Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOUNDS HAVING SELECTIVE CYTOCHROME P450RAI-1 OR SELECTIVE CYTOCHROME P450RAI-2 INHIBITORY ACTIVITY AND METHODS OF OBTAINING THE SAME
Document Type and Number:
WIPO Patent Application WO/2005/058798
Kind Code:
A2
Abstract:
Compounds of formulas 1 through 17 provided in the specification specifically or selectively inhibit either the cytochrome P450RAI-1 enzyme or the cytochrome P450RAI-2 enzyme.

Inventors:
VASUDEVAN JAYASREE (US)
WANG LIMING (US)
LIU XIAOXIA (US)
TSANG KWOK YIN (US)
LI LING (US)
TAKEUCHI JANET A (US)
VU THONG (US)
BEARD RICHARD L (US)
BHAT SMITA (US)
VULIGONDA VIDYASAGAR (US)
CHANDRARATNA ROSHANTHA A (US)
Application Number:
PCT/US2004/042897
Publication Date:
June 30, 2005
Filing Date:
December 17, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALLERGAN INC (US)
VASUDEVAN JAYASREE (US)
WANG LIMING (US)
LIU XIAOXIA (US)
TSANG KWOK YIN (US)
LI LING (US)
TAKEUCHI JANET A (US)
VU THONG (US)
BEARD RICHARD L (US)
BHAT SMITA (US)
VULIGONDA VIDYASAGAR (US)
CHANDRARATNA ROSHANTHA A (US)
International Classes:
C07C57/42; C07C59/64; C07C59/86; C07C69/18; C07C69/73; C07C69/753; C07C69/76; C07C229/34; C07C229/38; C07C229/46; C07C229/50; C07C275/42; C07D311/58; C07D311/64; C07D311/96; (IPC1-7): C07C229/00
Foreign References:
US6252090B12001-06-26
US4326055A1982-04-20
JPS58121242A1983-07-19
US5349105A1994-09-20
GB1277227A1972-06-07
Other References:
SENGUPTA S ET AL: "Iodoarenediazonium salts : a new class of aromatic substrates for differential palladium catalyzed reactions" TETRAHEDRON LETTERS, vol. 39, no. 7, 12 February 1998 (1998-02-12), pages 715-718, XP004106780
CASTRO C E ET AL: "Copper(I) substitutions. Scope and mechanism of cuprous acetylide substitutions" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 91, no. 23, 5 November 1969 (1969-11-05), pages 6464-6470, XP002326252
ASAO N ET AL: "Pi-pi chelation controlled chemoselective conjugate addition of lithium dimethylcuprate" TETRAHEDRON LETTERS, vol. 44, no. 9, 24 February 2002 (2002-02-24), pages 1803-1805, XP004408806
COSTA A ET AL: "P2-Et-mediated deprotonation of ortho-halobenzyl sulfones: synthetic applications as zwitterionic synthons" SYNLETT, vol. 12, 2001, pages 1881-1884, XP001084388
HAMON D P G ET AL: "Enantioselective syntheses of 2-arylpropanoic acid non-steroidal anti-inflammatory drugs and related compounds" TETRAHEDRON, vol. 51, no. 46, 13 November 1995 (1995-11-13), pages 12645-12660, XP004104649
BOUCHAIN G ET AL: "Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors" JOURNAL OF MEDICINAL CHEMISTRY, vol. 46, no. 5, 27 February 2003 (2003-02-27), pages 820-830, XP002292252
XIN Z ET AL: "A practical and efficient intramolecular Michael addition of ureas to alpha,beta-unsaturated esters" TETRAHEDRON LETTERS, vol. 41, no. 8, February 2000 (2000-02), pages 1147-1150, XP004188577
NAKAO K ET AL: "Qualitative structure-activity analyses of novel hydroxyphenylurea derivatives as antioxidants" BIOORGANIC & MEDICINAL CHEMISTRY, vol. 6, no. 6, 1998, pages 849-868, XP002309788
KWON B-M ET AL: "Synthesis and biological activity of cinnamaldehydes as angiogenesis inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 7, no. 19, 7 October 1997 (1997-10-07), pages 2473-2476, XP004136467
KONEK F VON ET AL: "Über einige neue Derivate der Paracumar- und Vanillinsäure" CHEMISCHE BERICHTE, vol. 51, 1918, pages 855-865, XP002326243
Attorney, Agent or Firm:
Brook, David E. (Brook Smith & Reynolds, P.C., 530 Virginia Road, P.O. Box 913, Concord MA, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:
1. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is O, S or NR where R is H, alkyl of 1 to 6 carbons or benzyl; Y is H, alkyl of 1 to 10 carbons, benzyl, C16 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C16 alkyl or substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, or I or alkoxy of 1 to 6 carbons; Z is C#C, (CRz=CRl) n where n'is an integer having the value 15, CONRz, NR1CO; COO, OCO, <BR> <BR> <BR> CSNRs,<BR> <BR> <BR> <BR> <BR> <BR> <BR> NRzCS,<BR> <BR> <BR> <BR> <BR> <BR> COS, sco, N=N; NRICONRi; Ri is independently H or alkyl of 1 to 6 carbons; p is an integer having the values of 0 to 4; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 2; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 2; W isC (R5) 2orCR5=CR5; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W isC (R5) 2 then at least one R5 is alkyl of 1 to 3 carbons, and Rs is H, alkyl of 1 to 6 carbons, CH2O (Cz 6alkyl), CH2OCO (CI 6 alkyl) or a cation of a pharmaceutically acceptable base.
2. A compound in accordance with Claim 1 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
3. A compound in accordance with Claim 2 where A is phenyl.
4. A compound in accordance with Claim 1 where Z is selected from the group consisting of C#C, COO and NHCONH.
5. A compound in accordance with Claim 1 where W is selected from the group consisting of CH=CH, C (CH3) =CH, CH=C (CH3), C (CH3) 2 and CHCH3.
6. A compound in accordance with Claim 3 where Z isCC, Y is cyclopropyl, and R8 is H, lower alkyl of 1 to 3 carbons,CH20 (Cl3alkyl) orCH20CO (CI3 alkyl) or a cation of a pharmaceutically acceptable base.
7. A compound of the formula wherein the dashed line represents a bond or absence of a bond; A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is alkyl of 1 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, or I, OR, SR, NRR7,COOR where R is H, alkyl of 1 to 6 carbons or benzyl; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl 6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, I, COORg or alkoxy of 1 to 6 carbons; Z isC=C, (CRs=CRl) n where n'is an integer having the value 15, CONR1, NR1CO; COO, OCO, CSNR1, NR1CS, <BR> <BR> <BR> <BR> COS,<BR> <BR> <BR> <BR> <BR> SCO, N=N; NR1CONR1; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons ; alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons ; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 2; R4 is independently H, alkyl of 1 to 6 carbons, or fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; W isC (R5) 2 or CR5=CR5; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W isC (R5) 2 then at least one R5 is alkyl of 1 to 3 carbons; R7 is H, lower alkyl, cycloalkyl of 3 to 6 carbons, lower alkyl substituted cycloalkyl of 3 to 6 carbons, and R8 independently is H, alkyl of 1 to 6 carbons,CH20 (C 16alkyl), CH20CO (Ci. 6alkyl) or a cation of a pharmaceutically acceptable base.
8. A compound in accordance with Claim 7 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
9. A compound in accordance with Claim 7 where A is phenyl.
10. A compound in accordance with Claim 7 where Z is selected from the group consisting ofC=C,COOandNHCONH.
11. A compound in accordance with Claim 7 where W is selected from the group consisting of CH=CH, C (CH3) =CH, CH=C (CH3), C (CH3) 2 and CHCH3.
12. A compound in accordance with Claim 9 where Z isCC, Y is H, cyclopropyl or OCH3, the dashed line represents absence of a bond, and R8 is H, lower alkyl of 1 to 3 carbons,CH20 (Cs 3alkyl) orCH20CO (Cz 3alkyl) or a cation of a pharmaceutically acceptable base.
13. A compound in accordance with Claim 12 where the compound has the formula or a pharmaceutically acceptable salt of said compound.
14. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is O, S or NR where R is H, alkyl of 1 to 6 carbons, C16 trialkylsilyl or benzyl ; Y is H, alkyl of 1 to 10 carbons, benzyl, C16 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl 6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, or I; Z is C#C, (CRz=CRl) n where n'is an integer having the value 15, CONRi, NR1CO; COO, OCO, CSNR1, NR1CS, <BR> <BR> <BR> <BR> COS,<BR> <BR> <BR> <BR> <BR> <BR> SCO,<BR> <BR> <BR> <BR> <BR> <BR> <BR> N=N ; NR1CONR1; RI is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; W isC (R5) 2orCR5=CR5; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W isC (R5) 2 then at least one Rs is alkyl of 1 to 3 carbons; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,CH20 (CI6alkyl), CH20CO (Cl6 alkyl) or a cation of a pharmaceutically acceptable base.
15. A compound in accordance with Claim 14 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
16. A compound in accordance with Claim 15 where A is phenyl.
17. A compound in accordance with Claim 14 where Z is selected from the group consisting ofCC,COOandNHCONH.
18. A compound in accordance with Claim 14 where W is selected from the group consisting of CH=CH, C (CH3) =CH, CH=C (CH3), C (CH3) 2 and CHCH3.
19. A compound in accordance with Claim 16 where Z is C#C, Y is H, X is NR and R8 is H, lower alkyl of 1 to 3 carbons,CH2O (CI 3alkyl) or CH2OCO (CI 3alkyl) or a cation of a pharmaceutically acceptable base.
20. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is OR7, SR7 or NRR7 where R is H, alkyl of 1 to 6 carbons or benzyl; Y is H, alkyl of 1 to 10 carbons, benzyl, C16 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C16 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, I, orCOORs ; Z is C#C, (CR1=CR1)n, where n'is an integer having the value 15, <BR> <BR> <BR> <BR> CONRz,<BR> <BR> <BR> <BR> <BR> <BR> <BR> NRsCO; COO, OCO, <BR> <BR> <BR> CSNRs,<BR> <BR> <BR> <BR> <BR> <BR> <BR> NRICS,<BR> <BR> <BR> <BR> <BR> <BR> COS,<BR> <BR> <BR> <BR> <BR> <BR> SCO, N=N ;<BR> NRICONRl; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons ; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; W isC (R5) 2 orCR5=CRS ; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W isC (R5) 2 then at least one Rs is alkyl of 1 to 3 carbons; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,CH20 (CI 6alkyl), CH20CO (Cz 6alkyl) or a cation of apharmaceutically acceptble base.
21. A compound in accordance with Claim 20 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
22. A compound in accordance with Claim 21 where A is phenyl.
23. A compound in accordance with Claim 20 where Z is selected from the group consisting of C#C, COO and NHCONH.
24. A compound in accordance with Claim 20 where W is selected from the group consisting of CH=CH, C (CH3) =CH, CH=C (CH3), C (CH3) 2 and CHCH3.
25. A compound in accordance with Claim 22 where Z isC=C, Y is H or COOL, X is NRR7 there R7 is cyclopropyl and R8 is H, lower alkyl of 1 to 3 carbons,CH20 (CI3alkyl) orCH20CO (CI3alkyl) or a cation of a pharmaceutically acceptable base.
26. A compound in accordance with Claim 25 where the compound has the formula.
27. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C16 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, I, orCOORI ; Z is C#C, (CRl=CRI) n' where n'is an integer having the value 15, CONRI, NR1CO; COO, OCO, CSNR1, <BR> <BR> <BR> <BR> NRlCS,<BR> <BR> <BR> <BR> <BR> COS,<BR> <BR> <BR> <BR> <BR> <BR> SCO, N=N; NRICONRi; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; n is an integer having the values of 0 or 1; p is an integer having the values of 0 or 1 ; W isC (R5) 2 orCR5=CR5 ; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W isC (R5) 2 then at least one Rs is alkyl of 1 to 3 carbons, and is H, alkyl of 1 to 6 carbons, CH2O(C16alkyl), CH2OCO(C16 alkyl) or a cation of a pharmaceutically acceptable base.
28. A compound in accordance with Claim 27 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
29. A compound in accordance with Claim 28 where A is phenyl.
30. A compound in accordance with Claim 27 where Z is selected from the group consisting ofC=C,CO0andNHCONH.
31. A compound in accordance with Claim 27 where W is selected from the group consisting of CH=CH, C (CH3) =CH, CH=C (CH3), C (CH3) 2 and CHCH3.
32. A compound in accordance with Claim 29 where Z isCC, Y is branch chained alkyl, p is zero (0), and R8 is H, lower alkyl of 1 to 3 carbons, CH20 (Cz 3alkyl) orCH20CO (Cs 3alkyl) or a cation of a pharmaceutically acceptable base.
33. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is O, S, NR or CO where R is H or alkyl of 1 to 6 carbons ; Y is H, alkyl of 1 to 10 carbons, benzyl, C16 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C16 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2NRR7 orCOOR1 ; Z is C#C, (CRl=CRl)n' where n'is an integer having the value 15, CONR1, NR1CO; COO, OCO, CSNR1, NRiCS, <BR> <BR> COS,<BR> <BR> SCO, N=N; NRICONR9; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; W isC (Rs) 2orCRs=CRs; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W isC (R5) 2 then at least one Rs is alkyl of 1 to 3 carbons, and R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or C16 alkyl substituted cycloalkyl of 1 to 6 carbons, and Rs is H, alkyl of 1 to 6 carbons,CH20 (C16alkyl), CH2OCO(C16 alkyl) or a cation of a pharmaceutically acceptable base.
34. A compound in accordance with Claim 33 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
35. A compound in accordance with Claim 34 where A is phenyl.
36. A compound in accordance with Claim 33 where Z is selected from the group consisting of C#C, COO and NHCONH.
37. A compound in accordance with Claim 33 where W is selected from the group consisting of CH=CH, C (CH3) =CH, CH=C (CH3), C (CH3) 2 and CHCH3.
38. A compound in accordance with Claim 33 where X is O.
39. A compound in accordance with Claim 35 where Z is C#C, X is O, Y is alkyl, OH or CH2NRR7 where R7 is cyclopropyl and R8 is H, lower alkyl of 1 to 3 carbons,CH20 (Cs 3alkyl) orCH2OCO (Cl 3alkyl) or a cation of a pharmaceutically acceptable base.
40. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, OR7, CH2NRR7 orCOOR1 ; <BR> <BR> <BR> <BR> Z isCC,<BR> <BR> <BR> <BR> <BR> <BR> COO,<BR> <BR> <BR> <BR> <BR> <BR> NRICONRI; R is independently H or alkyl of 1 to 6 carbons; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,CH20 (CI 6alkyl), CH20CO (C16 alkyl) or a cation of a pharmaceutically acceptable base.
41. A compound in accordance with Claim 40 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
42. A compound in accordance with Claim 40 where A is phenyl.
43. A compound in accordance with Claim 42 where Z isCC, X, Y is OR7, COORi or CH2NRR7 where R7 is cyclopropyl and R8 is H, lower alkyl of 1 to 3 carbons, CH2(C13alkyl) or CH2OCO(C13alkyl) or a cation of a pharmaceutically acceptable base.
44. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is alkenyl of 2 to 6 carbons, alkynyl of 2 to 6 carbons, alkenyl alkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons; <BR> <BR> Z isC=C,<BR> <BR> COO,<BR> <BR> NRiCONRI; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl ; m is an integer having the values 0 to 3; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,CH20 (Cl6alkyl), CH20CO (CI6 alkyl) or a cation of a pharmaceutically acceptable base.
45. A compound in accordance with Claim 44 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
46. A compound in accordance with Claim 45 where A is phenyl.
47. A compound in accordance with Claim 46 where Z isCC, R7 is alkyl, Y is CHEC, CH2=CHor CHCCH2=CHand Rs is H, lower alkyl of 1 to 3 carbons, CH2O(C13alkyl) or CH2OCO(C13alkyl) or a cation of a pharmaceutically acceptable base.
48. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Z is C#C, <BR> <BR> <BR> <BR> COO,<BR> <BR> <BR> <BR> <BR> <BR> NRICONRs; R is H or alkyl of 1 to 6 carbons; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or C16 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 independently is H, alkyl of 1 to 6 carbons,CH20 (CI 6alkyl), CH20CO (Cs 6alkyl) or a cation of a pharmaceutically acceptable base.
49. A compound in accordance with Claim 48 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
50. A compound in accordance with Claim 48 where A is phenyl.
51. A compound in accordance with Claim 50 where Z is C#C, R7 is cyclopropyl and R8 is independently H, lower alkyl of 1 to 3 carbons, CH20 (CI 3alkyl) orCH20CO (Cl 3alkyl) or a cation of a pharmaceutically acceptable base.
52. A compound of the formula wherein the dashed line represents a bond or absence of a bond; A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is NRR7, or COOR8 ; Y is H, alkenyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, OR7 orCOORI ; Z isC=C, <BR> <BR> <BR> <BR> COO,<BR> <BR> <BR> <BR> <BR> <BR> NRICONRI; R is independently H or alkyl of 1 to 6 carbons; Ri is independently H or alkyl of 1 to 6 carbons; Ra is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3 ; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or C16 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 independently is H, alkyl of 1 to 6 carbons,CH20 (C1 6alkyl), CH20CO (CI 6alkyl) or a cation of a pharmaceutically acceptable base.
53. A compound in accordance with Claim 52 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
54. A compound in accordance with Claim 53 where A is phenyl.
55. A compound in accordance with Claim 54 where Z isCC, R7 is cyclopropyl, Y is H, vinyl, OR7 or COOR1 and R8 independently is H, lower alkyl of 1 to 3 carbons,CH20 (CI 3alkyl) orCH20CO (CI 3alkyl) or a cation of a pharmaceutically acceptable base.
56. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is, alkenyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, or alkynylalkenyl of 4 to 6 carbons ; Z isCC, COO, NR1CONR1; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4, and R8 is H, alkyl of 1 to 6 carbons,CH20 (CI 6alkyl), CH20CO (C, 6 alkyl) or a cation of a pharmaceutically acceptable base.
57. A compound in accordance with Claim 56 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
58. A compound in accordance with Claim 57 where A is phenyl.
59. A compound in accordance with Claim 58 where Z isCC, Y is vinyl and R8 is H, lower alkyl of 1 to 3 carbons,CH20 (CI 3alkyl) orCH20CO (Cs 3 alkyl) or a cation of a pharmaceutically acceptable base.
60. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Z isCC, <BR> <BR> <BR> <BR> COO,<BR> <BR> <BR> <BR> NRICONRI ; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3, and R8 independently is H, alkyl of 1 to 6 carbons,CH20 (CI 6alkyl), CH20CO (CI 6alkyl) or a cation of a pharmaceutically acceptable base.
61. A compound in accordance with Claim 60 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
62. A compound in accordance with Claim 61 where A is phenyl.
63. A compound in accordance with Claim 62 where Z isC=Cand R8 independently is H, lower alkyl of 1 to 3 carbons,CH20 (C1_3alkyl) or CH20CO (CI 3alkyl) or a cation of a pharmaceutically acceptable base.
64. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Z isCC, <BR> COO,<BR> NRICONRI; Ri is independently H or alkyl of 1 to 6 carbons; Ra is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3, and R8 independently is H, alkyl of 1 to 6 carbons,CH20 (CI 6alkyl), CH20CO (CI 6alkyl) or a cation of a pharmaceutically acceptable base.
65. A compound in accordance with Claim 64 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
66. A compound in accordance with Claim 65 where A is phenyl.
67. A compound in accordance with Claim 66 where Z isCCand R8 independently is H, lower alkyl of 1 to 3 carbons,CH20 (CI 3alkyl) or CH20CO (CI 3alkyl) or a cation of a pharmaceutically acceptable base.
68. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl 6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2NRR7 orCOOR1 ; R is independently H or alkyl of 1 to 6 carbons; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons, CH2O(C16alkyl), CH2OCO(C16 alkyl) or a cation of a pharmaceutically acceptable base.
69. A compound in accordance with Claim 68 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
70. A compound in accordance with Claim 69 where A is phenyl.
71. A compound in accordance with Claim 70 where Y is H, R7 is cyclopropyl and R8 is H, lower alkyl of 1 to 3 carbons,CH20 (CI 3alkyl) or CH20CO (Cs 3alkyl) or a cation of a pharmaceutically acceptable base.
72. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is 0 or S ; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C16 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2NRR7 orCOORI ; Ri is independently H or alkyl of 1 to 6 carbons; p is an integer having the values of 0 to 4; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and Rs is H, alkyl of 1 to 6 carbons,CH2O (Cl 6alkyl), CH20CO (C16 alkyl) or a cation of a pharmaceutically acceptable base.
73. A compound in accordance with Claim 72 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
74. A compound in accordance with Claim 73 where A is phenyl.
75. A compound in accordance with Claim 74 where X is 0, Y is cyclopropyl and R8 is H, lower alkyl of 1 to 3 carbons,CH20 (CI 3alkyl) or CH20CO (CI 3alkyl) or a cation of a pharmaceutically acceptable base.
76. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Ra is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3, and R8 independently is H, alkyl of 1 to 6 carbons,CH20 (Ci. 6alkyl), CH20CO (CI 6alkyl) or a cation of a pharmaceutically acceptable base.
77. A compound in accordance with Claim 76 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
78. A compound in accordance with Claim 77 where A is phenyl.
79. A compound in accordance with Claim 78 where R8 is independently H, lower alkyl of 1 to 3 carbons,CH20 (CI3alkyl) orCH20CO (Cl3alkyl) or a cation of a pharmaceutically acceptable base.
80. A compound of the formula wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is 0 or S ; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluorosubstituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl 6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenylalkynyl of 4 to 6 carbons, alkynylalkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2NRR7 orCOOR1 ; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or C16 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,CH20 (CI6alkyl), CH20CO (CI6 alkyl) or a cation of a pharmaceutically acceptable base.
81. A compound in accordance with Claim 80 where A is selected from the group consisting of phenyl, naphthyl, pyridyl, thienyl and furyl.
82. A compound in accordance with Claim 81 where A is phenyl.
83. A compound in accordance with Claim 82 where X is 0, Y is CH C, R8 is H, lower alkyl of 1 to 3 carbons,CH20 (C13alkyl) or CH2OCO(C13alkyl) or a cation of a pharmaceutically acceptable base.
Description:
COMPOUNDS HAVING SELECTIVE CYTOCHROME P450RAI-1 OR SELECTIVE CYTOCHROME P450RAI-2 INHIBITORY ACTIVITY AND METHODS OF OBTAINING THE SAME RELATED APPLICATION This application claims the benefit of U. S. Provisional Application No. 60/530, 462, filed on December 17,2003. The entire teachings of the above application are incorporated herein by reference.

BACKGROUND OF THE INVENTION The present invention is directed to compounds having selective cytochrome P450RAI-1 or selective cytochrome P450RAI-2 inhibitory activity and to methods of obtaining these compounds.

'Compounds that have retinoid-like activity are well known in the art, and are described in numerous United States and other patents and in scientific publications.

It is generally known and accepted in the art that retinoid-like activity is useful for treating animals of the mammalian species, including humans, for curing or alleviating the symptoms and conditions of numerous diseases and conditions. In other words, it is generally accepted in the art that pharmaceutical compositions having a retinoid-like compound or compounds as the active ingredient are useful as regulators of cell proliferation and differentiation, and particularly as agents for treating skin-related diseases, including, actinic keratoses, arsenic keratoses, inflammatory and non-inflammatory acne, psoriasis, ichthyoses and other keratinization and hyperproliferative disorders of the skin, eczema, atopic dermatitis, Darriers disease, lichen planus, prevention and reversal of glucocorticoid damage (steroid atrophy), as a topical anti-microbial, as skin anti-pigmentation agents and to treat and reverse the effects of age and photo damage to the skin. Retinoid compounds are also useful for the prevention and treatment of cancerous and precancerous conditions, including, premalignant and malignant hyperproliferative diseases such as cancers of the breast, skin, prostate, cervix, uterus, colon, bladder,

esophagus, stomach, lung, larynx, oral cavity, blood and lymphatic system, metaplasias, dysplasias, neoplasias, leukoplakias and papillomas of the mucous membranes and in the treatment of Kaposi's sarcoma. In addition, retinoid compounds can be used as agents to treat diseases of the eye, including, without limitation, proliferative vitreoretinopathy (PVR), retinal detachment, dry eye and other corneopathies, as well as in the treatment and prevention of various cardiovascular diseases, including, without limitation, diseases associated with lipid metabolism such as dyslipidemias, prevention of post-angioplasty restenosis and as an agent to increase the level of circulating tissue plasminogen activator (TPA).

Other uses for retinoid compounds include the prevention and treatment of conditions and diseases associated with human papilloma virus (HPV), including warts and genital warts, various inflammatory diseases such as pulmonary fibrosis, ileitis, colitis and Krohn's disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and stroke, improper pituitary function, including insufficient production of growth hormone, modulation of apoptosis, including both the induction of apoptosis and inhibition of T-Cell activated apoptosis, restoration of hair growth, including combination therapies with the present compounds and other agents such as MinoxidilR, diseases associated with the immune system, including use of the present compounds as immunosuppressants and immunostimulants, modulation of organ transplant rejection and facilitation of wound healing, including modulation of chelosis. Retinoid compounds have relatively recently been also discovered to be useful for treating type II non-insulin dependent diabetes mellitus (NIDDM).

Several compounds having retinoid-like activity are actually marketed under appropriate regulatory approvals in the United States of America and elsewhere as medicaments for the treatment of several diseases responsive to treatment with retinoids. Retinoic acid (RA) itself is a natural product, biosynthesized and present in a multitude of human and mammalian tissues and is known to play an important role in the regulation of gene expression, tissue differentiation and other important biological processes in mammals including humans. Relatively recently it has been discovered that a catabolic pathway in mammals, including humans, of natural

retinoic acid includes a step of hydroxylation of RA catalyzed by the enzyme Cytochrome P450RAI (retinoic acid inducible). In fact, in the present state of the art it is known that at least three sub-species of cytochrome P450RAI enzymes exist, and these are termed P450RAI1, P450RAI2 and P450RAI3. White et al.

Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all trans retinoic acid metabolism, Proc. Natl. Acad. Sci. USA Volume 97 No. 12 pp6403 6408 (June 6, 2000).

Several inhibitors of cytochrome P450RAI have been synthesized or discovered in the prior art, including the well known ketoconazole, liarozole and R116010 compounds. The chemical structures of these prior art compounds are provided below. United States Patent No. 6,313, 107 describes a number of compounds having cytochrome P450RAI inhibitory activity.

It has also been noted in the prior art, that administration to mammals, including humans, of certain inhibitors of CP-450RAI results in significant increase in endogeneous RA levels, and further that treatment with CP450RAI inhibitors, for example with liarozole, gives rise to effects similar to treatment by retinoids, for example amelioration of psoriasis. N - H s N N R116010 N N N Cl CH3 O i. iie r H CI Ct ZON N N N , N, i CI HN LIAROZOLE

The following publications describe or relate to the above-summarized role of CP450RAI in the natural catabolism of RA, to inhibitors of CP-450RAI and to ira vitro and in vivo experiments which demonstrate that inhibition of CP450RAI activity results in increased endogeneous RA levels and potential therapeutic benefits:

Kuijpef°s, et al.,"The effects of oral liarozole on epidermal proliferation and differentiation in severe plaque psoriasis are comparable with those of acitretin", British Journal of Dermatology, (1998) 139: pp 380-389.

Kang, et al.,"Liarozole Inhibits Human Epidermal Retinoid Acid 4-Hydroxylase Activity and Differentially Augments Human Skin Responses to Retinoic Acid and Retinol In Vivo", The Journal of Investigative Dermatology, (August 1996) Vol.

107, No. 2: pp 183-187.

Van Wauwe, et al.,"Liarozole, an Inhibitor of Retinoic Acid Metabolism, Exerts Retinoid-Mimetic Effects in Vivo", The Journal of Pharmacology and Experimental Therapeutics, (1992) Vol. 261, No 2: pp 773-779.

De Porre, et al.,"Second Generation Retinoic Acid Metabolism Blocking Agent (Ramba) Rl 16010 : Dose Finding in Healthy Male Volunteers", University of Leuven, Belgium, pp 30.

Wauwe, et al.,"Ketoconazole Inhibits the in Vitro and in Vivo Metabolism of All- Trans-Retinoic Acid", The Journal of Pharmacology and Experimental Therapeutics, (1988) Vol. 245, No. 2: pp 718-722.

White, et al.,"cDNA Cloning of Human Retinoic Acid-metabolizing Enzyme (hP450RAI) Identifies a Novel Family of Cytochromes P450, The Journal of Biological Chemistry, (1997) Vol. 272, No. 30, Issue of July 25 pp 18538-18541.

Hanzlk, et al.,"Cyclopropylamines as Suicide Substrates for Cytochromes P450RAI", Journal of Medicinal Chemistry (1979), Vol. 22, No. 7, pp 759-761.

Ortiz de Montellano,"Topics in Biology-The Inactivation of Cytochrome P450RAI", Annual Reports in Medicinal Chemistry, (1984), Chapter 20, pp 201- 210.

Ha7zzlik, et al."Suicidal Inactivation of Cytochrome P450RAI by Cyclopropylamines-Evidence for Cation-Radical Intermediates", J. Am. Chem.

Soc., (1982), Vol. 104, No. 107, pp. 2048-2052. Laite et al. Proc. Natl. Acad. Sci.

USA supra.

It is now general knowledge in the art that two main types of retinoid receptors exist in mammals (and other organisms). The two main types or families of receptors are respectively designated the RARs and RXRs. Within each type

there are subtypes ; in the RAR family the subtypes are designated RARa, RARp and RARy, in RXR the subtypes are: RXRa, RXRp and RXRy. It has also been established in the art that the distribution of the two main retinoid receptor types, and of the several sub-types is not uniform in the various tissues and organs of mammalian organisms. Moreover, it is generally accepted in the art that many unwanted side effects of retinoids are mediated by one or more of the RAR receptor subtypes. Accordingly, among compounds having agonist-like activity at retinoid receptors, specificity or selectivity for one of the main types or families, and even specificity or selectivity for one or more subtypes within a family of receptors, is considered a desirable pharmacological property.

Similar to the desirability of providing compounds that are selective or specific to one or more retinoid receptor subtypes, it is also desirable to provide compounds that specifically or selectively inhibit either the cytochrome P450RAI-1 enzyme or the cytochrome P450RAI-2 enzyme. The present invention provides such compounds and methods in the form of synthetic guidelines how to obtain them.

