the recombinant or isolated monomolecular layer, or the recombinant methylotrophic or methanotrophic bacteria, act as or are used as or used for: an ultrafiltration membrane; an affinity structure; nitrogen fixation;

converting carbon dioxide into methane; methane uptake or methane oxidation;

converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro- carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or encapsulation; an anchor for

extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based biopharmaceutical.

14. A membrane or an enzyme membrane; an ultrafiltration membrane; an affinity structure; a composition or device for nitrogen fixation; a composition or device for converting carbon dioxide into methane; a composition or device for methane uptake or methane oxidation; a composition or device for converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro-carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or encapsulation; an implant; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based biopharmaceutical, comprising:

a chimeric polypeptide of any of the preceding claims,

a recombinant or isolated chimeric S-layer polypeptide or self-assembling fragment thereof of any of the preceding claims,

a recombinant or isolated monomolecular layer of any of the preceding claims, or

a recombinant methylotrophic or methanotrophic bacteria of any of the preceding claims.

15. A recombinant methylotrophic or methanotrophic bacteria, optionally a Methylomicrobium alcaliphilum ( alcaliphilum), optionally a M. alcaliphilum sp. 20Z, for ectoine ((4S)-2-methyl-l ,4,5,6-tetrahydropyrimidine-4-carboxylic acid) production or synthesis, wherein:

(a) the recombinant or engineered methylotrophic or methanotrophic bacteria comprises an ectoine biosynthetic gene cluster organized as one operon (ectABC-ask), wherein the operon comprises genes encoding: a diaminobutyric acid (DABA) aminotransferase (EctB); a DABA acetyltransferase (EctA), and an ectoine synthase (EctC); and

(b) the recombinant or engineered methylotrophic or methanotrophic bacteria: (i) is engineered to lack or not express a functional EctRl repressor;

(ii) comprises an isocitrate lyase/malate synthase fusion under (transcriptionally controlled by) a hps promoter (Phps); and/or,

(iii) comprises one or more of the genetic modifications set forth in Table 1 (see Example 2, below).

16. The recombinant methylotrophic or methanotrophic bacteria of claim 15, wherein a doeA-gens encoding ectoine hydrolase is deleted or mutated such that a functional ectoine hydrolase is not expressed.

17. The recombinant methylotrophic or methanotrophic bacteria of claim 15 or claim 16, wherein the recombinant methylotrophic or methanotrophic bacteria further comprises an exogenous nucleic acid capable of expressing a methanotrophic lipase, or a functional lipase fragment thereof (optionally a LipLl expression plasmid), in the recombinant methylotrophic or methanotrophic bacteria.

1 8. The recombinant methylotrophic or methanotrophic bacteria of claim

1 7, wherein the recombinant bacteria is engineered such that the ectoine and/or the lipase, or the functional lipase fragment thereof, is expressed as an S layer protein chimeric polypeptide, optionally as a lipase-S protein fusion protein (an S layer-lipase or an S layer-ectoine fusion protein), wherein optionally the S-layer protein is positioned at the amino terminus.

19. The recombinant methylotrophic or methanotrophic bacteria of any of the preceding claims, wherein the methylotrophic or methanotrophic bacteria is selected the group consisting of a Methylococcus, a Methylomonas, a

Methylomicrobium, a Methylobacter, a Methylomarinum, a Methylovulum, a

Methylocaldum, a Methylothermus, a Methylomarinovum, a Methylosphaera, a

Methylocystis, and a Methylosinus bacteria.

20. The recombinant methylotrophic or methanotrophic bacteria of any of the preceding claims, wherein the methylotrophic or methanotrophic bacteria further comprises the ability to express: a heterologous or exogenous protein or enzyme, optionally an industrial enzyme; or a chimeric protein comprising an S-layer protein and the heterologous or exogenous protein or enzyme,

wherein optionally the protein or enzyme is a lipase, a protease, a nitrogenase, a hydrogenase, a monooxygenase, an amylase, an isomerase, a cellulase or hemicellulase, a laccase, an epimerase, a decarboxylase, a glucanase or a fl-glucanase, a glucosidase, a phosphorylase, a phosphatase, a halogenase or a dehalogenase, a GlcNAc transferase, an N-acetylglucosamine, a GlcNAc transferase, a neuraminidase or sialidase, a nuclease, a peroxidase or an oxidase, or a metalloproteinase. 21. The recombinant methylotrophic or methanotrophic bacteria of any of the preceding claims, wherein the recombinant methylotrophic or methanotrophic bacteria, act as or are used as or used for: an ultrafiltration membrane; an affinity structure; nitrogen fixation; converting carbon dioxide into methane; methane uptake or methane oxidation; converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro-carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or encapsulation; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio- mitigation, or a pharmaceutical or a protein-based biopharmaceutical.

22. A membrane or an enzyme membrane; an ultrafiltration membrane; an affinity structure; a composition or device for nitrogen fixation; a composition or device for converting carbon dioxide into methane; a composition or device for methane uptake or methane oxidation; a composition or device for converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro-carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or encapsulation; an implant; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based biopharmaceutical, comprising: a chimeric polypeptide made by a method of any of the preceding claims, or a recombinant methylotrophic or methanotrophic bacteria of any of the preceding claims,

a recombinant or isolated chimeric S-layer polypeptide made by a method of any of the preceding claims, (or a recombinant methylotrophic or methanotrophic bacteria) of any of the preceding claims,

a recombinant or isolated monomolecular layer made by a method of any of the preceding claims, or by a recombinant methylotrophic or methanotrophic bacteria of any of the preceding claims, or

a recombinant methylotrophic or methanotrophic bacteria made by a method of any of the preceding claims.

Description:
COMPOSITIONS AND METHODS USING METHANOTROPHIC S-LAYER PROTEINS FOR EXPRESSION OF HETEROLOGOUS

PROTEINS RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent Application Serial No. (USSN) 62/551,502, filed August 29, 2017, and USSN 62/551 ,490, filed August 29, 2017. The aforementioned applications are expressly incorporated herein by reference in their entirety and for all purposes.

TECHNICAL FIELD

This invention generally relates to microbiology and bioengineering. In alternative embodiments, provided are compositions and methods for making a chimeric polypeptide comprising an S-layer polypeptide and a heterologous polypeptide or peptide. In alternative embodiments, the compositions and methods comprise recombinantly engineering a methylotrophic or methanotrophic bacteria to recombinantly express a chimeric polypeptide comprising an S-layer polypeptide and a heterologous polypeptide or peptide. Also provided are compositions and methods for displaying or immobilizing proteins on a

methanotrophic S-layer. In alternative embodiments, provided are compositions and methods using recombinant methylotrophic or methanotrophic bacteria, optionally a Methylomicrobium alcaliphilum (M alcaliphilum), optionally a M. alcaliphilum sp. 20Z, for ectoine ((4S)-2-methyl-l ,4,5,6-tetrahydropyrimidine-4-carboxylic acid), for the production or synthesis of a protein, e.g., an ectoine, or an enzyme, e.g., a lipase.

BACKGROUND

Bacterial cell surface layers are regular para-crystalline structures that cover the entire surface of a cell and consist of a single layer of identical proteins or glycoproteins. These glycoproteins are potentially of industrial interest because they intrinsically self-assemble and re-crystallise to form porous semi-permeable membranes. These characteristics, and subsequent functionalisation of surfaces, has led to new types of ultrafiltration membranes, affinity structures, enzyme membranes, micro-carriers, biosensors, diagnostic devices, biocompatible surfaces and vaccines, as well as targeting, delivery, and encapsulation. Methylotrophic and methanotrophic bacteria have been used as systems for the heterologous expression of proteins, see e.g., US 2010 0221813 Al (2010). However, most attempts to improve protein expression have been focused on intracellular protein expression.

An S-layer, or surface layer, a part of a cell envelope found in almost all archaea and in many types of bacteria, consists of a monomolecular layer composed of identical proteins or glycoproteins. For many bacteria, the S-layer represents the outermost interaction zone with their respective environments, and it can have many different functions depending on the species, for example an S-layer can have a mechanical and osmotic stabilization function, can protect against bacteriophages or phagocytosis, can provide resistance against low pH, can act as a barrier against high- molecular-weight substances, can act as a molecular sieve and barrier, can have anti- fouling properties, be involved in biomineralization, and the like.

S-Layers are present at the surfaces of methylotrophic and methanotrophic cells such as Methylococcus, Methylothermus , and Methylomicrobium bacterial cells. For example, different Methylomicrobium species can synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conical structures with hexagonal (p6) symmetry. S-layers are a well-recognized microbial product with very broad biotechnological applications. Numerous research activities are focused on the construction of fusion proteins (S-layer proteins with attached enzymes) for production of immobilized biocatalysts. Formation of S-layers has been observed in all tested Methylomicrobium species. M. album BG8, M. alcaliphilum 20Z and M. buryatense form S-layers consisting of cup-shaped subunits arranged in p6 symmetry. Methanotrophic S-layers have been mentioned as a potential value-added product, but were not explored much due to the lack of knowledge on its genetic elements.

The use of an aerobic methane-oxidation process for methane reduction in coal mines has been actively discussed for decades and even tested in the 1980s. The approach was very simple: different methanotrophic cultures were sprayed on coal mine surfaces and methane consumption was monitored. The study indicated a potential for the methanotroph-based technology, however, no active "industrial strain" was identified and no profitable process was developed. SUMMARY

In alternative embodiments, provided are methods for making a chimeric polypeptide comprising an S-layer polypeptide, or self-assembling or self- aggregating fragments thereof, and a heterologous polypeptide or peptide, the method comprising recombinantly engineering a methylotrophic or

methanotrophic bacteria to recombinantly express a chimeric polypeptide comprising an S-layer polypeptide or a self-assembling fragment thereof and a heterologous polypeptide or peptide,

wherein optionally the recombinant or isolated chimeric polypeptide or self- assembling or self-aggregating fragment thereof has assembled or is self-assembled to form a monomolecular layer, and optionally the S-layer polypeptide or self- assembling fragment thereof is on the carboxy terminal end of the heterologous polypeptide or peptide, and optionally the S-layer polypeptide or self-assembling fragment thereof comprises an S-layer polypeptide endogenous to the

methylotrophic or methanotrophic bacteria, or comprises an S-layer polypeptide from another methylotrophic or methanotrophic bacteria or from another bacteria,

In alternative embodiments, provided are methods for displaying or immobilizing proteins on a methanotrophic S-layer comprising recombinantly engineering a methylotrophic or methanotrophic bacteria to recombinantly express a chimeric polypeptide comprising an S-layer polypeptide or a self-assembling fragment thereof and a heterologous polypeptide or peptide,

wherein optionally the recombinant or isolated chimeric S-layer polypeptide (or self-assembling or self-aggregating fragment thereof) has assembled or is self- assembled to form a monomolecular layer, and optionally the S-layer polypeptide or self-assembling fragment thereof is on the carboxy terminal end of the heterologous polypeptide or peptide, and optionally the S-layer polypeptide or self-assembling fragment thereof comprises an S-layer polypeptide endogenous to the

methylotrophic or methanotrophic bacteria, or comprises an S-layer polypeptide or self-assembling or self-aggregating fragment thereof from another methylotrophic or methanotrophic bacteria or from another bacteria.

In alternative embodiments, provided are recombinant or isolated chimeric S- layer polypeptides, wherein the recombinant or isolated chimeric S-layer polypeptide comprises an S-layer polypeptide or self-assembling or self- aggregating fragment thereof and a heterologous polypeptide or peptide,

wherein optionally the recombinant or isolated chimeric S-layer polypeptide has assembled or is self-assembled to form a monomolecular layer, and optionally the S-layer polypeptide or self-assembling or self-aggregating fragment thereof is on the carboxy terminal end of the heterologous polypeptide or peptide, and optionally the S-layer polypeptide or self-assembling or self-aggregating fragment thereof comprises an S-layer polypeptide endogenous to the methylotrophic or methanotrophic bacteria, or comprises an S-layer polypeptide or self-assembling or self-aggregating fragment thereof from another methylotrophic or methanotrophic bacteria or from another bacteria.

In alternative embodiments, provided are recombinant or isolated

monomolecular layers comprising a plurality of chimeric S-layer polypeptides, wherein the plurality of recombinant or isolated chimeric S-layer polypeptides comprise an S-layer polypeptide or self-assembling fragment thereof and a heterologous polypeptide or peptide,

wherein optionally the plurality of recombinant or isolated chimeric S-layer polypeptide has assembled or is self-assembled to form a monomolecular layer, and optionally the S-layer polypeptide or self-assembling or self-aggregating fragment thereof is on the carboxy terminal end of the heterologous polypeptide or peptide, and optionally the S-layer polypeptide comprises an S-layer polypeptide or self-assembling or self-aggregating fragment thereof endogenous to the methylotrophic or methanotrophic bacteria, or comprises an S-layer polypeptide or self-assembling or self-aggregating fragment thereof from another methylotrophic or methanotrophic bacteria or from another bacteria.

In alternative embodiments, provided are engineered or recombinant methylotrophic or methanotrophic bacteria comprising the recombinant or isolated chimeric S-layer polypeptide as provided herein, or comprising a recombinant or chimeric polypeptide made by the method as provided herein, wherein optionally the S-layer polypeptide or self-assembling or self-aggregating fragment thereof comprises an S-layer polypeptide endogenous to the methylotrophic or

methanotrophic bacteria, or comprises an S-layer polypeptide or self-assembling or self-aggregating fragment thereof from another methylotrophic or methanotrophic bacteria or from another bacteria.

In alternative embodiments, provided are recombinant or chimeric polypeptides assembled or self-assembled to form a monomolecular layer on the extracellular surface of the recombinant methylotrophic or methanotrophic bacteria, and optionally the heterologous polypeptide or peptide is at least partially exposed, or is fully exposed, to an extracellular environment or milieu, and optionally the S-layer polypeptide or self-assembling or self-aggregating fragment thereof is on the carboxy terminal end of the heterologous polypeptide or peptide.

In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, the S-layer polypeptide or self- assembling or self-aggregating fragment thereof (or the finally post-translationally processed S-layer polypeptide) comprises or is a lipoprotein, and optionally the S- layer polypeptide comprises an S-layer polypeptide endogenous to the

methylotrophic or methanotrophic bacteria, or comprises an S-layer polypeptide from another methylotrophic or methanotrophic bacteria or from another bacteria.

In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, the methylotrophic or methanotrophic bacteria is selected the group consisting of a Methylococcus, a Methylomonas, a Methylomicrobium, a Methylobacter, a Methylomarinum, a

Methylovulum, a Methylocaldum, a Methylothermus, a Methylomarinovum, a

Methylosphaera, a Methylocystis, and a Methylosinus bacteria, for example, in alternative embodiments the S-layer polypeptide is derived from a Methylococcus, a Methylomonas, a Methylomicrobium, a Methylobacter, a Methylomarinum, a

Methylovulum, a Methylocaldum, a Methylothermus, a Methylomarinovum, a

Methylosphaera, a Methylocystis, and a Methylosinus bacteria.

In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, wherein the methylotrophic or methanotrophic bacteria is a Methylomicrobium alcaliphilum (M alcaliphilum), or a M. alcaliphilum sp. 20Z, for example, in alternative embodiments the S-layer polypeptide is derived from a Methylomicrobium alcaliphilum (M alcaliphilum), or a M. alcaliphilum sp. 20Z. In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, the chimeric polypeptide, or the recombinant or isolated chimeric S-layer polypeptide, is expressed on the surface of a methylotrophic or methanotrophic bacteria, and the heterologous polypeptide, or the recombinant or isolated chimeric S-layer polypeptide, or S-layer polypeptide or self-assembling or self-aggregating fragment thereof, is at least in part exposed to an extracellular environment or milieu.