SUMMARY OF THE INVENTION The present invention relates to compounds of Formula 1 Formula 1 wherein

A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is O, S or NR where R is H, alkyl of 1 to 6 carbons or benzyl; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C1-6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, or I or alkoxy of 1 to 6 carbons; Z is-C=C-, -(CRl=CRl) n where n'is an integer having the value 1-5, -CO-NR1-, NRz-CO-; -CO-O-, -O-CO-, -CS-NR1-, <BR> <BR> <BR> <BR> NRI-CS-,<BR> <BR> <BR> <BR> <BR> <BR> - CO-S-,<BR> <BR> <BR> <BR> <BR> <BR> - S-CO-,<BR> <BR> <BR> <BR> <BR> <BR> <BR> - N=N- ;<BR> <BR> <BR> <BR> <BR> <BR> -NRl-CO-NRl-; Rl is independently H or alkyl of 1 to 6 carbons; p is an integer having the values of 0 to 4; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 2;

R4 is independently H, alkyl of 1 to 6 carbons, or F, fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 2; W is-C (R5) 2-or-CR5=CR5-; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W is-C (Rs) 2- then at least one Rs is alkyl of 1 to 3 carbons, and R8 is H, alkyl of 1 to 6 carbons,-CH20 (C1-6-alkyl), CH20CO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 2 Formula 2 wherein the dashed line represents a bond or absence of a bond; A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is alkyl of 1 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl- alkenyl of 4 to 6 carbons, Cl, Br, or I, OR, SR, NRR7,-CO-OR where R is H, alkyl of 1 to 6 carbons or benzyl; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl-6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1

or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, I, COORg or alkoxy of 1 to 6 carbons; Z is -C#C-, - (CR1=CR1)n' where n'is an integer having the value 1-5, -CO-NR1-, NR1-CO-; -CO-O-, -O-CO-, -CS-NRt-, NR1-CS-, -CO-S-, -S-CO-, <BR> <BR> <BR> <BR> - N=N- ;<BR> <BR> <BR> <BR> <BR> -NRI-CO-NR1- ; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 2; R4 is independently H, alkyl of 1 to 6 carbons, or fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4 ; W is-C (R5) 2- or -CR5=CR5-; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W is-C (R5) 2- then at least one Rs is alkyl of 1 to 3 carbons; R7 is H, lower alkyl, cycloalkyl of 3 to 6 carbons, lower alkyl substituted cycloalkyl of 3 to 6 carbons, and Rs is H, alkyl of 1 to 6 carbons,-CH20 (Ci-6-alkyl), CH20CO (Cm-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 3

Formula 3 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is 0, S or NR where R is H, alkyl of 1 to 6 carbons, Cl-6-trialkylsilyl or benzyl; Y is H, alkyl of 1 to 10 carbons, benzyl, C1-6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C1-6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, or I; Z is-C-C-, - (CRI=CRI) n where n'is an integer having the value 1-5, -CO-NR1-, NRi-CO- ; -CO-O-, -O-CO-, -CS-NR1-, <BR> <BR> <BR> NRi-CS-,<BR> <BR> <BR> <BR> <BR> <BR> <BR> - CO-S-,<BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> - S-CO-,

- N=N- ;<BR> <BR> <BR> -N, I-CO-NRI- ; R1 is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; W is-C (Rs) 2- or-CR5=CR5- ; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W is-C (R5) 2- then at least one Rs is alkyl of 1 to 3 carbons; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and Rs is H, alkyl of 1 to 6 carbons,-CH20 (Ci-6-alkyl), CH2OCO (Cl_6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 4 Formula 4 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is OR7, SR7 or NRR7 where R is H, alkyl of 1 to 6 carbons or benzyl ;

Y is H, alkyl of 1 to 10 carbons, benzyl, C1-6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C1-6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, I, or-COORi ; Z is -C#C-, -(CRl=CRl) n where n'is an integer having the value 1-5, -CO-NR1-, NR1-CO-; <BR> <BR> -CO-O-,<BR> -O-CO-, -CS-NR1-, <BR> <BR> NRI-CS-,<BR> <BR> - CO-S-,<BR> <BR> - S-CO-, -N=N-; -NRI-CO-NRl-; Rl is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl ; m is an integer having the values 0 to 3; W is-C (R5) 2- or -CR5=CR5-; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W is-C (R5) 2- then at least one R5 is alkyl of 1 to 3 carbons; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R$ is H, alkyl of 1 to 6 carbons,-CH20 (C1-6-alkyl), CHOCO(C1-6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 5

Formula 5 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is H, alkyl of 1 to 10 carbons, benzyl, C1-6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, C1-6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, I, or-COORI ; Z is -C#C-, -(CR1=CR1)n' where n'is an integer having the value 1-5, -CO-NR1-, NR9-CO-; -CO-O-, -O-CO-, <BR> <BR> -CS-NRl-,<BR> <BR> NRI-CS-,<BR> <BR> - CO-S-,<BR> - S-CO-, -N=N-; -NRI-CO-NRt-; Ri is independently H or alkyl of 1 to 6 carbons;

R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; n is an integer having the values of 0 or 1 ; p is an integer having the values of 0 or 1 ; W is-C (R5) 2- or-CR5=CR5- ; Rs is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W is-C (R5) 2- then at least one Rs is alkyl of 1 to 3 carbons, and R8 independently is H, alkyl of 1 to 6 carbons,-CH20 (Cl 6-alkyl), CH20CO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 6 Formula 6 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is 0, S, NR or CO where R is H or alkyl of 1 to 6 carbons; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl-6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1

or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2-NRR7 or-COORl ; Z is -C#C-, -(CRl=CRl) n where n'is an integer having the value 1-5, -CO-NR1-, NR1-CO-; -CO-O-, -O-CO-, <BR> <BR> <BR> <BR> -CS-NRi-,<BR> <BR> <BR> <BR> <BR> <BR> NRI-CS-,<BR> <BR> <BR> <BR> <BR> <BR> - CO-S-,<BR> <BR> <BR> <BR> <BR> <BR> - S-CO-,<BR> <BR> <BR> <BR> <BR> <BR> - N=N- ; -NR1-CO-NR1-; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons ; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; W is-C (Rs) 2- or -CR5=CR5-; R5 is independently H, halogen, or alkyl of 1 to 3 carbons with the proviso that when W is-C (R5) 2- then at least one Rosis alkyl of 1 to 3 carbons, and R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,-CH20 (CI-6-alkyl), CH20CO (CI-6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 7

Formula 7 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two Rz groups; Y is alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, OR7, CH2-NRR7 or-COOR1 ; Z is-C-C-, <BR> <BR> <BR> <BR> -CO-O-,<BR> <BR> <BR> <BR> <BR> <BR> -NRl-CO-NRI-; R is independently H or alkyl of 1 to 6 carbons; Ri is independently H or alkyl of 1 to 6 carbons; , R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro, substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,-CH20 (CI 6-alkyl), CH20CO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 8

Formula 8 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is alkenyl of 2 to 6 carbons, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons; Z is-C--C-j <BR> <BR> <BR> <BR> -CO-O-,<BR> <BR> <BR> <BR> <BR> -NRI-CO-NRI-; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and Rs is H, alkyl of 1 to 6 carbons,-CH20 (CI 6-alkyl), CH20CO (Cz 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 9 (rus) m r5iß 4 Z--A (R2)-CH2-COORs i s R$OOC R7RN/ Formula 9

wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Z is-C-C-, -CO-O-, -NRI-CO-NRI-; R is H or alkyl of 1 to 6 carbons; R, is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of I to 6 carbons or benzyl; m is an integer having the values 0 to 3; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and Rs independently is H, alkyl of 1 to 6 carbons,-CH20 (Cl-alkyl), CH20CO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 10 Ri R. \X (P3) m R1 XR1 (R3) m 6 ) vz--A (R2)-CH2-COOR8 I X Y Formula 10

wherein the dashed line represents a bond or absence of a bond; A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is NRR7, or COOR8 ; Y is H, alkenyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl- alkenyl of 4 to 6 carbons, OR7 or-COORI ; Z is-C=C-, <BR> <BR> <BR> <BR> -CO-O-,<BR> <BR> <BR> <BR> <BR> <BR> -NRz-CO-NRl-; R is independently H or alkyl of 1 to 6 carbons; Rl is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of I to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4;

R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 independently is H, alkyl of 1 to 6 carbons,-CH2O (Cl 6-alkyl), CH20CO (CI 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 11 Ri. R \ (Rs) m 6 (R4) o Is) 6 , Z (R2)-CH2-COOR8 O Y 0 y Formula 11 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is, alkenyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, or alkynyl- alkenyl of 4 to 6 carbons; Z is-C-C-, <BR> <BR> <BR> <BR> <BR> -CO-O-,<BR> <BR> <BR> <BR> <BR> <BR> <BR> -NRI-CO-NRs-; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4, and R8 is H, alkyl of 1 to 6 carbons,-CH20 (Cl 6-alkyl), CH2OCO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 12

Formula 12 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Z is -C#C-, -CO-O-, -NR,-CO-NR,- ; Ri is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F,, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3, and R8 independently is H, is alkyl of 1 to 6 carbons,-CH20 (C1-6-alkyl), CH20CO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 13 (R3) m ft mZ A (R2) CH2COOR8 R800C WS Formula 13

wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Z is-C=-C-, <BR> <BR> <BR> -CO-O-,<BR> <BR> <BR> <BR> -NRl-CO-NRI-; Ri is independently H or alkyl of 1 to 6 carbons; Rz is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3, and Rs independently is H, alkyl of 1 to 6 carbons,-CH20 (C1-6-alkyl), CH20CO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 14 Ri, Ri R, (R3) m 6 cR4o-, 1 ! YNRi-CO-NR--A (R2)- COORg 1 NRR7 Y Formula 14

wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; Y is H, alkyl of 1 to 10 carbons, benzyl, C1_6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Ci-6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2-NRRa or-COOR1 ; R is independently H or alkyl of 1 to 6 carbons; Rl is independently H or alkyl of 1 to 6 carbons; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,-CH2O (CI-6-alkyl), CH2OCO (C1-6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 15

R1 R1 6 (R4) o</T3) m I NRi-CO-NRi--A (R2)- COORg ,., x (Rl) p x Y Formula 15 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two Ra groups; X is O or S; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl 6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2-NRR7 or-COORI ; R, is independently H or alkyl of 1 to 6 carbons; p is an integer having the values of 0 to 4; Ra is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, or F; fluorosubstituted alkyl of 1 to 6 carbons, or halogen;

o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and R8 is H, alkyl of 1 to 6 carbons,-CH2O (CI-6-alkyl), CH20CO (C1-6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 16 Formula 16 wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of I to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3, and R$ independently is H, alkyl of 1 to 6 carbons,-CH20 (Cl 6-alkyl), CH20CO (Cl 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to compounds of Formula 17 Ri. Ri (R4) o 11 6 '"' 6 NR-CO-NR A (R2)- COORB X Y Formula 17

wherein A is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R2 groups; X is 0 or S ; Y is H, alkyl of 1 to 10 carbons, benzyl, Cl 6 alkyl or halogen substituted benzyl, fluoro-substituted alkyl of 1 to 10 carbons, cycloalkyl of 3 to 6 carbons, Cl 6 alkyl substituted cycloalkyl of 3 to 6 carbons, alkenyl of 2 to 6 carbons and having 1 or 2 double bonds, alkynyl of 2 to 6 carbons, alkenyl-alkynyl of 4 to 6 carbons, alkynyl-alkenyl of 4 to 6 carbons, Cl, Br, I, OR7, CH2-NRR7 or-COORi ; Ri is independently H or alkyl of 1 to 6 carbons; 'R2 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, alkoxy of 1 to 6 carbons, or alkylthio of 1 to 6 carbons; R3 is independently alkyl of 1 to 6 carbons, F, Cl, Br, I, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 6 carbons, alkylthio of 1 to 6 carbons or benzyl; m is an integer having the values 0 to 3; R4 is independently H, alkyl of 1 to 6 carbons, orF ; fluorosubstituted alkyl of 1 to 6 carbons, or halogen; o is an integer having the values of 0 to 4; R7 is H, alkyl of 1 to 6 carbons, cycloalkyl of 3 to 6 carbons or Cl 6 alkyl substituted cycloalkyl of 1 to 6 carbons, and

R8 is H, alkyl of 1 to 6 carbons,-CH20 (Cz 6-alkyl), CH20CO (Cz 6-alkyl) or a cation of a pharmaceutically acceptable base.

The present invention also relates to pharmaceutical compositions comprising one or more of the compounds of Formulas 1 through 17 and to methods of using such pharmaceutical compositions to treat the diseases conditions which are normally treatable with retinoids. The invention still more advantageously relates to using the pharmaceutical compositions containing one or more compounds of Formulas 1 through 17 for treatment of diseases or conditions where treatment with an cytochrome P450RAI1 or with a cytochrome P450RAI2 specific or selective inhibitor provides a therapeutic advantage.

BRIEF DESCRIPTION OF THE DRAWING The figure is a schematic representation of the P450RAI cell based assay utilized to evaluate the ability of a compound of to inhibit the Cytochrome P450RAI enzyme.

BIOLOGICAL ACTIVITY, MODES OF ADMINISTRATION P450RAI-1 and P450RAI-2 Cell-Based Inhibitor Assay: The figure shows a schematic diagram of the P450RAI-1 and P450RAI-2 cell based assay. P450RAI-1 stably transfected HeLa cells, or P450RAI-2 stably transfected HeLa cells, as applicable, are maintained in 100 millimolar tissue culture dishes in Modified Eagle's Medium (MEM) containing 10 % Fetal Bovine Serum (FBS) and 100 llg/ml hygromycin. Exponentially growing cells are harvested by incubating in trypsin. Cells are then washed with 1X Phosphate Buffered Saline (PBS) and plated in a 48-well plate at 5 X105 cells in 0.2 ml MEM medium containing 10 % FBS and 0. 05 uCi [3H]-RA in the presence or absence of increasing concentrations of the test compounds. The compounds are diluted in 100% DMSO and then added in triplicate wells at either 10,1 or 0.1 1M final concenkation. As a positive control for RA metabolism inhibition, cells are also incubated with ketoconazole at 100,10 and 1 uM. Cells are incubated for 3 hours at 37°C. The retinoids are then extracted using the procedure ofBligh et al. (1959) Canadian

Journal of Biochemistry 37,911-917, modified by using methylenechloride instead of chloroform. The publication Bliglt et al. (1959) Canadian Journal of Biochemistry 37,911-917 is specifically incorporated herein by reference. The water soluble radioactivity is quantified using a-scintillation counter. ICso values represent the concentration of inhibitor required to inhibit all-trans-RA metabolism by 50 percent and are derived manually from log-transformed data. The IC50 values obtained in this assay with both the RAI-1 and RAI-2 enzymes for several compounds which are preferred for use in the co-administration methods and formulations of the present invention are disclosed in Table 1 below. The data demonstrate that the tested compounds have specific or selective inhibitory activity for either of the CP450RAI1 or of the CP450RA12 enzyme.

Table 1 RAR P450R P450R ECSQ/ (EFFICACY) Il4d nM Compo Structures AI-1 AI-2 und cc Whole Whole # cell cell IC50 IC50 PM zM COOH NA'NA NA 0. 03 >10 2 +t 558 3439 5577 FoQ A NA NA NA goos 1 2090 3016 3486 o ? A fr°°°"NAWANA0. 25>10 (15) (10) 3 0 >10K 520 6040 _. _-ecooH NA WA WA _ (20) (15) 0. 12 >10 4 a >10K >10K >10K o-"NA NA NA w I ol \o < o 0. 06 8 397 >IOK >IOK 0 o-H NA NA NA 0-H N NA NA 12 I i v >TOK >'fOK >10K zion ou H AO-H NA NA NA 0. 07 3 11 XA >1OK >1OK >1 OK 0 po H I ol 0 NA WA NA 0. 07 0. 7 wu I ad 10 > >1 OK >1 OK >1 OK 0 0 OH cool NA WA WA 0. 7 >10 (10) (25) 14 5170 7400 >1 OK BoW i NA NA NA 0-- . 6 >10 i ou 15 8 8F9 6 >1 OK >10K 0 o-H NA NA NA 0. 12 >10 I >10K >10K >10K 9 40 -NU i 0-H (15) 0. 05 >10 957 4805 >10K 8 zou T ° NA NA NA 0-H 0. 06 4 6 3412 >IOK >IOK o A NA NA NA I r F0-H 0. 04 2 >10K >10K >10K 0 -N 0-H 0. 4 >10 18 o /O-H 0-H 2. 9 >10 po I 20 0 _ _ _ _ o_H 7 >10 0 19 ou 0 H 118 18 31 0. 7 >10 y (52) (55) (68) 45 9. 9 76 255 "f t 0 H 65 10 7 0. 7 >10 w o (67) (75) (65) 46 0t 85 45 215 - t WA 38 125 0. 1 8. 8 Xi sH ° (10) (59) (66) 47 2242 4473 1954 AW WA WA WA 0 0-11 (-5) (35) (-5) 1. 3 >10 16 OY 3083 810 >10K - o- _ O-H NA NA NA 2. 5 >10 o AX H NA WA WA 0. 008 0. 5 0 (40) (35) 23 >IOK >IOK >IOK Cool SCOOH 0. 05 >10 s \ 5282 >10K >10K 49 L1 COOL Lj) 0. 1 >10 >10K >10K >10K N 0 WA WA 0. 7 10 48 < (40) (25) >1 OK >10K >10K Nue o-H NA WA NA Jjf. § (<5) 0. 4 >10 52 >1 OK >10K'>10K XN\ dN, o-H 0. 2 >10 NA WA NA 51 w o X >10K >10K >10K N NA NA NA 0. 5 5 53 < >1 OK 3906 >1 OK 'IN NA NA NA 0. 2 >10 54 1808 5088 >10K 'Nb , N k O-H NA NA NA 0. 25 >10 w I ol 28 >IOK >1 OK 4200 _ _ _ mO-F NA NA NA 0. 1 >10 ou 25 >IOK >IOK 317 oNbO\ O-H NA WA NA lao F (25) 0. 018 5 26 0K >10K 1123 oNbO\ TNANA ° NA NA NA I °-"0. 6 >10 29 < >1OK >1OK >1OK 1, N0 NA NA NA NA NA NA cooH 0. 028 >10 zu < 118 1275 >1OK 27 "ion0 na WA NA (15) 0. 18 >10 30 < >1OK >1OK >1OK e V NA NA WA (30) 0. 016 >10 41 >IOK >JOK >IOK '7"N, 0 1 NA WA NA 0. 007 0. 2 1 0 (15) >10K >10K >10K mO-F NA WA NA ol \/X o (30) 0. 035 5 24 1 8570 7188 7747 T b NA. NA NA NA, NA NA 32 i >1 OK >1OK >1OK zon _. _ H NA WA WA >10 (30) (9,10) '3252 >10K 33 9 1 OH NA WA WA 1. 4 >10 (35) (30) 55 9 >1OK >1OK >1OK o o XO-H NA WA NA 0. 5 10 F (30) >10K >10K >10K 56 < 0 0-\ AO-H NA NA NA 1. 3 >10 I i ° >10K >10K >10K 40 Y rr 0 - N NA WA NA 0. 06 2 (20) (20) 42 0 >10K 2765 >1OK WA WA WA 0. 01 0. 7 o (10) (60) (20) 43 & U2661* 1158 3348* 0 o H NA NA NA 0. 7 7. 5 o o 44 >10K 8169 >10K 0-H NA NA NA 0. 22 8. 1 / F o 61 X >1OK >1OK >1OK lull lo < NA NA NA 0. 4 6. 1 62 >10K >10K >10K 1 I NA 16 126 >10 0. 5 0-H (80) (48) 35 1931 2089 2888 NA WA WA >10 0. 4 (40) (15) 36 >10K 3518 2084 NYN NA NA NA >10 0. 7 NyN,, Ill 21 < vO<H >1 OK >1OK >1OK o i o-"NA WA WA 0. 4 10 1 0 (50) (35) 57 1 6028 4979 7738 57 0 o o-"NA WA WA , w F o (60) (15) 0. 06 2. 6 60 1 6315 3957 8992 oxo 0 0- 0-H NA WA NA 3. 5 >10 (25) >10K 4614 >10K oo 0 0-\ 0-H NA WA NA 1. 2 >10 0 i F (35) >10K 2862 >10K oxo 0 0- O-H WA NA NA 4 >1 0 o (10) >10K >10K >10K 38 0 0 _ 0-H NA NA NA 2. 5 >10 F F o >10K >10fC >10K 39 0 9 IH NA 320 WA >10 0. 45 (5 ) (15) 5 K 4536 >10K NA WA NA 0-H (25) >10 0. 6 31 >10K >1 OK >10K RIZ R NA WA NA >10 0. 12 rr"° (20) 34 5648 3492 8528 A WA WA WA >10 0 5 v o 1 (10) (70) (15) 37 H >IOK 7015 >1 OK N r NA 853 NA >10 0. 68 rirrTrT 07) -H >100K 11 K >1 OOK 63 1l o

NA1 = Not Active; WA2 Weakly Active Modes of Administration The compounds of the invention are useful for curing or alleviating the symptoms and conditions of the diseases and conditions which are responsive to treatment by retinoids and/or to the organism's endogenous retinoic acid.

Specifically by way of example and without limitation the compounds of the invention are useful as regulators of cell proliferation and differentiation, and particularly as agents for treating skin-related diseases, including, actinic keratoses, arsenic keratoses, inflammatory and non-inflammatory acne, psoriasis, ichthyoses and other keratinization and hyperproliferative disorders of the skin, eczema, atopic dermatitis, Darriers disease, lichen planus, prevention and reversal of glucocorticoid

damage (steroid atrophy), as a topical anti-microbial, as skin anti-pigmentation agents and to treat and reverse the effects of age and photo damage to the skin. The compounds of the invention are also useful for the prevention and treatment of cancerous and precancerous conditions, including, premalignant and malignant hyperproliferative diseases such as cancers of the breast, skin, prostate, cervix, uterus, colon, bladder, esophagus, stomach, lung, larynx, oral cavity, blood and lymphatic system, metaplasias, dysplasias, neoplasias, leukoplakias and papillomas of the mucous membranes and in the treatment of Kaposi's sarcoma. In addition, the compounds of the invention can be used as agents to treat diseases of the eye, including, without limitation, proliferative vitreoretinopathy (PVR), retinal detachment, dry eye and other corneopathies, as well as for the treatment and prevention of various cardiovascular diseases, including, without limitation, diseases associated with lipid metabolism such as dyslipidemias, prevention of post-angioplasty restenosis and as agents to increase the level of circulating tissue plasminogen activator (TPA). Other uses for the compounds of the invention include the prevention and treatment of conditions and diseases associated with human papilloma virus (HPV), including warts and genital warts, various inflammatory diseases such as pulmonary fibrosis, ileitis, colitis and Krohn's disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and stroke, improper pituitary function, including insufficient production of growth hormone, modulation of apoptosis, including both the induction of apoptosis and inhibition of T-Cell activated apoptosis, restoration of hair growth, including combination therapies with the present compounds and other agents such as MinoxidilR, diseases associated with the immune system, including use of the present compounds as immunosuppressants and immunostimulants, modulation of organ transplant rejection and facilitation of wound healing, including modulation of chelosis. The compounds of the invention may also have use for treating type II non-insulin dependent diabetes mellitus (NIDDM).

The compounds of this invention may be administered systemically or topically, depending on such considerations as the condition to be treated, need for site-specific treatment, quantity of drug to be administered, and numerous other

considerations. Thus, in the treatment of dermatoses, it will generally be preferred to administer the drug topically, though in certain cases such as treatment of severe cystic acne or psoriasis, oral administration may also be used. Any common topical formulation such as a solution, suspension, gel, ointment, or salve and the like may be used. Preparation of such topical formulations are well described in the art of pharmaceutical formulations as exemplified, for example, by Remington's Pharmaceutical Science, Edition 17, Mack Publishing Company, Easton, Pennsylvania. For topical application, the compounds could also be administered as a powder or spray, particularly in aerosol form. If the drug is to be administered systemically, it may be confected as a powder, pill, tablet or the like or as a syrup or elixir suitable for oral administration. For intravenous or intraperitoneal administration, the compound will be prepared as a solution or suspension capable of being administered by injection. In certain cases, it may be useful to formulate these compounds by injection. In certain cases, it may be useful to formulate these compounds in suppository form or as extended release formulation for deposit under the skin or intramuscular injection.

Other medicaments can be added to such topical formulation for such secondary purposes as treating skin dryness; providing protection against light; other medications for treating dermatoses ; medicaments for preventing infection, reducing irritation, inflammation and the like.

Treatment of dermatoses or any other indications known or discovered to be susceptible to treatment by retinoic acid-like compounds, or to control by naturally occurring retinoic acid will be effected by administration of the therapeutically effective dose of one or more compounds of the instant invention. A therapeutic concentration will be that concentration which effects reduction of the particular condition, or retards its expansion. In certain instances, the compound potentially may be used in prophylactic manner to prevent onset of a particular condition.

A useful therapeutic or prophylactic concentration will vary from condition to condition and in certain instances may vary with the severity of the condition being treated and the patient's susceptibility to treatment. Accordingly, no single concentration will be uniformly useful, but will require modification depending on

the particularities of the disease being treated. Such concentrations can be arrived at through routine experimentation. However, it is anticipated that in the treatment of, for example, acne, or similar dermatoses, that a formulation containing between 0.01 and 1.0 milligrams per milliliter of formulation will constitute a therapeutically effective concentration for total application. If administered systemically, an amount between 0. 01 and 5 mg per kg of body weight per day would be expected to effect a therapeutic result in the treatment of many diseases for which these compounds are useful.

In some applications pharmaceutical formulations containing the CP-450RAI inhibitory compounds may be co-administered with formulations containing retinoids. In such cases the dose of the cytochrome P450RAI inhibitory compounds is in the range of 0.01 and 5 mg per kg body weight per day.

GENERAL EMBODIMENTS AND SYNTHETIC METHODOLOGY Definitions The term alkyl refers to and covers any and all groups which are known as normal alkyl and branched-chain alkyl. Unless specified otherwise, lower alkyl means the above-defined broad definition of alkyl groups having 1 to 6 carbons in case of normal lower alkyl, and 3 to 6 carbons for lower branch chained alkyl groups. A pharmaceutically acceptable salt may be prepared for any compound used in accordance with the invention having a functionality capable of forming a salt, for example an acid functionality. A pharmaceutically acceptable salt is any salt which retains the activity of the parent compound and does not impart any deleterious or untoward effect on the subject to which it is administered and in the context in which it is administered.

Pharmaceutically acceptable salts may be derived from organic or inorganic bases. The salt may be a mono or polyvalent ion. Of particular interest are the inorganic ions, sodium, potassium, calcium, and magnesium. Organic salts may be made with amines, particularly ammonium salts such as mono-, di-and trialkyl amines or ethanol amines. Salts may also be formed with caffeine, tromethamine and similar molecules. Where there is a nitrogen sufficiently basic as to be capable

of forming acid addition salts, such may be formed with any inorganic or organic acids or alkylating agent such as methyl iodide. Preferred salts are those formed with inorganic acids such as hydrochloric acid, sulfuric acid or phosphoric acid.

Any of a number of simple organic acids such as mono-, di-or tri-acid may also be used.

Some compounds used in accordance with the present invention may have trans and cis (E and Z) isomers. Unless specific orientation of substituents relative to a double bond or a ring is indicated in the name of the respective compound, and/or by specifically showing in the structural formula the orientation of the substituents relative to the double bond or ring the invention covers trails as well as cis isomers.

Some of the compounds used in accordance with the present invention may contain one or more chiral centers and therefore may exist in enantiomeric and diastereomeric forms. The scope of the present invention is intended to cover all isomers per se, as well as mixtures of cis and trans isomers, mixtures of diastereomers and racemic mixtures of enantiomers (optical isomers) as well.

General Synthetic Methodology The novel compounds used in accordance with the invention are encompassed by the general Formulas 1 through 17 provided above. In each of these formulas a linker or tethering group designated Z covalently connects an aromatic or heteroaromatic moiety designated A (R2)-COOR8, A (R2)-W-COORs or A (R2)-CH2-COOR8 and another cyclic moiety which in accordance with these formulas is a substituted phenyl, substituted tetrahydronaphthalene, substituted dihydronaphthalene, substituted chroman, substituted thiochroman or substituted tetrahydroquinoline moiety.

Generally speaking compounds such as X4-A (R2)-W-COOR8, X4-A (R2)-CH2-COOR8 and X4-A (R2)-COOR8 are commercially available, or can be made in accordance with the chemical literature, or with such modification of known chemical processes, or of chemical processes disclosed herein which are within the skill of the practicing organic chemist. The group X4 represents a reactive group, which is suitable for coupling the X4-A (R2)-W-COOR8,

X4-A (R2)-CH2-COORs and X4-A (R2)-COORs compounds to a derivative of the substituted phenyl, substituted tetrahydronaphthalene, substituted dihydronaphthalene, substituted chroman, substituted thiochroman, or substituted tetrahydroquinoline moiety so that as a result of the coupling the linker or tether moiety Z is formed. In many instances the group X4 is a leaving group such as halogen, or trifluoromethanesulfonyloxy, or a group capable of participating in a Wittig or Ho7ner Emmo7zs reaction. In some instances the group X4 is an ethynyl group capable of undergoing a coupling reaction with a leaving group (such as a halogen or a trifluoromethanesulfonyloxy group) attached to the substituted phenyl, substituted tetrahydronaphthalene, substituted dehydronaphthalene, substituted chroman, substituted thiochroman or substituted tetrahydroquinoline moiety. The group X4 can also represent an OH or an NH2 group that forms an ester (COO) or amide (CONH) linker, respectively, when reacted with an activated carboxyl derivative of the substituted phenyl, substituted tetrahydronaphthalene, substituted dihydronaphthalene, substituted chroman, substituted thiochroman, or substituted tetrahydroquinoline moiety. The compounds of the formulas X4-A (R2)-W-COOR8, X4-A (R2)-CH2-COOR8 and X4-A (R2)-COOR8 are generally referred to in this description as"coupling reagents"or just"reagents"and the preparation of several examples of these coupling reagents is described in the specific examples below.

Further examples are the pyridyl, thienyl, furyl, pyridazine, pyrazine and other heteroaryl analogs of the coupling reagents described in the specific examples.

These reagents can be obtained in accordance with the chemical literature, or with such modification of known chemical processes, or of chemical processes disclosed herein which are within the skill of the practicing organic chemist.

Still further in accordance with the general synthetic methodology to provide the compounds of Formulas 1 through 17 a derivative of the substituted phenyl, substituted tetrahydronaphthalene, substituted dihydronaphthalene, substituted chroman, substituted thiochroman, or substituted tetrahydroquinoline moiety is synthesized first, having a covalently attached X5 group. The X5 group reacts with the X4 group of the reagents X4-A (R2)-W-COOR8, X4-A (R2)-CH2-COOR8 and X4-A (R2)-COORs to form the linker designated Z in Formulas 1 through 17. The

X5 group is one that is capable of participating in a catalyzed coupling reaction, (such as an ethynyl group when X4 is a leaving group), or a leaving group (such as halogen or trifluoromethanesulfonyloxy when X4 is an ethynyl group), or an activated carboxylic acid function (when X4 is OH or NH2). The X5 group can also be an OH, SH or NH2 group when the X4 group is an activated carboxylic acid function. Specific examples for substituted phenyl, substituted tetrahydronaphthalene, substituted dihydronaphthalene, substituted chroman, substituted thiochroman, or substituted tetrahydroquinoline intermediates having an X5 functionality are provided below, and are also available in the chemical scientific and patent literature.

Generally speaking, for reagents and reactions covalently joining a substituted tetrahydronaphthalene, substituted dihydronaphthalene, substituted chroman, substituted thiochroman, or substituted tetrahydroquinoline intermediate with a substituted aryl or heteroaryl group, of the formulas A (R2)-W-COOR8, A (R2)-CH2-COOR8 and A (R2)-COOR8 to form a compound including the linker designated Z, reference is made to United States Patent Nos. 5,648, 503; 5,723, 666, 5,952, 345,6, 252,090 and 6,313, 107 the specification of each of which are expressly incorporated herein by reference.

The substituted phenyl, substituted tetrahydronaphthalene, substituted dihydronaphthalene, substituted chroman, substituted thiochroman or substituted tetrahydroquinoline moiety of the novel compounds used in accordance with the invention are derivatized in a manner to include the specific substituents (such as for example the cycloalkyl substituents) encompassed within the scope of the invention, either before or after the A (R2)-W-COOR8, A (R2)-CH2-COOR8 or A (R2)-COOR8 moiety has been attached and the linker Z has formed, as illustrated by the below described specific examples.