In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, the methanotrophic S-layer polypeptide or self-assembling or self-aggregating fragment thereof is isolated or is derived from the methylotrophic or methanotrophic bacteria.

In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, the heterologous polypeptide or peptide, or recombinant or isolated chimeric S-layer polypeptide, comprises or further comprises: an enzyme, a structural protein, a fluorescent or a

chemiluminescent protein, a ligand, a receptor, an antibody or antigen binding protein, or an antigen, a tolerogen or an immunogen.

In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, the enzyme is an industrial enzyme, or the enzyme is a lipase, a protease, a nitrogenase, a hydrogenase, a monooxygenase, an amylase, an isomerase, a cellulase or hemicellulase, a laccase, an epimerase, a decarboxylase, a glucanase or a fl-glucanase, a glucosidase, a phosphorylase, a phosphatase, a halogenase or a dehalogenase, a GlcNAc transferase, an N-acetylglucosamine, a GlcNAc transferase, a neuraminidase or sialidase, a nuclease, a peroxidase or an oxidase, or a metalloproteinase.

In alternative embodiments of the methods or the recombinant or isolated chimeric S-layer polypeptides as provided herein, the chimeric protein, the recombinant or isolated chimeric S-layer polypeptide or self-assembling or self- aggregating fragment thereof, the recombinant or isolated monomolecular layer, or the recombinant methylotrophic or methanotrophic bacteria, act as or are used as or used for: an ultrafiltration membrane; an affinity structure; nitrogen fixation; converting carbon dioxide into methane; methane uptake or methane oxidation; converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro- carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or encapsulation; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based biopharmaceutical.

In alternative embodiments, provided herein are membranes or an enzyme membrane; an ultrafiltration membrane; an affinity structure; a composition or device for nitrogen fixation; a composition or device for converting carbon dioxide into methane; a composition or device for methane uptake or methane oxidation; a composition or device for converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro-carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or

encapsulation; an implant; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based biopharmaceutical, comprising:

a chimeric polypeptide as provided herein,

a recombinant or isolated chimeric S-layer polypeptide or self-assembling or self-aggregating fragment thereof as provided herein,

a recombinant or isolated monomolecular layer as provided herein, or a recombinant methylotrophic or methanotrophic bacteria as provided herein.

In alternative embodiments, provided are recombinant or engineered methylotrophic or methanotrophic bacteria, optionally a Methylomicrobium alcaliphilum ( alcaliphilum), optionally a M. alcaliphilum sp. 20Z, for ectoine ((4S)-2-methyl-l ,4,5,6-tetrahydropyrimidine-4-carboxylic acid) production or synthesis, wherein:

(a) the recombinant or engineered methylotrophic or methanotrophic bacteria comprises an ectoine biosynthetic gene cluster organized as one operon (ectABC-ask), wherein the operon comprises genes encoding: a diaminobutyric acid (DABA) aminotransferase (EctB); a DABA acetyltransferase (EctA), and an ectoine synthase (EctC); and

(b) the recombinant or engineered methylotrophic or methanotrophic bacteria: (i) is engineered to lack or not express a functional EctRl repressor; (ii) comprises an isocitrate lyase/malate synthase fusion under (transcriptionally controlled by) a hps promoter (Phps); and/or, (iii) comprises one or more of the genetic modifications set forth in Table 1 (see Example 2, below).

In alternative embodiments of the recombinant or engineered methylotrophic or methanotrophic bacteria, a doeA-gene encoding ectoine hydrolase is deleted or mutated such that a functional ectoine hydrolase is not expressed.

In alternative embodiments, the recombinant or engineered methylotrophic or methanotrophic bacteria further comprises an exogenous nucleic acid capable of expressing a methanotrophic lipase, or a functional lipase fragment thereof (optionally a LipLl expression plasmid), in the recombinant or engineered methylotrophic or methanotrophic bacteria.

In alternative embodiments, the recombinant or engineered bacteria is engineered such that the ectoine and/or the lipase, or the functional lipase fragment thereof, is expressed as an S layer protein chimeric polypeptide, optionally as a lipase- S protein fusion protein (an S layer-lipase or an S layer-ectoine fusion protein).

In alternative embodiments, the methylotrophic or methanotrophic bacteria is selected the group consisting of a Methylococcus, a Methylomonas, a

Methylomicrobium, a Methylobacter, a Methylomarinum, a Methylovulum, a

Methylocaldum, a Methylothermus, a Methylomarinovum, a Methylosphaera, a

Methylocystis, and a Methylosinus bacteria, and optionally the S layer protein is derived from a Methylococcus, a Methylomonas, a Methylomicrobium, a

Methylobacter, a Methylomarinum, a Methylovulum, a Methylocaldum, a

Methylothermus, a Methylomarinovum, a Methylosphaera, a Methylocystis, or a

Methylosinus bacteria, or optionally the S-layer polypeptide is derived from a

Methylomicrobium alcaliphilum (M alcaliphilum), or a M. alcaliphilum sp. 20Z. In alternative embodiments, the S-layer protein is endogenous to the methylotrophic or methanotrophic recombinant or engineered bacteria. In alternative embodiments, the methylotrophic or methanotrophic bacteria further comprise the ability to express a heterologous or exogenous protein or enzyme, optionally an industrial enzyme; or the S layer protein chimeric polypeptide comprises a protein or an enzyme, optionally an industrial enzyme. In alternative embodiments, the enzyme is a lipase, a protease, a nitrogenase, a hydrogenase, a monooxygenase, an amylase, an isomerase, a cellulase or hemicellulase, a laccase, an epimerase, a decarboxylase, a glucanase or a fl-glucanase, a glucosidase, a phosphorylase, a phosphatase, a halogenase or a dehalogenase, a GlcNAc transferase, an N-acetylglucosamine, a GlcNAc transferase, a neuraminidase or sialidase, a nuclease, a peroxidase or an oxidase, or a metalloproteinase.

In alternative embodiments, the recombinant or engineered methylotrophic or methanotrophic bacteria, or the S layer protein chimeric polypeptide produced by the recombinant or engineered methylotrophic or methanotrophic bacteria, act as or are used as or used for: an ultrafiltration membrane; an affinity structure; nitrogen fixation; converting carbon dioxide into methane; methane uptake or methane oxidation; converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro-carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or encapsulation; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based biopharmaceutical.

In alternative embodiments, provided are: a membrane or an enzyme membrane; an ultrafiltration membrane; an affinity structure; a composition or device for nitrogen fixation; a composition or device for converting carbon dioxide into methane; a composition or device for methane uptake or methane oxidation; a composition or device for converting nitrogen gas to ammonia; a membrane of an enzyme membrane; a micro-carrier; a biosensor; a diagnostic device; a biocompatible surface; a vaccine; a device or composition for targeting, delivery and/or

encapsulation; an implant; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based

biopharmaceutical, comprising: a chimeric polypeptide made by a method (or by a recombinant or engineered methylotrophic or methanotrophic bacteria) as provided herein,

a recombinant or isolated chimeric S-layer polypeptide made by a method (or by a recombinant or engineered methylotrophic or methanotrophic bacteria) as provided herein,

a recombinant or isolated monomolecular layer made by a method (or by a recombinant or engineered methylotrophic or methanotrophic bacteria) as provided herein, or

a recombinant or engineered methylotrophic or methanotrophic bacteria made by a method as provided herein.

The details of one or more embodiments as provided herein are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

All publications, patents, patent applications cited herein are hereby expressly incorporated by reference for all purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings set forth herein are illustrative of embodiments as provided herein and are not meant to limit the scope of the invention as encompassed by the claims.

FIG. 1 A-B illustrate Lipase production in methanotrophic cultures:

FIG. 1A illustrates an image of in vivo activity, or intracellular production, of a lipase gene cloned into an expression vector and introduced into Methylomicrobium sp. AP18, as detected on rhodamine B-containing plates;

FIG. I B illustrates an image of a Coumassie-stained polyacrylamide gel

(PAAG) showing that a lipase gene expression vector showed low levels of lipase expression, e.g., the protein was not visible in lane 5; and an optimized vector with a ribosome binding site (RBS) resulted in clones with significantly higher expression, with the recombinant lipase comprising of about 1 % to 2% of total cell protein, see lanes 6 to 12,

as described in detail in Example 1 , below. FIG. 2A-B illustrate construction and expression of a vector containing a novel genetically altered microbial catalyst producing lipase:

Fig. 2A, schematically illustrates in upper and lower images a lipase enzyme- encoding nucleic acid construct, and a plasmid containing this genetic construct, respectively;

FIG. 2B schematically illustrates how this genetic construct is transferred from E. coli SI 7-1 by conjugation and plasmid transfer into an M. alcaliphilum 20Z strain, followed by recombination and incorporation of the fused gene (the genetic construct) into the chromosome, resulting in expression and export of the fusion protein,

as described in detail in Example 1 , below.

FIG. 3, schematically illustrates the ectoine biosynthesis pathway in M.

alcaliphilum 20Z, including three specific enzymes: diaminobutyric acid (DABA) aminotransferase (EctB), DABA acetyltransferase (EctA), and ectoine synthase (EctC), as described in detail in Example 2, below.

FIG. 4A-C: FIG. 4A graphically illustrates data showing the growth of M alcaliphilum 20ZR in a DASBOX™ mini bioreactor, as batch and chemostat mode; FIG. 4B-C graphically illustrate O2 and CH 4 consumptions and CO2 production in steady-state for bioreactor replicate 1 (FIG. 4B) and bioreactor replicate 2 (FIG. 4C), as described in detail in Example 2, below.

FIG. 5A-B: FIG. 5 A illustrates a chromatogram of ImM ectoine solution, and

FIG. 5B illustrates a chromatogram of 20ZR cell extract, as described in detail in Example 2, below.

FIG. 6 illustrates a chromatogram of an HPLC analysis of 20Z R wild-type as a batch culture, as described in detail in Example 2, below.

FIG. 7 illustrates a chromatogram of an HPLC analysis of 20Z R AectR strain in batch culture, as described in detail in Example 2, below.

FIG. 8 illustrates a chromatogram of an HPLC analysis of 20Z R AectRAdoeA strain (batch culture), as described in detail in Example 2, below.

FIG. 9A-B illustrates chromatograms HPLC analyses that reveal the highest levels of ectoine: FIG. 9A illustrates HPLC analysis of HPLC analysis of 20Z::PSL- LlAectR (in batch culture); and, FIG. 9B illustrates 20Z R PsL-LlAectR AdoeA strain (in batch culture), as described in detail in Example 2, below. FIG. l OA-C illustrate data from the cultivation of TWC#G2-3 as performed in a DASBOX™ mini bioreactor, and collected data is shown as: FIG. 10A graphically illustrates growth of M. alcaliphilum 20Z R PsL-LlAectRAdoeA as batch and chemostat mode; FIG. l OB-C graphically illustrate O2 and CH 4 consumptions and CO2 production in steady-state for bioreactor replicate 1 (FIG. 10B) and bioreactor replicate 2 (FIG. I OC), as described in detail in Example 2, below.

FIG. 1 1 illustrates LipLl preparations, as described in detail in Example 2, below.

FIG. 12 illustrates an image of production of the GFP-comprising recombinant protein by the 20ZR-L1-SL strain, as described in detail in Example 3, below.

FIG. 13 schematically illustrates exemplary genetic constructs containing self- cleavable inteins, which were inserted between the lipase and the S-layer, as described in detail in Example 3, below.

FIG. 14 illustrates an image of extracellular lipase localization and activity in a Rhodamine B assay with TWC#1 1 (top left of the plate), wild type (WT) (top right of the plate) and lipL- Ssp DnaB intein mutants (bottom of the plate), as described in detail in Example 3, below.

FIG. 15 illustrates an image of a gel separating amplified nucleic acid from a PCR-genotyping of TWC#G14 20ZR:: SL N ter-LipLl- Mxe GyrA strain: FIG. 15 left: LipL locus, indicating that LipL-MxeGyrA- was incorporated into the genome; FIG. 15 right: LipL-S-layer locus from showing that LipL gene was incorporated in correct orientation, as LipL— MxeGyrA-S-layer, as described in detail in Example 3, below.

FIG. 16A-E illustrate images of cells harboring various GFP fusions: FIG. 16A-B illustrate M. alcaliphilum 20ZR wild type (FIG. 16A, phase; FIG. 16B, GFP ex450-490nm; em 500-550nm); FIG. 16C, 20ZR:: GFP-300Cter SL p; FIG. 16D, GFP- l OOCtersLp; FIG. 16E, GFP-12CtersLP, as described in detail in Example 3, below.

Like reference symbols in the various drawings indicate like elements.

Reference will now be made in detail to various exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. The following detailed description is provided to give the reader a better understanding of certain details of aspects and embodiments of the invention, and should not be interpreted as a limitation on the scope of the invention. DETAILED DESCRIPTION

Chimeric polypeptides comprising an S-laver polypeptide, or self-assembling or self-aggregating fragments thereof, and a heterologous polypeptide or peptide In alternative embodiments, provided are compositions and methods for making a chimeric polypeptide comprising an S-layer polypeptide, or self- assembling or self-aggregating fragments thereof, and a heterologous polypeptide or peptide. In alternative embodiments, the compositions and methods comprise recombinantly engineering a methylotrophic or methanotrophic bacteria to recombinantly express a chimeric polypeptide comprising an S-layer polypeptide, or self-assembling or self-aggregating fragments thereof, and a heterologous polypeptide or peptide. In alternative embodiments, the S-layer polypeptide, or self-assembling or self-aggregating fragments thereof, is engineered to be amino terminal to, internal to, or carboxy terminal to, the heterologous polypeptide or peptide.

Also provided are compositions and methods for displaying or immobilizing proteins on a methanotrophic S-layer. In alternative embodiments, provided are compositions and methods comprising a recombinant or isolated chimeric S-layer polypeptide, wherein the recombinant or isolated chimeric S-layer polypeptide comprises an S-layer polypeptide, or self-assembling or self-aggregating fragments thereof, and a heterologous polypeptide or peptide. In alternative embodiments, the S-layer polypeptide, or self-assembling fragments or self- aggregating thereof, is engineered to be amino terminal to, internal to, or carboxy terminal to, the heterologous polypeptide or peptide.

Also provided are recombinant or isolated monomolecular layers comprising a chimeric S-layer polypeptide, where the S-layer polypeptide can be a self- assembling or self-aggregating fragment thereof. In alternative embodiments, provided are compositions and methods comprising recombinant methylotrophic or methanotrophic bacteria comprising assembled or self-assembled recombinant or isolated chimeric S-layer polypeptides. In alternative embodiments, the S-layer polypeptides, or self-assembling or self-aggregating fragments thereof, are lipoproteins, for example, the S-layer polypeptides can be lipoproteins as post- translationally modified. Provided herein for the first time are applications of bacterial extracellular methanotrophic S-layer proteins, or self-assembling or self-aggregating fragments thereof, for the expression of heterologous proteins, including extracellular expression of a heterologous protein on the surface of a methanotrophic S-layer protein-expressing bacteria. In alternative embodiments, methanotrophic S- layers, either isolated (e.g., as described in Khmelenina VN, et al (1999) Arch. Microbiol. 172: 321 -329) or as surface-expressed methanotrophic S-layers, are used as an anchor or expression vehicle for the extracellular production, expression and use of proteins, e.g., enzymes such as industrial enzymes, e.g. proteinases, lipases, amylases, celluloses, fl-glucanase, as well as for their use as enzymatic systems for bioremediation and bio-mitigations, e.g. dehalogenases and peroxidases, and protein-based biopharmaceuticals.

We identified the gene encoding the major S-layer protein in M. alcaliphilum sp. 20Z using quantitative proteomics on purified S-layer preparations. The S-layer protein appears to be the main cellular protein, comprising up to 20% of total cellular protein. Provided herein are recombinant S-layers and uses of recombinant S-layers as an efficient chimeric polypeptide or cellular system for use as an ultrafiltration membrane; an affinity structure; a membrane of an enzyme membrane; a micro- carrier, a biosensor; a diagnostic device, a biocompatible surface, a vaccine, a device or composition for targeting, delivery and/or encapsulation; an anchor for extracellular production of a small molecule or a protein (optionally an enzyme or a structural protein), an enzymatic system for a bioremediation or a bio-mitigation, or a pharmaceutical or a protein-based biopharmaceutical

In alternative embodiments of compositions and methods as provided herein, chimeric proteins are delivered and expressed outside of the bacterial cell, e.g., chimeric proteins as provided herein are expressed extracellularly can be completely or partially exposed to an extracellular milieu. In alternative embodiments, systems as provided herein are also used to produce enzymatic or structural membranes.

We developed a protocol for genetic alterations of the S-layers for heterologous expression of proteins on a bacterial cell surface. Overview of the approach is shown in FIG. 2. S-laver polypeptides, or self-assembling or self-aggregating fragments thereof Exemplary S-layer polypeptides, or self-assembling or self-aggregating fragments thereof, can comprise or consist of:

SEP ID NO:8

GAN QVAALQTAAGGAFDGTFFDVLSNFTVEASFEVLSQFDPETTLFVANPIV EDVNFDIVRDVNGDVTSVSVSGGSSLGFAQSDAGFQELLEAGQVTEVVFENV GSLNSILVSGNFVGSYDAGGIFYESTFEFGANAGSVAEGVGTDGNIFTIAEFTA GAAASDILDFTAMPVDNTNTAPATGHEFIAVGTEASIGDDATIIVFTAGVAAD AATIVTQFADGAGDFRSADATAR ADFAIDSQLIFLIDDGAGNTGVWYWDDT VGAVGDGIVDADELSQIAQLTGVVTAELTVDNFVLA,

SEP ID NO:9

TIIVFTAGVAADAATIVTQFADGAGDFRSADATARNADFAIDSQLEFLIDDGAG NTGVWYWDDTVGAVGDGIVDADELSQIAQLTGVVTAELTVDNFVLA,

SEP ID NP: 10

AGNTGVWYWDDTVGAVGDGIVDADELSQIAQLTGVVTAELTVDNFVLA, SEP ID NP: 1 1

VGAVGDGIVDADELSQIAQLTGVVTAELTVDNFVLA,

SEP ID NP: 12

TAELTVDNFVLA, or

the S-layer polypeptide as encoded by the nucleic acid sequence of SEQ ID

NP:5, SEQ ID NP:7 and/or SEQ ID NP:7, as indicated below.

Exemplary S-layer polypeptide self-assembling or self-aggregating fragments thereof also can comprise or consist of any self-assembling fragment, which can be readily identified by routine screening of an S-layer polypeptide.

Exemplary S-layer polypeptides or self-assembling or self-aggregating fragments thereof also comprise S-layer polypeptide sequences as described herein but comprising at least one amino acid residue conservative substitution, wherein optionally the at least one conservative substitution comprises replacement of an aliphatic amino acid with another aliphatic amino acid; replacement of a serine with a threonine or vice versa; replacement of an acidic residue with another acidic residue; replacement of a residue bearing an amide group with another residue bearing an amide group; exchange of a basic residue with another basic residue; or, replacement of an aromatic residue with another aromatic residue, or a combination thereof, and optionally the aliphatic residue comprises Alanine, Valine, Leucine, Isoleucine or a synthetic equivalent thereof; the acidic residue comprises Aspartic acid, Glutamic acid or a synthetic equivalent thereof; the residue comprising an amide group comprises Aspartic acid, Glutamic acid or a synthetic equivalent thereof; the basic residue comprises Lysine, Arginine or a synthetic equivalent thereof; or, the aromatic residue comprises Phenylalanine, Tyrosine or a synthetic equivalent thereof.

Recombinant methylotrophic or methanotrophic bacteria to express heterologous proteins

In alternative embodiments, provided are compositions and methods using recombinant methylotrophic or methanotrophic bacteria, optionally a

Methylomicrobium alcaliphilum (M. alcaliphilum), optionally a M. alcaliphilum sp. 20Z, for ectoine ((4iS)-2-methyl-l ,4,5,6-tetrahydropyrimidine-4-carboxylic acid), for the production or synthesis of a protein, e.g., an ectoine (l ,4,5,6-tetrahydro-2-methyl- 4-pyrimidinecarboxylic acid), or an enzyme, e.g., a lipase.

Provided herein are new mitigation strategies for effective conversion of atmospheric greenhouse gases (e.g., CO2 or methane) to next generation chemicals which are a new technology for the reduction/stabilization of global warming. In alternative embodiments, provided are new biological processes for efficient utilization of methane, e.g., coal-mine methane, and also optionally comprising the simultaneous production of e.g., amino acids; osmo-protecting, moisturizing and hydrating agents; and, industrial and/or digestive enzymes. In alternative

embodiments, these processes provide both environmental (reduction of the global warming impact) and economical (production of value-added compounds) benefits. In alternative embodiments, provided are:

i) Recombinant or engineered obligate methane-oxidizing bacteria

(methanotrophs) and methanotrophic catalysts to enhance ectoine production capabilities in the cells;

ii) novel genetically altered obligate methane-oxidizing bacteria

(methanotrophs) and methanotrophic catalysts that produce a lipase or an ectoine; iii) uses of stranded methane emissions, such as abandoned coal mines, to "feed" recombinant obligate methane-oxidizing bacteria (methanotrophs) as provided herein methane (to provide methane as a carbon source) for e.g., methane uptake or methane oxidation.

In alternative embodiments, methods provided herein comprise use of biological systems (microbial cells, including recombinant obligate methane- oxidizing bacteria (methanotrophs), or enzymes as provided herein) as catalysts for conversion of atmospheric greenhouse gases (e.g., CO2 or methane). In alternative embodiment, methods provided herein comprise use of obligate methane-oxidizing bacteria (methanotrophs), which are a highly-specialized group of bacteria utilizing methane (CH 4 ) as a sole source of carbon and energy. Methanotrophs are

ubiquitously distributed in nature and play an important role in global carbon cycling. Also, these organisms are of great importance for global warming because they reduce CH 4 emissions from natural ecosystems. In alternative embodiment, methods provided herein comprise use of methanotrophs, including recombinant obligate methane-oxidizing bacteria (methanotrophs), for the commercial production of both bulk and fine chemicals and bioremediation of hazardous pollutants such as halogenated methanes and trichloroethylene (TCE).

In alternative embodiment, methods provided herein comprise use of recombinant or engineered aerobic methanotrophic bacteria for

controlling/monitoring methane emissions from methane-producing zones such as coal mining, feedlots, etc. In alternative embodiment, methods provided herein are a bacteria-based methane reduction technology that can be cost effective and can be combined with synthesis of valuable commercial products, such as biomass, amino acids, vitamins, and alternative fuels and chemicals.

In alternative embodiments, provided are engineered biological processes, and compositions and methods for practicing same, for the reduction of the methane content in defined space, e.g., a coal mine or industrial (e.g., factory) environment. These embodiments provide environmental (e.g., reduction of the global warming impact), safety and economical (e.g., production of value-added compounds) benefits. In alternative embodiments, provided is a microbial catalyst for efficient utilization of coal mine methane and, optionally, also for the simultaneous production of ectoine and/or lipase. In alternative embodiments, compositions and methods as provided herein, including recombinant obligate methane-oxidizing bacteria (methanotrophs) as provided herein, use microbial catalysts to enhance ectoine production capabilities up to 10% cell dry weight (CDW). In alternative embodiments, provided are methods for the construction of a novel genetically altered microbial catalyst producing lipase, optionally up to 10% of CDW. Also provided is the testing of conditions relevant to small scale, mobile, field applications at sites of stranded methane emissions, such as abandoned coal mines and identification of lab-scale cultivation parameters suitable for implementation of the proposed technology on site.

Methanotrophic S-Layers and S-Layer-Based Enzyme Immobilization

In alternative embodiments, compositions and methods as provided herein use S-layers, which are a well-recognized microbial product with very broad

biotechnological applications, see e.g., Egelseer et al., 2009, NanoBioTechnology (Shoseyov O & Levy I, eds), pp. 55-86. Humana Press, Totowa, NJ; or Egelseer et al., The Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, Vol. 7 (Flickinger MC, ed.), pp. 4424-4448. John Wiley & Sons, Inc., Hoboken, NJ. In alternative embodiments, compositions and methods as provided herein comprise the construction of fusion proteins comprising S-layer proteins with attached enzymes (or other proteins) for the production of immobilized biocatalysts. In alternative embodiments, S-layers derived from Methylomicrobium species are used, including M. album BG8, M. alcaliphilum 20Z and M. buryatense. Formation of S- layers has been observed in all tested Methylomicrobium species. M. album BG8, M. alcaliphilum 20Z and M. buryatense form S-layers consisting of cup-shaped subunits arranged in p6 symmetry [Jeffries and Wilkinson 1978, Khmelenina et al., 1999]. In alternative embodiments, S-layer proteins are positioned carboxy terminal to the attached protein, although they can also be internal or amino terminus positioned.

We identified the gene encoding the major S-layer protein in M. alcaliphilum sp. 20Z using quantitative proteomics on purified S-layer preparations; see Example 2, below. The S-layer protein appears to be the main cellular protein, comprising up to 20% of total cellular protein. In alternative embodiments, compositions and methods as provided herein use S-layers as an efficient cellular system to deliver proteins outside of the cell. In alternative embodiments, this system is also used to produce biological filters or purification systems, and enzymatic membranes.

Generating and Manipulating Nucleic Acids

In alternative embodiments, nucleic acids used to practice methods as provided herein, or to make compositions or recombinant bacteria as provided herein, are made, isolated and/or manipulated by, e.g., cloning and expression of cDNA libraries, amplification of message or genomic DNA by PCR, and the like. The nucleic acids and genes used to practice this invention, including DNA, RNA, iRNA, antisense nucleic acid, cDNA, genomic DNA, vectors, viruses or hybrids thereof, can be isolated from a variety of sources, genetically engineered, amplified, and/or expressed/ generated recombinantly. Recombinant polypeptides generated from these nucleic acids can be individually isolated or cloned and tested for a desired activity. Any recombinant expression system or gene therapy delivery vehicle can be used, including e.g., viral (e.g., AAV constructs or hybrids) bacterial, fungal, mammalian, yeast, insect or plant cell expression systems or expression vehicles.

Alternatively, nucleic acids used to practice methods as provided herein, or to make compositions or recombinant bacteria as provided herein, can be synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Adams (1983) J. Am. Chem. Soc. 105:661 ; Belousov (1997) Nucleic Acids Res. 25:3440- 3444; Frenkel (1995) Free Radic. Biol. Med. 19:373-380; Blommers (1994)

Biochemistry 33 :7886-7896; Narang (1979) Meth. Enzymol. 68:90; Brown (1979) Meth. Enzymol. 68: 109; Beaucage (1981) Terra. Lett. 22: 1859; U.S. Patent No.

4,458,066.

Techniques for the manipulation of nucleic acids used to practice methods as provided herein, or to make compositions or recombinant bacteria as provided herein, such as, e.g., subcloning, labeling probes (e.g., random-primer labeling using Klenow polymerase, nick translation, amplification), sequencing, hybridization and the like are well described in the scientific and patent literature, see, e.g., Sambrook, ed., MOLECULAR CLONING: A LABORATORY MANUAL (2ND ED.), Vols. 1 -3, Cold Spring Harbor Laboratory, (1989); CURRENT PROTOCOLS IN

MOLECULAR BIOLOGY, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY: HYBRIDIZATION WITH NUCLEIC ACED PROBES, Part I. Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993).

Another useful means of obtaining and manipulating nucleic acids used to practice methods as provided herein, or to make compositions or recombinant bacteria as provided herein, is to clone from genomic samples, and, if desired, screen and re- clone inserts isolated or amplified from, e.g., genomic clones or cDNA clones.

Sources of nucleic acid used in the methods of the invention include genomic or cDNA libraries contained in, e.g., mammalian artificial chromosomes (MACs), see, e.g., U.S. Patent Nos. 5,721 ,1 18; 6,025, 155; human artificial chromosomes, see, e.g., Rosenfeld (1997) Nat. Genet. 15:333-335; yeast artificial chromosomes (YAC); bacterial artificial chromosomes (BAC); PI artificial chromosomes, see, e.g., Woon (1998) Genomics 50:306-316; Pl-derived vectors (PACs), see, e.g., Kern (1997) Biotechniques 23: 120- 124; cosmids, recombinant viruses, phages or plasmids.

In alternative embodiments, a heterologous peptide or polypeptide joined or fused to a protein made by a method or a recombinant bacteria as provided herein can be an N-terminal identification peptide which imparts a desired characteristic, such as fluorescent detection, increased stability and/or simplified purification. Peptides and polypeptides made by a method or a recombinant bacteria as provided herein can also be synthesized and expressed as fusion proteins with one or more additional domains linked thereto for, e.g., producing a more immunogenic peptide, to more readily isolate a recombinantly synthesized peptide, to identify and isolate antibodies and antibody-expressing B cells, and the like. Detection and purification facilitating domains include, e.g., metal chelating peptides such as polyhistidine tracts and histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle WA). The inclusion of a cleavable linker sequences such as Factor Xa or enterokinase (Invitrogen, San Diego CA) between a purification domain and the motif-comprising peptide or polypeptide to facilitate purification. For example, an expression vector can include an epitope-encoding nucleic acid sequence linked to six histidine residues followed by a thioredoxin and an enterokinase cleavage site (see e.g., Williams (1995) Biochemistry 34: 1787-1797; Dobeli (1998) Protein Expr. Purif. 12:404-414). The histidine residues facilitate detection and purification while the enterokinase cleavage site provides a means for purifying the epitope from the remainder of the fusion protein. Technology pertaining to vectors encoding fusion proteins and application of fusion proteins are well described in the scientific and patent literature, see e.g., Kroll (1993) DNA Cell. Biol., 12:441 -53.

Nucleic acids or nucleic acid sequences used to practice embodiments as provided herein can be an oligonucleotide, nucleotide, polynucleotide, or to a fragment of any of these, to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent a sense or antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material, natural or synthetic in origin. Compounds use to practice this invention include "nucleic acids" or "nucleic acid sequences" including oligonucleotide, nucleotide, polynucleotide, or any fragment of any of these; and include DNA or RNA (e.g., mRNA, rRNA, tRNA, iRNA) of genomic or synthetic origin which may be single-stranded or double- stranded; and can be a sense or antisense strand, or a peptide nucleic acid (PNA), or any DNA-like or RNA-like material, natural or synthetic in origin, including, e.g., iRNA, ribonucleoproteins (e.g., e.g., double stranded iRNAs, e.g., iRNPs). Nucleic acids or nucleic acid sequences used to practice embodiments as provided herein include nucleic acids or oligonucleotides containing known analogues of natural nucleotides. Nucleic acids or nucleic acid sequences used to practice embodiments as provided herein include nucleic-acid-like structures with synthetic backbones, see e.g., Mata (1997) Toxicol. Appl. Pharmacol. 144: 189-197; Strauss-Soukup (1997) Biochemistry 36:8692-8698; Samstag (1996) Antisense Nucleic Acid Drug Dev 6: 153-156. Nucleic acids or nucleic acid sequences used to practice embodiments as provided herein include "oligonucleotides" including a single stranded

polydeoxynucleotide or two complementary polydeoxynucleotide strands that may be chemically synthesized. Compounds use to practice this invention include synthetic oligonucleotides having no 5' phosphate, and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide can ligate to a fragment that has not been

dephosphorylated. In alternative aspects, methods and recombinant bacteria as provided herein comprise use of "expression cassettes" comprising a nucleotide sequences capable of affecting expression of the nucleic acid, e.g., a structural gene or a transcript (e.g., encoding an S-layer protein, and/or an enzyme such as a lipase or a ectoine) in a host compatible with such sequences, such as e.g., methylotrophic and methanotrophic cells such as Methylococcus, Methylothermus, and Methylomicrobium bacterial cells. Expression cassettes can include at least a promoter operably linked with the polypeptide coding sequence or inhibitory sequence; and, in one aspect, with other sequences, e.g., transcription termination signals. Additional factors necessary or helpful in effecting expression may also be used, e.g., enhancers.