The W-COOR8, CH2-COOR8 or COOR8 moiety of the compounds of Formulas 1 through 17 can be modified in order to obtain still further novel compounds. One such modification is saponification of compounds where the R8 group is an alkyl, CH20 (Cl 6-alkyl) or CH20CO (Cl 6-alkyl) group. Another modification is esterification of the carboxylic acid function when the Rs group is H

or a cation. Such saponification and esterification reactions are well known in the art and within the skill of the practicing organic chemist.

SPECIFIC EMBODIMENTS With reference to the symbol A in Formulas 1 through 17, the preferred novel compounds used in accordance with the present invention are those where A is phenyl, naphthyl, pyridyl, thienyl or furyl. Even more preferred are compounds where A is phenyl. As far as substitutions on the A (phenyl) and A (pyridyl) groups are concerned, compounds are usually preferred where the phenyl group is 1,4 (para) substituted and where the pyridine ring is 2,5 substituted. (Substitution in the 2,5 positions in the"pyridine"nomenclature corresponds to substitution in the 6-position in the"nicotinic acid"nomenclature. ) In the presently preferred novel compounds used in accordance with the invention either there is no R2 substituent on the A group, or the R2 substituent is preferably a fluoro group that is preferably located on the aromatic carbon adjacent (ortho) to the carbon bearing the W- COORs, CHU-COOLS or COOR8 group.

As far as the W-COOR8 moiety is concerned, the variable W preferably represents-CH=CH-,-CR5=CH-, CH=CRs- (cinnamic acid derivatives) C (R5) 2 or CHRs where R5 is preferably methyl. For the Rg group H, lower alkyl of 1 to 3 carbons,-CH20 (C1-3-alkyl) and-CH2OCO (Ci-3-alkyl) groups are preferred, as well as the pharmaceutically acceptable salts of the free acids when Rs is H. Among the lower alkyl,-CH20 (Cl 3-alkyl) and-CH2OCO (Cl 3-alkyl) groups methyl, ethyl, CH20CH3 and CH20COCH3 respectively, are presently most preferred.

The linker group Z in all of the novel compounds used in accordance with the invention is preferably ethynyl, (-C-C-), ester (CO-O), or ureido (NHCONH).

Moreover for chroman, thichroman and tetrahydroquinoline derivatives the linker Z is preferably attached to the 6 position (e. g. see Formula 1). For tetrahydronaphthalene and dihydronaphthalene derivatives the linker Z is preferably attached to the to the 6 position as such positions are numbered in Formulas 2 and 11.

The Ri group is preferably methyl when it serves as a substituent attached to a carbon of the chroman, thiochroman, tetrahydroquinoline, tetrahydronaphthalene or dihydronaphthalene nucleus and is preferably hydrogen when it forms part of a linker Z.

The aromatic portion of the chroman, thiochroman, tetrahydroquinoline, tetrahydronaphthalene or dihydronaphthalene nuclei of the compounds of the present invention is either preferably not substituted with an R3 group (the variable m is zero (0) ), or R3 is alkyl or halogen. The non-aromatic portion of the chroman, thiochroman, tetrahydroquinoline, tetrahydronaphthalene or dihydronaphthalene nuclei of the compounds of the present invention is either preferably not substituted with an R4 group (the variable o is zero (0) ), or (R4) o represents methyl groups, still more prefreably geminal dimethyl or geminal diethyl groups attached to the 2- position of the chroman nucleus.

Structures of the most preferred compounds of the invention are shown in Table 1. Whereas most of the compounds shown in Table 1 are carboxylic acids, it should be understood that the Cl 3 alkyl esters, CH20CH3 and CH20COCH3 esters and the pharmaceutically acceptable salts of these compounds are also preferred.

The compounds of the invention can be synthesized by applying the general synthetic methodology described above, and by such modifications of the hereinafter described specific synthetic routes which will become readily apparent to the practicing synthetic organic chemist in light of this disclosure and in view of general knowledge available in the art. The hereinafter disclosed specific reaction schemes are directed to the synthesis of exemplary and preferred compounds of the invention.

Whereas each of the specific and exemplary synthetic routes shown in these schemes may describe specific compounds of the invention only within the scope of one or two of the general Formulas 1 through 17, the synthetic processes and methods used therein are adaptable within the skill of the practicing organic chemist and can be used with such adaptation for the synthesis of compounds of the invention which are not specifically described herein as examples.

SPECIFIC EXAMPLES The reactions schemes provided below together with the applicable experimental descriptions disclose the presently preferred synthetic routes for preparing the preferred compounds of the invention.

Synthetic Procedures for Preparing Coupling Reagents COOMe LDA, THF ; MeI W COOMe ' W MeI I COOMe I/I/I/ Reagent 1 Reagent 2 General Procedure A: Methel-2-(4-iodophenvl ! propionate (Reagent 1) A stirred, cooled (78°C) solution of methyl-4-iodophenyl acetate (described in US 6,252, 090, incorporated herein by reference; 2.77g, lOmmol) in anhydrous tetrahydrofuran (20mL) was treated with a 1. 5M solution of lithium diisopropyl amide in tetrahydrofuran and cyclohexane (8mL, 12mmol). The reaction mixture was allowed to warm to 0°C over 40 minutes, cooled again to-78°C and treated with methyl iodide (0. 75mL, 12mmol). The reaction mixture was allowed to warm to room temperature over lh. It was then quenched with saturated aqueous ammonium chloride solution, diluted with water and extracted with diethyl ether. The combined organic phase was washed with brine (xl), dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow oil (2.7g, 92.7%).

'H NMR (300 MHz, CDC13) : 8 7.66 (d, 2H, J= 8. 5Hz), 7.06 (d, 2H, J= 8. 5Hz), 3.70-3. 66 (m, 1H), 3.67 (s, 3H), 1.49 (d, 3H, J= 7. 0HZ).

Methvl-2- (4-idophenvl)-2-methyl propionate (Reagent 2) Following General Procedure A and using methyl-2- (4- iodophenyl) propionate (1.45g, 5mmol), lithium diisopropyl amide (1. 5M in tetrahydrofuran and cyclohexane, 4mL, 6mmol), tetrahydrofuran (1 SmL) and methyl iodide (O. SmL, 8mmol), the title compound was obtained as an oil (1. Sg, 98%).

'H NMR (300 MHz, CDCl3) : 6 7.66 (d, 2H, J= 8.7Hz), 7. 11 (d, 2H, J= 8. 7Hz), 3.66 (s, 3H), 1.58 (s, 6H).

4-Iodo-benzyl alcohol A stirred, cooled (-78°C) solution of ethyl-4-iodo-benzoate (available from Lancaster, 12.9g, 45mmol) in anhydrous dichloromethane (lOOmL) under argon was treated with a 1M solution of di-isobutyl aluminum hydride in dichloromethane (lOOmL, lOOmmol). The reaction mixture was allowed to warm to 0°C in 1. 5h, quenched with saturated aqueous ammonium chloride solution and the resulting emulsion was filtered over a bed of celite. The phases in the filtrate were separated and the aqueous phase was extracted with dichloromethane (xl). The combined organic phase was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford the title product as a white solid (9g, 85%).

'H NMR (300 MHz, CDCl3) : 8 7.65 (d, 2H, J= 7.6Hz), 7.05 (d, 2H, J= 7. 6Hz), 4.57 (s, 2H), 2.40 (br s, 1H).

4-Iodo-benzaldehyde A solution of 4-iodobenzyl alcohol (9g, 38. 29mmol) in dichloromethane (90mL) and acetonitrile (lOmL) was treated sequentially with 4 A molecular sieves powder (9g), tetra-ra-propyl ammoniumperruthenate (0.13g) and N-methyl morpholine-N-oxide (9g, 76.6mmol). After stirring at ambient temperature for 2h, the reaction mixture was diluted with hexane and subjected to flash column chromatography over silica gel (230-400mesh) using 6-10% ethyl acetate in hexane as the eluent to afford the title compound (2. 5g pure and 4g-95% pure, 73%).

'H NMR (300 MHz, CDC13) : 8 9.96 (s, 1H), 7.92 (d, 2H, J= 8. 5Hz), 7.59 (d, 2H, J = 8. 5Hz).

Ethvl-4-iodo-cinnamate (Reagent 3) A stirred, cooled (-78°C) solution of triethylphosphonoacetate (11. lmL, 56mmol) in anhydrous tetrahydrofuran (lOOmL) was treated with a 1.6M solution of 7l-butyl lithium in hexanes (27mL, 43. 75mmol). After 10 min, the reaction mixture was cannulated into a cooled (-78°C) solution of 4-iodo-benzaldehyde (6. 5g, 28mmol) in tetrahydrofuran (20mL). The reaction mixture was allowed to warm to 0°C over lh. It was quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 6-8% ethyl acetate in hexane as the eluent to afford the title compound (2.7g pure, 3. 2g-95% pure, 69%).

1H NMR (300 MHz, CDC13) : 8 7.70 (d, 2H, J= 8. 5Hz), 7.57 (d, 1H, J= 15. 8Hz), 7.21 (d, 2H, J= 8. 5Hz), 6.43 (d, IH, J= 15.8Hz), 4.25 (q, 2H, J= 7. 1Hz), 1.33 (t, 3H, J= 7. lHz).

4-Iodo-cinnamic acid A solution of ethyl-4-iodo-cinnamate (3.2g, 10. 5mmol) in methanol (25mL), tetrahydrofuran (25mL) and water (15mL) was treated with lithium hydroxide monohydrate (4.2g, 100mmol) and the resulting reaction mixture was stirred at ambient temperature over 2 days. The volatiles were evaporated in vacuo and the residue was neutralized with saturated aqueous ammonium chloride solution. The precipitated solid was filtered, washed with water and hexane and dried to afford the title product as a white solid (2.9g, 91%). It was used as such for the next step.

Methyl-4-iodo-cinnamate (Reagent 4) A stirred, cooled (ice bath) solution of 4-iodo-cinnamic acid in methanol was treated with a solution of diazomethane in diethyl ether. The reaction mixture was allowed to warm to ambient temperature, the volatiles were evaporated in vacuo to afford the title compound.

3- (4-Iodo-phenyl)-but-2Z-enoic acid ethyl ester (Reagent 5) A stirred, cooled (-78°C) solution oftriethyl-2-phosphonoacetate (4. 55g, 20mmol) in anhydrous tetrahydrofuran (lOmL) was treated with a 1.6M solution of n-butyl lithium in hexanes (12.8mL, 20. 5mmol). After 30 min, a solution of 4-iodo- acetophenone (2. 5g, lOmmol) in tetrahydrofuran (5mL) was cannulated into the reaction mixture. After 4h, it was quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 5-10% ethyl acetate in hexane as the eluent, followed by preparative normal phase HPLC to afford the title compound (0.53g, 15%).

'H NMR (300 MHz, CDC13) : 8 7.67 (d, J=8. 2Hz, 2H), 6.94 (d, J=8. 2Hz, 2H), 5.91 (s, 1H), 4.01 (q, J=7. 1Hz, 2H), 2.14 (s, 6H), 1.12 (t, J=7. 1Hz, 3H).

3-Iodo-benzaldehyde A solution of 3-iodobenzyl alcohol (Aldrich, 4.72g, 20 mmol) in dichloromethane (50mL) and acetonitrile (5mL) was treated sequentially with 4 A molecular sieves powder (5g), tetra-n-propyl ammoniumperruthenate (0. lg) and N- methyl morpholine-N-oxide (2.34g, 40mmol). After stirring at ambient temperature for 3h, the reaction mixture was diluted with hexane and subjected to flash column chromatography over silica gel (230-400mesh) using 6-10% ethyl acetate in hexane as the eluent to afford the title compound (3.7g, 80%). It was used as such for the next step. o u /TPAP, NMO, CHZClz I Eto v OH CHO I COOEt n-BuLi, TUF Reagent 6

Ethyl-3-iodo-cinnamate (Reagent 6) A stirred, cooled (-78°C) solution of triethylphosphonoacetate (11. 44g, 51mmol) in anhydrous tetrahydrofuran (lOOmL) was treated with a 1.6M solution of n-butyl lithium in hexanes (30mL, 48mmol). After 10 min, the reaction mixture was cannulated into a cooled (-78°C) solution of 4-iodo-benzaldehyde (3.7g, 16mmol) in tetrahydrofuran (20mL). The reaction mixture was allowed to warm to 0°C over 1h.

It was quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 8- 10% ethyl acetate in hexane as the eluent to afford the title compound (4.6g, 95%).

1H NMR (300 MHz, CDCl3) : 8 7.83 (s, 1H), 7.65 (dd, 1H, J= 7.9, 2Hz), 7.53 (d, 1H, J= 15.8Hz), 7.43 (dd, 1H, J= 7.6, 2Hz), 7. 07 (dd, 1H, J = 7.6, 7.9Hz), 6. 38 (d, 1H, J= 15.8Hz), 4.24 (q, 2H, J= 6.9Hz), 1.34 (t, 3H, J= 6.9Hz). cooEt CHO n-BuLi, THF, zip O I il EEtOõ, P COOEt Reagent 7 Et I (E)-3- !-3-(4-Iodo-phenyl !-2-methYl-acrylic acid ethyl ester (Reagent 7) A stirred, cooled (-78°C) solution of triethyl-2-phosphonopropionate (10g, 41. 9mmol) in anhydrous tetrahydrofuran (100mL) was treated with a 1.6M solution of n-butyl lithium in hexanes (25mL, 40mmol). After 10 min, the reaction mixture was cannulated into a cooled (-78°C) solution of 4-iodo-benzaldehyde (4.66g, 20mmol) in tetrahydrofuran (25mL). After 30 minutes, it was quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether (x2).

The combined organic phase was dried over anhydrous magnesium sulfate, filtered

and evaporated in vacuo to afford an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 9-10% ethyl acetate in hexane as the eluent to afford the title compound (6.3g, 99%).

'H NMR (300 MHz, CDC13) : 6 7.71 (d, 2H, J= 8.4Hz), 7.58 (s, 1H), 7.12 (d, 2H, J = 8.4Hz), 4.27 (q, 2H, J= 7.2Hz), 2.08 (d, 3H, J= 1. 5Hz), 1. 35 (t, 3H, J= 7. 2Hz). COOEt CHO _BuLi, THF, li o i i EEtOo, PCOOEt Reagent 8 Etc Y Reagent o ci 2-Chloro-3-(4-iodo-phenyl !-acrylic acid ethyl ester (Reagent 8) A stirred, cooled (-78°C) solution of chloro- (dipropyl-phosphinoyl)-acetic acid ethyl ester (6. 1g, 23. 5mmol) in anhydrous tetrahydrofuran (70mL) was treated with a 1.6M solution of 7l-butyl lithium in hexanes (14mL, 22mmol). After 10 min, the reaction mixture was cannulated into a cooled (-78°C) solution of 4-iodo- benzaldehyde (2.61g, 11. 2mmol) in tetrahydrofuran (25mL). After 30 minutes, it was quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 4- 5% ethyl acetate in hexane as the eluent to afford the title compound as a 1 : 1 mixture of E and Z isomers (3.6g, 95%).

4-Iodo-tert-butyl phenvl acetate (Reagent 10) A solution of 4-iodo phenyl acetic acid (Lancaster, 1. 31g, 5mmmol) in anhydrous toluene (lOmL) was heated to 80°C and treated with a solution of N, N- dimethyl formamide di-t-butyl acetal. After 2 h the reaction mixture was cooled to ambient temperature and subjected to flash column chromatography on silica gel (23-400 mesh) using 10% ethyl acetate in hexane as the eluent to afford the title compound (0.7g, 44%).

IH NMR (300 MHz, CDCl3) : 8 7.62 (d, 2H, J= 8. 2Hz), 7.01 (d, 2H, J= 8. 2Hz), 3.45 (s, 2H), 1.43 (s, 9H).

Reagent 11 (2-Fluoro-4-iodo-phenyl)-acetic acid acetoxymethyl ester (Reagent 11) A solution of 2-fluoro-4-iodo phenyl acetic acid (described in US 6,252, 090, incorporated herein by reference;, 0.82g, 2.93mmol) in anhydrous acetonitrile (lOmL) was treated with N, N-diisopropyl ethyl amine (1.27mL, 7. 32mmol) followed by acetoxy methyl bromide/bromo methylacetate (0.896g, 5.86mmol) and the resulting reaction mixture was stirred overnight at ambient temperature. The volatiles were evaporated in vacuo and the residue was diluted with water and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 10- 20% ethyl acetate in hexane as the eluent to afford the title compound as an oil (0.75g, 72%). lH NMR (300 MHz, CDC13) : 7.42 (m, 2H), 6.97 (dd, J=8.0 & 8.0 Hz, 1H), 5.73 (s, 2H), 3.65 (s, 2H), 2.08 (s, 3H).

(2-Fluoro-4-iodo-phenyl !-acetic acid 2-trimethylsilanvl-ethyl ester (Reagent 12) A solution of 2-fluoro-4-iodo phenyl acetic acid (0.3g, 1. 07mmol) and 2- (trimethylsilyl) ethanol (0.28mL, 1.95mmol) in anhydrous dichloromethane (5mL) was treated with 4- (dimethylamino) pyridine (0.275g, 2. 3mmol) and 1- (3- dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.37g, 1. 95mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was then subjected to flash column chromatography using 5% ethyl

acetate in hexane as the eluent to afford the title compound as a white solid (0. 37g, 91%).

'H NMR (300 MHz, CDC13) : 7.44 (m, 2H), 7.02 (dd, J=8.0, 8. OHz, 1H), 4.20 (t, J=8. 5Hz, 2H), 3.59 (s, 2H), 0.98 (t, J=8. 5Hz, 2H), 0.02 (s, 9H).

Synthesis of Preferred Embodiments COOH 1. Pd (PPh3) CI2, THF, NEt3, Cul, p O COOMe 1/ ou Reagent 1 Compound 1 6, 252, 090 / COOH cool 1. Pd (PPh3) 2Clow THF, NEt3, CuI,/ COOMe otJ le qu U. S. Patent No. 2. NaOH 6 252 090 Reagent 2 Compound 2

Reaction Scheme 1 General Procedure B: 2-{4-[(8-Cyclopropyl-3,4-dihydro-4,4-dimethylspiro[2H-1- <BR> <BR> <BR> <BR> benzopyran-2l'-cyclopropane3-6-yl ! ethynyll-phenyl}-propionic acidmethal ester (Intermediate 1) A solution of 8-cyclopropyl-6-ethynyl-3,4-dihydro-4, 4-dimethylspiro [2H-1- benzopyran-2, 1'-cyclopropane] (described in U. S. Patent No. 6,252, 090; 0.068g, 0. 27mmol), and methyl-2- (4-iodo phenyl) propionate (Reagent 1,0. 086g, 0. 3mmol) in triethyl amine (3mL), was treated with copper (I) iodide (0.028g, 0. 15mmol) and sparged with argon for 5 minutes. Dichlorobis (triphenylphosphine) palladium (II) (0.057g, 0. 08mmol) was added and the reaction mixture was stirred overnight at

room temperature. It was diluted with diethyl ether and filtered over a bed of celite.

The filtrate was evaporated in vacuo to brown oil that was subjected to flash column chromatography over silica gel (230-400 mesh) to afford the title compound as an oil (0.072g, 56%).

IH NMR (300 MHz, CDC13): 8 7.46 (d, 2H, J= 8.4Hz), 7.29 (d, 1H, J= 2. 1Hz), 7.25 (d, 2H, J= 8.4Hz), 6.80 (d, 1H, J= 2. 1Hz), 3.68 (q, 1H, J= 7.2Hz), 3.66 (s, 3H), 2.02-1. 90 (m, 1H), 1.90 (s, 2H), 1.49 (d, 3H, J= 7.2Hz), 1.39 (s, 6H), 1.03-0. 99 (m, 2H), 0.90-0. 83 (m, 2H), 0.68-0. 59 (m, 4H).

2-{4-[(8-Cyclopropyl-3,4-dihydro-4,4-dimethylspiro[2H-1-b enzopyran-2,1'- cyclopropane]-6-yl) ethynyl]-phenyl}-propionic acid (Compound 1) A solution of 2-14- [ (8-cyclopropyl-3, 4-dihydro-4,4-dimethylspiro [2H-l- benzopyran-2, 1'-cyclopropane]-6-yl) ethynyl] -phenyl} -propionic acid methyl ester (Intermediate 1,0. 072g, 0. 174mmol) in methanol (5mL) was treated with a 1M solution of sodium hydroxide (lmL, lmmol) and the resulting reaction mixture was heated at 55°C for 4h. The reaction mixture was cooled to ambient temperature and the volatiles were evaporated in vacuo to a residue that was diluted with 10% hydrochloric acid till neutral and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a white solid after flash column chromatography over silica gel (230-400mesh) (0.04g, 57%).

'H NMR (300 MHz, CDC13) : 8 7.46 (d, 2H, 7= 8. lHz), 7.30-7. 25 (m, 3H), 6.80 (d, 1H, J=1. 8Hz), 3.74 (q, 1H, J= 7. 2Hz), 1.99-1. 96 (m, 1H), 1.91 (s, 2H), 1. 51 (d, 3H, J= 7.2Hz), 1.39 (s, 6H), 1.04-0. 99 (m, 2H), 0.90-0. 83 (m, 2H), 0.68-0. 59 (m, 4H).

2-f4-[(8-Cyclopropyl-3n4-dihydro-44-dimethylSpiro [2H-1-benzopyran-21'- cyclopropane]-6-vl)ethvnvl]-phenyl}-2-methyl-propionic acid methyl ester (Intermediate 2) Following General Procedure B and using 8-cyclopropyl-6-ethynyl-3,4- dihydro-4,4-dimethylspiro [2H-1-benzopyran-2, 1'-cyclopropane] (0.096g, 0. 38mmol), methyl-2- (4-iodo phenyl) -2-methyl-propionate (Reagent 2,0. 127g, 0. 41mmol), triethyl amine (3mL), copper (I) iodide (0.040g, 0. 21mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 080g, 0. 1 lmmol) followed by flash

column chromatography over silica gel (230-400 mesh), the title compound was obtained as an oil (0.046g, 47%).

1H NMR (300 MHz, CDC13) : 8 7.39 (d, 2H, J= 8.4Hz), 7.23-7. 20 (m, 3H), 6.72 (d, 1H, J= 2. lHz), 3.58 (s, 3H), 1.92-1. 84 (m, 1H), 1. 84 (s, 2H), 1.51 (s, 6H), 1.33 (s, 6H), 0.97-0. 92 (m, 2H), 0.83-0. 76 (m, 2H), 0.59-0. 52 (m, 4H).

2- {4-[(8-Cyclopropyl-3, 4-dihydro-4, 4-dimethylspiro [2H-1-benzoperan-2. 1'- cyclopropane]-6-yl ! ethynyl]-phenyl}-2-methyl-propionic acid (Compound 2) A solution of 2- {4- [ (8-cyclopropyI-3, 4-dihydro-4, 4-dimethylspiro [2H-l- benzopyran-2, 1'-cyclopropane]-6-yl) ethynyl] -phenyl} -2-methyl-propionic acid methyl ester (Intermediate 2,0. 046g, 0. 107mmol) in methanol (5mL) was treated with a 1M solution of sodium hydroxide (1. 2mL, 1. 2mmol) and the resulting reaction mixture was heated at 55°C for 4h. The reaction mixture was cooled to ambient temperature and the volatiles were evaporated in vacuo to a residue that was neutralized with 10% hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a white solid after flash column chromatography over silica gel (230-400mesh) (0.067g, 89%).

1H NMR (300 MHz, CDCl3) : 8 7.47 (d, 2H, J= 8. 1Hz), 7. 36 (d, 2H, J= 8. 1Hz), 7.30 (d, 1H, J = 2.1Hz), 6.80 (d, 1H, J= 2. lHz), 1.99-1. 91 (m, 1H), 1.91 (s, 2H), 1.60 (s, 6H), 1.40 (s, 6H), 1.04-0. 99 (m, 2H), 0.90-0. 84 (m, 2H), 0.69-0. 59 (m, 4H). COOL 1. Pd (PPh3) 2Cl2, NEt3, CuI, 0 COOET ou i i 2. NaOH Reagent 7 Compound 3 COOH / I CI 1. Pd (PPh3) 2Cl2, NEt3, CuI,' COOET o i I cooEt 0 i i ci 2. HPLC Reagent 8 3. NaOH Compound 4 Reaction Scheme 2 <BR> <BR> <BR> <BR> <BR> <BR> <BR> (E)-3- {4- [8-Cvclopropvl-3, 4-dimethvlspiro [2H-1-benzopvran-2, 1'-cyclopropanel-6- yl] ethynyl-phenyl}-2-methyl-acrylic acid ethyl ester (Intermediate 3) Following General Procedure B and using 8-cyclopropyl-6-ethynyl-3,4- dihydro-4,4-dimethylspiro [2H-1-benzopyran-2,l'-cyclopropane] (0.077g, 0. 3mmol), (E)-3- (4-iodo-phenyl)-2-methyl-acrylic acid ethyl ester (Reagent 7,0. 106g, 0. 23mmol), triethyl amine (3mL), copper (I) iodide (0.029g, 0. 15mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.064g, 0. 09mmol) followed by flash column chromatography over silica gel (230-400 mesh), the title compound was obtained (0.06g, 45%).

'H NMR (300 MHz, CDC13) : 8 7.65 (d, 1H, J= 1. 5Hz), 7.52 (d, 2H, J= 8.7Hz), 7.37 (d, 2H, J= 8.7Hz), 7.32 (d, 1H, J= 1. 8Hz), 6.82 (d, 1H, J= 1. 8Hz), 4.27 (q, 2H, J= 7.2Hz), 2.14 (d, 3H, J= 1. 5Hz), 1.99 (m, 1H), 1.91 (s, 2H), 1.40 (s, 12H), 1. 35 (t, 3H, J= 7.2Hz), 1.04-1. 00 (m, 2H), 0.91-0. 84 (m, 2H), 0.69-0. 59 (m, 4H).

(E !-3-{4-E8-CvelopropYl-3, 4-dimethylspiro [2H-l-benzopyran-2 l'-cyclopropane]- 6-vl] ethynyl-phenyl}-2-methvl-acrylic acid (Compound 3) A solution of (E)-3- 4- [8-cyclopropyl-3, 4-dimethylspiro [2H-1-benzopyran- 2, l'-cyclopropane]-6-yl]ethynyl-phenyl}-2-methyl-carylic acid ethyl ester (Intermediate 3,0. 06g, 0.13mmol) in ethanol (2mL) was treated with a 1M solution of sodium hydroxide (0. 5mL, 0. 5mmol) and the resulting reaction mixture was heated at 55°C for 4h. The reaction mixture was cooled to ambient temperature and the volatiles were evaporated in vacuo to a residue that was neutralized with 5% hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid after flash column chromatography over silica gel (230-400mesh) (0.044g, 82%).

IH NMR (300 MHz, CDC13) : # 7.81 (d, 1H, J= 1. 5Hz), 7.54 (d, 2H, J= 8.4Hz), 7.41 (d, 2H, J= 8.4Hz), 7.33 (d, 1H, J= 2. 1Hz), 6.83 (d, 1H, J= 2. 1Hz), 2.17 (d, 3H, J= 1. 5Hz), 2.00 (m, 1H), 1.92 (s, 2H), 1.41 (s, 12H), 1.05-1. 00 (m, 2H), 0.91- 0. 84 (m, 2H), 0.69-0. 60 (m, 4H).

(Z)-2-Chloro-3- {4- [-cvclopropyl-3, 4-dimethylspiro [2H-1-benzopyran-2, 1'- cyclopropane]-6-ylethynyl}-acrvlic acid ethyl ester (Intermediate 4) Following General Procedure B and using 8-cyclopropyl-6-ethynyl-3, 4- dihydro-4, 4-dimethylspiro [2H-1-benzopyran-2,l'-cyclopropane] (0.11g, 0.436mmol), (E, Z)-2-chloro-3- (4-iodo-phenyl)-acrylic acid ethyl ester (Reagent 8, 0.162g, 0. 48mmol), triethyl amine (3mL), copper (I) iodide (0.041g, 0. 21mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.092g, 0. 13mmol) followed by flash column chromatography over silica gel (230-400 mesh), and preparative normal phase HPLC using 5% ethyl acetate in hexane as the mobile phase, the title compound was obtained (0.09g, 45%).

'H NMR (300 MHz, CDC13) : 8 7.88 (s, 1H), 7.83 (d, 2H, J= 8. 1Hz), 7.55 (d, 2H, J = 8. 1Hz), 7. 33 (d, 1H, J = 2.1Hz), 6.82 (d, 1H, J= 2. 1Hz), 4. 36 (q, 2H, J= 6.9Hz), 1.99 (m, 1H), 1.92 (s, 2H), 1.41 (s, 12H), 1.39 (t, 3H, J= 6.9Hz), 1.05-1. 00 (m, 2H), 0.91-0. 84 (m, 2H), 0.70-0. 60 (m, 4H).

(Z)-2-Chloro-3-{4-[8-cyclopropyl-3,4-dimethylspiro[2H-1-benz opyran-2,l'- cyclopropane]-6-yl] ethvnyl}-acrylic acid (Compound 4) A solution of (Z)-2-chloro-3- {4- [8-cyclopropyl-3, 4-dimethylspiro [2H-1- benzopyran-2, 1'-cyclopropane]-6-yl] ethynyl}-acrylic acid ethyl ester (Intermediate 4,0. 09g, 0. 19mmol) in ethanol (1mL) and tetrahydrofuran (3mL) was treated with a 1M solution of sodium hydroxide (0.7mL, 0.7mmol) and the resulting reaction mixture was heated at 55°C overnight. The reaction mixture was cooled to ambient temperature and the volatiles were evaporated in vacuo to a residue that was neutralized with 10% hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid after flash column chromatography over silica gel (230-400mesh) (0.08g, 95%).

H NMR (300 MHz, CDC13) : 8 7.74 (s, 1H), 7.55 (d, 2H, J= 8. lHz), 7.31 (d, 2H, J = 8. lHz), 7.20 (d, 1H, J= 1. 8Hz), 6.70 (d, 1H, J= 1. 8Hz), 1.86 (m, 1H), 1.79 (s, 2H), 1.27 (s, 12H), 0.94-0. 81 (m, 2H), 0.77-0. 71 (m, 2H), 0.59-0. 47 (m, 4H). Br 1. Ph2C=NH, BINAP, Pd2dba3, NaOBut, PhCH3 XNH2 0 0 O 2. 2M HCI, THF U. S. Patent No. 6, 252, 090 Intermediate 5 H H Ny N NAOH, MEOH, TBF N=C=O 0 0 COOME O COOMe Me00C Intermediate 6 H H Nu N O I/ ry 0 COOH Compound 5

Reaction Scheme 3 6-Amino-8-cvclopropyl-3 4-dihydro-4, 4-dimethylspiro [2H-1-benzopyran-2, 1'- cyclopropane] (Intermediate 5) A solution of 6-bromo-8-cyclopropyl-3,4-dihydro-4, 4-dimethylspiro [2H 1- benzopyran-2, 1'-cyclopropane] (described in US 6,252, 090 ; 0.322g, 1. 049mmol), benzophenone imine (Fluka 0.093mL, 1.15mmol), sodium-tert-butoxide (0.142g, 1. 47mmol), tris (dibenzylideneacetone) dipalladium (0) (0.023g, 0.025mmol) and (S)- (-) -2,2'-bis (diphenylphosphino)-1, 1'-binaphthyl (Aldrich, 0.047g, 0. 075mmol) in 7mL of anhydrous toluene was sparged with argon and heated at 95°C for 36h. The reaction mixture was cooled to ambient temperature, quenched with water and extracted with ethyl acetate. The combined organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford a thick brown oil (0.73g). The oil was dissolved in tetrahydrofuran

(3. 5mL) and treated with 2M hydrochloric acid (1. 7mL). After stirring at ambient temperature for 20 minutes, 0. 5mL of 2M hydrochloric acid and 40mL of water were added and the reaction mixture was extracted with hexane : ethyl acetate (2: 1, 3x60mL). The aqueous phase was neutralized with potassium hydroxide and extracted with dichloromethane (3x50mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford an oil that on flash column chromatography over silica gel (230-400mesh) afforded the title product as a brown solid (0. 15g, 58%).

'H NMR (300 MHz, CDC13): S 6.46 (d, 1H, J= 2.7Hz), 6.01 (d, 1H, J= 2.7Hz), 3.28 (br s, 2H), 2.02-1. 93 (m, 1H), 1.87 (s, 2H), 1.34 (s, 6H), 0. 97-0. 93 (m, 2H), 0.85-0. 78 (m, 2H), 0.61-0. 59 (m, 4H).

4-f3-[8-Cyclopropyl-3z3-dihydro-4, 4-dimethalspiro (2H-1-benzopyran-2, 2'- cyclopropane)-6-yll-ureidol-benzoic acid methyl ester (Intermediate 6) A solution of 4-isocyanato-benzoic acid methyl ester (Aldrich, 0. 17g, 0. 97mmol) in anhydrous toluene (5mL) was treated with a solution of 6-amino-8- cyclopropyl-3,4-dihydro-4, 4-dimethylspiro [2H-1-benzopyran-2, 1'-cyclopropane] (Intermediate 5,0. 07g, 0. 28mmol) in toluene (15mL). The resulting reaction mixture was stirred at ambient temperature overnight and at 50-60°C for 5h. The volatiles were evaporated in vacuo and the residue was subjected to flash column chromatography over silica gel (230-400mesh) to afford the title compound as a white solid (0.073g, 62%).

'H NMR (300 MHz, CDC13) : 8 7.93 (d, 2H, J= 9. 0Hz), 7.39 (d, 2H, J= 9. 0Hz), 7.06 (d, 1H, J= 2.4Hz), 6.62 (br s, 1H), 6.53 (d, 1H, J= 2. 4Hz), 3.88 (s, 3H), 2.05- 1.97 (m, 1H), 1.89 (s, 2H), 1.35 (s, 6H), 1.01-0. 97 (m, 2H), 0.90-0. 83 (m, 2H), 0.67- 0.54 (m, 4H).

4-f{3- 8-Cvclopropyl-3, 3-dihydro-4, 4-dimethylspiro (2H-1-benzopvran-2, 2'- cyclopropane)-6-yl]-ureido}-benzoic acid (Compound 5) A solution of 4- {3-[8-cyclopropyl-3, 3-dihydro-4,4-dimethylspiro (2H-1- benzopyran-2, 2'-cyclopropane)-6-yl]-ureido}-benzoic acid methyl ester (Intermediate 6,0. 072g, 0. 17mmol) in methanol (3.4mL) and tetrahydrofuran (7mL) was treated with a 0. 5M solution of sodium hydroxide (3.4mL, 1. 7mmol) and

the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo to a residue that was diluted with water, neutralized with 10% hydrochloric acid and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a white solid (0. 066g, 95%).

IH NMR (300 MHz, CD3COCD3): 5 8.27 (br s, 1H), 7.82 (d, 2H, J= 9. 0Hz), 7.52 (d, 2H, J= 9. 0Hz), 7.20 (d, 1H, J= 2.4Hz), 6.66 (d, 1H, Ju 2. 4Hz), 1.93-1. 90 (m, 1H), 1.80 (s, 2H), 1.24 (s, 6H), 0.80-0. 73 (m, 2H), 0.72-0. 67 (m, 2H), 0.57-0. 41 (m, 4H). Br 1- 1-SNH2, NaCNBH3, CHZC12, Br CH3CN, CH3COOH BH3 : Me2S, THF, reflux p O CHO 2. HCOOEt, CHO N U. S. Patent No. 6, 252, 090 Intermediate 8 B 1. Pd (PPli3) zCl2, = TMS 1. Pd (PPh3) ZClz, CuI, NEt3, 0 O /CuI, NEt3, THF, 70°C e N 2. K2C03, MeOH N COOME I RZ Intermediate 9 Intermediate 11 (US Patent 6, 252, 090) R2 = H, Rs = R51 = H (US Patent 6, 252, 090) R2 =F, R5=R51=H Reagent 1 R2 = H, R5 = H, R51 = Me Reagent 2 Ra = H, RS = R51 = Me COOH cool 2. NaOH/LiOH / 0 N N Compound 6 Ra = H, Rs = R51= H Compound 7 Ra = F, R5 = R51 =H Compound 8 R2 = H, Rs = H, R51 = Me Compound 9 R2 = H, R5 = R51 = Me

Reaction Scheme 4 General Procedure C: 6-Bromo-8-[(cyclopropyl-amino)-methyl]-2,2,4,4- tetramethyl-chroman (Intermediate 7) A stirred, cooled (ice bath) solution of 6-bromo-2,2, 4,4-tetramethyl chroman-8-carbaldehyde (U. S. Patent No. 6,252, 090,2. 4g, 8. 4mmol) in

dichloromethane (lOmL) and acetonitrile (9mL) was treated with cyclopropyl amine (1.45mL, 21mmol). After 5 minutes, acetic acid (ImL) was added followed by sodium cyanoborohydride (1.33g, 21mmol). The reaction mixture was stirred at ambient temperature for 2h. The volatiles were distilled off in vacuo, the residue was diluted with water and extracted with ethyl acetate (x2). The combined organic extract was washed with water, saturated aqueous sodium bicarbonate and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil.

Flash column chromatography over silica gel (230-400 mesh) afforded the title compound (1.4g, 50%) as a clear oil.

1H NMR (300 MHz, CDC13) : 8 7.27 (d, 1H, J= 2. lHz), 7.16 (d, 1H, J= 2. lHz), 3.73 (s, 2H), 2.19 (br s, 1H), 2.09-2. 04 (m, 1H), 1.82 (s, 2H), 1.35 (s, 6H), 1.32 (s, 6H), 0.43-0. 36 (m, 4H).

6-Bromo-8- [(cyclopropyl-ormYl-amino)-meth-yll-2 2 *4, 4-tetramethyl-chroman (Intermediate 8) A solution of 6-bromo-8- [ (cyclopropyl-amino)-methyl]-2, 2,4, 4-tetramethyl- chroman (Intermediate 7,1. 4g, 4. 14mmol) in ethyl formate was refluxed for 6h.

The solvent was distilled off in vacuo to afford the title compound as a clear oil (1.56g, 100%).

1H NMR (300 MHz, CDCl3) : 8 8. 37,8. 27 (2s, 1H), 7.35, 7.29 (2d, 1H, J= 2. lHz), 7.13, 7.11 (2d, 1H, J= 2. 1Hz), 4.48 (s, 2H), 2.60-2. 50 (m, 1H), 1.81 (s, 2H), 1. 34 (s, 6H), 1.32 (s, 6H), 0.74-0. 70 (m, 4H).

6-Bromo-8- [ (cyclopropyI-methyI-ammo)-methyl]-2, 2A4-tetramethyl-chroman (Intermediate 9) A solution of 6-bromo-8-[(cyclopropyl-formyl-amino)-methyl]-2, 2,4, 4- tetramethyl-chroman (Intermediate 8,1. 46g, 4. 0mmol) in anhydrous tetrahydrofuran (30mL) was treated with a 2M solution of borane : methylsulfide complex in tetrahydrofuran (5mL, lOmmol) and the resulting reaction mixture was refluxed for 2h. It was then cooled in an ice bath, quenched cautiously with saturated aqueous sodium carbonate solution and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate,

filtered and evaporated in vacuo to afford the title product as a white solid (1. 55g, 100%).

IH NMR (300 MHz, CDCl3) : 8 7.26 (d, 1H, J = 2. lHz), 7.20 (d, 1H, J= 2. lHz), 3.64 (s, 2H), 2.27 (s, 3H), 1.83 (s, 2H), 1.83-1. 78 (m, 1H), 1.34 (s, 6H), 1.33 (s, 6H), 0.48-0. 47 (m, 4H).

General Procedure D : 8-[(Cyclopropyl-methyl-amino !-methyl]-2e244 tetramethvl-6-trimethylsilanvlethynvl chroman (Intermediate 10) A solution of 6-bromo-8- [ (cyclopropyl-formyl-amino)-methyl]-2, 2,4, 4- tetramethyl-chroman (Intermediate 9, 1. 5g, 4. 2mmol) in triethyl amine (5mL) and anhydrous tetrahydrofuran (lOmL) was treated with copper (I) iodide (0.32g, 1. 68mmol) and sparged with argon for 5 minutes. Trimethylsilyl acetylene (2. 5mL, 17. 6mmol) was then added followed by dichlorobis (triphenylphosphine) palladium (II) (0.737g, 1. 05mmol). The resulting reaction mixture was heated at 70°C for 17h. It was then cooled to ambient temperature, diluted with diethyl ether and filtered over a bed of celite. The filtrate was evaporated vacuo to an oil which was subjected to flash column chromatography over silica gel (230-400 mesh) to afford the title compound as a brown oil.

IH NMR (300 MHz, CDC13) : 8 7.08 (d, 1H, J= 2. 1Hz), 6.97 (d, 1H, J= 2. 1Hz), 3.40 (s, 2H), 2. 03 (s, 3H), 1.57 (s, 2H), 1. 57-1. 53 (m, 1H), 1.09 (2s, 12H), 0.25-0. 22 (m, 4H), 0.012 (s, 9H).

General Procedure F: 8- [ (Cyclopropvl-methyl-amino)-methyl]-6-ethynyl-2, 2, 4, 4- tetramethyl-chroman (Intermediate 11) A solution of 8-[(cyclopropyl-methyl-amino)-methyl]-2, 2,4, 4-tetramethyl-6- trimethylsilanylethynyl chroman (Intermediate 10,0. 729g, 1.97mmol) in methanol (30mL) was treated with potassium carbonate (1.4g, 10.2mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as a brown oil (0.571g, 98%).

1H NMR (300 MHz, CDC13) : 8 7. 35 (d, 1H, J= 2. lHz), 7.25 (d, 1H, J= 2. lHz), 3.66 (s, 2H), 2.98 (s, 1H), 2.28 (s, 3H), 1.83 (s, 2H), 1.83-1. 77 (m, 1H), 1.35 (s, 6H), 1.34 (s, 6H), 0.50-0. 47 (m, 4H).

(4-{8-[(Cyclopropyl-methyl-amino)-methyl]-2,2,4,4-tetrame thyl-chroman-6- ylethynylTphenvl)-acetic acid methyl ester (Intermediate 12) Following General Procedure B and using 8-[(cyclopropyl-methyl-amino)- methyl]-6-ethynyl-2, 2,4, 4-tetramethyl-chroman (Intermediate 11,0. 09g, 0. 3mmol), 4-iodo phenyl acetic acid methyl ester (U. S. Patent No. 6,252, 090,0. 092g, 0.33mmol), triethyl amine (3mL), copper (I) iodide (0.029g, 0. 15mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.064g, 0.09mmol) followed by flash column chromatography over silica gel (230-400 mesh), the title compound was obtained as a yellow oil (0.085g, 65%).

'H NMR (300 MHz, CDCl3) : 6 7.46 (d, 2H, J= 8.4Hz), 7. 37 (d, 1H, J= 2. lHz}, 7.27-7. 22 (m, 3H), 3.70 (s, 3H), 3.67 (s, 2H), 3.63 (s, 2H), 2.29 (s, 3H), 1.83 (s, 2H), 1.83-1. 81 (m, 1H), 1.35 (2s, 12H), 0.50-0. 47 (m, 4H).

(4-{8-[(Cyclopropyl-methyl-amino)-methyl]-2,2,4,4-tetrame thyl-chroman-6- ylethynyl} phenyl)-acetic acid (Compound 6) A solution of (4-{8-[(cyclopropyl-methyl-amino)-methylJ-2, 2,4, 4- tetramethyl-chroman-6-ylethynyl} phenyl)-acetic acid methyl ester (Intermediate 12,0. 057g, 0. 13mmol) in methanol (1mL) and tetrahydrofuran (3mL) was treated with a 1M solution of sodium hydroxide (0.4mL, 0. 4mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo to a residue that was washed with hexane, neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate.

The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow oil (0.046g, 84%).

'H NMR (300 MHz, CDC) : 8 7.42-7. 26 (m, 6H), 3.94 (s, 2H), 3.57 (s, 2H), 2.48 (s, 3H), 2.04 (m, 1H), 1.82 (s, 2H), 1.35 (s, 6H), 1.33 (s, 6H), 0.55-0. 50 (m, 4H).

(4- {8-[(CYclopropYl-methyl-amino)-methyll-2244-tetranlethyl-chr oman-6 yIethynvU-2-iluoro-phenyl)-acetic acid methyl ester (Intermediate 13)

Following General Procedure B and using 8- [ (cyclopropyl-methyl-amino)- methyl]-6-ethynyl-2, 2,4, 4-tetramethyl-chroman (Intermediate 11, 0.084g, 0.28mmol), 2-fluoro-4-iodo phenyl acetic acid methyl ester (U. S. Patent 6,252, 090,0. 091g, 0. 3mmol), triethyl amine (3mL), copper (I) iodide (0.027g, 0. 14mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.060g, 0. 085mmol) followed by flash column chromatography over silica gel (230-400 mesh), the title compound was obtained as a yellow oil (0.083g, 64%).

1H NMR (300 MHz, CDC13) : 6 7.37 (d, 1H, J= 2. 1Hz), 7.27-7. 24 (m, 4H), 3.72 (s, 3H), 3.67 (s, 4H), 2.29 (s, 3H), 1.83 (s, 2H), 1.83-1. 81 (m, 1H), 1.35 (s, 12H), 0.50- 0.47 (m, 4H).

(4-{8-[(Cyclopropyl-methyl-amino)-methyl]-2,2,4,4-tetramethy l-chroman-6- ylethynylT-2-fluoro-phenyl !-acetic acid (Compound 7) A solution of (4-{8-[(cyclopropyl-methyl-amino)-methyl]-2, 2,4, 4- tetramethyl-chroman-6-ylethynyl}-2-fluoro-phenyl)-acetic acid methyl ester (Intermediate 13,0. 060g, 0.13mmol) in methanol (1mL) and tetrahydrofuran (3mL) was treated with a 1M solution of sodium hydroxide (0.4mL, 0.4mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo to a residue that was washed with hexane, neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow oil (0.056g, 95%).

'H NMR (300 MHz, CDC13) : 8 7.43 (d, 1H, J= 2. 1Hz), 7.37-7. 13 (m, 4H), 3.99 (s, 2H), 3.61 (s, 2H), 2.52 (s, 3H), 2.10-2. 04 (m, 1H), 1.83 (s, 2H), 1.83-1. 81 (m, 1H), 1.36 (s, 6H), 1.35 (s, 6H), 0.90-0. 82 (m, 2H), 0.59-0. 57 (m, 2H).

2- {8-[(Cyclopropyl-methyl-amino !-methyl]-2*244-tetramethyl-chroman-6 ) mL _pionic acid methyl ester (Intermediate 14) Following General Procedure B and using 8- [ (cyclopropyl-methyl-amino)- methyl]-6-ethynyl-2, 2,4, 4-tetramethyl-chroman (Intermediate 11, 0.08g, 0. 27mmol), methyl-2- (4-iodophenyl) propionate (Reagent 1,0. 086g, 0. 29mmol), triethyl amine (3mL), copper (I) iodide (0.026g, 0.14mmol) and

dichlorobis (triphenylphosphine) palladium (II) (0.057g, 0. 08mmol) followed by flash column chromatography over silica gel (230-400 mesh), the title compound was obtained as a brown oil (0.067g, 54%).

IH NMR (300 MHz, CDCl3) : 6 7.46 (d, 2H, J= 8.4Hz), 7.37 (d, 1H, J= 2. lHz), 7.27-7. 22 (m, 3H), 3.72 (q, 1H, J= 7.2Hz), 3.67 (s, SH), 2.29 (s, 3H), 1.83 (s, 2H), 1.83-1. 79 (m, 1H), 1.50 (d, 3H, J= 7.2Hz), 1.35 (s, 12H), 0.50-0. 47 (m, 4H).

2-(4-{8-[(Cyclopropyl-methyl-amino)-methyl]-2,2,4,4-tetra methyl-chroman-6- ylethynyl}-phenyl)-propionic acid (Compound 8) A solution of 2- (4- {8- [ (cyclopropyl-methyl-amino)-methyl]-2, 2,4, 4- tetramethyl-chroman-6-ylethynyl}-phenyl)-propionic acid methyl ester (Intermediate 14,0. 057g, 0. 12mmol) in methanol (1mL) and tetrahydrofuran (3mL) was treated with a 1M solution of sodium hydroxide (0.3mL, 0.3mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo to a residue that was washed with hexane, neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid (0.024g, 45%).

'H NMR (300 MHz, CDCl3) : 8 7. 38-7. 23 (2m, 6H), 3.85-3. 82 (m, 1H), 3.82 (s, 2H), 2.39 (s, 3H), 1.94-1. 85 (m, 1H), 1.80 (s, 2H), 1.41 (d, 3H, J= 7.2Hz), 1.33 (s, 12H), 0.70-0. 60 (m, 2H), 0.50-0. 48 (m, 2H).

2-(4- {8-[(Cyclopropyl-methyl-amino !-methyll-2z2z44-tetramethyl-chroman-6 ylethynyl}-phenyl)-2-methyl-propionic acid methyl ester (Intermediate 15) Following General Procedure B and using 8- [ (cyclopropyl-methyl-amino)- methyl] -6-ethynyl-2,2, 4, 4-tetramethyl-chroman (Intermediate 11, 0.08g, 0. 27mmol), methyl-2- (4-iodophenyl)-2-methyl-propionate (Reagent 2, 0.082g, 0. 27mmol), triethyl amine (2mL), copper (I) iodide (0.020g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10% ethyl acetate in hexane as the eluent, the title compound was obtained as a brown oil (0.040g, 31%).

'H NMR (300 MHz, CDC13) : 8 7.50-7. 28 (m, 6H), 3.68 (s, 3H), 3.66 (s, 2H), 2.30 (s, 3H), 1.85 (s, 2H), 1.85-1. 81 (m, 1H), 1.60 (s, 3H), 1.59 (s, 3H), 1.37 (s, 6H), 1.36 (s, 6H), 0.50-0. 47 (m, 4H).

2- (4- {8- [ (Cyclopropyl-methyl-amino)-methyl]-2. 2. 4, 4-tetramethyl-chroman-6- ylcthvnyl}-phenyl)-2-methyl-propionic acid (Compound 9) A solution of 2- (4- {8- [ (cyclopropyl-mcthyl-amino)-methyl]-2, 2,4, 4- tetramethyl-chroman-6-ylethynyl} -phenyl) -2-methyl-propionic acid methyl ester (Intermediate 15, 0.040g, 0. 084mmol) in methanol (2. 5mL) and tetrahydrofuran (2. 5mL) was treated with a 2M solution of sodium hydroxide (lmL, 2mmol) and the resulting reaction mixture was refluxed overnight. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil. Preparative reverse phase HPLC on a partisil 10 ODS-3 column using 10% water in acetonitrile as the mobile phase afforded the title compound (0. 008g, 27%).

IH NMR (300 MHz, CDC13) : # 7.46-7. 32 (m, 6H), 6.90-6. 50 (br s, 1H), 3.84 (s, 2H), 2.41 (s, 3H), 1.97-1. 92 (m, 1H), 1.83 (s, 2H), 1.55 (s, 6H), 1.36 (2s, 12H), 0.73-0. 68 (m, 2H), 0.52-0. 46 (m, 2H). I Br 1. 3-ClC6H4COOOH, CH2C'2 Br 1. Pd (PPh3) 2C'2, TMS ow >, J > 2. Na2CO3, MeOH/° T CuI, NEt3, THF, 70°C °/\ OH 2. K2C03, MeOH Intermediate 15A Intermediate 17 R5 R51 COOME v Pd (PPh3) 2CI2, CuI, NEt3, 1 R5 R5 1 0 Intermediate 20 Rs = R5 H COOMB Intermediate 19 w Intermediate Intermediate 22 Rs = H, Rsl = Me Rs = R5 H Intermediate 23 Rs = R5 Me Reagent 1 Rs = H, Rsl = Me Reagent 2 Rs = R51 = Me 5 KOH COOH R5 R5 COOL /vox 0 1. ICH (CH3) 2, K2CO3, 0 CH3COCH3 0 OH 2. NaOH Compound 13 Compound 11 Rs = H, Rus'= Me Compound 12 Rs = Rsl = Me eCOOH 1. Pd (PPh3) 2CI2, CuI, NEt3, F COOH COOME p I COOMe Oh OU OH Intermediate 19 U. S. Patent No. Compound 10 6, 252, 090 2. NaOH Reaction Scheme 5

8-acetyl-6-bromo-2, 2, 4, 4-tetramethyl chroman (Intermediate 15A) A stirred, cooled (-78°C) solution of 6-bromo-2, 2,4, 4-tetramethyl chroman (lg, 3. 72mmol) in anhydrous dichloromethane (lOmL) was treated with aluminum chloride (0.8g, 6. 8mmol) followed by acetyl chloride (0.4mL, 6. 08mmol). After 10 minutes, the reaction mixture was diluted with water and extracted with diethyl ether. The organic phase was washed with water, and dried over anhydrous sodium sulfate, filtered and evaporated to a residue that was subjected to flash column chromatography on silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent to afford the title compound as a solid (0.78g, 67%).

IH NMR (300 MHz, CDC13) : 5 7.64 (d, 1H, J= 2.6Hz), 7.49 (d, 1H, J= 2.6Hz), 2.60 (s, 3H), 1.87 (s, 2H), 1.41 (s, 6H), 1.36 (s, 6H).

8-Acetoxy-6-bromo-22, 4, 4-tetramethyl chroman (Intermediate 16) A solution of 8-acetyl-6-bromo-2,2, 4, 4-tetramethyl chroman (Intermediate 15A, 1.3g, 4. 18mmol) in anhydrous dichloromethane (30mL) was treated with a 77% aqueous solution of 3-chloroperoxybenzoic acid (5.75g, 33. 44mmol) and the resulting reaction mixture was stirred at ambient temperature for 24h. The reaction mixture was then cooled in an ice bath and cautiously quenched with saturated sodium thiosulfate solution. The phases were separated and the organic phase was washed with saturated, aqueous sodium bicarbonate solution, water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford a residue that on flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent afforded the title compound as an oil (1.3g, 92%).

'H NMR (300 MHz, CDC13) : 6 7.27 (s, 1H), 7.00 (s, 1H), 2.29 (s, 3H), 1.83 (s, 2H), 1.34 (s, 6H), 1.32 (s, 6H).

6-Bromo-8-hvdroxv-2, 2, 4, 4-tetramethyl chroman (Intermediate 17) A solution of 8-acetoxy-6-bromo-2,2, 4,4-tetramethyl chroman (Intermediate 16,1. 3g, 3. 98 mmol) in methanol was treated with sodium carbonate (0.8g, 7. 95mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford a

residue that on flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent afforded the title product as an oil (0.95g, 84%).

'H NMR (300 MHz, CDCl3) : 8 6.91 (d, 1H), 6.88 (d, 1H), 5.67 (s, 1H), 1. 84 (s, 2H), 1.37 (s, 6H), 1.32 (s, 6H).

3mali-2, 2,4,4-tetramethyl chroman (Intermediate 18) Following General Procedure D and using 6-bromo-8-hydroxy-2,2, 4,4- tetramethyl chroman (Intermediate 17, 1. 0g, 3. 51mmol), triethyl amine (5mL), copper (I) iodide (0.066g, 0. 351mmol), trimethylsilyl acetylene (2. 5mL, 17. 6mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.246g, 0. 35 lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 0. 5% ethyl acetate in hexane as the eluent, the title compound (1. 08g,#100%) was obtained as a brown oil.

H NMR (300 MHz, CDCl3) : 8 6.97 (d, 1H), 6.86 (d, 1H), 5.61 s, 1H), 1.84 (s, 2H), 1.37 (s, 6H), 1.33 (s, 6H), 0.24 (s, 9H).

6-EthynyI-8-hydroxy-2, 2. 4. 4-tetramethyI-chroman (Intermediate 19) A solution of 6-bromo-8-trimethylsilanylethynyl-2, 2,4, 4-tetramethyl chroman (Intermediate 18, 0.47g, 1. 56mmol) in methanol (5mL) was treated with potassium carbonate (0.2g, 1. 45mmol) and the resulting reaction mixture was heated at 80°C for 3h. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as a brown oil (0. 35g, 99%).

'H NMR (300 MHz, CDC13) : 8 6.97 (d, 1H), 6.86 (d, 1H), 5.70 (br s, 1H), 2. 92 (s, 1H), 1. 84 (s, 2H), 1.37 (s, 6H), 1.33 (s, 6H).

[4-(8-Hydroxy-2,2,4,4-tetramethyl-chroman-6-ylethynyl)-ph enyl]-acetic acid methyl ester (Intermediate 20) Following General Procedure B and using 6-ethynyl-8-hydroxy-2,2, 4,4- tetramethyl-chroman (Intermediate 19,0. 035g, 0. 15mmol), 4-iodo phenyl acetic acid methyl ester (0.060g, 0.23mmol), triethyl amine (3mL), copper (I) iodide (0.020g, O. 1mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g,

0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh), and preparative normal phase HPLC using 10% ethyl acetate in hexane as the mobile phase, the title compound was obtained (0. 015g, 25%).

'H NMR (300 MHz, CDC13) : 8 7.46 (d, 2H, J= 8. lHz), 7.24 (d, 2H, J= 8. lHz), 7.03 (d, 1H, J= 2. 1Hz), 6.91 (d, 1H, J= 2. lHz), 5.72 (s, 1H), 3.69 (s, 3H), 3.63 (s, 2H), 1.86 (s, 2H), 1.38 (s, 6H), 1.35 (s, 6H).

[2-Fluoro-4-(8-hydroxy-2,2,4,4-tetramethyl-chroman-6-ylet hynyl)-phenyl]-acetic acid methyl ester (Intermediate 21) Following General Procedure B and using 6-ethynyl-8-hydroxy-2,2, 4,4- tetramethyl-chroman (Intermediate 19, 0. 05g, 0. 22mmol), 2-fluoro-4-iodo phenyl acetic acid methyl ester (0.096g, 0.33mmol), triethyl amine (3mL), copper (I) iodide (0.020g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh), and preparative normal phase HPLC using 10% ethyl acetate in hexane as the mobile phase, the title compound was obtained (0.037g, 43%).

1H NMR (300 MHz, CDCl3) : 8 7. 27-7. 18 (m, 3H), 7.03 (d, 1H, J= 1. 8Hz), 6.90 (d, 1H, J= 1. 8Hz), 5.68 (s, 1H), 3.72 (s, 3H), 3.67 (s, 2H), 1.87 (s, 2H), 1.39 (s, 6H), 1.36 (s, 6H). <BR> <BR> <BR> <P>[2-Fluoro-4- (8-hvdroxy-2, 2, 4, 4-tetramethyl-chroman-6-ny)-phenyll-acetic acid (Compound 10) A solution of [2-fluoro-4- (8-hydroxy-2, 2,4, 4-tetramethyl-chroman-6- ylethynyl) -phenyl] -acetic acid methyl ester (Intermediate 21,0. 037g, 0. 0493mmol) in methanol (2mL) and tetrahydrofuran (1mL) was treated with a 2M solution of potassium hydroxide (2mL, 4mmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0.024g, 69%).

'H NMR (300 MHz, CDC13) : 5 7.26-7. 24 (m, 3H), 7.03 (d, 1H, J= 1. 8Hz), 6.90 (d, 1H, J = 1. 8Hz), 3.71 (s, 2H), 1. 87 (s, 2H), 1.39 (s, 6H), 1.36 (s, 6H).

2-[4-(8-Hydroxy-2, 2, 4,4-tetramethyl-chroman-6-ylethynyl)-phenyl]-propionic acid methyl ester (Intermediate 22) Following general procedure B and using 6-ethynyl-8-hydroxy-2,2, 4,4- tetramethyl-chroman (Intermediate 19,0. 04g, 0. 17mmol), methyl-2- (4- iodophenyl) propionate (Reagent 1,0. 075g, 0. 26mmol), triethyl amine (3mL), copper (I) iodide (0.020g, O. 1mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh), and preparative normal phase HPLC using 5% ethyl acetate in hexane as the mobile phase, the title compound was obtained as a brown oil (0. 018g, 26%).

'H NMR (300 MHz, CDC13) : 8 7.46 (d, 2H, J= 8. 5Hz), 7.26 (d, 2H, J= 8. 5Hz), 7.03 (d, 1H, J= 1. 8Hz), 6.91 (d, 1H, J= 1. 8Hz), 5.66 (s, 1H), 3.67 (q, 1H, J= 7. 5Hz), 1.87 (s, 2H), 1.50 (d, 3H, J= 7. 5Hz), 1.39 (s, 6H), 1.36 (s, 6H).

2- [4- (8-Hydroxy-2, 2,4, 4-tetramethyl-chroman-6-ylethynyl2phenvl]-propionic acid (Compound 11) A solution of 2- [4- (8-hydroxy-2, 2,4, 4-tetramethyl-chroman-6-ylethynyl)- phenyl] -propionic acid methyl ester (Intermediate 22,0. 018g, 0.046mmol) in methanol (1mL) and tetrahydrofuran (0. 5mL) was treated with a 2M solution of potassium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at 80°C for 2h. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid (0.017g, 100%).

'H NMR (300 MHz, CDC13) : 5 7.50-7. 30 (m, 4H), 7.02 (s, 1H), 6.91 (s, 1H), 3. 80- 3.70 (m, 1H), 1.86 (s, 2H), 1.52 (d, 3H, J= 7.2Hz), 1.39 (s, 6H), 1.36 (s, 6H).

2- [4- (8-Hydroxy-2, 2, 4, 4-tetramethvl-chroman-6-vlethvnylphenyl]-2-methyl- propionic acid methyl ester (Intermediate 23) Following General Procedure B and using 6-ethynyl-8-hydroxy-2, 2,4, 4- tetramethyl-chroman (Intermediate 19,0. 057g, 0.25mmol), methyl-2- (4- iodophenyl) -2-methyl-propionate (Reagent 2,0. 112g, 0.37mmol), triethyl amine

(3mL), copper (I) iodide (0.020g, O. lmmol) and dichlorobis (triphenylphosphine)- palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) and preparative normal phase HPLC using 5% ethyl acetate in hexane as the mobile phase, the title compound was obtained as a brown oil (0.035g, 35%).

IH NMR (300 MHz, CDC13) : 8 7.46 (d, 2H, J= 8. 5Hz), 7.29 (d, 2H, J= 8. 5Hz), 7.03 (d, 1H, J= 1. 8Hz), 6.91 (d, 1H, J= 1. 8Hz), 5.67 (s, 1H), 3.66 (s, 3H), 1. 86 (s, 2H), 1.58 (s, 6H), 1.39 (s, 6H), 1.36 (s, 6H).