In alternative aspects, expression cassettes used to practice embodiments as provided herein also include plasmids, expression vectors, recombinant viruses, any form of recombinant "naked DNA" vector, and the like. In alternative aspects, a "vector" used to practice embodiments as provided herein can comprise a nucleic acid that can infect, transfect, transiently or permanently transduce a cell. In alternative aspects, a vector used to practice embodiments as provided herein can be a naked nucleic acid, or a nucleic acid complexed with protein or lipid. In alternative aspects, vectors used to practice embodiments as provided herein can comprise viral or bacterial nucleic acids and/or proteins, and/or membranes (e.g., a cell membrane, a viral lipid envelope, etc.). In alternative aspects, vectors used to practice

embodiments as provided herein can include, but are not limited to replicons (e.g., RNA replicons, bacteriophages) to which fragments of DNA may be attached and become replicated. Vectors thus include, but are not limited to RNA, autonomous self-replicating circular or linear DNA or RNA (e.g., plasmids, viruses, and the like, see, e.g., U.S. Patent No. 5,217,879), and can include both the expression and non- expression plasmids. In alternative aspects, the vector used to practice embodiments as provided herein can be stably replicated by the cells during mitosis as an autonomous structure, or can be incorporated within the host's genome.

In alternative aspects, "promoters" used to practice this invention include all sequences capable of driving transcription of a coding sequence in a bacterial cell, e.g., a methylotrophic or methanotrophic bacterial cell. Thus, promoters used in the constructs of the invention include c/s-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene. For example, a promoter used to practice this invention can be a c/ ' s-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5' and 3' untranslated regions, or an intronic sequence, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) transcription.

Bacterial Growth Conditions

Any set of known growth conditions can be used to practice embodiments as provided herein, for example, as described in US 2016-0237398 Al , or

WO/2015/058179; exemplary growth conditions and parameters are described in Example 1 and Example 2, below. Any known growth conditions for culturing methylotrophic and methanotrophic cells such as Methylococcus, Methylothermus , and Methylomicrobium bacterial cells can be used.

The invention will be further described with reference to the following examples; however, it is to be understood that the invention is not limited to such examples.

EXAMPLES

Example 1 : Exemplary Methods and Compositions

This example provides exemplary methods for making compositions and bacterial cells as provided herein.

Methanotrophic strain best suited for biotechnological exploration.

Two methanotrophic cultures were established as the most promising industrial strains: Methylomicrobium alcaliphilum sp. 20Z and Methylomicrobium buryatenses 5G (see, e.g., Ojala et al., 201 1 ; Kalyuzhnaya et al., 2015; Puri et al., 2015; Strong et al., 2016). While M. buryatenses 5G represents a fast-growing methanotroph (Td=3h), M. alcaliphilum sp. 20Z was found to be more stable at high- cell density. Furthermore, the latter strain has a greater potential for accumulation of extractable products (ectoine, glutamate, sucrose). Based on those characteristics, M. alcaliphilum sp. 20Z was selected. Genomes of both M alcaliphilum sp. 20Z and M. buryatenses 5G were sequenced (see e.g., Vuilleumier et al., 2012). Genetic tools for efficient metabolic engineering of the strains were developed or optimized (see e.g., Ojala et al., 201 1 ; Puri 2015; Henard et al., 2016). The current toolbox includes: vectors for gene knockouts (incorporated via bi-parental mating or electroporation); vectors for heterologous expression with low, intermediate and high levels of expression; and vectors with tunable promoters. Provided is a whole-genome reconstruction of the M. alcaliphilum sp. 20Z metabolic network, which is refined via metabolomics on cells grown in liquid culture, providing a computation framework for additional optimization of metabolic pathways in producing traits.

Methanotrophic S-Layers an S-Layer-Based Enzyme Immobilization

Here we describe use of S-layers as an efficient cellular system to deliver proteins outside of the cell. In alternative embodiments, this system is also used to produce biological filters and enzymatic membranes, or purification systems.

We identified the gene encoding the major S-layer protein in M. alcaliphilum sp. 20Z using quantitative proteomics on purified S-layer preparations. The S-layer protein appears to be the main cellular protein, comprising up to 20% of total cellular protein.

Lipase production in methanotrophic cultures.

Lipase production by Bacillus stearothermophilus LI [Kim et al. 2000] is optimal at 60°C to 65°C and pH 9 to pH 1 1 [Kim et al. 1998]. This lipase has been shown to have a 2 to 4 times higher activity for saturated fatty acids compared to monounsaturated ones. This makes LI lipase a good candidate for hydrolysis of solid lipids like beef tallow and palm oil which are known to be difficult targets for currently used lipases. LI lipase gene was codon optimized for efficient expression in methanotrophic host. The gene was synthetized and cloned into an expression vector and introduced into Methylomicrobium sp. API 8 for intracellular production; it's in vivo activity was detected on rhodamine B-containing plates (Fig. 1A). However, this construct showed low levels of lipase expression, i.e., the protein was not visible on Coumassie-stained polyacrylamide gel (PAAG) (Fig I B, lane 5).

In order to increase the expression, optimization of its ribosome binding site using in-house protocol was performed resulting in selection of clones with significantly higher expression (LI comprising of about 1 % to 2% of total cell protein (Fig IB, lanes 6 to 12)).

Construction of a novel genetically altered microbial catalyst producing lipase (up to lOVo ofCDW)

In order to further increase lipase production and simultaneously simplify its purification, an M. alcaliphilum 20Z strain expressing LI lipase extracellularly as a fusion with S-layer protein is constructed. The fusion protein is introduced into the M alcaliphilum 20Z chromosome using its native genetic elements to ensure high expression and proper extracellular localization of the fusion.

To facilitate lipase isolation, a site for HRV 3C protease is introduced between the S-layer and lipase polypeptides allowing the fusion protein to be cleaved with HRV 3C protease to release functional LI lipase into solution, a genetic construct encoding this fusion protein is schematically illustrated in Fig. 2A, upper and lower images.

A plasmid containing this genetic construct is transferred from E. coli SI 7-1 by conjugation and plasmid transfer into an M. alcaliphilum 20Z strain, followed by recombination and incorporation of the fused gene (the genetic construct) into the chromosome, resulting in expression and export of the fusion protein, as

schematically illustrated in FIG. 2B.

Methods.

The genetic manipulation includes the following set of steps:

1. PCR amplification of the codon optimized LI -gene and pCM433 vector;

2. PCR amplification of the S-layer upstream and downstream flanks. All reactions are done with a Q5 high-fidelity DNA polymerase;

3. Gibson assembly and transformation into E.coli NEB 5-alpha are performed using NEBuilder HiFi™ DNA assembly kit (NEBlabs);

4. Selected clones are validated by PCR (with Tag-polymerase, Invitrogen) and sequenced (at Eton Bioscience Center);

5. Validated plasmids are subcloned into E.coli S 17-1 via transformation; 6. Biparental mating with M. alcaliphilum and clone selection is set up as described by Ojala et al. [201 1];

7. Genotype characteristics is validated by PCR; 8. Phenotype characteristics of new traits is evaluated via scanning electron microscopy (SEM), lipase activity (rhodamine B assay) and SDS-PAAG

electrophoresis.

Example 2: Exemplary Methods and Compositions

This example provides exemplary methods for making compositions and bacterial cells as provided herein, and practicing methods as provided herein.

Provided herein are new mitigation strategies for effective conversion of atmospheric greenhouse gases (e.g., CO2 or methane) to next generation chemicals which are a new technology for the reduction/stabilization of global warming. In alternative embodiments, methods provided herein comprise use of biological systems (microbial cells or enzymes) as catalysts for conversion of e.g., CO2 or methane.

Methanotrophic strain best suited for biotechnological exploration

Two methanotrophic cultures were established as the most promising industrial strains: Methylomicrobium alcaliphilum sp. 20Z and Methylomicrobium buryatenses 5G [Ojala et al., 201 1 ; Kalyuzhnaya et al., 2015; Puri et al., 2015; Strong et al., 2016]. While M. buryatenses 5G represents a fast-growing methanotroph (Td=3h), M. alcaliphilum sp. 20Z was found to be more stable at high-cell density. Furthermore, the latter strain has a greater potential for accumulation of extractable products (ectoine, glutamate, sucrose). Based on those characteristics, M

alcaliphilum sp. 20Z was selected.

Genomes of both M. alcaliphilum sp. 20Z and M. buryatenses 5G were sequenced (see e.g., Vuilleumier et al., 2012). Genetic tools for efficient metabolic engineering of the strains were developed or optimized (see e.g., Ojala et al., 201 1 ; Puri 2015; Henard et al., 2016). The current toolbox includes: vectors for gene knockouts (incorporated via bi-parental mating or electroporation); vectors for heterologous expression with low, intermediate and high levels of expression; and vectors with tunable promoters. Provided is a whole-genome reconstruction of the M. alcaliphilum sp. 20Z metabolic network, which is refined via metabolomics on cells grown in liquid culture, providing a computation framework for additional optimization of metabolic pathways in producing traits. Ectoine: commercial potential and production in Methylomicrobium alcaliphilum sp. 20Z.

Provided herein are methods for making ectoine (( S)-2-methyl- 1 ,4,5,6- tetrahydropyrimidine-4-carboxylic acid), which is a well-known microbial compatible solute. Ectoine can be used as a chemical chaperone for industrial enzymes or pharmaceuticals, a cryoprotectant, a hydrator in skin-care products, a cell stabilizer for medical treatments, and a crop-protecting agent [Graf et al., 2008; Pastor et al., 2010].

Methylomicrobium alcaliphilum 20Z copes with high salinity in its growth medium by accumulating ectoine (up to 8% CDW), glutamate, and sucrose (up to 12% CDW) as major osmoprotective compounds. This strain was used as the most promising culture for ectoine production, see e.g., Totsenko et al, 2005. The ectoine biosynthesis pathway in M. alcaliphilum 20Z is similar to the pathway employed by halophilic/halotolerant heterotrophs and involves three specific enzymes:

diaminobutyric acid (DABA) aminotransferase (EctB), DABA acetyltransferase

(EctA), and ectoine synthase (EctC) (see e.g., Reshetnikov et al., 201 1), as illustrated in FIG. 3. The ectoine biosynthetic gene cluster is organized as one operon

{ectABCask) and is controlled by a negative transcriptional regulator (EctRl, marR- family). The EctRl protein represses the expression of the ectABC-ask operon from the ectApi promoter.

Baseline parameters and initial rates/titer of ectoine production for the wild strain (or wild type, WT) include: biomass yield (Y: 0.46), growth rate (0.09 h-1), 02/substrate ratios (1.54), ectoine titer (1.9% DCW).

Strains lacking the ectR-regulator and expressing LipL J were constructed

A set of strains lacking the ectR-regulator and expressing LipLl were constructed. The strain lacking the ectR-regulator showed an ectoine titer similar to the WT; however, the strain demonstrated overproduction of a compound X, which was identified as a product of ectoine degradation. The deletion of the doeA-gene encoding ectoine hydrolase in the AectR background (Strain 20Z R AectRAdoeA) eliminated compound X accumulation and led to an increased production of ectoine (2.4% DCW). A LipLl expression plasmid (PSL-L1 construct) was subsequently incorporated into 20Z R P S L-LlAectR (to create TWC#G2) and 20Z R P S L- LlAectRAdoeA (to create TWC#G2-3) which express LipLl . The specific activity of methanotrophic lipase is 1.2 U g "1 CDW.

The growth rates of the strains TWC#G2, TWC#G2-2 and TWC#G2-3 are similar to WT. The strains TWC#G2-2 and TWC#G2-3 showed elevated ectoine (2.4% and 3.1 %) DCW, respectively), which corresponds to a production rates of 2.2 and 2.8 mg g "1 CDW h "1 , respectively. The chemostat culture of TWC#G2-3 displays similar properties to WT growth kinetics and shows ectoine production as 3.3 mg g "1 CDW h "1 . Thus TWC#G2-3 shows 1.7/1.8-fold improvement. The specific activity of methanotrophic lipase in TWC#G2-3 is 1.2 U g -1 CDW.

Expression and purification of LipLl protein. LipL was expressed and purified. Twelve mg of the protein with the specific activity of 589 U/mg were produced.

Table 1. List of exemplary genetic modifications in M. alcaliphilum sp. 20Z R .

Deletion: Aams::kan MALCv4_06 Significant decrease in WO20150581 Amylosucrose 17 intracellular glycogen 79 Al

accumulation and increase

(15-20%) in sucrose

accumulation. No growth

defects

Deletion: EPS Aeps: :kan MALCv4_06 TBD New biosynthesis 18-

MALCv4_06

19

Deletion: ectoine AdoeA MALCv4_32 The strain was constructed in New hydrolase 46 20Z R AectR background

Overexpression of Trait TWC#G1 No growth defects. Culture New lipase 20Z R :: SLcter-LipLl displays lipase activity (1.2

U g-1 DCW)

EctR deletion 20Z R AectR Unmarked 20Z R AectR strain New

was constructed. No growth

defects. Accumulation of

products of ectoine

degradation. No/mild

increase in ectoine

accumulation.

EctR deletion and Trait TWC#G2 No growth defects. New overexpression of 20Z R AectR:: SLcter-LipLl Accumulation of products of

lipase ectoine degradation. No/mild

increase in ectoine

accumulation.

EctR deletion and Trait TWC#G2-2 No growth defects. Increase New

DoeA deletion 20Z R AectR AdoeA production of ectoine (1.6

fold increase). EctR deletion and Trait TWC#G2-3 No growth defects. Increase New overexpression of 20Z R :: SLcter-LipLl production of ectoine (1.7

lipase AectR AdoeA (C-term) fold increase). Culture

displays lipase activity (1.2

U g-1 DCW).

Overexpression of Trait TWC#G2-4 Improved growth (25% New, related Icl/ms 20Z R : :Phps-icl-ms higher growth rate). to ectoine.

Increased production of

ectoine.

Overexpression of Trait TWC#G2-v5 and v6 improved ectoine production New icl/ms 20Z R AectR AdoeA: :P hps -icl- (5.2%). No growth defects.

ms

Overexpression of Traits TWC#G3 - TWC#G5 No growth defects. 6.2% New ectoine 20Z R :: Phps-ectABC DCW ectoine

biosynthesis 20Z R 20Z R SLcter-

LipLl AectR AdoeA:: P op t- ectABC

Multiple deletions TWC#G6-TWC#10 Traits with improved ectoine New

20Z R SLcter-LipLl AectR production

Asps Aglgl Aglg2 Aeps

AdoeA:: P op t-ectABC-icl-ms

Multiple deletions Traits TWC#20 Traits with improved ectoine New

20Z R AectR Asps Aglgl production

Aglg2 Aeps AdoeA:: Popt- ectABC-icl-ms

Expression of TWC#G1 1 20Z R :: SL Nt er- Lipase protein is expressed New LipL from N-ter LipLl and excreted Multiple deletions TWC#G12 Terminated. New system for New & Overexpression 20Z R SLcter-LipLl AectR LipL expression should be of lipase and Asps Aglgl Aglg2 Aeps constructed.

ectoine AdoeA :: P op t-ectABC::icI- ms" SLNter-LipLl

Expression of TWC#G13 20Z R :: SL Nt er- No growth defects. LipL New LipL from N-ter LipLl- Ssp DnaB mini-intein accumulates in cytosol with intein mostly.

Expression of TWC#G14 20ZR:: SL Nte r- No growth defects. New LipL from N-ter LipLl - Mxe GyrA

Expression of GFP 20ZR:: GFP-12Cter SL p Protein is expressed and New with SLP C-term excreted into growth medium fusion

Initial cultivation parameters for M. alcaliphilum 20Z in batch cultures.

Strain and growth media: M. alcaliphilum 20Z R cells were grown using modified P media (g/L): KNO3, 1 ; MgS0 4 x 7H 2 0, 0.2; CaCb x 2H 2 0, 0.02; NaCl, 30; trace solution, l ml/L (Table 2); and supplemented with 20 ml/L of phosphate solution (5.44 g KH 2 P0 4 ; 5.68 g Na 2 HP0 4 ) and 20 ml/L of 1M carbonate buffer.

Table 2. Trace solution composition.

Na 2 Mo04 x 2 H 2 0 0.05

H3BO3 0.03

The growth media has higher concentrations of CuCh and ZhS0 4 compared to our published media (modified from Demidenko et al., 2017).

Cultivation

Culturing was carried out in either closed vials (50 ml culture in 250 ml vials, with shaking at 200 r.p.m.) or bioreactor cultures (fed-batch or turbidostat). Two types of bioreactors were used: 1) a DASBOX™ (DASbox) mini bioreactor (0.5 L working volume; 200 ml culture) with two individual bioreactor units, each having automatic temperature, pH, and DO controls, a sample port for measuring OD, and a coupling to a BLUESENS™ (BlueSens) sensor system for simultaneous measuring off-gases (CH 4 , O2, and CO2); or 2) a 2.7 L bench top BIOFLO (BioFlo) 1 10™ modular bioreactor (New Brunswick Scientific, Edison, NJ, USA). Cultures were also grown as batch cultures (in triplicate). In all cases we measured CH 4 , 0 2 , and C0 2 in the headspace to determine consumption and production rates and the 0 2 /substrate utilization ratios using an SRI GC system. In addition, samples were taken for measuring ectoine concentrations in cell biomass by HPLC. The data were analyzed to assess yield (Y), growth rate, and 02/substrate ratios (Table 3).

Dry cell weight (DCW) measurement

Cultures (150 ml) from bioreactors were centrifuged to collect the biomass. After careful removal of the liquid phase, tubes of known weight with biomass were weighed (to obtain wet cell biomass weight), lyophilized overnight using

a LABCONCO™ freeze-dry system and weighed again. The observed DCW parameters were as follows: 1L of cell culture with OD = 1 corresponds to 0.336 ± 0.025 g CDW.

FIG. 4A graphically illustrates data showing the growth of M. alcaliphilum 20ZR in a DASBOX™ (DASbox) mini bioreactor (0.5 L working volume; 200 ml culture), as batch (0-20 hours (h)) and chemostat mode (20h-90h). Steady-state was reached at 60-80h. B-C. O2 and CH 4 consumptions and CO2 production in steady-state for bioreactor replicate 1 (FIG. 4B) and 2 (FIG. 4C). HPLC protocol

Twenty mg of lyophilized biomass was re-suspended in 200 μΐ of water. One ml of 0.2M sodium citrate buffer (pH 2.2) was added and quickly (15 sec) sonicated to re-suspend. The mixture was allowed to sit on the bench at room temperature overnight (18 h) and then sonicated again (15 sec). After centrifugation for 10 min, the clarified lysate was filtered through 3kDa centrifugal filter units (Millipore) and the filtrate was analyzed by high performance liquid chromatography (HPLC).

Ectoine concentrations were determined by using a previously published assay (He at al., 2015), i.e., an isocratic mobile phase of acetonitrile and water (70:30 v/v), flow rate of 0.5 ml/min and a detection wavelength of 210 nm, Samples (10 μΐ) were chromatographed using an Agilent 1 100™ HPLC system equipped with a

NUCLEOSIL NH2-HPLC™ column, 5 μπι particle size, 25 cm χ 4.6 mm (Macherey- Nagel). Pure ectoine purchased from Sigma was used as a reference (Figure 3 A).

FIG. 5 A illustrates a chromatogram of I mM ectoine solution; ectoine peak area = 8497; FIG. 5B illustrates a chromatogram of 20ZR cell extract; ectoine peak area = 18066 (corresponding to 370 ug of ectoine per 20 mg of dry cells, or 1.85%).

Results

A bench-scale New Brunswick BIOFLOW (Bioflow) 310™ bioreactor was used to accumulate cell biomass. A DASBOX™ (DASbox) mini bioreactor system was used to generate performance parameters for continuous cultures grown on methane. The parameters measured from these growth conditions include cell dry weight, CH 4 and O2 uptake rates, glycogen content, and excreted organic acids.

The parameters for continuous culture conditions and catalyst performances are shown in Table 3, below. A maximal growth rate of 0.13 hr "1 was obtained under fed-batch conditions using our standard gas mixture. The specific growth rate in the continuous culture was 0.09-0.1 hr 1 (see FIG. 4) at DCW 1.15 g/L.

Table 3. Baseline parameters for M. alcaliphilum 20Z grown in a bioreactor with methane as a source of carbon/energy.

Gas flow 1.6-1.7 L/h

Bioreactor volume 0.2 - 2 L

Growth rate (h _ l ) 0.09 0.01

Methane consumption (mmol g DCW "1 h "1 ) 12.2 0.9

Oxygen consumption 19.7 3.3 (mmol g DCW "1 h " 1 )

CO2 produced (mmol g DCW 1 h "1 ) 4.6 0.9

Y C02 (%) 0.37 0.05

Y (biomass) 0.46 0.02

O2/CH4 1.54 0.04

Ectoine (% DCW) 1.86 0.07

Productivity (g ectoine g " 1 DCW h " ') 0.0016 6.3 x l O- 5

Construction of a methanotrophic strains lacking ectR-reg lator and expressing LipLl.

Construction of20Z R AectR strain lacking ectR-regulator. The strain was constructed and tested for ectoine production:

Strain construction. Plasmid pCM433kanT carrying approximately 800 base pairs (bp) of sequences flanking ectR gene was constructed and introduced to 20ZR strain by biparental conjugation. After mating, single-crossover, kanamycin-resistant clones were plated on rifampicin to counter-select against E. coli. Then, to select for Kan-sensitive double crossover clones with a deleted ectR gene, single-crossover clones were passaged on plates with 2.5% sucrose and the resulting colonies were PCR-genotyped for the absence of ectR followed by sequencing (underlined sequences, as described below).

Results. Amounts of ectoine in 20Z R AectR strain are similar to the parental (WT) strain, see FIG. 6 (illustrates HPLC analysis of 20Z R wild-type (batch culture)) and FIG. 7 (illustrates HPLC analysis of 20Z R AectR strain (batch culture). However, the peak adjacent to ectoine (at 17.8min) was significantly enriched in the AectR strain (FIG. 7). It was suggested that the peak might be an intermediate of the ectoine degradation, thus an additional mutation, knockout of the ectoine hydrolase (doeA) gene, was generated. Construction of the 20Z AectRAdoeA strain.

Strain construction. The strain 20Z R AectR was used as the parental strain. The AdoeA knockout was constructed the same way as for the ectR deletion. The selected clones were PCR-genotyped for the absence of the doeA gene followed by sequencing.

Results. HPLC analyses of the cell extracts showed increased level of ectoine in the 20Z R AectRAdoeA strain (26% more than in WT, Table 4) and no ectoine degradation intermediate (compound X) was observed, see FIG. 8 (illustrates HPLC analysis of 20Z R AectRAdoeA strain (batch culture)).

Construction of the TWC G2 and TWC#G2-2 strains expression LipLl.

Strains for simultaneous production of lipase (as a fusion with S layer protein) and ectoine 20Z R P SL -LlAectR (TWC#G2) and 20Z R PSL-L 1 AectRAdoeA (TWC#G2-2) have been made.

Strain construction. EctR and doeA genes were introduced into WT and TWC#G1.

Results. HPLC analysis reveals the highest levels of ectoine, 160% more than in WT 20Z R , Table 4, FIG. 9A-B (illustrates HPLC analysis of HPLC analysis of 20Z::P S L-Ll AectR (FIG. 9A) and 20Z R P S L-LlAectR AdoeA (FIG. 9B) strains (batch cultures).

Additional genetic strategies for improving ectoine production.

As an additional way to improve ectoine production, an isocitrate lyase/malate synthase fusion was expressed in the 20Z R strain under hps promoter (Phps). The expression of the construct was expected to provide an additional route for oxaloacetate production, a key intermediate in ectoine biosynthesis. As expected, the level of ectoine in the strain 20Z R :: Ph ps -icl-ms was increased (26%) more, Table 4) compared to the wild type strain. Incorporation of the pCM132: :Ph P s-icl-ms producing plasmid into strain TCW#G2-2 strain is in progress.

Batch culture cultivation.

Growth characterization of the strain was done as described for WT. All batch cultures showed the same growth rate as WT cultures. Ectoine concentrations were estimated as described in Table 4. Each additional experiment included WT cells as a control. Table 4. Ectoine titer and production rate in genetically modified methanotrophic traits:

The strain has improved growth rate (was recalculated to specific growth rate in the continuous culture as 0.12 vs 0.09 h "1 )

Cultivation in mini-bioreactor in continuous and high cell density batch modes.

Cultivation of TWC#G2-3 was performed in a DASBOX™ (DASbox) mini bioreactor (0.5 L working volume; 200 ml culture with two individual bioreactor units. Gas input and operational parameters were the same way as described for WT strain. Collected data are summarize in Table 5 and shown in FIG. l OA-C (FIG. 10A illustrates growth of M. alcaliphilum 20Z R P SL -LlAectRAdoeA (TWC#G2-3) in DASbox mini bioreactor (0.5 L working volume; 200 ml culture), as batch (0-65h) and chemostat mode (65h-120h); Steady-state was reached at 90- 100h. FIG. l OB-C illustrates O2 and CH 4 consumptions and CO2 production in steady-state for bioreactor replicate 1 (FIG. 10B) and 2 (FIG. 10C)).

The strain TWC#G2-3 grown in continuous culture in mini-bioreactor produce twice the amount of ectoine as WT (Table 5). The ectoine productivity was calculated as was 3.3±0.3 mg h "1 g "1 CDW. Table 5: Parameters for TWC#G2-3 grown in a bioreactor with methane as a source of carbon/energy.

Expression and purification of LipLl protein.

Purification of lipase after expression in E.coli BL21 (DE3).

Strain Construction.

Codon-optimized sequence of LipLlwith N-terminal His 6 tag was cloned into pET21 plasmid under T7 promoter; the construct was introduced into E.coli

BL21 (DE3) strain.

Expression and purification.

Cells were grown in 300 ml of LB with ampicillin (lOOug/ml), at which point lipase production was induced by addition of IPTG (0.5mM final) at OD600=0.5 and continued for 7h at 37°C. Cells were collected by centrifugation. For purification, cells were lysed by French Press (purifications 1 and 2) or by sonication in the presence of 0.5%) Triton X-100 (purification 3), clarified lysate was loaded to Talon resin (Clontech) for one-step purification by metal affinity chromatography. After washing of the resin and elution of lipase with 200 mM imidazole, lipase prep was dialyzed against 20 mM tris-HCl (pH 8.0) and 100 mM NaCl buffer followed by addition of glycerol to 50%) w/w and stored at -20°C. Activity assay.

Activity of the isolated lipase has been confirmed on Rhodamine B plates and by p-nitrophenoldecanoate assay. One unit was defined as the amount of enzyme that released 1 μιηοΐ 4-nitrophenol.

Purity validation.

Purity of the purified lipase was checked by electrophoresis on SDS-PAAG (12% mini-Protean TGX™ gels, Bio-Rad) according to manufacturer's protocol. Gels were analyzed and quantified with IMAGELAB (ImageLab) 4.1™ software (Bio- Rad) and are shown below (Fig. 7); in all 3 cases only the protein band corresponding to LipLl is visible, no other (contaminating) proteins are present.

Three sets of LipLl expression and purification were performed. In total, about 12mg of pure LI lipase were isolated.

Table 6. Summary of LipLl protein preparation

* 1 unit (U) is the amount of enzyme that catalyses the reaction of 1 umol of substrate per minute.

Lipase production in methanotrophic strain TWC#G1, TWC G2 and TWC#2-G2:

Different constructs have been made for production of lipase from plasmids (under different promoters) and from genomic DNA as a fusion with S-layer protein. All of the strains have been shown (qualitatively) to produce active lipase by both Rhodamine B and p-nitrophenoldecanoate assays. The specific activity of methanotrophic lipase in TWC#G2-3 is 1.2 U g '1 CDW. FIG. 1 1 illustrates LipLl preparations.

Construction of strains TWCtil, TWC#2 and TWC#2-2:

The coding sequence for LipL lipase was introduced into the 20Z genome as C-terminal fusion with S-layer protein of 20Z R . A HRV3C protease recognition site was placed in frame between the S-layer protein and lipase sequences to allow protease cleavage of the fusion polypeptide and release of the free lipase. The codon- optimized LipL lipase sequence (synthesized at GENSCRIPT™ (GenScript)) with the

HRV site was introduced by PCR. Plasmid pCM433kanT carrying approximately

800 base pairs (bp) of sequences flanking the fusion site of S-layer protein was constructed and introduced to the 20ZR strain by biparental conjugation. After mating, single-crossover kanamycin-resistant clones were plated on rifampicin to counter-select against E. coli. Then, to select for Kan-sensitive double crossover clones with inserted lipase gene, single-crossover clones were passaged on plates with

2.5% sucrose and the resulting colonies were PCR-genotyped for the presence of lipase followed by sequencing.