2-[4-(8-Hydroxy-2,2,4,4-tetramethyl-chroman-6-ylethynyl)- phenyl]-2-methyl- propionic acid (Compound 12) A solution of 2-L4-(8-hydroxy-2, 2,4, 4-tetramethyl-chroman-6-ylethynyl)- phenyl]-2-methyl-propionic acid methyl ester (Intermediate 23,0. 035g, 0. 087mmol) in methanol (2mL) and tetrahydrofuran (ImL) was treated with a 1M solution of potassium hydroxide (2mL, 4mmol) and the resulting reaction mixture was stirred at 80°C for 2h. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid (0.034g, 100%).

IH NMR (300 MHz, CDC13) : 8 7.47 (d, 2H, J= 8. 7Hz), 7.35 (d, 2H, J= 8. 7Hz), 7.03 (d, 1H, J= 1. 8Hz), 6.91 (d, 1H, J= 1. 8Hz), 1.86 (s, 2H), 1.60 (s, 6H), 1. 39 (s, 6H), 1.36 (s, 6H).

[4- (8-Isopropoxy-2, 2,. 4, 4-tetramethyl-chroman-6-ylethynyl)-phenyll-acetic acid methyl ester (Intermediate 24) A solution of [4- (8-hydroxy-2, 2,4, 4-tetramethyl-chroman-6-ylethynyl)- phenyl] -acetic acid methyl ester (Intermediate 20,0. 02g, 0. 076mmol) in acetone (2mL) was treated with potassium carbonate (0.026g, 0. 19mmol) and 2-iodopropane (5mL, large excess) and the resulting reaction mixture was refluxed for 30h. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as an oil (0.02g, 91%).

'H NMR (300 MHz, CDC13) : 8 7.47 (d, 2H, J= 8.4Hz), 7.24 (d, 2H, J= 8.4Hz), 7.14 (d, 1H, J= 2. 1Hz), 6.93 (d, 1H, J= 2. 1Hz), 4.40 (heptet, 1H, J= 6. 3Hz), 3.70 (s, 3H), 3.63 (s, 2H), 1. 83 (s, 2H), 1.38 (s, 6H), 1.35 (s, 6H), 1.33 (d, 3H, J= 6.3Hz).

[4- (8-Isopropoxv-2, 2, 4, 4-tetramethyl-chroman-6-ylethynyl)-phenyl]-acetic acid (Compound 13) A solution of [4- (8-isopropoxy-2, 2, 4, 4-tetramethyl-chroman-6-ylethynyl)- phenyl] -acetic acid methyl ester (Intermediate 24,0. 02g, 0. 05mmol) in methanol (1mL) was treated with a 2M solution of sodium hydroxide (1mL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature for 3h. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil. Flash column chromatography over silica gel (230-400mesh) using 5% methanol in ethyl acetate as the eluent followed by preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase afforded the title product (0. 015g, 78%).

'H NMR (300 MHz, CDC13) : 8 7.47 (d, 2H, J= 8.4Hz), 7.24 (d, 2H, J= 8.4Hz), 7.14 (d, 1H, J= 2. 1H2), 6.92 (d, 1H, J= 2. 1H2), 4.40 (heptet, 1H, J= 7. 5Hz), 3.65 (s, 2H), 1.83 (s, 2H), 1. 37 (s, 6H), 1.35 (s, 6H), 1.33 (d, 3H, J= 7. 5Hz). Br 1. Etl\4gBr, TBF Br AlC13, CH3COCI, CH2C'2 D60 O 2. pTSA, berl7ene ° U. S. Patent No Intermediate 25 6, 252, 090 Br 1. Pd PPh Cl TMS 11) m 1 0 ~°< 2. Et3SiH, CF3COOH ~ ° T CuI, NEt3, THF, 70°C 2. K2C03, MeOH O Intermediate 26 Intermediate 27 COOH \ 1. Pd (PPh3) 2Cl2, CuI, NEt3, O I COOMe Intermediate 29 Compound 14 Reagent 2 2. KOH

Reaction Scheme 6 6-Bromo-2, 2-diethyl-4, 4-dimetlrylchroman (Intermediate 25) A solution of 6-bromo-4, 4-dimethyl-chroman-2-one (U. S. Patent No. 6,252, 090,4g, 15.7mmol) in anhydrous tetrahydrofuran (20mL) was treated with a 3M solution of ethyl magnesium bromide (10.5mL, 31. 5mmol) and stirred at ambient temperature for 2h. The reaction mixture was poured into cold dilute hydrochloric acid and extracted with ethyl acetate (x2). The combined organic extract was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford a residue which was dissolved in 50mL of benzene, treated withp-toluene sulfonic acid (lg, 3. 92mmol) and the resulting reaction mixture was refluxed

overnight. The reaction mixture cooled to ambient temperature, filtered on silica gel and washed with 10% ethyl acetate in hexane. The filtrate and washings were evaporated in vacuo to an oil which was subjected to flash column chromatography over silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent to afford the title compound as a pale yellow oil (3.9g, 84%).

IH NMR (300 MHz, CDC13) : 8 7.36 (d, 1H, J= 2.4Hz), 7.35 (dd, 1H, J= 2.4, 8.4Hz), 6.70 (d, 1H, J= 8.4Hz), 1.79 (s, 2H), 1.73-1. 55 (m, 4H), 1.34 (s, 6H), 0.90 (t, 6H, J= 7. 5Hz).

8-Acetyl-6-bromo-2, 2-diethyl-4, 4-dimethyl chroman (Intermediate 26) A stirred, cooled (ice bath) suspension of aluminum chloride (l. lg, 8. 38mmol) in anhydrous dichloromethane (20 mL) was treated with acetyl chloride (0.6mL, 8. 38mmol). After 5 minutes, a solution of 6-bromo-2, 2-diethyl-4,4- dimethyl chroman (Intermediate 25,1. 66g, 5.59mmol) in dichloromethane was added. The reaction mixture was stirred for lh. The reaction mixture was then poured into water and extracted with diethyl ether (x2). The combined organic phase was washed with saturated aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue which was subjected to flash column chromatography over silica gel (230-400 mesh) using 10% ethyl acetate in hexane as the eluent to afford the title compound as an oil (1.6g, 84%).

'H NMR (300 MHz, CDC13) : 8 7.64 (d, 1H, J= 2. lHz), 7.48 (d, 1H, J= 2. lHz), 2.62 (s, 3H), 1.84 (s, 2H), 1.75-1. 59 (m, 4H), 1.36 (s, 6H), 0.93 (t, 6H, J= 7. 5Hz).

6-Bromo-2, 2-diethvl-8-isopropvl-4, 4-dimethvl chroman (Intermediate 27) A stirred, cooled (ice bath) solution of 8-acetyl-6-bromo-2, 2-diethyl-4,4- dimethyl chroman (Intermediate 26,1. 57g, 4. 62mmol) in anhydrous tetrahydrofuran (lOmL) was treated with a 3M solution of methyl magnesium bromide in diethyl ether (3. 1mL, 9.24mmol). The reaction mixture was allowed to warm to ambient temperature over 2h. The reaction mixture was poured into cold, dilute aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue which on flash column chromatography over silica gel (230-400mesh)

using 5-10% ethyl acetate in hexane as the eluent afforded an oil (1. 41g, 86%). A stirred, cooled (ice bath) solution of the oil (1.4g, 3. 93mmol) in dichloromethane (lOmL) was treated with triethylsilane (5mL, 31.46mmol) followed after 30 minutes by trifluoroacetic acid (2.4mL, 31. 46mmol) and the resulting reaction mixture was allowed to warm to ambient temperature and stirred for 3h. The volatiles were distilled off in vacuo and the residue was diluted with water and extracted with ethyl acetate. The combined organic phase was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil which was subjected to flash column chromatography over silica gel (230-400 mesh) to afford the title compound as a clear oil (0.89g, 66%) and some recovered starting material (0.23g, 16.4%).

'H NMR (300 MHz, CDC13) : 87. 21 (d, 1H, J= 2. lHz), 7.11 (d, 1H, J= 2. lHz), 3. 40-3. 30 (m, 1H), 1.78 (s, 2H), 1.68-1. 58 (m, 4H), 1.33 (s, 6H), 1.90 (d, 6H, J= 6.6Hz), 0.92 (t, 6H, J= 7. 5Hz).

2, 2-Diethyl-8-isopropyl-6-trimethylsilanylethynyl-4 4-dimethyl chroman (Intermediate 28) Following General Procedure D and using 6-bromo-2,2-diethyl-8-isopropyl- 4,4-dimethyl chroman (Intermediate 27,0. 89g, 2. 62mmol), triethyl amine (5mL), tetrahydrofuran (lOmL), copper (I) iodide (0. 050g, 0.26mmol), trimethylsilyl acetylene (2. 5mL, 17. 6mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 184g, 0. 26mmol) followed by flash column chromatography over silica gel (230- 400 mesh) using hexane to 2% ethyl acetate in hexane as the eluent, the title compound (0.73g, 79%) was obtained as a brown oil.

'H NMR (300 MHz, CDC13) : 8 7.31 (d, 1H), 7.12 (d, 1H), 3.20-3. 10 (m, 1H), 1.70 (s, 2H), 1.70-1. 45 (m, 4H), 1.34 (s, 6H), 0.95 (d, 6H), 0.68 (t, 6H), 0.00 (s, 9H).

2, 2-Diethvl-6-ethynvl-8-isopropyl-4, 4-dimethyl chroman (Intermediate 29) A solution of 2, 2-diethyl-8-isopropyl-6-trimethylsilanylethynyl-4, 4-dimethyl chroman (Intermediate 28,0. 73g, 2. 04mmol) in methanol (40mL) was treated with potassium carbonate (0. 15g, 1. 08mmol) and the resulting reaction mixture was heated at 80°C for 3h. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase was dried over

anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as a brown oil (0.56g, 96%).

'H NMR (300 MHz, CDC13) : 8 7.27 (d, 1H), 7.16 (d, 1H), 3.31-3. 06 (m, 1H), 2.96 (s, 1H), 1.81 (s, 2H), 1.81-1. 56 (m, 4H), 1.31 (s, 6H), 1.17 (d, 6H), 0.91 (t, 6H).

2-[4-(2,2-Diethyl-8-isopropyl-4,4-dimethyl-chroman-6-ylet hynyl)-phenyl]-2- methyl-propionic acid methyl ester (Intermediate 30) Following General Procedure B and using 2,2-diethyl-6-ethynyl-8-isopropyl- 4,4-dimethyl chroman (Intermediate 29,0. 069g, 0. 24mmol), methyl-2- (4- iodophenyl)-2-methyl-propionate (Reagent 2,0. 146g, 0. 48mmol), triethyl amine (3mL), copper (I) iodide (0.025g, 0.13mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.075g, 0. 107mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow oil (0.070g, 62%).

'H NMR (300 MHz, CDC13) : 8 7.47 (d, 2H, J= 8.2Hz), 7.31 (d, 2H, J= 8.2Hz), 7. 30 (d, 1H, J = 2. 1Hz), 7.20 (d, 1H, J= 2. 1Hz), 3.65 (s, 3H), 3.40-3. 20 (m, 1H), 1.78 (s, 2H), 1.68-1. 57 (m, 4H), 1. 58 (s, 6H), 1.34 (s, 6H), 1.21 (d, 6H, J= 7. 0Hz), 0.91 (t, 6H, J= 7. 3Hz).

2-r4-(2 2-Diethyl-8-isopropyl-4 4-dimethyl-chroman-6-ylethynyl !-phenYl]-2- methyl-propionic acid (Compound 14) A solution of 2- [4- (2, 2-diethyl-8-isopropyl-4, 4-dimethyl-chroman-6- ylethynyl)-phenyl]-2-methyl-propionic acid methyl ester (Intermediate 30,0. 070g, 0. 15mmol) in methanol (3mL) and tetrahydrofuran (0. 5mL) was treated with a 5M solution of potassium hydroxide (2mL, 10mmol) and the resulting reaction mixture was stirred at ambient temperature for 2 days. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford a residue that on preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase afforded the title product as a yellow solid (0.035g, 51%).

1H NMR (300 MHz, CDC13) : 8 7.48 (d, 2H, J= 8. 1Hz), 7.36 (d, 2H, J= 8.2Hz), 7. 31 (d, 1H, J=2. lHz), 7.20 (d, 1H, J = 2.1Hz), 3.40-3. 20 (m, 1H), 1.79 (s, 2H), 1.69-1. 60 (m, 4H), 1.61 (s, 6H), 1.35 (s, 6H), 1.21 (d, 6H, J= 7.2Hz), 0.92 (t, 6H, J = 7. 5Hz). 4 VBr AICI3, CH2CI2, CH3COCI o (US 6, 252, 090) Br 1. MeMgBr, THF Br 1. Pd (PPh3) ZC12,-TMS 2. Et3SiH, CF3COOH °< CuI, NEt3, THF, 70°C O/\ 2. K2CO3, MeOH Intermediate 31 Intermediate 15A / 1. Pd (PPh3) 2Cl2, CuI, NEt3> O, /O COOEt Intermediate 32 2. NaOH Compound 15 Compound 15

Reaction Scheme 7 6-Bromo-8-isopropyl-2, 2, 4, 4-tetramethyl-chroman (Intermediate 31) A stirred, cooled (ice bath) solution of 8-acetyl-6-bromo-2,2, 4,4- tetramethylchroman (Intermediate 15A, 3. 1 g, 1 Ommol) in anhydrous tetrahydrofuran (40mL) was treated with a 3M solution of methyl magnesium bromide in diethyl ether (11mL, 44mmol). The reaction mixture was allowed to warm to ambient temperature overnight. The reaction mixture was poured into cold,

dilute aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue which on flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent afforded an oil (2.85g, 87%). The oil (1.67g, 5. 12mmol) was cooled (ice bath) and treated with triethylsilane (lOmL, 62mmol) followed after 30 minutes by trifluoroacetic acid (5mL, 65mmol) and the resulting reaction mixture was allowed to warm to ambient temperature overnight.

The reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic phase was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil which was subjected to flash column chromatography over silica gel (230-400 mesh) to afford the title compound as a clear oil (lg, 63%).

'H NMR (300 MHz, CDC13) : 8 7.20 (d, 1H, J= 2.3Hz), 7.09 (d, 1H, J= 2.3Hz), 3.25 (heptet, 1H, J= 7. 1Hz), 1.79 (s, 2H), 1.33 (s, 6H), 1.31 (s, 6H), 1.15 (d, 6H, J= 7. 1Hz).

6-Ethynyl-8-isopropyl-2n244-tetramethyl-chroman (Intermediate32) Following General Procedure D and using 6-bromo-8-isopropyl-2, 2,4, 4- tetramethyl chroman (Intermediate 31, lg, 3.2mmol), triethyl amine (lOmL), copper (I) iodide (0.04g, 0. 21mmol), trimethylsilyl acetylene (5mL, 35mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.12g, 0. 17mmol) followed by flash column chromatography over silica gel (230-400 mesh), the intermediate trimethylsilylacetylene was obtained, which was dissolved in methanol and treated with potassium carbonate and the resulting reaction mixture was stirred at ambient temperature overnight. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as a brown oil (0.6g, 73%). %).

'H NMR (300 MHz, CDC13) : 5 7.34 (d, 1H, J= 2. 1Hz), 7.21 (d, 1H, J= 2. 1Hz), 3.50 (heptet, 1H, J= 6.8Hz), 3.00 (s, 1H), 1. 85 (s, 2H), 1.38 (s, 6H), 1.37 (s, 6H), 1.22 (d, 6H, J= 6. 8Hz).

3- 3- (8-Isopropyl-2, 2, 4, 4-tetramethvl-chroman-6-vlethvnyl)-pheny]-acrylic acid ethyl ester (Intermediate 33) Following General Procedure B and using 6-ethynyl-8-isopropyl-2,2, 4,4- tetramethylchroman (Intermediate 32, 0. 05g, 0. 2mmol), ethyl-3-iodo cinnamate (Reagent 6,0. 118g, 0. 39mmol), triethyl amine (2mL), copper (I) iodide (0.025g, 0. 13mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.075g, 0. 107mmol) followed by flash column chromatography over silica gel (230-400 mesh), the title compound was obtained (0.058g, 69%).

'H NMR (300 MHz, CDC13) : 8 7.62-7. 22 (m, 6H), 7.14 (d, 1H, J= 1. 8Hz), 6. 39 (d, 1H, J= 16. lHz), 4.19 (q, 2H, J= 7. 0Hz), 3.21 (heptet, 1H, J = 6. 7Hz), 1.76 (s, 2H), 1.29 (s, 12H), 1.27 (t, 3H, J= 7. 0Hz). 1.13 (d, 6H, J= 6.7Hz).

3- [3- (8-Isopropyl-2, 2, 4, 4-tetramethyl-chroman-6-ylethnl-phenyl]-acrylic acid (Compound 15) A solution of 3- [3- (8-isopropyl-2, 2,4, 4-tetramethyl-chroman-6-ylethynyl)- phenyl]-acrylic acid ethyl ester (Intermediate 33,0. 058g, 0.13mmol) in ethanol (2mL) and tetrahydrofuran (2mL) was treated with a 5N solution of potassium hydroxide (2mL, 1 Ommol) and the reaction mixture was stired at ambient temperature overnight. The volatiles were evaporated in vacuo, the residue was neutralized with dilute hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate and evaporated to afford the title compound (0. 036g, 66%).

IH NMR (300 MHz, CDC13) : 8 7.69 (d, 1H, J= 15.8Hz), 7.65 (s, 1H), 7.47 (d, 1H, J = 7.6Hz), 7. 39 (d, 1H, J= 7.9Hz), 7.32-7. 17 (m, 2H), 7.14 (d, 1H, J= 1. 8Hz), 6.41 (d, 1H, J= 15.8Hz), 3.21 (heptet, 1H, J= 6.7Hz), 1.76 (s, 2H), 1.29 (s, 12H), 1.13 (d, 6H, J= 6.7Hz). Br 1. t-BuLi, THF ; ClC°°Et C COOH EDCI, DMAP, CH2Cl2 2. NaOH, EtOH Q I \ COOBn A/\ HOzW Intermediate 31 Intermediate 34 \ COOBn \ COOH X loo 1. tBuSiMe2H, Pd (OAc) 2, NEt3, CH2C12 a 2. AcOH, H2O, THF Intermediate 35 Compound 16

Reaction Scheme 8 8-Isopropyl-2, 24n4-tekamethyl-chroman-6-carboxylic acid (Intermediate 34) A stirred, cooled (-78°C) solution of 6-bromo-8-isopropyl-2,2, 4,4- tetramethyl-chroman (Intermediate 31,0. 39g, 1. 26mmol) in anhydrous diethyl ether (lOmL) was treated with a 1.7M solution of t-butyl lithium in pentane (1.48mL, 2. 516mmol) and the reaction mixture was stirred for 20 minutes. Carbon dioxide (generated from dry ice) was bubbled into the reaction mixture. The reaction mixture was then quenched with 10% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated to a residue that was subjected to flash column chromatography to afford the title compound (0.3, 86%).

'H NMR (300 MHz, CDC13) : 8 7.87 (d, 1H, J= 2Hz), 7.72 (d, 1H, J= 2Hz), 3.21 (heptet, 1H, J= 7. 0Hz), 1. 78 (s, 2H), 1.39 (s, 12H), 1.14 (d, 6H, J= 7. 0Hz). <BR> <BR> <BR> <BR> <P>8-Isopropvl-2244-tetramethel-chroman-6-carboxYlic acid 4-(2-benzYloxYcarbonYl- vinyl !-phenyl ester (Intermediate 35) A solution of 8-isopropyl-2,2, 4, 4-tetramethyl-chroman-6-carboxylic acid (Intermediate 34, 0. 05g, 0. 18mmol) and 3- (4-hydroxy-phenyl)-acrylic acid benzyl ester (described in Journal of Natural Products, 1990, 53 (4), p821-824, Bankova

V. , 0.046g, 0. 18mmol) in anhydrous dichloromethane (5mL) was treated with 4- (dimethylamino) pyridine (0.052g, 0. 27mmol) and 1- (3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride (0.044g, 0.36mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was then subjected to flash column chromatography using 20% ethyl acetate in hexane as the eluent to afford the title compound as a white solid (0.076g, 83%).

'H NMR (300 MHz, CDC13) : # 7.93 (d, 1H, J= 2Hz), 7.78 (d, 1H, J= 2Hz), 7.66 (d, 1H, J= 16. 1Hz), 7.49 (d, 2H, J= 8. 5Hz), 7. 35-7. 25 (m, 5H), 7.15 (d, 2H, J= 8. 5Hz), 6. 39 (d, 1H, J= 16. 1Hz), 5.18 (s, 2H), 3.24 (heptet, 1H, J= 7. 1Hz), 1.80 (s, 2H), 1.31 (s, 12H), 1.16 (d, 6H, J=7. 1Hz).

8-Isopropyl-2 2*4 4-tetramethyl-chroman-6-carboxYlic acid 4-(2-carboxv-vinyl !- phenyl ester (Compound 16) A suspension of t-butyldimethyl silane (0.3mL, 1.85mmol), palladium (II) acetate (0.013g, 0. 06mmol) and triethyl amine (0.03mL, 0. 2mmol) in anhydrous dichloromethane (2mL) under argon was treated with a solution of 8- isopropyl-2,2, 4, 4-tetramethyl-chroman-6-carboxylic acid 4- (2-benzyloxycarbonyl- vinyl) -phenyl ester (Intermediate 35,0. 063g, 0.123mmol) in dichloromethane (2mL) and the resulting reaction mixture was stirred overnight at ambient temperature. The reaction mixture was quenched with water and extracted with diethyl ether. The organic extract was dried over anhydrous sodium sulfate, filtered and evaporated to a residue that was subjected to flash column chromatography to yield an intermediate that was treated with acetic acid (1mL) in water (0.3mL) and tetrahydrofuran (0.3mL) at ambient temperature for lh. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic extract was dried over anhydrous sodium sulfate, filtered and evaporated to a residue that was subjected to preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase to afford the title compound (0.007g).

1H NMR (300 MHz, CDC13) : 8 7.89 (d, 1H, J= 2Hz), 7.74 (d, 1H, J= 2Hz), 7.67 (d, 1H, J= 15.8Hz), 7.49 (d, 2H, J= 8. 8Hz), 7.15 (d, 2H, J = 8. 8Hz), 6.32 (d, 1H, J= 15.8Hz), 3.20 (heptet, 1H, J= 6.8Hz), 1.77 (s, 2H), 1.29 (s, 6H), 1.28 (s, 6H), 1.12 (d, 6H, J = 6. 8Hz). Br Ph2PPPh2 _ "Pd (OAc) 2, EtOH, DMF, CO, NEt3 U. S. Patent No. 6, 252, 090 COOEt SNH2, NaCNBH3, COOEt C12CHOMe, TiCl4, I CH2Clz, CH3CN, CH3COOH CHO12 CHO 2. i-PrI, K2C03, CH3COCH3 Intermediate 36 Intermediate 37 COOL <COOEt \tH COOET EDCL DMAP, CH2C12 O > >Ioq) N i J. J COOBn HO Intermediate 38 Intermediate 39 O z~COOBn X WCOOH H2, Pd-C, EtOAc I) b 0 O N Compound 17 Intermediate 40 Reaction Scheme 9 Ethyl-2. 2, 4, 4-tetramethyl chroman-6-carboxylate (Intermediate 36) A solution of 6-bromo-2, 2,4, 4-tetramethylchroman (U. S. Patent No.

6,252, 090,2. 2g, 8. 08mmol), palladium acetate (0.145g, 0. 65mmol) and 1,3- bis (diphenylphosphino) propane (0.267g, 0.65mmol) in a mixture of N, N-

dimethylformamide (25mL), ethanol (20mL) and triethyl amine (7mL) was heated at 90°C under an atmosphere of carbon monoxide overnight. The volatiles were distilled off in vacuo and the residue was diluted with water and extracted with ethyl acetate. The combined organic extract was washed with brine (xl), dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil which was subjected to flash column chromatography over silica gel (230-400 mesh) using 5- 10% ethyl acetate in hexane as the eluent to afford the title compound (1.9g, 90%).

'H NMR (300 MHz, CDCl3) : 8 8. 00 (d, 1H, J= 2.3Hz), 7.76 (dd, 1H, J= 2.1, 8. 5Hz), 6.79 (d, 1H, J= 8. 5Hz), 4.33 (q, 2H, J= 7. 1Hz), 1.85 (s, 2H), 1.36 (s, 6H), 1.37 (s, 6H), 1.39-1. 33 (m, 3H).

8-Formyl-2, 2, 4, 4-tetramethyl-chroman-6-carboxylic acid ethyl ester (Intermediate 37) A stirred, cooled (ice bath) solution of of 2, 2,4, 4-tetramethyl-chroman-6- carboxylic acid ethyl ester (Intermediate 36, 0. 5g, 1.92mmol) in anhydrous dichloromethane (lOmL) was treated with titanium tetrachloride (0.4mL, 3.26mmol) followed by a, a-dichloromethyl ether (0.17mL, 1. 92mmol). The reaction was allowed to warm to ambient temperature over 2 days, quenched cautiously with ice and water and extracted with dichloromethane. The organic extract was washed with water and brine, dried over sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography to afford the title compound (0. 11 g, 20%).

'H NMR (300 MHz, CDC13) : 8 10.46 (s, 1H), 8. 33 (d, 1H, J= 2Hz), 8.20 (d, 1H, J= 2Hz), 4.36 (q, 2H, J= 6.7Hz), 1.93 (s, 2H), 1.45 (s, 6H), 1.42 (s, 6H), 1.39 (t, 3H, J = 6.7Hz).

8- [ (CvcIopropvl-isopropyl-amino)-methyl]-2. 2, 4, 4-tetramethyl-chroman-6- carboxylic acid ethyl ester (Intermediate 38) Following General Procedure C and using 8-formyl-2, 2,4, 4-tetramethyl- chroman-6-carboxylic acid ethyl ester (Intermediate 37, 0. 1 lg, 0. 23mmol) in dichloromethane (4mL) and acetonitrile (2mL), cyclopropyl amine (0. 08mL, l. lmmol), acetic acid (0. 8mL) and sodium cyanoborohydride (0. 072g, l. lmmol) followed by work up and flash column chromatography afforded an intermediate.

The intermediate (0. 122g, 0. 22mmol) was dissolved in acetone (lOmL) and treated with potassium carbonate (0. 153g, l. lmmol) and isopropyl iodide (0.04mL). The resulting reaction mixture was at 60°C for 4h. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated to an oil. Flash column chromatography over silica gel (230-400 mesh) using 15-20% ethyl acetate in hexane as the eluent afforded the title compound (0.09g, 71%) as a clear oil.

'H NMR (300 MHz, CDC13) : 8 7.87 (d, 1H, J= 2. 1Hz), 7.85 (d, 1H, J= 2. 1Hz), 4.35 (q, 2H, J= 7. 0Hz), 3.72 (s, 2H), 2.97 (heptet, 1H, J= 6.7Hz), 1.97 (m, 1H), 1.83 (s, 2H), 1. 37 (t, 3H, J= 7. 0Hz), 1.37 (s, 6H), 1. 35 (s, 6H), 1.08 (d, 6H, J= 6.7Hz), 0. 38-0. 30 (m, 4H).

8-r (Cyclopropyl-isopropyl-amino !-methyl]-22 4 4-tetramethyl-chroman-6- carboxylic acid (Intermediate 39) A solution of 8-[(cyclopropyl-isopropyl-amino)-methyl]-2,2,4,4- tetramethyl-chroman-6-carboxylic acid ethyl ester (Intermediate 38,0. 09g, 0.26mmol) in ethanol (3mL) and tetrahydrofuran (ill) was treated with a 1M solution of sodium hydroxide (3mL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo, the residue was neutralized with dilute hydrochloric acid and extracted with ethyl acetate. The organic extract was washed with water and brine and dried over anhydrous sodium sulfate, filtered and evaporated to afford the title compound (0.079g, 96%). It was used as such for the next step.

8- [ (Cyclopropyl-isopropyl-amino)-methyl]-2, 2, 4, 4-tetramethyl-chroman-6- carboxylic acid 4-benzyloxrcarbonvlmeth, yl-phenvl ester (Intermediate 40) A solution of 8- [ (cyclopropyl-isopropyl-amino)-methyl]-2, 2,4, 4-tetramethyl- chroman-6-carboxylic acid (Intermediate 39,0. 079g, 0. 25mmol) and benzyl-4- hydroxy-phenyl acetate (APIN, 0.06g, 0. 25mmol) in anhydrous dichloromethane (5mL) was treated with 4- (dimethylamino) pyridine (0.06g, 0. 5mmol) and 1- (3- dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (0.072g, 0.37mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The

reaction mixture was then subjected to flash column chromatography using 20% ethyl acetate in hexane as the eluent to afford the title compound as an oil (0.093g, 69%).

IH NMR (300 MHz, CDC13) : 8 7.98 (s, 2H), 7.32-7. 21 (m, 7H), 7.13 (d, 2H, J= 8. 5Hz), 5.11 (s, 2H), 3.73 (s, 2H), 3.66 (s, 2H), 2.93 (heptet, 1H, J= 6. 5Hz), 1.93 (m, 1H), 1.84 (s, 2H), 1.07 (s, 12H), 1.07 (d, 6H, J= 6. 5Hz).

8- [ (Cvclopropyl-isopropyl-amino)-methyl]-2, 2, 4, 4-tetramethyl-chroman-6- carboxylic acid 4-carboxYmethyl-phenyl ester (Compound 17) A solution of 8- [ (cyclopropyl-isopropyl-amino)-methyl]-2, 2,4, 4- tetramethyl-chroman-6-carboxylic acid 4-benzyloxycarbonylmethyl-phenyl ester (Intermediate 40,0. 093g, 0.17mmol) in ethyl acetate (3mL) was treated with a slurry of 10% palladium on carbon (20mg) in ethyl acetate and the resulting reaction mixture was stirred under an atmosphere of hydrogen at ambient temperature for 2h.

The reaction mixture was filtered over a bed of celite and the filtrate was evaporated to a residue that was purified by flash column chromatography over silica gel to afford the title compound. Bu NaClO2, (CH3) 3COH, CH3CO2H, O O CNO COOH U. S. Patent. 6, 303, 785 Intennediate 41 Br SOC'2 ; (CH3) 2CHOH, DMAP Br O O' COOH COOCH (CH3) 2 Intermediate 41 Intermediate 42 Br DCC, DMAP, (CH3) 3CCHzOH I w O/ COOH COOCH2C (CH3) 3 Intermediate 41 Intermediate 46 Br 2, 4, 6-Cl3-C6H2COCl, NEt3, CH2CIz ; Br O DMAP, (CH3) 3COH ° COOH COOC (CH3) 3 COOH Intermediate 41 Intermediate 50 Br 1. Pd (PPh3) 2Cl2,-TMS 1. Pd (PPh3) 2C12, CuI, NEt3, zip CuI, NEt3, THF, 70°C, {fCCOOMe 2. K2C03, McOH 0 ORI Intermediate 42 R1 =-CH (CH3) 2, bterrnediate 44 Rl =-CH (CH3) 2 2. LiOH Intennediate 46 R1 =-CH2C (CH3) 3 Intermediate 48 Rl =-CH2C (CH3) Intermediate 50 R1 =-C (CH3) 3 Intermediate 52 Rl =-C (CH3) 3 i I cooH COOH Compound 18 Rl =-CH (CH3) 2, 0 OR Compound 19 Ri) =-CH2C (CH3) 3, Compound 20 Ri =-C (CH3) 3 Reaction Scheme 10

6-Bromo-2, 2, 4, 4-tetramethylchroman-8-carboxylic acid (Intermediate 41) A stirred, cooled (ice bath) solution of 6-bromo-2, 2,4, 4-tetramethylchroman- 6-carbaldehyde (United States Patent No. 6,303, 785 incorporated herein by reference ; 3. 3 zig, 11. 15mmol) in 2-methyl-2-propanol (30mL) was treated with glacial acetic acid (30mL) followed by 2-methyl-2-butene (12mL, 111. 5mmol). A solution of sodium chlorite (2.15g, 18.95mmol) in water (15mL) was added dropwise to the reaction mixture. The reaction mixture was then allowed to gradually warm up to ambient temperature and stirred for 4h at the end of which it was made basic 2N sodium hydroxide solution and then acidified with 2N hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid (3.23g, 93%).