Genomic region of ectR (MALCv4 3251 ) with upstream and downstream flanks. The genetic region deleted in AectR strain (ectR gene) is underlined) (SEQ ED NO: l): gaaccgctttgaacggcccaaccttcaccagcatttcggtttcatgttgatctgcaa aatggcgtgtcttatcaaacatcacagcactgccaatttgagtgtccagtttttttg ccagcccctcaaacagagcccatgaggccttattattcggagtaatggtcgtctcga ttcggttaatatcctgattgaccggccgcgccagtatggctttcagcatccgcgtgg caagcccttggccacgggctttttcgccgacagccacctgccagacaaacagcgtat ccggacgttgcggaatacgataacccgagacaaaaccaaccaactcatcgccaattt tggccgccaccgccgtttcagaaaaatggctgctctgcagcaaattgcagtacatcg aattgggatccaggggcgggcatttgctaatcagccgatgcacctgcgctccgactt cggcagtaggctggctaagtgtaataatcggcaaggcagttttatcaggcaacatat aaataactctattatttagatttctgtgcaattaactcggctttaactgaataagcc gggctcgaatttgattttttatggccatcagcacgaatattctggcttcattgaaaa acataatatatagtacactaaataatttaaatgtccaggccgcgtacttttgcctta gattaattagatgtcatatcaaattatgcctttcgaacttcaaatttcggtagcgcc ctaggatgcgccgggcggagcaccgaattttgttcttcgagggtatacaataatggc tttgtaacgcgacggcctctatttcaatgattggtgatcaatgatgcaaaacccaca accgcacgcccctcattcgctggatacgctcgacttgaatccggttgaaaaggaaca tttgctgaatcaaattgaagaagtactggtcgcgttacgtagagtgattcgcgccac cgatttacactcaaaatatctggcaaaaaccactagcctgaccgcaccgcagattct tttgttgcagacactgcgcgccaaaggtcaactgaccattggtgagctagctcagga catgagtctcagccaagcgactgtgacaacaattctggatcgcctggaaaaacgtca attggtgttccggcagcgctcccagactgataaacgaaaagtccatgtctatatgac ggaggcggccacggaaatgctaataaacgcccctatccctttgcaggatcgctttac gcgagaattcagtaaactacaggaatgggaacaattgatgattattgcatcactgca acgtgtcgctcagatgatggacgcgcagaacatccctgtcgctaaagaagcgtttga ttttccggtttaagctctaataattcagctcagctgcaacccgcatcacgctttttc ccaagctccagcttgggaaaaacaccccggaagctccagcttccagaaaccgagata acctccgcacattctcaatcaaccccgactcgctcgttcaatctttttcctgattag caagatgcttcaacttgctgaagccaattgtccgagcagtggccagtcgtagccact tctgcgggacgggttatttaacccatccccaacgtttcggtttgccctaaacatttc ggctgacttcggccaaagtcaaaacgtttaggacggggctgcaaaccccgtcctgct aaggatatgctggttttcgggctttagctgaagaaacttgctaatcaggatcttttt tgattgtcgggaagctagagcttcctgaatagattacccaagccggatcgctcgccg ctatacacaaatatcggtaaacttgctaaacagaggtcgccgtatacttggaagcgg tgctgtttgataaatctgcggatattggacatcagtggcttcgaagtcgggaacgtt gggcgataaaaaatggtatcgaggcctcattggttaagattgcaaaagggtaatttt tgacttatgtataacgatgaggtaactattcagtcccccggcaattatcgttcccac gctctgcgtgggaatgcctgagtaccgctccagcggtacgagacgctagagcgtctc ggtcttcattcccacgccggagcgtgagaacgataggcggtgtgaataattacacga tgagagctggagcttgggtaacagcacaaaggcatatttagcctagttgc

Genomic region of doeA (MALCv4 3246 " ) with upstream and downstream flanks. The genetic region deleted in AdoeA strain (doeA gene) is underlined (SEQ ID NO:2):

gtagcaagccttgcgtagagattattgccgggtgtaaaggcgtctatgctttcgagg tgttcgatcaaaacatggccggcgagattcacaattacgatcgggaaatcctggggc aaattcgccgcttcagagcgcatattgtttccaaagatattaatgccaataccatta ctcattatttgtctgccagtctgaaaacaattcgccgcatccgcgatgccttgcaag aaatctatccggatgccgaaatcaatcagcaaaaagtttcgattgtttccgccatcg gcagtgacatgaaaattcccggtattctggccaaaactgtctcggcgctggcagaga agcagatcagcgtgcttgcaatgcaccagtcaatgcgtcaagtcgatatgcagtttg tgattgatgaagatgcctacactgatgcgatgaaaagtttgcattgtcatctggtgg aggtccatgatcacggcattgcaatatgcctcgcgtcctgattgtactgatgtttct tacccctaaatacggggaaatttctcaaactgggaattgctgccaaagaaatgaaaa tgccttgcgtcttcagtcttgcgctgaacgacaaggaagcgcataaggcttaaagcg tttaccactcgaccgctgaagcggtagcggattaaggcgagtcgcaagtcaattttc gtccaaggttaggttgttcatggcaagtcagtcgagcaatgaatgacttaaccgtct atttttcaataaactgaagatgtacgggtaagccctgcgtaagttgggaatggccga tgatcgagggctatctgttgtcgcgaagtctttaatcaaaaaaatgggtttaatatt caatgattaccgagaatgccgcacagtccgaacaaagtgaagatttttatcaatcac gtaacggtagtaagccgaaaataattccgcgcgtagacccggtagtttatgcgcaaa cagctaatccaggtctcattgcagaggacttgcaagcacgttatgagcaacaaggtt ttcttgttattgataatgtttttaatgagagggaggtcgactgtttcaagcaagagc tcaaacgcttgaacgacgatgaaaagataaaagcctcggcggaagcgataactgaat tatccagcgacgaactccgttcactatttaaaattcatgaagtcagtccggttttta aaaggttagctgccgataatcgattagcgggactggctcaacatcttttgaacgacc gggtttatattcatcagtcgcgcttaaactataagccgggttttcgcggcaaggaat tttactggcattcggactttgaaacttggcatgtagaagacggtatgcctagaatgc gtgcgctcagcatgtccattattcttaccgaaaacgatcagcataacgggcctttga tgttggttcccggatcgcataaaaaatttgtcgtttgcgaagaggaaacgccggaaa atcattattcggtctcgttgaaaaagcaggagtacggcatacccagcgatgaatgct tggctagcttggttgccgatggcggcatcgtatcggccaatggaaaacccggcagtg tcttgattttcgacagtaatgtcatgcacggttcgaatagtaatatcactccatggc ctcgctcgaatctctttttcgtctataacgcgatcaataatcgagtaacatggccgt tttgcggtttattgccgcgtcctgaatatctttgcagtcgcaagaatatacgagtta tcgaaccgcggccttttatcgcggccgccgatcaattgatatatgcttagaatgtta ataatgttgatcgtgctggcgccctgttccgtgttgggcgagagcgtcaacgatgaa gcagaggttcaagagcgcttagatgcggttgaatctttggataagcctttatatagt ccgttcatcgagcgctatatgctggatgaactcaaacaattgcgtatggacatggca gcgcagaggaatgagctgattcagcaaattgtggatagagagcttagctcggtcgat agaggcgttacttacgccactaatactgtcacatattttttctacttgattgccggt gccagtaccattttggtgttgctgggttggacctcgctcagagatatcaaagagcgt gtgcagtccatggcggataagaaagtatcgaaactggtccatgaatacgaagagcgc ttggcaattgtcgaacaacaactcaacaaggaagcacaattgattgagaaaatcggc gaggatatcgggcggacgcaagatgtgcaatctctctggcttagagcaggtcaagca ggcagcttggccaataaaatcgccatctacgatcaaattttaaaattgcgtcccgag gattgcgaagcattgacttataaggccgatgcggtactcgatatgggcgagccgcag tgggccgtcaatttatgtcagcaagcgttgaaaatcgaccctgaaaacggccatgct ttttaccaattggcttgtgcgtataccgcattggatcaatatgaagaggccgttaac tgtttatccgaagccttggcgcgtaccgaggattatcgcgataagtttgccgatgac cccgcgctgcaagcgttaaaaggttttgagccgt LipL sequence (His6 tag is underlined) (SEQ ID N0:3):

ATGGGTCATCATCATCATCATCATCTGGAAGTCCTGTTTCAAGGCCCGATGGCCTCG CCGCGTGCGAACGATGCGCCGATTGTGCTGTTACATGGTTTTACGGGCTGGGGCCGG GAAGAAATGCTGGGTTTCAAATACTGGGGCGGCGTCCGCGGCGATATCGAACAATGG TTGAATGATAATGGCTATCGCACCTATACCTTGGCCGTCGGCCCGTTGTCGAGCAAT TGGGATCGCGCGTGCGAAGCGTATGCCCAATTGGTCGGCGGCACCGTCGATTATGGT GCCGCGCATGCCGCGAATGATGGCCATGCCCGCTTTGGCCGCACCTATCCGGGCTTG TTGCCGGAATTGAAACGCGGCGGCCGTGTCCATATCATTGCCCATAGCCAAGGCGGC CAAACGGCCCGTATGTTGGTCTCGTTGTTGGAAAATGGCAGCCAAGAAGAACGCGAA TATGCCAAAGAACATAATGTCTCGTTGAGCCCGTTGTTTGAAGGCGGCCATCGCTTC GTCTTGTCGGTCACCACCATCGCCACCCCGCATGATGGCACCACCTTGGTCAATATG GTCGATTTTACCGATCGCTTTTTCGATTTGCAAAAAGCCGTCTTGGAAGCCGCCGCA GTCGCGTCGAATGCCCCGTACACCAGCGAAATTTATGATTTCAAATTGGATCAATGG GGCTTGCGTCGCGAACCGGGCGAATCGTTTGATCATTATTTCGAACGCTTGAAACGC TCGCCGGTCTGGACCAGCACGGATACGGCCCGCTATGATTTGAGCGTCCCGGGCGCC GAAACCTTGAATCGCTGGGTCAAAGCGTCGCCGAATACCTATTATTTGTCGTTCAGC ACCGAACGCACCTATCGTGGCGCCTTGACCGGCAATTATTATCCGGAATTGGGCATG AATGCGTTTTCGGCCATCGTCTGCGCGCCGTTCTTGGGCAGCTATCGCAATGCGGCC TTGGGCATTGATTCGCATTGGTTGGGCAATGATGGCATCGTCAATACCATTTCGATG AATGGCCCGAAACGCGGCAGCAATGATCGCATCGTCCCGTATGATGGCACCTTGAAG AAAGGCGTCTGGAATGATATGGGCACCTATAAAGTCGATCATTTGGAAGTCATTGGC GTCGATCCGAATCCGTCGTTCAACATTCGTGCGTTTTATCTGCGTTTAGCGGAACAA CTGGCGTCCCTGCGTCCGTGA Sequence of the S-laver protein (MALCv4 0971 )-Lipase fusion incorporated into Methylomicrobium alcaliphilum 20Z R chromosome. HRV protease site is single underlined (i.e., is ctggaagtcctgtttcaaggcccg), and the lipase sequence is shown bold (SEQ ID NO:4):

atggcaacactctcagtggatatcgctcaatcctatatggagaccttacggtcctat gggcttgagtttaacataagacaaaccaacaacctgaccaatcggataattaaccgc ttggaaaat cgcggccacacacctgagcaagtagcagactggcttatgagcagggtt gcggttaaacagcaattgagaaaactggttaaacaaggcgaattggccgagtttgat ctggatggcaatggccgcctcaatcgatctgaattgctaaatgcaatgtctgctctg t ccgagacagcggtcgaagaagcgccggtcgaagatcccacgactcccaagcctccg gccgatcctagcatcacgaccttaacgct tact gaga ttccgactcagcgtacggct acgttaaaatggaacaatgtcgatgccgatttggccat cgatttcatgcaagacgta ctgaaactagatctaaatcgactaggctggatggaagacggtcaattgaccgtcaac atcgacaatatcgcgatcagcgattcggacagtaattctgatatcaacatcggtatg gtcgatggcgaagaatttttgttcagcgtaaatacgccagtggcgctgtataccaat attatatttgatttgaagcaaaacgatgatgtcattcaaaccggcatcgtgctaacg ccgaccgaaaacaacggcggttcgtttgaaaacggcattacctccgatgccgacaac cacatcatcgccggtcgtcctgaattgctgcacggcgcctacatcgacggcggcggg ggctacaacacgttggaagtcgacatgaaaggcttctttgcgcagccgttccaactg ttgaacatccaagagat ccacgtacaaaacctcccgaatgt ctacagtttcgatcaa acaattttcagcgacaccgaaggcgactattttgctaatttt ccaattcctacgaat ttggatggcgatgatagcattcttgacttgagccgggccactagcctagaaagactg gtcattaacgaagcacgctttcccggtagcgcaaatgccttaggcgacctctacctg gtcggtatcaaagccgatgcggtcgcccgtctagaaggcaactt caccgaagacgta aacttgttctatggtcgcggcttgggtaatgcgatcaacctggaatttgccaatgtc acgatgagtgatagtgagggggggggtgaattggtgctgggtcataatgccggtacc gtgaatctgctttccgaaggtcgt ctgaacgtcttggaat ctgttgatttcggtagt ttcctgcgcgaactcaccatcaccggtaccggagagttggttattgatgacgccctc gcattcgcctttggcgaagtacatatcgatgcctctgctaataccggtggtattcgc ctcaaggtcgacagcgttgcagacggtagcagcctatccaatgaaatcggcttttct gcggttcttgacgaagtcaccatcaaaggctcacaaggtcgtgacgttatcgagatc tccggcactgctgcaggcgtattgcttgacatcgacaccggtgctggccgcgacacc gttttcttgaccgacgatactttgagtgctggcgctggctcagtgatcaccggtgat aatttgacagttgtggtgacagccaccgccgatctgcgtaaggccgatgttgttggc gttgaccgctttgtactgaatgcaggtcccgcagccgctggcaacctggttttgact cagacccaagtagaagccatggatgccggtgtgttcaccgcagcccataatactatc gcagttctgtcagtcgaaatcaccgaagcgggtacggttctgtcagatctgatcgat ctttcggcactgagcagtgatgttaagctggccttcaatgttgttaaaggtgcaagc cttgaaatgaccgctgaagaactgcataagtatgtagcttttgaaggcatcgatgca actatggctggtcacctggtgatcaccggtgcgggtctgggctttgatcctgaagat caatctgactacgatactggtggtacgattgccaattacggtcttacaccagaccaa aatatctccattattcgtgatccaaacggttttgagcgcccggcgcccgataccaac actgacatcctgaccattgataccacaggtggaatcaecateggtgccaatgcactg tcagatgacgatgccttctcaaccaatgcaaccaccttgatcatcgaaggtgcaggt gatattacctttaatgcaccgttggaaatgttattagataactacaccatcgatttt tccggcctgaccggcaatctcaatggcctgaccattctcgatttccagaacatcacg gatggaaacgatccgagcgactggggccagattatcggtaaccccgatgttaatacc cgtatcaacgtggtcattgaggacggtaaggaagttggtgatgacagtttaggcaat gccaatggcggcctcaagtcttccggtgtcgaaacctacgtagttctgggaactgtc ggcgaaacctacaccttcaatgtttgtgataccacgcaaggccttgaagtcctcggt ttccgtggtctgggtgatgtcacgttcaaccagatcaactggggcaccaacctgctg ctggaaggcgatggctttgaaaactttggtgatattccgaaggcttttgccaacccg aaccaatccaacatcggcagcatcgaagccaactacttcttcgatggtgctactgta gatgttgccatcaacaaccagggtcaagctctgggcaccacctctacaggggcagcg cgtcccttagtggtagaaagcatcgtggtaaacggtgctgagaccgtaaacctggca atcgaagacggcagcgcctggatcaaatctgttgatggctctgttctcgaagatctg accgtcaccagtgatttccacgttacactctcgctgatcgctgccaacagcgacctc gaatctatcgatggatctggtgtcgtaggtgtcatggctctggagattagtgatgtt gatggcgccggggatcctactgccctgaccgtagacctctcttctacagaactgagc ggcatcgaccagatcgatctgggcccattggctgatctcactctgaacattgatcag attgaggacatcggcacagcaaacatcgcctttaccggtacggctgcacaagctcaa aatgatccagcgacgctgaacattggtcagtttgctgaacaagagtttgatattacg acagtcggtctggaagccggtgttgaactgggtactgttacctttgttgcgaatgca ggtgaaatcactatgcatccagacaccaacctgtccggtgcaactgcaatcgtgatt ccagaaggcacaaccgtgaatatgacggctgcgcagtatgagcagatcgtagatggt ggaaacggtagcagcttctcaggcctcggtgtgttgaacatcaccgacctgctgggt gagcctgaactggatacaaatggtgatccgatcccaggagcctttgcttccgacatc aatctgtccggtgtacctgtcgaaatgatgggcagcatcagcctggcagcgggtgtc gatagcatgcgcctgacgggtaatatcggtatcgctcagtttgaagaaagggaaatt gctgatcctgataatacagacttcgtatcggttcagacttcgcataattttcatgaa ctgaccggcgaaacgcagggcttcagetttgtgetggccgaagatcagaacctgate ttcaccacagaagcgcaggcccataaccgtgtggttgaaggcgatggctctaaagtc acgctggcgtttgctgtgctgctggactctcaggtcaacttcaatacgctgggcggc actcttgctgttgatggtctgaacctggcctactacagcgatttgaccgatcttgaa gtgcttcaggccttggtagctggtactaacgttgagcagatcctgggtaatctggat gaaaatacagttgttcagatttctgagtttattgctggcgctaactttgctaatccg actttccgcgatgtggaagtgttggaaggtgtaactgttgccggcggtctggtcttc gagaacctgaacgatgagttaccggatagcctcaagctgactgaactgagtctcagc ctgttgggtgatgcgactatcacaggtacggttgatattagtggtgcaccactgctg gatcagggcttcgaaaccctgaccatcaactcgctgggtgatgatcccaacaccatc aataatgtcgtagcgacaggcaacgatctgatcgatgtcgtgatcaatgctgaacag gatctgtcagttcaaaccatcaccttgagctttgttccaaaaacacctggtcaaaca tcagacgcaaccttgacagtcaatggtgatgcagatgtaaccatcaagacactggat agcactgatcctgatatcaacgtagttaacattgataacaacctgactggcggtgcc acactcaccttcacaggtggttcagctgcattcgagggtgatgatacagatagcctg atccttaccggtgcaggtaacactgtatttgatactgaaggtgcaagtacgggtggt atcgactccgatagcctgtcactgatcgatgcttctgagcacaccggtgatctggac ctgggtcgtatcatcagtgttgacgaagctaacttcagcctgctgacctccgccggt aatgcctcagctacgctgcaagccactatgaatgatcaaggctttaatgccgcggtc ctggcttacaacgccgctctggcagcggatcctgttgttccgggaaacgttactgca gcgctaactgctctaactactgctgcaggtcttcttggctttgtagatgcaaatgaa gatccgctggccttcactcaggctaacgcggctgatctgatcgcagagttccgtcct gaatggaactttgagctgggtgctaacaccgagctaaccatcgatggagatgacatc gttggagctgactttgttgccggtgccctggtgatatccggtggcaagttgatcatc gaaggtgaagtcgatctgcgtgatctggctgtactggacatctctgatgtcgagatt gagctggccgcaggtgcacgtatcctgatgactgacgagcagttcgacgcgctggac aacgtcaccttctctggcccaggtcagacgctggaagttgatgatgcgctgctggct gagctttctatcgtcaacgatatcactgatattcgcggtgtcactgagattcagttg gaagaaggcctggttgaagacatcaccatgacagctgagcaggcgcgtatcgcgact gtagtcgatgccgacggtaaccctgtcctggttgacttcgatgttgatccaactgtg atcgatgctgcgggtgaccctgttgaagccggagacttccgtacccttacaggttct gttgttaccgtcgaagtaacaggtaacgacgatctgaccgatctggctggcctgaat cgcattgaaatcgtcagtgatgatctggttgatctgaaagtggcactggatcttgat ggtgctaacaaccaggttgccgcgttgcaaactgcagcgggtggagcgtttgacggc acattcttcgatgtgttgagcaacttcactgttgaagcaagctttgaggtgctgagc cagtttgaccctgaaaccacgttgttcgttgccaatccgatcgtggaggatgtcaac ttcgacatcgtacgtgatgtgaatggtgatgtgacttcagtcagcgtcagcggtggc tcttcccttggtttcgcccagagcgatgccggcttccaggagttgttggaagccggt caggtaactgaggtggtgttcgagaatgttggttcactcaacagcatccttgttagt ggcaacttcgtcggtagctacgatgccggtggtattttctacgagagcacctttgag ttcggcgcaaatgctggttcggttgctgaaggggtgggtacagatggcaacatcttc accattgctgaattcacagccggtgcagcagccagtgatatccttgatttcactgcc atgcctgttgataacacgaacactgctccagccactgggcatgagttcatcgcggta ggcactgaagctagcattggtgacgatgccaccatcattgtcttcacggcgggtgtt gcggccgacgcagcaaccatcgtgacacagtttgctgatggtgcgggagatttccgt tcagcagatgctactgcacgtaacgctgactttgctattgatagccagttgatcttc ctgattgacgatggcgctggtaataccggtgtctggtattgggatgatacagttggt gctgttggcgatggtattgtcgatgctgatgagctttcgcagattgcccagttgact ggagtcgtcactgccgagctgacggttgataacttcgtcctcgctctggaagtcctg tttcaaggcccgatggcctcgccgcgtgcgaacgatgcgccgattgtgctgttacat ggttttacgggctggggccgggaagaaatgctgggtttcaaatactggggcggcgtc cgcggcgatatcgaacaatggttgaatgataatggctatcgcacctataccttggcc gtcggcccgttgtcgagcaattgggatcgcgcgtgcgaagcgtatgcccaattggtc ggcggcaccgtcgattatggtgccgcgcatgccgcgaatgatggccatgcccgcttt ggccgcacctatccgggcttgttgccggaattgaaacgcggcggccgtgtccatatc atfcgcccatagccaaggcggccaaacggcccgtatgttggtctcgttgttggaaaat ggcagccaagaagaacgcgaatatgccaaagaacataatgtctcgttgagcccgttg tttgaaggcggccatcgcttcgtcttgtcggtcaccaccatcgccaccccgcatgat ggcaccaccttggtcaatatggtcgattttaccgatcgctttttcgatttgcaaaaa gccgtcttggaagccgccgcagtcgcgtcgaatgccccgtacaccagcgaaatttat gatttcaaattggatcaatggggcttgcgtcgcgaaccgggcgaatcgtttgatcat tatttcgaacgcttgaaacgctcgccggtctggaccagcacggatacggcccgctat gatttgagcgtcccgggcgccgaaaccttgaatcgctgggtcaaagcgtcgccgaat acctattatttgtcgttcagcaccgaacgcacctatcgtggcgccttgaccggcaat tattatccggaattgggcatgaatgcgttttcggccatcgtctgcgcgccgttcttg ggcagctatcgcaatgcggccttgggcattgattcgcattggttgggcaatgatggc atcgtcaataccatttcgatgaatggcccgaaacgcggcagcaatgatcgcatcgtc ccgtatgatggcaccttgaagaaaggcgtctggaatgatatgggcacctataaagtc gatcatttggaagtcattggcgtcgatccgaatccgtcgttcaacattcgtgcgttt tatctgcgtttagcggaacaactggcgtccctgcgtccgtga

Example 3: Exemplary Methods and Compositions

This example provides exemplary methods for making compositions and bacterial cells as provided herein, and practicing methods as provided herein.

Producing lipase outside of the cell as N-terminal fusion to S-layer protein.

Previous attempts to generate C-terminal fusion of lipase to S-layer resulted in no lipase activity and no S-layer in mutant cells. Upon thorough theoretical analysis, it was hypothesized that fusion of lipase to the N-terminus of S-layer proteins should solve the problem and be sufficient to ensure transporting of the fusion to outside of the cell.

Two genetic constructs comprising an exemplary recombinant polypeptide: (i) Green Florescent Protein (GFP) and (ii) LI lipase fused to N-terminus of S layer protein were generated and introduced into 20Z chromosome (in a 20ZR-L1-SL strain).

GFP-S layer fusion synthesizes active GFP which is distributed throughout whole cell volume which is in agreement with its putative outside localization, as illustrated in FIG. 12. Moreover, those cells excrete GFP-containing crystalline-like material which accumulates in extracellular media.

The strain TWC# 1 1 (20Z R :: SL N .er— LipLl , N-terminal fusion) yielded 133 LV g DCW of lipase, the majority of which was localized outside of the cell. The lipase is fused with S-layer and expected to co-purify with S-layers. Initial tests with the strain TWC# 1 1 indicate SLNter— LipLl fusion is loosely attached to the cell wall (Table 1). We tested a previously published protocol (see Shchukin V.N et al., 201 1 , Mikrobiologiya. 80: 595-605) for separating S-layers. Alternative protocols for S- layer separation can also be applied as described e.g., in Hasting and Brinton (1979); Sara, M, et al, J Bacteriol. 1998 Aug; 180(16): 4146-4153; or, Sleytr, UB, et al, FEMS Microbiol Rev. 2014 Sep; 38(5): 823-864.

Finally, we tested the applicability of inteins for protein expression. Two methanotrophic strains were made, and two genetic constructs containing self- cleavable intein were inserted between lipase and S-layer were made (as illustrated in FIG. 13, including: (i) Mxe GyrA intein, which is activated by addition of thiol reagents like DTT, beta- ME, etc.; and,

(ii) Ssp DnaB mini-intein, which is activated by pH shift to 6.0-7.0.

The strains of M. alcaliphilum 20Z R with Ssp DnaB mini-intein and Mxe GyrA intein were obtained. The strain Ssp DnaB intein showed lipase activity; however, the activity per dry cell weight was about 50-60% compared to N-terminal S-layer-lipase fusion (with no intein). About 70% of that activity is localized inside the cells in the soluble fraction, suggesting that the intein cuts inside of cells. The difference in extracellular lipase localization is illustrated as the Rhodamine B assay in FIG. 14, where the strong magenta color indicates lipase activity.

Table M4-1. Lipase activity as determine by p-nitrophenol assay.

* Whole cell assay-only cell-surface enzyme are active. SD < 5%; NT, not tested.

These results lead us to conclude that the majority of lipase-Ssp DnaB mini- intein-S-layer protein fusions are self-cleaved inside the cell with only a minor fraction exported to the outer cell surface.

Several mutants of 20Z R strain harboring LipL gene fused to S-layer protein via Mxe GyrA intein has been constructed. The genotyping of the strains was carried out, and we show that all mutants harbor the LipL (see FIG. 15, left), and the gene locates in correct orientation LipL-MxeGyrA-S-layer (see FIG. 15, right).

Since LipL- Mxe GyrA intein requires high concentrations of thiol reagents for cleavage, the chance of intracytoplasmic self-cleavage of that construct are minimal. An alternative approach for lipase expression includes the addition of a C- terminus to the lipase gene.

Expression of GFP protein fused to C-term of S-layer protein

We found that S-layer proteins are excreted via Type I secretion system. The benefits of this systems are as follows: typically proteins are produced and folded in cytosol; Type I secretion systems recognizes a specific tag at the C-term of a protein, upon recognition the protein is translocated from cytosol to extracellular environment. If efficient the system would enable direct production of the targeted proteins in cell culture. Several GFP construct fused with 900bp, 300bp, 108 bp and 36 bp of C- term of S-layer protein were made. The construct is expected to carry C-term recognition domain, which is used by Type I secretion system for the protein export outside of cells. Out of five constructs, three were obtained (900bp, 300bp, and 36 bp). The images of cells harboring GFP-fused proteins are shown in FIG. 16.

Relative fluorescence of the supernatants was measured using a fiuorimeter and background fluorescence in wild type cells compared with the construct strains, see Table 3, below. The GFP construct with 36 bp of S-layer C-term display highest fluorescens in supernatant, and has similar to other construct GFP per cell, indicating that the construct is efficiently exported from cells.

Table 3. Relative fluorescent units for GFP-fusions.

2)

300 A A (900 bp) 1200 105.43 20.82

100 A A (300bp) 3025 103.15±38.68

12 AA (36 bp)* 28899* 1 10.31 ±23.15

WT 1544 none

Exemplary recombinant polypeptide sequences, as discussed above, are:

(noting that all the exemplary recombinant polypeptides, below, have C-terminal S layer protein domains) SlayerNteim— LI lip fusion, sequence

(the following 3 domains are linked to constitute the complete recombinant protein, however, the individual domains are separated from each other, below, so that the sequence of each domain can be identified) (SEQ IDNO:5):

upstream sequence, non-coding

tttaacattctaaatgggcgcaagtccgtataaatttaccacgaatcgggtttaatc gcagagcggcgaggcatcgttttacaa cccgcccggcaaagaaagtgttgtgggggcgacgcctacgtcgcgataaatcgaagtcgt gtcgctaatcgacaaaaca aacgtactcgaagcccctacggcacgaagcccggcagcgtagcggaattcgggaatggcc tggctccgaactccccgg attgcgccatgctccatccgggctgcgctgtttagactcgccgaaagcggtcggtagcga tttatcagcgagaaaccttgtt aactttatgcgtatgggcgacaacccccgtccggcataagggcggcaaagaaagtgttgt gggagcgacgcctacgtcg cgataaatcgaagtcgtgtcgctaatcgacaaaacaaacggactcgaagcccctacggca cgaagcccggcagcgtagc ggaattcgggaatggcctggctccgaactccccggattgcgccatgctccatccgggcta cgttgtttagactcgccgaaa gcggtcgctagcgatttatcagcgagaatctttgttagctttatgcgtatgggcgacaac ccccgtccggcataagggcaac aaaaagttcagctatggaatcgatatatcgataaataaacaatgaaaaaacattttaatt aaatcaaatatataaaacttaaatta cactaaaatacttcaatcatagtaatagaaagccaaattttaagcattatttcacccaaa ataagggcggtccctagaaaaatt attaaaaactctctatactcaagcaccgtaagctatcaactcagtccagctctttactta gaaaggctgatcaaggtatagtgc atacaaaattcagtgcgtatcaaaacgtgtctagagttctttctaacaaaaagcgaaaac ctcaattggagatttaac

LI lipase

atggcctcgccgcgtgcgaacgatgcgccgattgtgctgttacatggttttacgggc tggggccgggaagaaatgctgggt ttcaaatactggggcggcgtccgcggcgatatcgaacaatggttgaatgataatggctat cgcacctataccttggccgtcg gcccgttgtcgagcaattgggatcgcgcgtgcgaagcgtatgcccaattggtcggcggca ccgtcgattatggtgccgcg catgccgcgaatgatggccatgcccgctttggccgcacctatccgggcttgttgccggaa ttgaaacgcggcggccgtgtc catatcattgcccatagccaaggcggccaaacggcccgtatgttggtctcgttgttggaa aatggcagccaagaagaacgc gaatatgccaaagaacataatgtctcgttgagcccgttgtttgaaggcggccatcgcttc gtcttgtcggtcaccaccatcgc caccccgcatgatggcaccaccttggtcaatatggtcgattttaccgatcgctttttcga tttgcaaaaagccgtcttggaagc cgccgcagtcgcgtcgaatgccccgtacaccagcgaaatttatgatttcaaattggatca atggggcttgcgtcgcgaacc gggcgaatcgtttgatcattatttcgaacgcttgaaacgctcgccggtctggaccagcac ggatacggcccgctatgatttg agcgtcccgggcgccgaaaccttgaatcgctgggtcaaagcgtcgccgaatacctattat ttgtcgttcagcaccgaacgc acctatcgtggcgccttgaccggcaattattatccggaattgggcatgaatgcgttttcg gccatcgtctgcgcgccgttcttg ggcagctatcgcaatgcggccttgggcattgattcgcattggttgggcaatgatggcatc gtcaataccatttcgatgaatgg cccgaaacgcggcagcaatgatcgcatcgtcccgtatgatggcaccttgaagaaaggcgt ctggaatgatatgggcacct ataaagtcgatcatttggaagtcattggcgtcgatccgaatccgtcgttcaacattcgtg cgttttatctgcgtttagcggaaca actggcgtccctgcgtccg

S layer protein (in-frame with LI lip)

gcaacactctcagtggatatcgctcaatcctatatggagaccttacggtcctatggg cttgagtttaacataagacaaaccaa caacctgaccaatcggataattaaccgcttggaaaatcgcggccacacacctgagcaagt agcagactggcttatgagca gggttgcggttaaacagcaattgagaaaactggttaaacaaggcgaattggccgagtttg atctggatggcaatggccgcc tcaatcgatctgaattgctaaatgcaatgtctgctctgtccgagacagcggtcgaagaag cgccggtcgaagatcccacga ctcccaagcctccggccgatcctagcatcacgaccttaacgcttactgagattccgactc agcgtacggctacgttaaaatg gaacaatgtcgatgccgatttggccatcgatttcatgcaagacgtactgaaactagatct aaatcgactaggctggatggaa gacggtcaattgaccgtcaacatcgacaatatcgcgatcagcgattcggacagtaattct gatatcaacatcggtatggtcga tggcgaagaatttttgttcagcgtaaatacgccagtggcgctgtataccaatattatatt tgatttgaagcaaaacgatgatgtc attcaaaccggcatcgtgctaacgccgaccgaaaacaacggcggttcgtttgaaaacggc attacctccgatgccgacaa ccacatcatcgccggtcgtcctgaattgctgcacggcgcctacatcgacggcggcggggg ctacaacacgttggaagtcg acatgaaaggcttctttgcg