IH NMR (300 MHz, CDC13) : 6 8. 14 (d, 1H, J= 2.7Hz), 7.60 (d, 1H, J= 2.7Hz), 1.95 (s, 2H), 1.50 (s, 6H), 1.39 (s, 6H).

6-Bromo-22, 44-tetramethalchroman-8-carboxvlic acid isopropyl ester (Intermediate 42) A solution of 6-bromo-2,2, 4,4-tetramethylchroman-8-carboxylic acid (Intermediate 41,0. 3g, 0.96mmol) in anhydrous dichloromethane (15mL) was treated with thionyl chloride (0.7mL, 9. 6mmol) and the reaction mixture was refluxed for 18h. It was then cooled to ambient temperature, the volatiles were distilled off in vacuo and the residue was dissolved in isopropanol (1 SmL). 4- (Dimethylamino) pyridine (0. 35g, 9. 6mmol) was added and the reaction mixture was stirred at ambient temperature for 5h. It was diluted with ethyl acetate and washed with 2N hydrochloric acid (x2), 2N sodium hydroxide (x2), and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a brown oil (0.32g, 93%).

H NMR (300 MHz, CDC13) : 8 7.60 (d, 1H, J= 2.4Hz), 7. 45 (d, 1H, J= 2.4Hz), 5.23 (heptet, 1H, J= 6. 0Hz), 1.84 (s, 2H), 1.37 (s, 6H), 1.36 (s, 6H), 1.33 (d, 6H, J= 6. 0Hz).

2, 2,4,4-Tetramethyl-6-trimethylsilanvlethvnylchroman-8-carboxv lic acid isopropyl ester (Intermediate 43) Following General Procedure D and using 6-bromo-2,2, 4,4- tetramethylchroman-8-carboxylic acid isopropyl ester (Intermediate 42,0. 32g, 0.89mmol), triethyl amine (2mL), copper (I) iodide (0.060g, 0. 33mmol), trimethylsilyl acetylene (0. 5mL, 3. 56mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 16g, 0. 22mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 20% ethyl acetate in hexane as the eluent, the title compound (0.23g, 69%) was obtained as a yellow oil.

IH NMR (300 MHz, CDC13) : 8 7.58 (d, 1H, J= 2.4Hz), 7.44 (d, 1H, J= 2.4Hz), 5.18 (heptet, 1H, J= 6.3Hz), 1. 80 (s, 2H), 1.32 (s, 6H), 1.31 (s, 6H), 1.29 (d, 6H, J= 6.3Hz), 0.00 (s, 9H).

6-Ethynyl-2b244-tetramethylchroman-8-carboxylic acid isopropyl ester (Intermediate 44) A solution of 2,2, 4, 4-tetramethyl-6-trimethylsilanylethynylchroman-8- carboxylic acid isopropyl ester (Intermediate 43,0. 23g, 0. 62mmol) in methanol (5mL) was treated with potassium carbonate (0. 85g, 6.2mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a brown oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 20% ethyl acetate in hexane as the eluent to afford the title compound (0.0246g, 13%).

'H NMR (300 MHz, CDCl3) : 8 7.66 (d, 1H, J= 2. 1Hz), 7.53 (d, 1H, J= 2. 1Hz), 5.25 (heptet, 1H, J= 6.3Hz), 3.02 (s, 1H), 1. 88 (s, 2H), 1.40 (s, 6H), 1.37 (d, 6H, J= 6.3Hz), 1.36 (s, 6H).

6- (4-Methoxycarbonvlmethvl-phenylethvnvl)-2, 2, 4, 4-tetramcthyl-cliroman-8- carboxylic acid isopropyl ester (Intermediate 45) Following General Procedure B and using 6-ethynyl-2, 2,4, 4- tetramethylchroman-8-carboxylic acid isopropyl ester (Intermediate 44 0.025g, 0. 08mmol), 4-iodo phenyl acetic acid methyl ester (0.027g, 0. lmmol),

triethyl amine (2mL), copper (I) iodide (0.008g, 0.04mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 017g, 0.024mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 40% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow oil (0.019g, 53%).

'H NMR (300 MHz, CDC13) : 8 7.68 (d, 1H, J= 2. 1Hz), 7.55 (d, 1H, J= 2. 1Hz), 7.49-7. 24 (m, 4H), 5.25 (m, 1H), 3.70 (s, 3H), 3.64 (s, 2H), 1.88 (s, 2H), 1.39 (s, 6H), 1.37 (s, 6H), 1.39-1. 35 (d, 6H). <BR> <BR> <BR> <BR> <P>6-(4-Carboxymethyl-phenylethynyl !-224*4-tetramethyl-chroman-8-carboxylic acid isopropyl ester (Compound 18) A solution of 6- (4-methoxycarbonylmethyl-phenylethynyl)-2, 2,4, 4- tetramethyl-chroman-8-carboxylic acid isopropyl ester (Intermediate 45,0. 019g, 0. 043mmol) in ethanol (0.3mL), tetrahydrofuran (0.3mL) and water (0.3mL) was treated with 1N lithium hydroxide (0.086mL, 0. 086mmol) and the resulting reaction mixture was stirred at ambient temperature for 30 minutes. The volatiles were evaporated in vacuo to a residue that was washed with hexane: ethyl acetate (3: 1), neutralized with 2N hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a brown oil (0. 015g, 80%). IH NMR (300 MHz, CDC13): 5 7.69 (d, 1H, J= 2. 4Hz), 7. 55 (d, 1H, J= 2. 4Hz), 7.50-7. 26 (m, 4H), 5.25 (heptet, 1H), 3.67 (s, 2H), 1.88 (s, 2H), 1.39 (s, 6H), 1.37 (s, 6H), 1.39-1. 35 (d, 6H).

6-Bromo-2 2, 4, 4-tetramethylchroman-8-carboxylic acid 22-dimethYlpropyl ester (Intermediate 46) A stirred cooled (ice bath) solution of 6-bromo-2, 2,4, 4-tetramethylchroman- 8-carboxylic acid (Intermediate 41, 0. 5g, 1. 6mmol), neopentylalcohol (0.35mL, 3. 2mmol) and 4- (dimethylamino) pyridine (0.03g, 0. 24mmol) in anhydrous dichloromethane (5mL) was treated with 1,3-dicyclohexylcarbodiimide (0.36g, 1. 76mmol) and the reaction mixture was allowed to warm to ambient temperature.

After 2h, the reaction mixture was filtered, the filtrate was diluted with ethyl acetate and washed with 2N hydrochloric acid, 2N sodium hydroxide, and brine, dried over

anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid (0.537g, 88%).

'H NMR (300 MHz, CDCl3) : 8 7.60 (d, 1H, J= 2.4Hz), 7.41 (d, 1H, J= 2.4Hz), 3.91 (s, 2H), 1.78 (s, 2H), 1.30 (s, 6H), 1.27 (s, 6H), 0.95 (s, 9H).

2,2,4,4-Tetramethyl-6-trimethylsilanylethynylchroman-8-ca rboxylic acid 2,2- dimethylpropyl ester (Intermediate 47) Following General Procedure D and using 6-bromo-2,2, 4,4- tetramethylchroman-8-carboxylic acid 2,2dimethylpropyl ester (Intermediate 46, 0.54g, 1. 4mmol), triethyl amine (3mL), copper (I) iodide (0. lOg, 0. 52mmol), trimethylsilyl acetylene (0. 8mL, 5. 6mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.25g, 0.35mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10% ethyl acetate in hexane as the eluent, the title compound (0.396g, 71%) was obtained as a yellow oil.

'H NMR (300 MHz, CDC13) : 8 7.64 (d, 1H, J= 1. 8Hz), 7.46 (d, 1H, J= 1. 8Hz), 3.94 (s, 2H), 1. 81 (s, 2H), 1.33 (s, 6H), 1.30 (s, 6H), 0.98 (s, 9H), 0.002 (s, 9H).

6-Ethynyl-2, 2, 4, 4-tetramethvlchroman-8-carboxylic acid 2, 2-dimethylpropyl ester (Intermediate 48) A solution of 2, 2,4, 4-tetramethyl-6-trimethylsilanylethynylchroman-8- carboxylic acid 2,2-dimethylpropyl ester (Intermediate 47, 0. 396g, lmmol) in methanol (5mL) was treated with potassium carbonate (1.4g, lOmmol) and the resulting reaction mixture was stirred at ambient temperature for 30 minutes. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as a brown oil (0.227g, 70%).

'H NMR (300 MHz, CDC13) : 8 7.72 (d, 1H, J= 1. SHz), 7.55 (d, 1H, J= 1. 5Hz), 4.00 (s, 2H), 3.02 (s, 1H), 1.88 (s, 2H), 1.40 (s, 6H), 1.36 (s, 6H), 1.04 (s, 9H).

6-4-Methoxvcarbonylmethyl-phenylethynvl)-2, 2, 4, 4-tetramethvl-chroman-8- carboxylic acid 2, 2-dimethylpropyl ester (Intermediate 49) Following General Procedure B and using 6-ethynyl-2,2, 4,4- tetramethylchroman-8-carboxylic acid 2,2-dimethylpropyl ester (Intermediate 48,

0.227g, 0.70mmol), 4-iodo phenyl acetic acid methyl ester (0. 23g, 0.83mmol), triethyl amine (3mL), copper (I) iodide (0.07g, 0. 39mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 15g, 0. 21mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 20% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow oil (0. 198g, 60%).

IH NMR (300 MHz, CDC13) : 8 7.76 (d, 1H, J= 2.4Hz), 7.58 (d, 1H, J= 2.4Hz), 7.49 (d, 2H, J= 8. 1Hz), 7.26 (d, 2H, J= 8. 1Hz), 4.01 (s, 2H), 3.70 (s, 3H), 3.64 (s, 2H), 1.88 (s, 2H), 1.40 (s, 6H), 1.38 (s, 6H), 1.05 (s, 9H).

6- 4-Carboxymethyl-phenylethynvl)-2, 2, 4, 4-tetramethyl-chroman-8-carboxylic acid 2, 2-dimethylpropyl ester (Compound 19) A solution of 6-(4-methoxycarbonylmethyl-phenylethynyl)-2, 2,4, 4- tetramethyl-chroman-8-carboxylic acid 2,2-dimethylpropyl ester (Intermediate 49, 0.198g, 0. 42mmol) in ethanol (1mL), tetrahydrofuran (1mL) and water (1mL) was treated with 1N lithium hydroxide (1. 5mL, 1. 5mmol) and the resulting reaction mixture was stirred at ambient temperature for 30 minutes. The reaction mixture was neutralized with 2N hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a greenish-yellow solid (0.16g, 84%).

1H NMR (300 MHz, CDC13) : 8 7.76 (d, 1H, J= 2. lHz), 7.59 (d, 1H, J= 2. lHz), 7.50 (d, 2H, J= 8. lHz), 7.28 (d, 2H, J= 2. 1Hz), 4.02 (s, 2H), 3.67 (s, 2H), 1.89 (s, 2H), 1.41 (s, 6H), 1.39 (s, 6H), 1.06 (s, 9H).

6-Bromo-2, 244-tekamethylchroman-8-carboxylic'acid tert-butvl ester (Intermediate 50) A solution of 6-bromo-2, 2,4, 4-tetramethylchroman-8-carboxylic acid (Intermediate 41,0. 3g, 0. 96mmol) and triethyl amine (0. 1g, 0. 96mmol) in anhydrous tetrahydrofuran (3mL) was treated with 2,4, 6-trichlorobenzoyl chloride (0.23g, 0. 96mmol) and the reaction mixture was allowed to stir for 20 minutes. The precipitated solid was filtered off and the filtrate was evaporated in vacuo to afford a residue that was dissolved in benzene (3mL) under argon and treated with 4- (dimethylamino) pyridine (0.47g, 3. 84mmol) and 2-methyl-2-propanol (0.14g,

1.92mmol). After 18h, the reaction mixture was diluted with ethyl acetate and washed with 2N hydrochloric acid, 2N sodium hydroxide and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent to afford the title product as a white solid (0.14g, 40%).

'H NMR (300 MHz, CDC13) : 8 7. 54 (d, 1H, J= 2.4Hz), 7.43 (d, 1H, J= 2.4Hz), 1. 84 (s, 2H), 1.58 (s, 9H), 1.37 (s, 6H), 1.33 (s, 6H). <BR> <BR> <BR> <BR> <P>2*2, 4 4-Tetramethyl-6-trimethYlsilanelethynvlchroman-8-carboxYlic acid tert-butYl ester (Intermediate 51) Following General Procedure D and using 6-bromo-2,2, 4,4- tetramethylchroman-8-carboxylic acid tert-butyl ester (Intermediate 50,0. 195g, 0. 53mmol), triethyl amine (2mL), copper (I) iodide (0.040g, 0.2mmol), trimethylsilyl acetylene (0.3mL, 2. 1mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.09g, 0. 13mmol) followed by flash column chromatography over silica gel (230- 400 mesh) using 10% ethyl acetate in hexane as the eluent, the title compound (0.064g, 32%) was obtained as a brown oil.

'H NMR (300 MHz, CDC13) : 6 7. 57 (d, 1H, J= 2. lHz), 7.46 (d, 1H, J= 2. lHz), 1.84 (s, 2H), 1.57 (s, 9H), 1.37 (s, 6H), 1.34 (s, 6H), 0.045 (s, 9H).

6-Ethynyl-2, 2, 4, 4-tetramethylchroman-8-carboxylic acid tert-butyl ester (Intermediate 52) A solution of 2, 2,4, 4-tetramethyl-6-trimethylsilanylethynylchroman-8- carboxylic acid tert-butyl ester (Intermediate 51,0. 064g, 0. 17mmol) in methanol (5mL) was treated with potassium carbonate (0.23g, 1. 7mmol) and the resulting reaction mixture was stirred at ambient temperature for 30 minutes. The solvent was evaporated in vacua, the residue was diluted with water and extracted with ethyl acetate. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as a brown oil (0. 051g, 97%).

'H NMR (300 MHz, CDC13) : 8 7.52 (d, 1H, J= 2. lHz), 7.42 (d, 1H, J= 1. SHz), 2.93 (s, 1H), 1.79 (s, 2H), 1.51 (s, 9H), 1.31 (s, 6H), 1.27 (s, 6H).

6- (4-Methoxvcarbonvlmethyl-phenvlethvnyl)-2, 2, 4. 4-tetramethvl-chroman-8- carboxylic acid vert-butyl ester (Intermediate 53) Following General Procedure B and using 6-ethynyl-2, 2,4, 4- tetramethylchroman-8-carboxylic acid tert-butyl ester (Intermediate 52,0. 051g, 0. 16mmol), 4-iodo phenyl acetic acid methyl ester (0. 053g, 0. 19mmol), triethyl amine (3mL), copper (I) iodide (0.02g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.03g, 0.043mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 20% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow oil (0.014g, 19%).

'H NMR (300 MHz, CDC13) : 8 7.63 (d, 1H, J= 2. 1Hz), 7.53 (d, 1H, J= 2. 1Hz), 7.48 (d, 2H, J= 8.2Hz), 7.26 (d, 2H, J= 8.2Hz), 3.72 (s, 3H), 3.65 (s, 2H), 1.88 (s, 2H), 1.60 (s, 9H), 1.40 (s, 6H), 1.38 (s, 6H).

6- (4-Carboxymethyl-phenylethynyl)-2, 2, 4, 4-tetramethyl-chroman-8-carboxylic acid tert-butyl ester (Compound 20) A solution of6- (4-methoxycarbonylmethyl-phenylethynyl)-2, 2,4, 4- tetramethyl-chroman-8-carboxylic acid tert-butyl ester (Intermediate 53,0. 014g, 0. 03mmol) in ethanol (0.3mL), tetrahydrofuran (0. 3mL) and water (0. 3mL) was treated with 1N lithium hydroxide (0.12mL, 0. 12mmol) and the resulting reaction mixture was stirred at ambient temperature for 3 h. The reaction mixture was neutralized with 2N hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow oil (0. 012g, 88%).

IH NMR (300 MHz, CDC13) : 8 7.63 (d, 1H, J= 2. 1Hz), 7.52 (d, 1H, J= 2. 1Hz), 7.47 (d, 2H, J= 8.2Hz), 7.26 (d, 2H, J= 2. 1Hz), 3.67 (s, 2H), 1. 87 (s, 2H), 1.59 (s, 9H), 1.39 (s, 6H), 1.36 (s, 6H). OTf 1 NNZ, NaCNBH3, CHZC12, X CH3CN, CH3COOH X Pd (OAc) 2, CO, dppp, O 2. MeI, K2CO3, CH3COCH3 N U. S. Patent No. 6, 252, 090 Intermediate 54 COOMe X 1. NaOH XCON3 PhCH3, reflux 2. ClCOOEt, NEt3, THF ; N 4-I-C6H4NH2, NaN3, THF/ Intermediate 55, Intermediate 57 H H H H X Bd (OAc) 2, CO, dppp, il DMF, NEt3, MeOH COOMe N/N Intermediate 58 Intermediate 54 H H NAN nah N COOH N Compound 21 Reaction Scheme 11

Trifluoro-methanesulfonic acid 5-(cyclopropyl-methyl-amino)-8,8-dimethyl-5,6,7,8- tetrahvdro-naphthalen-2-yl ester (Intermediate 54) A solution of 4, 4-dimethyl-6-trifluoromethylsulfonyloxy-1, 2,3, 4- tetrahydronaphthalene-I-one (U. S. Patent No. 6,252, 090,0. 85g, 2. 64mmol) in dichloromethane (6mL) and acetonitrile (3mL) was treated with cyclopropyl amine (3mL, 43. 4mmol). After 5 minutes, acetic acid (3mL) was added followed by

sodium cyanoborohydride (0.66g, 10. 55mmol)., The reaction was stirred overnight at ambient temperature. It was then diluted with water and saturated aqueous sodium carbonate solution and extracted with ethyl acetate. The combined organic extract was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil. The oil was dissolved in acetone (20mL) and treated with potassium carbonate (1.08g, 7. 8mmol) and methyl iodide (1. 6mL, 26mmol). The resulting reaction mixture was stirred at ambient temperature overnight. The solids were filtered off, the filtrate was evaporated in vacuo and the residue was subjected to flash column chromatography over silica gel (230-400 mesh) to afford the title compound (0.85g, 87%) as a colorless oil.

'H NMR (300 MHz, CDC13) : 8 7.61 (d, 1H, J= 9. 0Hz), 7.11 (d, 1H, J= 2.4Hz), 6.97 (dd, 1H, J= 2.4, 9. 0Hz), 3.92 (t, 1H, J= 8.4Hz), 2.14-2. 10 (m, 1H), 2.12 (s, 3H), 1.96-1. 89 (m, 2H), 1.79-1. 57 (m, 2H), 1.29 (s, 3H), 1.25 (s, 3H), 0.52-0. 36 (m, 4H).

General Procedure E : 5- (Cyclopropyl-methyl-amino)-8, 8-dimethyl-5, 6, 7, 8- tetrahydro-naphthalene-2-carboxylic acid methyl ester (Intermediate 55) A solution of trifluoro-methanesulfonic acid 5- (cyclopropyl-methyl-amino)- 8,8-dimethyl-5, 6,7, 8-tetrahydro-naphthalen-2-yl ester (Intermediate 54,0. 37g, 0.98mmol), palladium acetate (0. 05g, 0. 22mmol) and 1,3- bis (diphenylphosphino) propane (0.096g, 0.23mmol) in a mixture of dimethylformamide (4mL), methanol (4mL) and triethyl amine (2mL) was heated at 70°C under an atmosphere of carbon monoxide overnight. The volatiles were distilled of in vacuo and the residue was diluted with water and extracted with diethyl ether (x3). The combined organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil which was subjected to flash column chromatography over silica gel (230-400 mesh) using 2-5% ethyl acetate in hexane as the eluent, to afford the title compound (0.236g, 85%).

'H NMR (300 MHz, CDC13) : 8 7.96 (d, 1H, J= 1. 8Hz), 7.73 (dd, 1H, J= 1.8, 8. 1Hz), 7.59 (d, 1H, J= 8. 1Hz), 3.96 (t, 1H, J= 7. 5Hz), 3.89 (s, 3H), 2.17-2. 10 (m, 1H), 2.12 (s, 3H), 1.98-1. 83 (m, 2H), 1. 82-1. 60 (m, 2H), 1.34 (s, 3H), 1.28 (s, 3H), 0.54-0. 39 (m, 4H).

5- (Cvclopropvl-methyl-amino)-8, 8-dimethyl-5, 6, 7, 8-tetrahvdronaphthalene-2- carboxylic acid (Intermediate 56) A solution of 5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-5,6, 7,8- tetrahydro-naphthalene-2-carboxylic acid methyl ester (Intermediate 55,0. 236g, 0. 83mmol) in methanol (4mL) and tetrahydrofuran (4mL) was treated with a 2M solution of sodium hydroxide (4mL, 8mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as a solid (0.22g, 100%).

'H NMR (300 MHz, CDC13) : 6 7.98 (d, 1H, J= 1. 8Hz), 7.72 (dd, 1H, J= 1.8, 8. 2Hz), 7.51 (d, 1H, J= 8. 2Hz), 3.93 (t, 1H, J= 7. 8Hz), 2.15-2. 04 (m, 1H), 2.10 (s, 3H), 1.94-1. 85 (m, 2H), 1.79-1. 62 (m, 2H), 1.27 (s, 3H), 1.22 (s, 3H), 0.52-0. 40 (m, 4H).

5- (Cyclopropyl-methyl-amino)-8, 8-dimethyl-5, 6, 7, 8-tetrahydronaphthalene-2- carboxylic acid azide (Intermediate 57) A stirred, cooled (ice bath) solution of 5- (cyclopropyl-methyl-amino)-8, 8- dimethyl-5,6, 7, 8-tetrahydronaphthalene-2-carboxylic acid (Intermediate 56,0. 22g, 0. 83mmol) in anhydrous tetrahydrofuran (4mL) was treated with triethyl amine (0.16mL, l. lmmol) followed by ethyl chloroformate (O. lOmL, 1. 08mmol). After 5h, sodium azide (0. 081g, 1. 24mmol) was added and the reaction mixture was allowed to warm to ambient temperature and stirred overnight. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford the title product that was used as such for the next reaction (0.24g, 98%). <BR> <BR> <BR> <BR> <P> 1-[5-(Cvclopropyl-methyl-amino)-8 8-dimethyl-5, 6, 7, 8-tetrahydro-naphthalen-2-yl]- 3- (4-iodo-phenyl)-urea (Intermediate 58) A solution of 5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-5,6, 7,8- tetrahydronaphthalene-2-carboxylic acid azide (Intermediate 57,0. 12g, 0. 4mmol)

in anhydrous toluene (14mL) was refluxed under argon for 2h. 4-iodoaniline (0. 114g, 0.52mmol) was added and the solution was cooled to ambient temperature and stirred overnight. The volatiles were evaporated in vacuo and the residue was subjected to flash column chromatography over silica gel (230-400mesh) using 20- 25% ethyl acetate in hexane as the eluent to afford the title compound (0.13g, 67%).

'H NMR (300 MHz, CDC13) : 8 7.58 (d, 2H, J= 8.7Hz), 7.51 (d, 1H, J= 8. 1Hz), 7.23 (d, 1 H, J = 1.8Hz), 7.14 (d, 2H, J= 8. 7Hz), 6.99 (dd, 1H, J= 1. 8,8. 1Hz), 6.99 (br s, 1H), 6.57 (br s, 1H), 3.92 (t, 1H, J= 7. 2Hz), 2.13-2. 05 (m, 1H), 2.13 (s, 3H), 1.93-1. 88 (m, 2H), 1.78-1. 62 (m, 2H), 1.29 (s, 3H), 1.26 (s, 3H), 0.52-0. 39 (m, 4H). <BR> <BR> <BR> <BR> <P>3LI-amino)-8, 8-dimeLhyl-5, 6, 7, 8-tetrLhydro-ngphthalen-2- yl]-ureido}-benzoic acid methyl ester (Intermediate 59) Following General Procedure E and using 1- [5- (cyclopropyl-methyl-amino)- 8,8-dimethyl-5, 6,7, 8-tetrahydro-naphthalen-2-yl]-3- (4-iodo-phenyl)-urea (Intermediate 58,0. 13g, 0. 267mmol), palladium acetate (0.02g, 0. 09mmol), 1, 3- bis (diphenylphosphino) propane (0.042g, 0. 101mmol), N, N-dimethylformamide (3mL), methanol (3mL) and triethyl amine (ImL) followed by flash column chromatography over silica gel (230-400 mesh) using 30-40% ethyl acetate in hexane as the eluent the title compound was obtained (0.045g, 40%).

'H NMR (300 MHz, CDC13) : 8 7.91 (d, 2H, J= 8. 4Hz), 7.51 (d, 1H, J= 8. 1Hz), 7.42 (s, 1H), 7. 37 (d, 2H, J= 8.4Hz), 7.26 (d, 1H, J= 1. 8Hz), 7.09 (s, 1H), 6.97 (dd, 1H, J= 2. 1, 8. 1Hz), 3.89 (s, 3H), 3.90-3. 84 (m, 1H), 2.11-2. 06 (m, 1H), 2.09 (s, 3H), 1.89-1. 80 (m, 2H), 1. 80-1. 64 (m, 2H), 1.24 (s, 3H), 1.21 (s, 3H), 0.50-0. 36 (m, 4H).

4-{3-[5-(Cyclopropyl-methyl-amino)-8,8-dimethyl-5,6,7,8-t etrahydro-naphthalen-2- yll-ureido}-benzoic acid (Compound 21) A solution of 4- {3- [5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-5,6, 7,8- tetrahydro-naphthalen-2-yl]-ureido}-benzoic acid methyl ester (Intermediate 59, 0.045g, 0.106mmol) in methanol (2mL) and tetrahydrofuran (3mL) was treated with a 2M solution of sodium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate.

The organic phase was washed with water and brine, and dried over anhydrous

magnesium sulfate, filtered and evaporated in vacuo to afford a solid that was recrystallized from hot acetonitrile to afford the title product as a white solid (0.012g, 28%).

1H NMR (300 MHz, CD30D) : # 7.95 (d, 2H, J= 9. 0Hz), 7.53 (d, 2H, J= 9. 0Hz), 7.46 (d, 1H, J= 2. 1Hz), 7.40 (d, 1H, J= 8.7Hz), 7.09 (s, 1H), 7.19 (dd, 1H, J= 2.1, 8.7Hz), 4.06 (t, 1H, J= 6. 0Hz)), 2.30-2. 25 (m, 1H), 2. 28 (s, 3H), 2.05-1. 98 (m, 2H), 1.82-1. 68 (m, 2H), 1.32 (s, 3H), 1.30 (s, 3H), 0.60-0. 48 (m, 4H). 7 EtOOC Ait13, CHZCl2 COO \ gr COOE\ pMe + - /+ COMe 0 OMe 0 Br OMe Intermediate 60 OH Br 1. Et3SiH, CF3COOH t Brl 85% H2SO4 + Br 2. MeMgBr, THF I 2. Cr0 H2O O OMe OMe CH3COOH, o OMe Intermediate 60 Intermediate 62 Intermediate 64 1. Pd (PPh3) 2CI2, Cul, AICI3, CH2C12 Br NEt3, TBF, 70'C Pd (pph3) 2C'2, CuL NEt3, = TMS , I COOMe Y Y = S Y t < COOMe O OH 2. K2CO3, MeOH p OH Intermediate 65 Intermediate 67 COOME COOME DMAP, CH2Cl2 v LiCl, Pd2dba3, w ci O OH N NTf2 ° OTf Intermediate 68 Intermediate 69 w COOME COOH H I DNH2 NaCNBH3, \S v CH2C12, CH3CN, CH3COOH ) m LiOH, p MeOH THF2. MeI, K2C03, CH3COCH3 N '3. LiOH, MeOH, THF d Intermediate 70 Compound 23 , < i o W o Compound 22 Reaction Scheme 12

4- (4-Bromo-2-methoxy-phenyl)-4-oxo-butvric acid ethyl ester (Intermediate 60) A stirred, cooled (-30°C) solution of 3-bromo anisole (Aldrich, 18.7g, 100mmol) and ethyl succinyl chloride (21mL, 150mmol) in anhydrous dichloromethane (200mL) was treated with aluminum chloride (26.6g, 200mmol) and the reaction mixture was allowed to warm to ambient temperature and stirred overnight. The reaction mixture was poured into water and extracted with dichloromethane (x2). The combined organic phase was washed with brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a brown oil. A solid separated out on standing. The supernatant liquid was decanted and the solid was washed with 1: 3 dichloromethane: hexane and dried to afford the title compound. The combined mother liquor and washings were evaporated to a brown oil that was subjected to flash column chromatography over silica gel (230- 400mesh) using 15% ethyl acetate in hexane as the eluent to afford the title compound (overall 12g, 38%), and its isomer 4- (2-romo-4-methoxy-phenyl)-4-oxo- butyric acid ethyl ester (11. 4g, 36%) and a 1: 1 mixture of both (2g, 6. 3%).

'H NMR (300 MHz, CDC13) : S 7.56 (d, 1H, J= 8.7Hz), 7.07-7. 03 (m, 2H), 4. 07 (q, 2H, J= 7.2Hz), 3.84 (s, 3H), 3.20 (t, 2H, J= 6.3Hz), 2.61 (t, 2H, J= 6.3Hz), 1.19 (t, 3H, J= 7. 2Hz).

4- (4-Bromo-2-methoxhenyll-buturic acid ethvl ester (Intermediate 61) A solution of 4- (4-bromo-2-methoxy-phenyl)-4-oxo-butyric acid ethyl ester (Intermediate 60,14. 73g, 46. 8mmol) in trifluoroacetic acid (72mL, 935mmol) was treated with triethylsilane (30mL, 187mmol) and the resulting reaction mixture was heated at 55°C for 4h. The reaction mixture was then cooled to ambient temperature, neutralized with solid sodium bicarbonate, diluted with water and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford a residue that was subjected to flash column chromatography over silica gel (230- 400mesh) using 8% ethyl acetate in hexane as the eluent to afford the title compound (7.4g, 53%) as a colorless oil.

'H NMR (300 MHz, CDC13) : 8 7.02-6. 94 (m, 3H), 4.11 (q, 2H, J= 7. 2Hz), 3.79 (s, 3H), 2.60 (t, 2H, J= 7.2Hz), 2.29 (t, 2H, J= 7.2Hz), 1. 88 (quintet, 2H, J= 7.2Hz), 1.25 (t, 3H, J= 7.2Hz).

5- (4-Bromo-2-methoxy-phenyl)-2-methyl-pentan-2-ol (Intermediate 62) A stirred, cooled (-10°C) solution of4- (4-bromo-2-methoxy-phenyl)-butyric acid ethyl ester (Intermediate 61,7. 4g, 24. 6mmol) in anhydrous tetrahydrofuran (SOmL) was treated with a 3M solution of methyl magnesium bromide (20. 5mL, 61. 5mmol) and the resulting reaction mixture was allowed to warm to ambient temperature over 3h. It was quenched with saturated, aqueous ammonium chloride solution, diluted with water and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (7.3g, 100%).