Slayer temi— LI lip— ssp DnaB intein fusion, sequence

(the following 4 domains are linked to constitute the complete recombinant protein, however, the individual domains are separated from each other, below, so that the sequence of each domain can be identified) (SEQ ID NO:6):

upstream sequence, non-coding

tttaacattctaaatgggcgcaagtccgtataaatttaccacgaatcgggtttaatc gcagagcggcgaggcatcgttttacaa cccgcccggcaaagaaagtgttgtgggggcgacgcctacgtcgcgataaatcgaagtcgt gtcgctaatcgacaaaaca aacgtactcgaagcccctacggcacgaagcccggcagcgtagcggaattcgggaatggcc tggctccgaactccccgg attgcgccatgctccatccgggctgcgctgtttagactcgccgaaagcggtcggtagcga tttatcagcgagaaaccttgtt aactttatgcgtatgggcgacaacccccgtccggcataagggcggcaaagaaagtgttgt gggagcgacgcctacgtcg cgataaatcgaagtcgtgtcgctaatcgacaaaacaaacggactcgaagcccctacggca cgaagcccggcagcgtagc ggaattcgggaatggcctggctccgaactccccggattgcgccatgctccatccgggcta cgttgtttagactcgccgaaa gcggtcgctagcgatttatcagcgagaatctttgttagctttatgcgtatgggcgacaac ccccgtccggcataagggcaac aaaaagttcagctatggaatcgatatatcgataaataaacaatgaaaaaacattttaatt aaatcaaatatataaaacttaaatta cactaaaatacttcaatcatagtaatagaaagccaaattttaagcattatttcacccaaa ataagggcggtccctagaaaaatt attaaaaactctctatactcaagcaccgtaagctatcaactcagtccagctctttactta gaaaggctgatcaaggtatagtgc atacaaaattcagtgcgtatcaaaacgtgtctagagttctttctaacaaaaagcgaaaac ctcaattggagatttaac LI lipase atggcctcgccgcgtgcgaacgatgcgccgattgtgctgttacatggttttacgggctgg ggccgggaagaaatgctgggt ttcaaatactggggcggcgtccgcggcgatatcgaacaatggttgaatgataatggctat cgcacctataccttggccgtcg gcccgttgtcgagcaattgggatcgcgcgtgcgaagcgtatgcccaattggtcggcggca ccgtcgattatggtgccgcg catgccgcgaatgatggccatgcccgctttggccgcacctatccgggcttgttgccggaa ttgaaacgcggcggccgtgtc catatcattgcccatagccaaggcggccaaacggcccgtatgttggtctcgttgttggaa aatggcagccaagaagaacgc gaatatgccaaagaacataatgtctcgttgagcccgttgtttgaaggcggccatcgcttc gtcttgtcggtcaccaccatcgc caccccgcatgatggcaccaccttggtcaatatggtcgattttaccgatcgctttttcga tttgcaaaaagccgtcttggaagc cgccgcagtcgcgtcgaatgccccgtacaccagcgaaatttatgatttcaaattggatca atggggcttgcgtcgcgaacc gggcgaatcgtttgatcattatttcgaacgcttgaaacgctcgccggtctggaccagcac ggatacggcccgctatgatttg agcgtcccgggcgccgaaaccttgaatcgctgggtcaaagcgtcgccgaatacctattat ttgtcgttcagcaccgaacgc acctatcgtggcgccttgaccggcaattattatccggaattgggcatgaatgcgttttcg gccatcgtctgcgcgccgttcttg ggcagctatcgcaatgcggccttgggcattgattcgcattggttgggcaatgatggcatc gtcaataccatttcgatgaatgg cccgaaacgcggcagcaatgatcgcatcgtcccgtatgatggcaccttgaagaaaggcgt ctggaatgatatgggcacct ataaagtcgatcatttggaagtcattggcgtcgatccgaatccgtcgttcaacattcgtg cgttttatctgcgtttagcggaaca actggcgtccctgcgtccg

Ssp DnaB intein

tgtagagcaatggccatcagcggcgattcgttgatctcgttggcctcgaccggcaaa cgcgtcagcatcaaagatttgttgg atgaaaaagatttcgaaatctgggccattaatgaacaaaccatgaaattggaaagcgcga aagtctcgcgcgtcttctgcac cggcaaaaaattggtctatatcttgaaaacccgcttgggccgcaccattaaagccaccgc gaatcatcgctttttgaccatcg atggctggaaacgcttggatgaattgagcttgaaagaacatattgccttgccgcgcaaat tggaatcgtcgtcgttgcaattgt cgccggaaatcgaaaaattgagccaatcggatatttattgggatagcatcgtctcgatta ccgaaaccggcgtcgaagaagt ctttgatttgaccgtcccgggcccgcataatttcgtcgcgaatgatattattgtccataa t

S layer protein (in-frame with LI lip)

Gcaacactctcagtggatatcgctcaatcctatatggagaccttacggtcctatgggctt gagtttaacataagacaaaccaa caacctgaccaatcggataattaaccgcttggaaaatcgcggccacacacctgagcaagt agcagactggcttatgagca gggttgcggttaaacagcaattgagaaaactggttaaacaaggcgaattggccgagtttg atctggatggcaatggccgcc tcaatcgatctgaattgctaaatgcaatgtctgctctgtccgagacagcggtcgaagaag cgccggtcgaagatcccacga ctcccaagcctccggccgatcctagcatcacgaccttaacgcttactgagattccgactc agcgtacggctacgttaaaatg gaacaatgtcgatgccgatttggccatcgatttcatgcaagacgtactgaaactagatct aaatcgactaggctggatggaa gacggtcaattgaccgtcaacatcgacaatatcgcgatcagcgattcggacagtaattct gatatcaacatcggtatggtcga tggcgaagaatttttgttcagcgtaaatacgccagtggcgctgtataccaatattatatt tgatttgaagcaaaacgatgatgtc attcaaaccggcatcgtgctaacgccgaccgaaaacaacggcggttcgtttgaaaacggc attacctccgatgccgacaa ccacatcatcgccggtcgtcctgaattgctgcacggcgcctacatcgacggcggcggggg ctacaacacgttggaagtcg acatgaaaggcttctttgcg

SlayerNtemr— LI lip— Mxe GyrA intein fusion, sequence

(the following 4 domains are linked to constitute the complete recombinant protein, however, the individual domains are separated from each other, below, so that the sequence of each domain can be identified) (SEQ ID NO:7):

upstream sequence, non-coding

tttaacattctaaatgggcgcaagtccgtataaatttaccacgaatcgggtttaatc gcagagcggcgaggcatcgttttacaa cccgcccggcaaagaaagtgttgtgggggcgacgcctacgtcgcgataaatcgaagtcgt gtcgctaatcgacaaaaca aacgtactcgaagcccctacggcacgaagcccggcagcgtagcggaattcgggaatggcc tggctccgaactccccgg attgcgccatgctccatccgggctgcgctgtttagactcgccgaaagcggtcggtagcga tttatcagcgagaaaccttgtt aactttatgcgtatgggcgacaacccccgtccggcataagggcggcaaagaaagtgttgt gggagcgacgcctacgtcg cgataaatcgaagtcgtgtcgctaatcgacaaaacaaacggactcgaagcccctacggca cgaagcccggcagcgtagc ggaattcgggaatggcctggctccgaactccccggattgcgccatgctccatccgggcta cgttgtttagactcgccgaaa gcggtcgctagcgatttatcagcgagaatctttgttagctttatgcgtatgggcgacaac ccccgtccggcataagggcaac aaaaagttcagctatggaatcgatatatcgataaataaacaatgaaaaaacattttaatt aaatcaaatatataaaacttaaatta cactaaaatacttcaatcatagtaatagaaagccaaattttaagcattatttcacccaaa ataagggcggtccctagaaaaatt attaaaaactctctatactcaagcaccgtaagctatcaactcagtccagctctttactta gaaaggctgatcaaggtatagtgc atacaaaattcagtgcgtatcaaaacgtgtctagagttctttctaacaaaaagcgaaaac ctcaattggagatttaac LI lipase

atggcctcgccgcgtgcgaacgatgcgccgattgtgctgttacatggttttacgggc tggggccgggaagaaatgctgggt ttcaaatactggggcggcgtccgcggcgatatcgaacaatggttgaatgataatggctat cgcacctataccttggccgtcg gcccgttgtcgagcaattgggatcgcgcgtgcgaagcgtatgcccaattggtcggcggca ccgtcgattatggtgccgcg catgccgcgaatgatggccatgcccgctttggccgcacctatccgggcttgttgccggaa ttgaaacgcggcggccgtgtc catatcattgcccatagccaaggcggccaaacggcccgtatgttggtctcgttgttggaa aatggcagccaagaagaacgc gaatatgccaaagaacataatgtctcgttgagcccgttgtttgaaggcggccatcgcttc gtcttgtcggtcaccaccatcgc caccccgcatgatggcaccaccttggtcaatatggtcgattttaccgatcgctttttcga tttgcaaaaagccgtcttggaagc cgccgcagtcgcgtcgaatgccccgtacaccagcgaaatttatgatttcaaattggatca atggggcttgcgtcgcgaacc gggcgaatcgtttgatcattatttcgaacgcttgaaacgctcgccggtctggaccagcac ggatacggcccgctatgatttg agcgtcccgggcgccgaaaccttgaatcgctgggtcaaagcgtcgccgaatacctattat ttgtcgttcagcaccgaacgc acctatcgtggcgccttgaccggcaattattatccggaattgggcatgaatgcgttttcg gccatcgtctgcgcgccgttcttg ggcagctatcgcaatgcggccttgggcattgattcgcattggttgggcaatgatggcatc gtcaataccatttcgatgaatgg cccgaaacgcggcagcaatgatcgcatcgtcccgtatgatggcaccttgaagaaaggcgt ctggaatgatatgggcacct ataaagtcgatcatttggaagtcattggcgtcgatccgaatccgtcgttcaacattcgtg cgttttatctgcgtttagcggaaca actggcgtccctgcgtccg

Mxe GyrA intein

gcaatgcgcatgtgcatcaccggcgatgcgttggtcgccttgccggaaggcgaatcg gtccgtattgccgatattgtcccg ggcgcccgtccgaatagcgataatgcgattgatttgaaagtcttggatcgtcatggcaat ccggtcttggccgatcgcttgtt ccattcgggcgaacatccggtctataccgtccgtacggtcgaaggtttgcgtgtcacggg caccgcgaatcatccgttgttg tgcttggtcgatgtcgccggcgtcccgaccttgttgtggaaattgatcgatgaaatcaaa ccgggcgattatgcggtcatcca acgctcggccttttcggtcgattgcgccggttttgcccgtggcaaaccggaatttgcccc gaccacctatacggtcggcgtc ccgggtttggtccgcttcttggaagcccatcatcgcgatccggatgcccaagcgatcgcc gatgaattgaccgatggccgc ttttattatgcgaaagtcgcctcggtcacggatgcgggcgtccaaccggtctatagcttg cgcgtcgataccgcggatcatg cctttattaccaatggcttcgtcagccatgcc

S layer protein (in-frame with LI lip)

gcaacactctcagtggatatcgctcaatcctatatggagaccttacggtcctatggg cttgagtttaacataagacaaaccaa caacctgaccaatcggataattaaccgcttggaaaatcgcggccacacacctgagcaagt agcagactggcttatgagca gggttgcggttaaacagcaattgagaaaactggttaaacaaggcgaattggccgagtttg atctggatggcaatggccgcc tcaatcgatctgaattgctaaatgcaatgtctgctctgtccgagacagcggtcgaagaag cgccggtcgaagatcccacga ctcccaagcctccggccgatcctagcatcacgaccttaacgcttactgagattccgactc agcgtacggctacgttaaaatg gaacaatgtcgatgccgatttggccatcgatttcatgcaagacgtactgaaactagatct aaatcgactaggctggatggaa gacggtcaattgaccgtcaacatcgacaatatcgcgatcagcgattcggacagtaattct gatatcaacatcggtatggtcga tggcgaagaatttttgttcagcgtaaatacgccagtggcgctgtataccaatattatatt tgatttgaagcaaaacgatgatgtc attcaaaccggcatcgtgctaacgccgaccgaaaacaacggcggttcgtttgaaaacggc attacctccgatgccgacaa ccacatcatcgccggtcgtcctgaattgctgcacggcgcctacatcgacggcggcggggg ctacaacacgttggaagtcg acatgaaaggcttctttgcg REFERENCES EXAMPLE 2

1. Anthony, C. 1982. The biochemistry of methylotrophs.London ; New York : Academic Press 431 p.

2. Demidenko A, et al. 2017. Fatty Acid Biosynthesis Pathways in

Methylomicrobium buryatense 5G(B1). Front Microbiol. 17:2167.

3. Egelseer, E.M., et al. 2009. S-Layers, Microbial, Biotechnological

Applications, in: Encyclopedia of Industrial Biotechnology, John Wiley & Sons, Inc. 4. Graf R, et al. 2008. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol. 26 :326-33.

5. Henard CA, et al. 2016. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep. 2016 6:21585. doi: 10.1038/srep21585.

6. He Y-Z, et al. 2015. High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microbial Cell Factories 14:55.

7. Jeffries P, Wilkinson JF. Electron Microscopy of the cell wall complex of Methylomonas albus. Arch Microbiol 1978; 119:227-29.

8. Kalyuzhnaya M.G., Puri A., & Lidstrom M.E. 2015. Metabolic engineering in methanotrophic bacteria. Metab Eng. 29, 142-52.

9. Kim HK, et al. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus LI . Biosci Biotechnol Biochem. 62(1):66-71.

10. Kim MH, et al. 2000. Thermostable lipase of Bacillus Stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci

Biotechnol Biochem. 64:280-6.

1 1. Khmelenina, V.N., et al. 1992. The synthesis of polysaccarides by

Methylococcus capsulatus under various conditions of cultivation. Mikrobiologiia (Russian). 61, 404-410.

12. Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG et al. Osmoadaptation in halophilic and alkaliphilic methanotrophs, Arch Microbiol 1999;172:321-29.

13. Khmelenina VN, et al. Structural and functional features of methanotrophs from hypersaline and alkaline lakes. Microbiology (Russia) 2010;9:472-82.

14. Mustakhimov 1. 1., et al. 2010. Identification and characterization of EctR, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. J. Bacterid. 192, 410-7.

15. Ojala, D.S., et al. Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol. Methods Enzymol. 495, 99-1 18.

16. Pastor JM, et al, 2010. Ectoines in cell stress protection: uses and

biotechnological production. Biotechnol. Adv. 28 782-801.

17. Puri, A.W., et al. 2015. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol. 81, 1775-81. 18. Reshetnikov AS, et al. 201 1. Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods in Enzymol. 495: 15-30.

19. Riis, V., et al. 2003. Highly sensitive determination of ectoine and other compatible solutes by anion-exchange chromatography and pulsed amperometric detection. Anal. Bioanal. Chem. 377:203-207.

20. Strong PJ, et al. 2016. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Bioresour Technol. 215:314-23.

21. Trotsenko, Y. A., et al. Biotechnological potential of aerobic methylotrophic bacteria: a review of current state and future prospects. Appl. Biochem. Microbiol.

2005; 41, 433^141.

22. Vuilleumier S. , et al. 2012. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol. 194, 551 -2.

A number of embodiments of the invention have been described.

Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.