'H NMR (300 MHz, CDC13) : 8 6.92-6. 87 (m, 3H), 3. 71 (s, 3H), 2.48 (t, 2H, J= 7.2Hz), 1. 55-1. 38 (m, 4H), 1.11 (s, 6H).

7-Bromo-5-methoxy-l, l-dimethyl-1, 2, 3, 4-tetrahydro-naphthalene (Intermediate 63) 5- (4-Bromo-2-methoxy-phenyl)-2-methyl-pentan-2-ol (Intermediate 62, 7. 3g, 24.6mmol) was treated with 85% sulfuric acid (25mL) at ambient temperature.

After 30 minutes, the reaction mixture was diluted with cold water and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (5.6g, 83%).

'H NMR (300 MHz, CDCl3) : 8 7.01 (d, 1H, J= 1. 8Hz), 6.68 (d, 1H, J= 1. 8Hz), 3.71 (s, 3H), 2.49 (t, 2H, J= 6.3Hz), 1.71-1. 65 (m, 2H), 1.55-1. 51 (m, 2H), 1. 18 (s, 6H).

6-Bromo-8-methoxy-4*4-dimethyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 64) A solution of 7-bromo-5-methoxy-1, 1-dimethyl-1, 2,3, 4-tetrahydro- naphthalene (Intermediate 63,5. 6g, 20. 81mmol) in glacial acetic acid (20mL) was cooled to 0°C and treated with a solution of chromium trioxide (6.16g, 61. 6mmol) in acetic acid and water (25mL). The reaction mixture was then allowed to warm to

ambient temperature and stirred for 48h. It was diluted with water and extracted with diethyl ether (x2). The combined organic phase was washed with water (x3), saturated aqueous sodium bicarbonate (xl) and brine (xl), dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford an oil. Flash column chromatography over silica gel (230-400mesh) using 10-20-100% ethyl acetate in hexane as the eluent afforded the title compound (2g, 33%) as a yellow oil and recovered starting material (2.2g, 39%).

'H NMR (300 MHz, CDC13) : 6 7.12 (d, 1H, J= 1. 8Hz), 6.97 (d, 1H, J= 1. 8Hz), 3.87 (s, 3H), 2.66 (t, 2H, J= 6.6Hz), 1.92 (t, 2H, J= 6.6Hz), 1.33 (s, 6H). <BR> <BR> <BR> <BR> <P>6-Bromo-8-hr-4, 4-dimethvl-34-dihydro-2H-naphthalen-l-one (Intermediate 65) A stirred, cooled (ice bath) solution of 6-bromo-8-methoxy-4, 4-dimethyl- 3, 4-dihydro-2H-naphthalen-l-one (Intermediate 64,0. 24g, 0. 83mmol) in anhydrous dichloromethane (4mL) was treated with aluminum chloride (0.4g, 3mmol). The reaction mixture was allowed to warm to ambient temperature and stirred overnight. It was poured into water and extracted with dichloromethane and ethyl acetate. The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a brown oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent to afford the title product as a pale yellow solid (0. 13g, 56%).

'H NMR (300 MHz, CDC13) : 8 12.85 (s, 1H), 7 : 00 (d, 1H, J= 1. 5Hz), 6.98 (d, 1H, J = 1. 5Hz), 2.74 (t, 2H, J= 6.9Hz), 1.96 (t, 2H, J= 6.9Hz), 1.36 (s, 6H). <BR> <BR> <BR> <BR> <P>8-Hydroxy-4, 4-dimethyl-6-trimethylsilanrlethynvl-3, 4-dihydro-2H-naphthalen-1- one (Intermediate 66) Following General Procedure D and using 6-bromo-8-hydroxy-4, 4-dimethyl- 3, 4-dihydro-2H-naphthalen-l-one (Intermediate 65,1. 56g, 5. 8mmol), triethyl amine (20mL), copper (I) iodide (0. 088g, 0. 46mmol), trimethylsilyl acetylene (3mL, 21. 22mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.325g, 0.46mmol) followed by flash column chromatography over silica gel (230-400 mesh) using hexane to 2-5% ethyl acetate in hexane as the eluent, the title compound (1.67g, 100%) was obtained as an orange solid.

'H NMR (300 MHz, CDC13) : 8 12.72 (s, 1H), 6.93 (d, 1H, J= 1. 5Hz), 6.88 (d, 1H, J = 1. 5Hz), 2.74 (t, 2H, J= 6.6Hz), 1.96 (t, 2H, J= 6.6Hz), 1.36 (s, 6H), 0.27 (s, 9H).

6-Ethvnyl-8-hydroxy-4, 4-dimethyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 67) A solution of 8-hydroxy-4,4-dimethyl-6-trimethylsilanylethynyl-3, 4- dihydro-2H-naphthalen-l-one (Intermediate 66,2. 2g, 7 4mmol) in methanol (20mL) was treated with potassium carbonate (2.04g, 14.8mmol) and the resulting reaction mixture was stirred at ambient temperature for 5h. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as an oil (1. 58g, ~100%).

HNMR (300 MHz, CDC13) : 5 12.76 (s, 1H), 6.97 (d, 1H, J= 1. 5Hz), 6.88 (d, 1H, J = 1. 5Hz), 3.28 (s, 1H), 2.73 (t, 2H, J= 6.6Hz), 1.94 (t, 2H, J= 6.6Hz), 1.34 (s, 6H).

{4-[8,8-Dimethyl-4-hydroxy-5-oxo-5,6,7,8-tetrahydro-napht halen-2-ylethynyl]- phenvlT-acetic acid methyl ester (Intermediate 68) Following General Procedure B and using 6-ethynyl-8-hydroxy-4,4- dimethyl-3, 4-dihydro-2H-naphthalen-l-one (Intermediate 67,1. 58g, 7.4mmol), 4- iodo phenyl acetic acid methyl ester (2.2g, 7.94mmol), triethyl amine (12mL), copper (I) iodide (0.38g, 1. 99mmol) and dichlorobis (triphenylphosphine) palladium (II) (1.2g, 1. 71mmol) followedbyflash column chromatography over silica gel (230-400 mesh) using 16% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow oil (2. 1g, 78%).

'H NMR (300 MHz, CDC13): 8 12.79 (s, 1H), 7.52 (d, 2H, J= 8.7Hz), 7.29 (d, 2H, J = 8.7Hz), 7.01 (d, 1H, J= 1. 5Hz), 6.94 (d, 1H, J= 1. SHz), 3.71 (m, 3H), 3.65 (s, 2H), 2.76 (t, 2H, J= 6.6Hz), 1.97 (t, 2H, J= 6.6Hz), 1. 38 (s, 6H).

{4- [8, 8-Dimethvl-5-oxo-4-trifluoromethanesulfonyloxy-5, 6, 7, 8-tetrahydro- naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 69) A stirred, cooled (0°C) solution of {4-[8, 8-dimethyl-4-hydroxy-5-oxo- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 68,2. 1g, 5. 8mmol) in anhydrous dichloromethane (20mL) was treated with 4- (dimethylamino) pyridine (1. 21g, 9. 9mmol) followed by N-

phenyltrifluoromethanesulfonimide (2.2g, 6.16mmol). After stirring at ambient temperature overnight, the reaction mixture was subjected to flash column chromatography over silica gel (230-400 mesh) using 20% ethyl acetate in hexane as the eluent to afford the title compound (2.6g, 91%).

'H NMR (300 MHz, CDC13): 6 7.57 (d, 1H, J= 1. 2Hz), 7.49 (d, 2H, J= 8.4Hz), 7.27 (d, 2H, J= 8.4Hz), 7.19 (d, 1H, J= 1. 2Hz), 3.66 (m, 3H), 3.62 (s, 2H), 2. 72 (t, 2H, J= 6.9Hz), 1.99 (t, 2H, J= 6.9Hz), 1.38 (s, 6H).

[4- ('8. 8-Dimethyl-5-oxo-4-vinyl-5, 6, 7, 8-tetrahydro-naphthalen-2-ylethynyl)- phenyl]-acetic acid methyl ester (Intermediate 70) A solution of {4-[8,8-dimethyl-5-oxo-4-trifluoromethanesulfonyloxy- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 69,0. 233g, 0.47mmol) in anhydrous 1-methyl 2-pyrrolidinone (3mL) was sparged with argon, and treated with lithium chloride (0. 061g, 1. 45mmol), tri-2- furylphosphine (0.0071g, 0. 031mmol) and tris(dibenzylideneacetone) dipalladium (0) (0.007g, 0.015mmol). After 5 minutes, tributyl (vinyl) tin (0.175g, 0. 55mmol) was added and the resulting reaction mixture was stirred at ambient temperature for 2.5h.

The reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with brine and water, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400 mesh) using 10-15% ethyl acetate in hexane as the eluent to afford the title compound (0. 15g, 86%) as a white solid.

'H NMR (300 MHz, CDC13) : 8 7.53 (d, 2H, J= 7.8Hz), 7.51 (d, 1H, J= 1. 8Hz), 7.50 (d, 1H, J= 1. 8Hz), 7.43 (dd, 1H, J= 10. 5,17. 1Hz), 7.29 (d, 2H, J= 7. 8Hz), 5.57 (dd, 1H, J= 1.5, 17. 1Hz), 5.33 (dd, 1H, J= 1.5, 10.5Hz), 3.71 (s, 3H), 3.66 (s, 2H), 2.74 (t, 2H, J= 6.9Hz), 2.00 (t, 2H, J = 6.9Hz), 1.40 (s, 6H).

[4-(8,8-Dimethyl-5-oxo-4-vinyl-5,6,7,8-tetrahydro-naphtha len-2-ylethynyl)- phenyl]-acetic acid (Compound 22) A solution of [4- (8, 8-dimethyl-5-oxo-4-vinyl-5,6, 7, 8-tetrahydro-naphthalen- 2-ylethynyl)-phenyl]-acetic acid methyl ester (Intermediate 70, 0. 082g, 0. 22mmol) in methanol (3mL) and tetrahydrofuran (3mL) was treated with a 2M solution of lithium hydroxide (1. 5mL, 3mmol) and the resulting reaction mixture was stirred at

ambient temperature for 1. 5h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated aqueous ammonium chloride solution and extracted with diethyl ether and ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid (0.065g, 82%).

'H NMR (300 MHz, CDC13) : 8 7.53 (d, 2H, J= 8. lHz), 7.50 (s, 2H), 7.43 (dd, 1H, J = 10.8, 17.4Hz), 7.31 (d, 2H, J= 8. 1Hz), 5.57 (dd, 1H, J= 1.5, 17.4Hz), 5.33 (dd, 1H, J= 1.5, 10.8Hz), 3. 68 (s, 2H), 2.74 (t, 2H, J= 6. 3Hz), 1.99 (t, 2H, J= 6.3Hz), 1.39 (s, 6H).

{4- [5- (CyclopropyI-methvl-amino)-8. 8-dimethyl-4-vmyl-5. 6. 7, 8-tetrahydro- naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 71) A solution of [4- (8, 8-dimethyl-5-oxo-4-vinyl-5,6, 7,8-tetrahydro-naphthalen- 2-ylethynyl) -phenyl] -acetic acid methyl ester (Intermediate 70,0. 205g, 0. 55mmol) in dichloromethane (4mL) and acetonitrile (2mL) was treated with cyclopropyl amine (lmL, 14. 45mmol). After 5 minutes, acetic acid (ImL) was added followed by sodium cyanoborohydride (0.138g, 2. 2mmol). The reaction mixture was stirred overnight at ambient temperature. It was then diluted with water and saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The combined organic extract was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil. The oil was dissolved in acetone (lOmL) and treated with potassium carbonate (0.227g, 1. 65mmol) followed by methyl iodide (0. 54mL, 8. 7mmol) and the resulting reaction mixture was stirred overnight at ambient temperature. Diethyl ether was added to the reaction mixture and the precipitated solids were filtered off, the filtrate was evaporated in vacuo to a residue. Flash column chromatography over silica gel (230-400 mesh) using 4-5% ethyl acetate in hexane as the eluent afforded the title compound (0.14g, 60%).

IH NMR (300 MHz, CDC13) : 8 7.50 (d, 2H, J= 8.4Hz), 7.47 (s, 1H), 7.45 (s, 1H), 7.26 (d, 2H, J = 8.4Hz), 7.13 (dd, 1H, J= 10.8, 17.7Hz), 5.47 (dd, 1H, J= 1.5, 17.7Hz), 5.11 (dd, 1H, J= 1. 5,10. 8Hz), 4.04 (t, 1H, J= 5.4Hz), 3.69 (s, 3H), 3.63 (s, 2H), 2. 18 (s, 3H), 2.18-2. 14 (m, 1H), 2.02 (m, 1H), 1.90-1. 75 (m, 2H), 1.58-1. 51 (m, 1H), 1.35 (s, 3H), 1.24 (s, 3H), 0.39-0. 31 (m, 3H), 0. 21-0.17 (m, 1H).

{4- [5- (Cyclopropvl-methvl-amino)-8, 8-dimethvl-4-vinyl-5, 6, 7, 8-tetrahydro- naphthalen-2-ylethynyl]-phenyl}-acetic acid (Compound 23) A solution of {4- [5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-4-vinyl- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 71,0. 14g, 0. 327mmol) in methanol (3mL) and tetrahydrofuran (3mL) was treated with a 2M solution of lithium hydroxide (1. 5mL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated aqueous ammonium chloride solution and extracted with diethyl ether and ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a white solid (0. 135g, 96%).

IH NMR (300 MHz, CDC13) : 8 9.99 (br s, 1H), 7.47 (d, 2H, J= 8. 1Hz), 7.44 (s, 1H), 7.43 (s, 1H), 7.22 (d, 2H, J = 8. 1Hz), 7.11 (dd, 1H, J= 10.8, 17. 1Hz), 5.47 (dd, 1H, J = 0. 9,17. lHz), 5.11 (dd, 1H, J = 0. 9,10. 8Hz), 4.06 (t, 1H, J = 6.0Hz), 3.55 (s, 2H), 2.18 (s, 3H), 2.18-2. 15 (m, 1H), 2.04 (m, 1H), 1.91-1. 77 (m, 2H), 1.56-1. 50 (m, 1H), 1.34 (s, 3H), 1.22 (s, 3H), 0.42-0. 29 (m, 3H), 0. 28-0. 21 (m, 1H). SiMe3/ 1. Me3SiCH2CH20CH2CI, Pd (PPh3) 2C'2, CuL NEt3, NEt3, DMAP, PHH coome 0 OH 2. MeOH, K2CO3 0 OSEM l ~ Intermediate 66 Intermediate 73 COOME coome ,, XJ 1. DNH2, NaCNBH3, V v CH2CI2, CH3CN, CH3COOH O OSEM 2. MeI, K2CO3, CH3COCH3 N OSEM 0 OSEM/\" Intermediate 74 Intermediate 75 SEM = CH20CH2CH2SiMe3 COOMe COOME 1. PhNTf2, DMAP, CH2C'2 2% H2SO4, MeOH 2. Pd (OAc) 2, dppp, EtOH, N H CO (g), NEt3, DMF /\ 3. LiOH, EtOH, THF, H20 Intermediate 76 COOH N COOET Compound 24

Reaction Scheme 13 4, 4-Dimethyl-8-(2-trimethylsilanyl-ethoxymethoxy)-6-trimethyls ilanylethynyl-3,4- dihydro-ZH-naphthalen-1-one (Intermediate 72) A solution of 8-hydroxy-4, 4-dimethyl-6-trimethylsilanylethynyl-3,4- dihydro-2H-naphthalen-l-one (Intermediate 66,1. 67g, 5. 8mmol) in anhydrous

benzene was treated with triethyl amine (1. 41g, 11. 6mmol) and catalytic amount of 4- (dimethylamino) pyridine followed by 2- (trimethylsilyl) ethoxymethyl chloride (1.93g, 11. 6mmol) and the resulting reaction mixture was refluxed for 3 days. It was cooled to ambient temperature, diluted with water and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 2-6% ethyl acetate in hexane as the eluent to afford the title product as a yellow oil (1.58g, 66%).

'H NMR (300 MHz, CDC13) : 8 7.16 (d, 1H, J= 1. 2Hz), 7.12 (d, 1H, J= 1. 2Hz), 5.28 (s, 2H), 3.81 (m, 2H), 2.68 (t, 2H, J= 6.9Hz), 1.94 (t, 2H, J= 6.9Hz), 1.34 (s, 6H), 0.96 (m, 2H), 0.27 (s, 9H), 0.00 (s, 9H).

6-Ethvnyl-4, 4-dimethyl-8- (2-trimethylsilanyl-ethoxvmethoxy)-3, 4-dihydro-2H- naphthalen-1-one (Intermediate 73) A solution 4, 4-dimethyl-8- (2-trimethylsilanyl-ethoxymethoxy)-6- trimethylsilanylethynyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 72, 1. 58g, 3. 79mmol) in methanol (20mL) was treated with potassium carbonate (0.43g, 3.1 lmmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (1.28g, 98%).'H NMR (300 MHz, CDC13) : 8 7.19 (d, 1H, J= 1. 2Hz), 7.15 (d, 1H, J= 1. 2Hz), 5.26 (s, 2H), 3.79 (m, 2H), 3.19 (s, 1H), 2.67 (t, 2H, J= 6.6Hz), 1.94 (t, 2H, J= 6.6Hz), 1.33 (s, 6H), 0.95 (m, 2H), -0.016 (s, 9H).

{4- [8, 8-Dimethyl-5-oxo-4- (2-trimethylsilanvl-ethoxymethoxv)-5, 6, 7, 8-tetrahydro- naphthalen-2-ylethvnyl]-phenvn-acetic acid methyl ester (Intermediate 74) Following General Procedure B and using 6-ethynyl-4, 4-dimethyl-8-(2- <BR> <BR> <BR> <BR> trimethylsilanyl-ethoxymethoxy) -3, 4-dihydro-2H-naphthalen-1-one (Intermediate 73,1. 28g, 3. 7mmol), 4-iodo phenyl acetic acid methyl ester (1.02g, 3.7mmol), triethyl amine (30mL), copper (I) iodide (0.095g, 0. 5mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.35g, 0. 5mmol) followed by flash

column chromatography over silica gel (230-400 mesh) using 5-15% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow oil (1. 61g, 88%).

'H NMR (300 MHz, CDC13) : b 7.51 (d, 2H, J= 8. lHz), 7.28 (d, 2H, J= 8. lHz), 7.24 (d, 1H, J= 1. SHz), 7.19 (d, 1H, J= 1. 5Hz), 5.31 (s, 2H), 3.82 (m, 2H), 3.70 (s, 3H), 3.65 (s, 2H), 2.69 (t, 2H, J= 6.6Hz), 1.96 (t, 2H, J= 6.6Hz), 1.37 (s, 6H), 0.97 (m, 2H), 0.00 (s, 9H). <BR> <BR> <BR> <P>- f4- [5- ('Cvclopropvl-methvl-amino)-8. 8-dimethvl-4- (2-trimethylsilanvl-<BR> <BR> <BR> <BR> <BR> ethoxvmethoxy)-5, 6, 7, 8-tetrahvdro-naphthalen-2-vlethvnvl]-phenyl}-acetic acid methyl ester (Intermediate 75) A solution of {4- [8, 8-dimethyl-5-oxo-4- (2-trimethylsilanyl-ethoxymethoxy)- 5,6, 7,8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 74,0. 905g, 1. 84mmol) in dichloromethane (8mL) and acetonitrile (4mL) was treated with cyclopropyl amine (4mL, 57.8mmol). After 5 minutes, acetic acid (4mL) was added followed by sodium cyanoborohydride (0.46g, 7. 32mmol). The reaction mixture was stirred overnight at ambient temperature. It was then diluted with water and saturated aqueous sodium carbonate solution and extracted with dichloromethane (x2). The combined organic extract was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil. The oil was dissolved in acetone (15mL) and treated with potassium carbonate (0.745g, 5. 4mmol) followed by methyl iodide (1. 2mL, 19mmol) and the resulting reaction mixture was stirred overnight at ambient temperature. The precipitated solids were filtered off, the filtrate was evaporated in vacuo to a residue. Flash column chromatography over silica gel (230-400 mesh) using 2-20% ethyl acetate in hexane as the eluent afforded the title compound (0.6g, 63%).

1H NMR (300 MHz, CDC13) : 8 7.49 (d, 2H, J= 8. 4Hz), 7.23 (d, 2H, J= 8. 4Hz), 7.18 (d, 1H, J= 1. 5Hz), 7.06 (d, 1H, J= 1. 5Hz), 5.21 (s, 2H), 4.03 (m, 1H), 3.76 (m, 2H), 3.68 (s, 3H), 3.62 (s, 2H), 2.30 (s, 3H), 2.04-1. 40 (m, 5H), 1.33 (s, 3H), 1. 18 (s, 3H), 0.97 (m, 2H), 0.26-0. 01 (m, 4H), 0.00 (s, 9H).

4-[5-(Cyclopropyl-methyl-amino)-4-hydroxy-8,8-dimethyl-5, 6,7,8-tetrahydro- naphthalen-2-vlethynyll-phenyl-acetic acid methyl ester (Intermediate 76) A solution of {4- [5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-4- (2- trimethylsilanyl-ethoxymethoxy)-5, 6,7, 8-tetrahydro-naphthalen-2-ylethynyl] - phenyl}-acetic acid methyl ester (Intermediate 75,0. 37g, 0.73mmol) in tetrahydrofuran (12mL) was treated with 2% sulfuric acid in methanol (14mL) and the resulting reaction mixture was stirred at ambient temperature overnight. It was neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that after flash column chromatography over silica gel (230-400mesh) using 5-20% ethyl acetate in hexane as the eluent afford the title product as a white solid (0.295g, 87%).

IH NMR (300 MHz, CDCl3) : 8 12.26 (s, 1H), 7.45 (d, 2H, J= 8.4Hz), 7.22 (d, 2H, J = 8.4Hz), 6.96 (d, 1H, J= 1. 5Hz), 6.69 (d, 1H, J= 1. 5Hz), 4.31 (m, 1H), 3.67 (s, 3H), 3.61 (s, 2H), 2.23 (s, 3H), 2.23-2. 17 (m, 1H), 2.05-1. 97 (m, 2H), 1.71-1. 65 (m, 2H), 1.28 (s, 3H), 1.24 (s, 3H), 0.80-0. 45 (m, 4H).

4-r5- (Cvclopropvl-metbyl-ammo)- 8. 8-dimethvl-4-trifluoromethanesulfbnyloxy- 5, 6, 7, 8-tetrahedro-naphthalen-2-ylethynall-phenyl}-acetic acid methyl ester (Intermediate 77) A stirred, cooled (0°C) solution of 4- [5- (cyclopropyl-methyl-amino)-4- hydroxy-8, 8-dimethyl-5, 6,7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 76, 0. 15g, 0. 275mmol) in anhydrous dichloromethane was treated with 4-9dimethylamino)pyridine (0.067g, 0. 55mmol) followed by N-phenyltrifluoromethanesulfonimide (0.147g, 0. 413mmol). After stirring at ambient temperature overnight, the reaction mixture was subjected to flash column chromatography over silica gel (230-400 mesh) using 5-10% ethyl acetate in hexane as the eluent to afford the title compound (0.14g, 93%).

'H NMR (300 MHz, CDC13): # 7.51 (d, 2H, J= 8. 4Hz), 7.30-7. 26 (m, 3H), 7.17 (d, 1H, J= 1. 5Hz), 4.04 (m, 1H), 3.72 (s, 3H), 3.66 (s, 2H), 2.37 (s, 3H), 2.25-2. 17 (m, 1H), 2.09-1. 74 (m, 3H), 1.59-1. 52 (m, 1H), 1.40 (s, 3H), 1.23 (s, 3H), 0.28-0. 10 (m, 3H), 0.09-0. 005 (m, 1H).

8-(Cyclopropyl-methyl-amino)-3-(4-methoxycarbonylmethyl-p henylethynyl)-5,5- dimethyl-5, 6, 7, 8-tetrahydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 78) Following General Procedure E and using 4- [5- (cyclopropyl-methyl-amino)- 8, 8-dimethyl-4-trifluoromethanesulfonyloxy-5, 6,7, 8-tetrahydro-naphthalen-2- ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 77,0. 14g, 0.26mmol), palladium acetate (0.013g, 0.06mmol), 1, 3-bis (diphenylphosphino) propane (0.025g, 0. 061mmol), N, N-dimethylformamide (4mL), ethanol (1. 5mL) and triethyl amine (1. 5mL) followed by flash column chromatography over silica gel (230-400 mesh) using 7-10% ethyl acetate in hexane as the eluent, the title compound was obtained (0.09g, 75%).

'H NMR (300 MHz, CDC13) : 8 7.49 (d, 1H, J= 1. 8Hz), 7. 47 (d, 2H, J= 8. 1Hz), 7.30 (d, 1H, J= 1. 8Hz), 7.25 (d, 2H, J= 8. 1Hz), 4.33 (m, 1H), 4.28-4. 13 (m, 2H), 3.70 (s, 3H), 3.63 (s, 2H), 2.06-1. 93 (2m, 6H), 1.72-1. 66 (m, 2H), 1.36 (t, 3H, J= 7.2Hz), 1.31 (s, 3H), 1.29 (s, 3H), 0.60-0. 40 (m, 1H), 0. 40-o. 25 (m, 2H), 0.15-0. 00 <BR> <BR> <BR> <BR> (m, 1H).<BR> <BR> <BR> <BR> <BR> <BR> <BR> <P>3 (4-Carboxvmethyl-phenylethvnyl)-8- (cvclopropyl-methyl-amino)-5, 5-dimethyl- 5678-tekahvdro-naphthalene-l-carboxylic acid ethyl ester (Compound 24) A solution of 8- (cyclopropyl-methyl-amino)-3- (4-methoxycarbonylmethyl- phenylethynyl)-5, 5-dimethyl-5,6, 7, 8-tetrahydro-naphthalene-l-carboxylic acid ethyl ester (Intermediate 78,0. 09g, 0.19mmol) in ethanol (2mL), tetrahydrofuran (3mL) and water (1. 5mL) was treated with lithium hydroxide (0. 1 lg, 2. 62mmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a white solid (0.085g, 94%).

'H NMR (300 MHz, CDC13) : 8 7.49 (d, 1H, J= 1. 8Hz), 7.46 (d, 2H, J= 8. 1Hz), 7. 30 (d, 1H, J= 1. 8Hz), 7.22 (d, 2H, J= 8. 1Hz), 4. 32 (m, 1H), 4. 30-4. 10 (m, 2H), 3.58 (s, 2H), 2.06-1. 93 (2m, 6H), 1.72-1. 65 (m, 2H), 1. 35 (t, 3H, J= 7. 0Hz), 1.34 (s, 3H), 1.29 (s, 3H), 0.60-0. 40 (m, 1H), 0.40-0. 25 (m, 2H), 0.15-0. 00 (m, 1H). r 1. >--N"2, NACNBH,, Br 1. Pd (PPh3) 2Cl'-, CUI, (CH2CI2, CH3CN, CH3COOH < NEt3, THF, 70°C O OMe 2. MeI, K2C03, CH3COCH3 Nu OMe-TMS 2. K2C03, MeOH Intermediate 64 Intermediate 79 1 1. Pd (PPh3) CuI, CuI, NEt3, WJ R R1) COOH 1 R R/I Rz 171"N\ OMe I COOMe V I \ Rz/ Intermediate 81 R2 = H, R5 = R51 = H < N\ OMe R2 = F, R5 = R51 =H Reagent 1 R2 = H, R5 = H, R51 = Me Compound 25 R2 = H, R5 = R51 = H Reagent 2 R2 = H, RS = R51 = Me Compound 26 R2 = F, R5 = R51 =H 2. LiOH/KOH Compound 27 R2 = H, R5 = H, R51 = Me Compound 28 R2 = H, R5 = Rg = Me Reaction Scheme 14

2-Bromo-5- (cyclopropvl-methyl-amino)-8, 8-dimethyl-4-methoxv-5, 6, 7, 8- tetrahydro-naphthalene (Intermediate 79) A solution of 6-bromo-8-methoxy-4, 4-dimethyl-3, 4-dihydro-2H-naphthalen- 1-one (Intermediate 64,1. 08g, 3. 81mmol) in dichloromethane (8mL) and acetonitrile (4mL) was treated with cyclopropyl amine (5mL, 72. 3mmol). After 5 minutes, acetic acid (5mL) was added followed by sodium cyanoborohydride (0.96g, 15. 26mmol). The reaction mixture was stirred for 2 days at ambient temperature. It was then diluted with water and saturated aqueous sodium carbonate solution and

extracted with ethyl acetate. The combined organic extract was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil. The oil was dissolved in acetone (20mL) and treated with potassium carbonate (1.58g, 11. 43mmol) followed by methyl iodide (2. 1mL, 33mmol) and the resulting reaction mixture was stirred overnight at ambient temperature. Diethyl ether was added and the precipitated solids were filtered off, the filtrate was evaporated in vacuo to a residue. Flash column chromatography over silica gel (230-400 mesh) using 2.5- 10% ethyl acetate in hexane as the eluent afforded the title compound (1.08g, 84%).

IH NMR (300 MHz, CDC13) : 8 7.08 (d, 1H, J= 1. 8Hz), 6.78 (d, 1H, J= 1. 8Hz), 3.97 (m, 1H), 3.79 (s, 3H), 2.30 (s, 3H), 2.04-1. 82 (m, 3H), 1.65-1. 27 (m, 2H), 1.30 (s, 3H), 1.16 (s, 3H), 0. 30-0. 22 (m, 2H), 0.07-0. 00 (m, 2H). <BR> <BR> <BR> <BR> <P>5-(Cyclopropyl-methyl-amino !-8n8-dimethyl-4-methoxy-2-trimethylsilanylethyn 5,6, 7, 8-tetrahvdro-naphthalene (Intermediate 80) Following General Procedure D and using 2-bromo-5- (cyclopropyl-methyl- amino) -8,8-dimethyl-4-methoxy-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 79, 1. 08g, 3. 2mmol), triethyl amine (5mL), copper (I) iodide (0. 061g, 0. 32mmol), trimethylsilyl acetylene (3mL, 21. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.225g, 0. 32mmol) followed by flash column chromatography over silica gel (230-400 mesh) using hexane-10% ethyl acetate in hexane as the eluent, the title compound (0. 87g, 80%) was obtained.

'H NMR (300 MHz, CDC13) : 8 7.09 (d, 1H, J= 1. 5Hz), 6.73 (d, 1H, J= 1. 5Hz), 3.99 (m, 1H), 3.79 (s, 3H), 2.28 (s, 3H), 2.02-1. 80 (m, 3H), 1.65-1. 26 (2m, 2H), 1.31 (s, 3H), 1.16 (s, 3H), 0.26 (s, 9H), 0.26-0. 00 (m, 2H), 0.00--0. 01 (m, 2H).

5- (Cvclopropyl-methvl-amino)-2-ethynyl-8, 8-dimethyl-4-methoxy-5, 6, 7, 8- tetrahydro-naphthalene (Intermediate 81) A solution of 5-(cyclopropyl-methyl-amino)-8, 8-dimethyl-4-methoxy-2- trimethylsilanylethynyl-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 80,0. 87g, 2. 45mmol) in methanol (20mL) was treated with potassium carbonate (0.4g, 2. 89mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The organic phase was washed with brine, dried

over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (0.635g, 92%).

'H NMR (300 MHz, CDC13): 8 7.16 (d, 1H, J= 1. 4Hz), 6.79 (d, 1H, J= 1. 4Hz), 4.04 (m, 1H), 3.82 (s, 3H), 2.32 (s, 3H), 2.03-1. 95 (m, 2H), 1.90-1. 80 (m, 1H), 1.70- 1.55 (m, 1H), 1.45-1. 35 (m, 1H), 1.34 (s, 3H), 1.19 (s, 3H), 0.40-0. 20 (m, 2H), 0.07- 0.00 (m, 2H).

{4- [5- (Cyclopropvl-methvl-amino)-4-methoxy-8, 8-dimethyl-5, 6. 7, 8-tetrahydro- naphthalen-2-vlethvnvl] I-phenyll-acetic acid methyl ester (Intermediate 82) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8,8-dimethyl-4-methoxy-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 81, 0.065g, 0. 23mmol), methyl-4-iodophenylacetate (0.063g, 0. 23mmol), triethyl amine (8mL), copper (I) iodide (0.018g, 0. 093mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.065g, 0. 093mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5-20% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow solid (0.09g, 90%).

IH NMR (300 MHz, CDC13) : 6 7.50 (d, J=8. 2Hz, 2H), 7.26 (d, J=8. 2Hz, 2H), 7.17 (d, J=1. 2Hz, 1H), 6. 81 (d, J=1. 2Hz, 1H), 4.04 (bs, 1H), 3. 82 (s, 3H), 3.70 (s, 3H), 3.64 (s, 2H), 2.32 (s, 3H), 2.05-1. 94 (m, 2H), 1.90-1. 80 (m 1H), 1.70-1. 58 (m, 1H), 1.45- 1.35 (m, 1H), 1.38 (s, 3H), 1.20 (s, 3H), 0.38-0. 20 (m, 2H), 0.18-0. 02 (m, 2H).

{4-[5-(Cyclopropyl-methyl-amino)-4-methoxy-8,8-dimethyl-5 ,6,7,8-tetrahydro- naphthalen-2-ylethynyl]-phenyl}-acetic acid (Compound 25) A solution of {4- [5- (cyclopropyl-methyl-amino)-4-methoxy-8, 8-dimethyl- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 82,0. 090g, 0. 208mmol) in methanol (3mL) and tetrahydrofuran (2mL) was treated with a 1.9 M solution of lithium hydroxide (1. 5mL, 2. 8mmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The reaction mixture was concentrated, neutralized with ammonium chloride and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-

400mesh) using 5-10% methanol in ethyl acetate as the eluent to afford the title product as a white amorphous solid (0.062g, 60%).

'H NMR (300 MHz, CDC13) : 7.46 (d, J=8. 2Hz, 2H), 7.28 (d, J=8. 2Hz, 2H), 7.18 (d, J=1. 2Hz, 1H), 6.81 (d, J=1. 2Hz, 1H), 4.27 (bs, 1H), 3.81 (s, 3H), 3.58 (s, 2H), 2.42 (s, 3H), 2.28-2. 18 (m, lH), 2.15-1. 88 (m 2H), 1.75-1. 65 (m, 1H), 1. 45-1. 38 (m, 1H), 1.32 (s, 3H), 1.17 (s, 3H), 0. 75-0.65 (m, 1H), 0.55-0. 42 (m, 2H), 0.25-0. 15 (m, 1H).

{4- (Cyclopropyl-yl-amino)-4-methoxy-8, 8-dimethyl-5, 6, 7, 8-tetrahydro- naphthalen-2-ylethynyl]-2-fluoro-phenyl}-acetic acid methyl ester (Intermediate 83) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8, 8-dimethyl-4-methoxy-5,6, 7, 8-tetrahydro-naphthalene (Intermediate 81, 0.085g, 0.3mmol), methyl-2-fluoro-4-iodophenylacetate (0.088g, 0. 3mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5-20% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow solid (0.12g, 89%).

'H NMR (300 MHz, CDC13) : 8 7.36-7. 17 (m, 4H), 6. 81 (d, J=1. 2Hz, 1H), 4.12 (bs, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 3.69 (s, 2H), 2.33 (s, 3H), 2.08-1. 98 (m 2H), 1. 98- 1.88 (m, 1H), 1.75-1. 60 (m, 1H), 1.45-1. 35 (m, 1H), 1.35 (s, 3H), 1. 19 (s, 3H), 0. 35- 0.25 (m, 2H), 0.15-0. 05 (m, 1H).

[4-[5-(Cyclopropyl-methyl-amino)-4-methoxy-8,8-dimethyl-5 ,6,7,8-tetrahydro- naphthalen-2-ylethynyl]-2-fluoro-phenyU-acetic acid (Compound 26) A solution of {4- [5- (cyclopropyl-methyl-amino)-4-methoxy-8, 8-dimethyl- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-2-fluoro-phenyl}-acetic acid methyl ester (Intermediate 83,0. 12g, 0. 27mmol) in methanol (4mL) and tetrahydrofuran (4mL) was treated with a 2 M solution of lithium hydroxide (2mL, 4mmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The reaction mixture was concentrated, neutralized with ammonium chloride and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was

subjected to flash column chromatography over silica gel (230-400mesh) using 5- 8% methanol in ethyl acetate as the eluent to afford the title product as a white amorphous solid (0.041g, 35%).

1H NMR (300 MHz, CDC13) : 8 7. 35-7. 15 (m, 4H), 6.81 (d, J=1. 2Hz, 1H), 4.31 (bs, 1H), 3.82 (s, 3H), 3.64 (s, 2H), 2.46 (s, 3H), 2.32-2. 22 (m, 1H), 2.18-1. 88 (m 2H), 1.78-1. 65 (m, 1H), 1.50-1. 40 (m, 1H), 1.32 (s, 3H), 1.17 (s, 3H), 0.80-0. 70 (m, 1H), 0.58-0. 40 (m, 2H), 0. 28-0. 18 (m, 1H). <BR> <BR> <BR> <P>2- 4- [5 (Cyclopropyl-methvl-aminol-4-methoxv-8, 8-dimethyl-5, 6, 7, 8-tetrahydro- naphthalen-2-vlethynyl]-phenyl}-propionic acid methyl ester (Intermediate 84) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8,8-dimethyl-4-methoxy-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 81, 0.085g, 0.30mmol), methyl-2- (4-iodophenyl) propionate (Reagent 1,0. 087g, 0. 3mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. 1mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5-20% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow solid (0. 115g, 86%).

IH NMR (300 MHz, CDC13) : 5 7.50 (d, 2H, J= 8. lHz), 7.28 (d, 2H, J= 8. lHz), 7.16 (d, 1H, J= 1. 2Hz), 6. 81 (d, 1H, J= 1. 2Hz), 4.04 (m, 1H), 3.83 (s, 3H), 3.74 (q, 1H, J= 6.9Hz), 3.67 (s, 3H), 2.31 (s, 3H), 2.03-1. 98 (m, 2H), 1.89-1. 83 (m, 1H), 1.68-1. 59 (m, 1H), 1.51 (d, 3H, J= 6.9Hz), 1.42-1. 27 (m, 1H), 1.35 (s, 3H), 1.20 (s, 3H), 0.31-0. 23 (m, 2H), 0.07-0. 008 (m, 2H).

2-{4-[5-(Cyclopropyl-methyl-amino)-4-methoxy-8,8-dimethyl -5,6,7,8-tetrahydro- naphthalen-2-ylethvnvll-phenyll-propionic acid (Compound 27) A solution of 2-{4-[5-(cyclopropyl-methyl-amino)-4-methoxy-8,8-dimethyl- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-propionic acid methyl ester (Intermediate 84,0. 115g, 0. 26mmol) in methanol (3mL) and tetrahydrofuran (2mL) was treated with a 3M solution of potassium hydroxide (lmL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried

over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 8% methanol in ethyl acetate as the eluent to afford the title product as a yellow solid (0.062g, 56%).

'H NMR (300 MHz, CDC13) : 8 7.50 (d, 2H, J= 8. lHz), 7.32 (d, 2H, J= 8. lHz), 7.17 (s, 1H), 6. 80 (s, 1H), 4.23 (m, 1H), 3.80 (s, 3H), 3.68 (q, 1H, J= 7.2Hz), 2.38 (s, 3H), 2.22-2. 18 (m, 1H), 2.07-1. 87 (m, 2H), 1.70-1. 57 (m, 1H), 1.47 (d, 3H, J= 7.2Hz), 1.38-1. 27 (m, 1H), 1.31 (s, 3H), 1.16 (s, 3H), 0.65-0. 62 (m, 1H), 0.41-0. 35 (m, 2H), 0.17-0. 00 (m, 1H). <BR> <BR> <BR> <P>2-14-r5- (Cyclgpropyl-meLhyl-amino)-4-methoM-8, 8-dimeLhyl-5, 6, 7, 8-tetrahvdro- naphthalen-2-vlethynyl]-pheny-2-methyl-propionic acid methyl ester (Intermediate 85) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8, 8-dimethyl-4-methoxy-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 81, 0.090g, 0. 32mmol), methyl-2- (4-iodophenyl)-2-methyl-propionate (Reagent 2, 0.097g, 0.3mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5-20% ethyl acetate in hexane as the eluent, the title compound was obtained as a solid (0.09g, 78%).

IH NMR (300 MHz, CDC13) : 8 7.50 (d, 2H, J= 8. lHz), 7.31 (d, 2H, J= 8. lHz), 7.16 (d, 1H, J= 1. 2Hz), 6.80 (d, 1H, J= 1. 2Hz), 4.03 (m, 1H), 3.83 (s, 3H), 3.66 (s, 3H), 2.31 (s, 3H), 2.01-1. 97 (m, 2H), 1.89-1. 83 (m, 1H), 1.68-1. 59 (m, 1H), 1.59 (s, 6H), 1.42-1. 27 (m, 1H), 1.34 (s, 3H), 1.20 (s, 3H), 0.31-0. 22 (m, 2H), 0.07-0. 00 (m, 2H).

2-{4-[5-(Cyclopropyl-methyl-amino)-4-methoxy-8,8-dimethyl -5,6,7,8-tetrahydro- naphthalen-2-ylethynyl]-phenyl}-2-methyl-propionic acid (Compound 28) A solution of 2- {4- [5- (cyclopropyl-methyl-amino)-4-methoxy-8, 8-dimethyl- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-2-methyl-propio nic acid methyl ester (Intermediate 85,0. 09g, 0. 196mmol) in methanol (3mL) and tetrahydrofuran (2mL) was treated with a 3M solution of potassium hydroxide (1. 5mL, 4. 5mmol) and the resulting reaction mixture was stirred at ambient temperature for 3 days.

The reaction mixture was neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230- 400mesh) using 5% methanol in ethyl acetate as the eluent to afford the title product as a yellow solid (0.057g, 65%).

IH NMR (300 MHz, CDC13) : 8 7.46 (d, 2H, J= 8.4Hz), 7.37 (d, 2H, J= 8.4Hz), 7.18 (d, 1H, J= 1. 2Hz), 6.81 (d, 1H, J= 1. 2Hz), 4.22 (m, 1H), 3.83 (s, 3H), 2. 38 (s, 3H), 2.19-1. 90 (m, 3H), 1.71-1. 56 (m, 1H), 1.56 (s, 6H), 1.45-1. 33 (m, 1H), 1.33 (s, 3H), 1.17 (s, 3H), 0.70-0. 50 (m, 1H), 0.38-0. 25 (m, 2H), 0.16-0. 00 (m, 1H). COOL y I/Y 1. Pd (PPh3) 2CI2, Cul, NEt3 COOH /\ R5 N OMe 5 Reagent 4 Rs = H Rg = Me Compound 29 R5 = H Reagent 7 Rs = Me R8 = Et Compound 30 R5 = Me 2. KOH Reaction Scheme 15 <BR> <BR> <BR> <BR> <BR> <BR> (E-34-[5-(Cyclopropvl-methvl-amino-4-methoxy-8, 8-dimethvl-5, 6, 7, 8-<BR> <BR> <BR> <BR> <BR> <BR> tetrahydro-naphthalen-2-ylethynvl]-phenvl-acrylic acid methyl ester (Intermediate 86) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8, 8-dimethyl-4-methoxy-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 81, 0.095g, 0. 336mmol), methyl-4-iodocinnamate (Reagent 4,0. 097g, 0.336mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash

column chromatography over silica gel (230-400 mesh) using 5-15% ethyl acetate in hexane as the eluent, the title compound was obtained as a white solid (0.12g, 80%).

'H NMR (300 MHz, CDC13) : 8 7.68 (d, 1H, J= 15.9Hz), 7.53 (Abq, 4H, J= 8.4Hz), 7. 19, (s, 1H), 6.83 (s, 1H), 7.46 (d, 1H, J= 15.9Hz), 4.04 (m, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 2.32 (s, 3H), 2.04-1. 97 (m, 2H), 1.90-1. 83 (m, 1H), 1.68-1. 60 (m, 1H), 1.43- 1.27 (m, 1H), 1.36 (s, 3H), 1.21 (s, 3H), 0.32-0. 23 (m, 2H), 0.08-0. 00 (m, 2H).

(E-3- [5-(Cyclopropyl-methyl-amino)-4-methoxy-8,8-dimethyl-5,6,7,8 - tetrahydro-naphthalen-2-ylethYnel]-phenyl}-acrylic acid (Compound 29) A solution of (E)-3- {4- [5- (cyclopropyl-methyl-amino)-4-methoxy-8, 8- dimethyl-5,6, 7, 8-tekahydro-naphthalen-2-ylethynyl]-phenyl}-acrylic acid methyl ester (Intermediate 86,0. 12g, 0. 27mmol) in methanol (4mL) and tetrahydrofuran (3mL) was treated with a 3M solution of potassium hydroxide (lmL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 5% methanol in ethyl acetate as the eluent to afford the title product as a white solid (0.041g, 35%).

'H NMR (300 MHz, CDC13) : 8 7.58 (d, 1H, J= 16.2Hz), 7.44 (Abq, 4H), 7.13 (s, 1H), 6.77 (s, 1H), 7.45 (d, 1H, J= 16.2Hz), 4.05 (m, 1H), 3.79 (s, 3H), 2.42 (s, 3H), 2.19-1. 97 (m, 2H), 1. 67-1.45 (m, 1H), 1.45-1. 37 (m, 1H), 1.37-1. 20 (m, 1H), 1.30 (s, 3H), 1.12 (s, 3H), 0.80-0. 60 (m, 1H), 0.50-0. 30 (m, 2H), 0.20-0. 00 (m, 1H).

(E)-3-{4-[5-(Cyclopropyl-methyl-amino)-4-methoxy-8,8-dime thyl-5,6,7,8- tetrahydro-naphthalen-2-ylethynrl]-cyclohexa-2, 4-dienvl2-methyl-acrylic acid ethyl ester (Intermediate 87) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8, 8-dimethyl-4-methoxy-5,6, 7, 8-tetrahydro-naphthalene (Intermediate 81 0.08g, 0. 28mmol), (E)-3- (4-iodo-phenyl)-2-methyl-acrylic acid ethyl ester (Reagent 7,0. 09g, 0. 28mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash

column chromatography over silica gel (230-400 mesh) using 5-10% ethyl acetate in hexane as the eluent, the title compound was obtained as a white solid (0.12g, 90%).

'H NMR (300 MHz, CDC13): 8 7.67 (d, 1H, J= 1. 2Hz), 7.57 (d, 2H, J= 8.4Hz), 7.40 (d, 2H, J= 8.4Hz), 7.19 (d, 1H, J= 1. 5Hz), 6.83 (d, 1H, J= 1. 5Hz), 4.28 (q, 2H, J= 7. 2Hz), 4.04 (m, 1H), 3.84 (s, 3H), 2. 32 (s, 3H), 2.15 (d, 3H, J= 1. 2Hz), 2.03-1. 83 (m, 3H), 1.68-1. 50 (m, 1H), 1.45-1. 20 (m, 1H), 1.36 (s, 3H), 1.35 (t, 3H, J = 7.2Hz), 1.20 (s, 3H), 0. 32-0. 23 (m, 2H), 0.08-0. 00 (m, 2H).

(E)-3-{4-[5-(Cyclopropyl-methyl-amino)-4-methoxy-8,8-dime thyl-5,6,7, 8- tetrahydro-naphthalen-2-vlethnyl]-cyclohexa-2, 4-dienyl}-2-methyl-acrylic acid (Compound 30) A solution of (E)-3- {4- [5- (cyclopropyl-methyl-amino)-4-methoxy-8, 8- dimethyl-5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl}-cyclohexa-2, 4-dienyl}-2- methyl-acrylic acid methyl ester (Intermediate 87,0. 12g, 0. 25mmol) in methanol (3mL) and tetrahydrofuran (2mL) was treated with a 3M solution of potassium hydroxide (llmL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate'. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was recrystallized from hot acetonitrile to afford the title product as a white solid (0. 055g, 49%).

'H NMR (300 MHz, CDC13) : 87. 78 (d, 1H, J= 1. 2Hz), 7.57 (d, 2H, J= 8. lHz), 7.43 (d, 2H, J= 8. 1Hz), 7.29 (d, 1H, J= 1. 5Hz), 6.93 (d, 1H, J= 1. 5Hz), 4.93 and 4.70 (2m, 1H), 3.97 (s, 3H), 2.54 (s, 3H), 2.40-1. 60 (m, 4H), 2.16 (d, 3H, J= 1. 2Hz), 1.46-1. 23 (m, 1H), 1.46 (s, 3H), 1.23 (s, 3H), 0. 90-0. 20 (m, 4H). 2. HPLC Br cyc-propylamine, ETOH HN-Mel, K2C03, acetone--N /// Intermediate 88 Pd (PPh3) 2Cl2, TMS SiMe3 /K2C03, MeOH zizi CuI, NEt3, THF, 70°C ß ß Intermediate 90 Intermediate 91 COOH / COOME 1q"N / Reagent 4 Compound 31 2. NaOH/LiOH/KOH COOH 1 Pd (PPh3) 2Cl2, CuI, NEt3, \N COOET COOEt t Reagent 7 Compound 33 2. NaOH/LiOH/KOH Pd (PPh3) 2C12, CuI, NEt3, 4 COOL COOH N COOEt Reagent 5 Compound 32 2. NaOH/LiOH/KOH Reaction Scheme 16

Cyclopropyl-(3-iodo-benzvl-amine (Intermediate 88) A solution of 3-iodobenzyl bromide (Aldrich, 3.2g, 10. 77mmol) in ethanol (20mL) was treated with cyclopropyl amine (7mL, 101. 5mmol) and the resulting reaction mixture was stirred over 3 days at ambient temperature. The volatiles were evaporated in vacuo, the residue was diluted with ethyl acetate and washed with saturated, aqueous sodium bicarbonate solution, water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 10- 20% ethyl acetate in hexane as the eluent afford the title product (2.4g, 81 %).

'H NMR (300 MHz, CDC13) : 8 7.67 (s, 1H), 7.58 (d, 1H, J= 9. 0Hz), 7.27 (d, 1H, J = 6. 0Hz), 7.05 (dd, 1H, J= 6.0, 9. 0Hz), 3.78 (s, 2H), 2.13 (m, 1H), 1.76 (br s, 1H), 0.50-0. 35 (m, 4H).

Cyclopropyl- !-methyl-amine (Intermediate 89) A solution of cyclopropyl- (3-iodo-benzyl)-amine (Intermediate 88,4. 1 g, 15mmol) in acetone (20mL) was treated with potassium carbonate (2.07g, 15mmol) and methyl iodide (1. 4mL, 22. 5mmol) and the resulting reaction mixture was stirred at ambient temperature for lh. Diethyl ether was added, the solids were filtered off and filtrate was evaporated to a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent to afford the title compound (3.3g, 77%).

IH NMR (300 MHz, CDC13) : # 7. 62 (d, 1H, J= 1. 5Hz), 7.55 (dd, 1H, J= 1. 5, 7.8Hz), 7.21 (dd, 1H, J= 1.5, 7.8Hz), 7.01 (t, 1H, J= 7. 8Hz), 3.61 (s, 2H), 2.22 (s, 3H), 1.69 (m, 1H), 0.50-0. 38 (m, 4H).

Cyclopropvl-methyl- (3-trimethvlsilanvlethynrl-benzvl-amine (Intermediate 90) Following General Procedure D and using cyclopropyl- (3-iodo-benzyl)- methyl-amine (Intermediate 89,0. 97g, 3.4mmol), triethyl amine (lOmL), copper (I) iodide (0. 051g, 0. 27mmol), trimethylsilyl acetylene (2mL, 14mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 19g, 0. 27mmol) followed by flash column chromatography over silica gel (230-400 mesh) using hexane-5% ethyl acetate in hexane as the eluent, the title compound (0.695g, 80%) was obtained.

'H NMR (300 MHz, CDC13) : 8 7.37-7. 31 (m, 2H), 7.25-7. 20 (m, 2H), 3.61 (s, 2H), 2.22 (s, 3H), 1.69 (m, 1H), 0.50-0. 32 (m, 4H), 0.25 (s, 9H).

Cvclopropyl- (3-ethynyl-benzvl)-methvl-amine (Intermediate 91) A solution cyclopropyl-methyl- (3-trimethylsilanylethynyl-benzyl)-amine (Intermediate 90,0. 355g, 1. 38mmol) in methanol (lOmL) was treated with potassium carbonate (0.13g, 0. 95mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The solvent was evaporated in vacuo, the residue, was diluted with water and extracted with diethyl ether. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (0.22g, 86%).

'H NMR (300 MHz, CDC13) : 8 7.41-7. 35 (m, 2H), 7.26-7. 23 (m, 2H), 3.63 (s, 2H), 3.05 (s, 1H), 2.23 (s, 3H), 1.70 (m, 1H), 0.48-0. 40 (m, 4H). <BR> <BR> <BR> <P> (E)-3- -3-(4-{3-[(Cyclopropyl-methyl-amino-methyl]-phenylethynyl}-p henyl)-acrylic acid methyl ester (Intermediate 92) Following General Procedure B and using cyclopropyl- (3-ethynyl-benzyl)- methyl-amine (Intermediate 91,0. 060g, 0. 32mmol), methyl-4-iodo-cinnamate (Reagent 4,0. 093g, 0. 32mmol), triethyl amine (8mL), copper (I) iodide (0. 015g, 0. 08mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.056g, 0. 08mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5- 15% ethyl acetate in hexane as the eluent, the title compound was obtained (0. 1 lg, 100%).

'H NMR (300 MHz, CDC13) : 8 7.66 (d, 2H, J= 16.2Hz), 7.54-7. 39 (m, 2H), 7. 31- 7.25 (m, 2H), 6.43 (d, 2H, J= 16.2Hz), 3.80 (s, 3H), 3.65 (s, 2H), 2.25 (s, 3H), 1.72 (m, 1H), 0.49-0. 42 (m, 4H).

(E)-3- (4-{3-[(Cyclopropyl-methyl-amino)-methyl]-phenylethynyl}-phe nyl)-acrylic acid (Compound 31) A solution of (E)-3- (4- {3- [ (cyclopropyl-methyl-amino)-methyl]- phenylethynyl}-phenyl)-acrylic acid methyl ester (Intermediate 92, 0. 1 lg, 0. 32mmol) in methanol (3mL) and tetrahydrofuran (2mL) was treated with a 3M solution of potassium hydroxide (lmL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature for 2 days. The reaction mixture was neutralized

with 5% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 10% methanol in ethyl acetate as the eluent to afford the title product as a yellow solid (0.038g, 36%).

'H NMR (300 MHz, CD30D) : 8 7.61-7. 38 (m, 9H), 6.53 (d, 1H, J= 15.9Hz), 3.93 (s, 2H), 2.48 (s, 3H), 2.09 (m, 1H), 0.64-0. 61 (m, 4H). <BR> <BR> <BR> <P>3- (4- 3- [(Cyclopropyl-methvl-aminol-methyl]-phenvnyl}-phenyl)-but-2- enoic acid ethyl ester (Intermediate 93) Following General Procedure B and using cyclopropyl- (3-ethynyl-benzyl)- methyl-amine (Intermediate 91,0. 12g, 0. 64mmol), 3- (4-iodo-phenyl)-but-2Z-enoic acid ethyl ester (Reagent 5,0. 2g, 0. 64mmol), triethyl amine (8mL), copper (I) iodide (0.012g, 0.063mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.045g, 0. 064mmol) followed by flash column chromatography over silica gel (230-400 mesh), the title compound was obtained (0.17g, 70%).

'H NMR (300 MHz, CDC13) : 8 7.52-7. 40 (m, 4H), 7.31-7. 18 (m, 4H), 5.91 (s, 1H), 4.01 (q, J=7. 1Hz, 2H), 3.66 (s, 2H), 2.26 (s, 3H), 2. 17 (s, 3H), 1.74-1. 70 (m, 1H), 1. 10 (t, J=7. 1Hz, 3H), 0.50-0. 43 (m, 4H).

3- (4-{3-[(Cyclopropyl-methyl-amino)-methyl]-phenylethynyl}-phe nyl)-but-2-enoic acid (Compound 32) A solution of 3-(4-{3-[(cyclopropyl-methyl-amino)-methyl]-phenylethynyl}- phenyl)-but-2-enoic acid ethyl ester (Intermediate 93,0. 17g, 0. 46mmol) in ethanol (3mL) and tetrahydrofuran (3mL) was treated with a 3.4M solution of potassium hydroxide (lmL, 3. 4mmol) and the resulting reaction mixture was stirred at ambient temperature for 36 h. The reaction mixture was extracted with diethyl ether, and the aqueous phase was neutralized with 10% aqueous hydrochloric acid and evaporated to a solid. The solid was subjected to flash column chromatography using ethyl acetate as the eluent to afford the title product as a white solid (0. 05g, 32%). IH NMR (300 MHz, CDC13) : 8 7.49-7. 43 (m, 4H), 7.32-7. 20 (m, 4H), 5.93 (s, 1H), 3.70 (s, 2H), 2.29 (s, 3H), 2.17 (s, 3H), 1.76-1. 73 (m, 1H), 0.50-0. 48 (m, 4H).

3- (4- {3- [ (Cyclopropvl-methvl-amino)-methyl]-phenvlethvnvl}-phenvl)-2- methyl- acrylic acid ethyl ester (Intermediate 94) Following General Procedure B and using cyclopropyl- (3-ethynyl-benzyl)- methyl-amine (Intermediate 91, 0. 1g, 0. 54mmol), (E)-3- (4-iodo-phenyl)-2-methyl- acrylic acid ethyl ester (Reagent 7,0. 17g, 0. 54mmol), triethyl amine (lOmL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.071g, O. 1mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 2-10% ethyl acetate in hexane as the eluent, the title compound was obtained (0. 15g, 75%). 1H NMR (300 MHz, CDC13) : 8 7.66-7. 25 (m, 9H), 4.27 (q, J=7. 3Hz, 2H), 3.65 (s, 2H), 2.25 (s, 3H), 2.13 (d, J=1. 2 Hz, 3H), 1.75-1. 65 (m, 1H), 1. 35 (t, J=7. 3Hz, 3H), 0.50-0. 40 (m, 4H). <BR> <BR> <BR> <BR> <P>3- (4- {3- [ (CyclopropyI-methyl-amino)-methvl]-phenylcthvnvl}-phenvl)-2- methyl- acrylic acid (Compound 33) A solution of 3- (4- f 3- [ (cyclopropyl-methyl-amino)-methyl]-phenylethynyl}- phenyl) -2-methyl-acrylic acid ethyl ester (Intermediate 94, 0. 15g, 0.4mmol) in ethanol (3mL) and tetrahydrofuran (3mL) was treated with a 3M solution of potassium hydroxide (lmL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature for overnight. The reaction mixture was concentrated, neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate.

The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated to a solid. The solid was subjected to flash column chromatography using 5% methanol in ethyl acetate as the eluent to afford the title product as an amorphous solid (0. 115g, 83%).

'H NMR (300 MHz, CDC13) : 8 7.71-7. 25 (m, 9H), 3. 81 (s, 2H), 2.44 (s, 3H), 2.13 (d, J=1. 2 Hz, 3H), 1.92-1. 80 (m, 1H), 0.76-0. 66 (m, 2H), 0.58-0. 48 (m, 2H). 0 HOOC I Br 1. (COCl) 2, benzene, CH2Cl2 HIV r 1. NaH, THF ; MeI, reflux 2. cyc-propyl amine A 2. BH3 : Me2S, THF, reflux Intermediate 95 l. Pd (PPh3) 2Cl2, -TMS pppi rMPt Intermediate 95 Br 1. Pd (PPh3) 2Ck, = TMS </1. Pd (PPh3) 2CI,), Cul, NEt3, CuI, NEt3, THF, 70°C ß <COOEt 2. K2C03, MeOH I Intermediate 97 Intermediate 99 Reagent 3 2. KOH COOH N / Compound 34

Reaction Scheme 17 3-Bromo-N-cyclopropyl-4-methyl-benzamide (Intermediate 95) A stirred, cooled (ice bath) solution of 3-bromo-4-methyl-benzoic acid (Aldrich, 5g, 23. 25mmol) in benzene (50mL), dichloromethane (lOmL) and N, N- dimethylformamide (0. 5mL) was treated with oxalyl chloride (4mL, 46. 5mmol).

The reaction mixture was allowed to warm to ambient temperature over 3h. The volatiles were then distilled off in vacuo, the residue was diluted with anhydrous dichloromethane (50mL) under argon, cooled (ice bath) and treated with 4- (dimethylamino) pyridine (5.67g, 46. 5mmol) followed by cyclopropyl amine (1.93mL, 27.9mmol). After 3h, the reaction mixture was diluted with dichloromethane and washed with water. The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford the title product that was used as such for the next step (6. 0g,-100%).

3-Bromo-N-cyclopropyl-4, N-dimethyl-benzamide (Intermediate 96) A stirred, cooled (ice bath) solution of 3-bromo-N-cyclopropyl-4-methyl- benzamide (Intermediate 95,6g, 23.25mmol) in anhydrous tetrahydrofuran (lOOmL) under argon was treated with small portions of sodium hydride (1.6g, 40mmol, 60% dispersion in mineral oil). The reaction mixture was allowed to warm to ambient temperature and after lh, methyl iodide (3. 1 lmL, 50mmol) was added and the reaction mixture was refluxed for 5h. It was cooled to ambient temperature, poured into cold water and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a dirty brown solid that was used as such for the next step (6. 3g,-100%).

(3-Bromo-4-methyl-benzyl)-cvclopropvl-methyl-amine (Intermediate 97) A solution of 3-bromo-N-cyclopropyl-4, N-dimethyl-benzamide (Intermediate 96,5. 3g, 19. 77mmol) in anhydrous tetrahydrofuran (50mL) was treated with borane-methyl sulfide complex (lOmL, 100mmol) and the resulting reaction mixture was refluxed for 2h. It was cooled to ambient temperature and carefully treated with saturated, aqueous sodium carbonate solution till cessation of effervescence, and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil. Flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent afforded the title product as an oil (3.2g, 63%).

'H NMR (300 MHz, CDC13) : 8 7.47 (s, 1H), 7.17 (d, 1H, J= 7.8Hz), 7.12 (d, 1H, J = 7. 8Hz), 3.63 (s, 2H), 2.40 (s, 3H), 2.27 (s, 3H), 1.73 (m, 1H), 0.92-0. 43 (m, 4H).

Cyclopropyl-methyl- (4-methyl-3-trimethylsilanylethynvl-benzyl)-amine (Intermediate 98) Following General Procedure D and using cyclopropyl- (3-bromo-4-methyl- benzyl) -methyl-amine (Intermediate 97,2. 24g, 8. 81mmol), triethyl amine (lOmL), tetrahydrofuran (5mL), copper (I) iodide (0.4g, 2. 1mmol), trimethylsilyl acetylene (5mL, 35. 4mmol) and dichlorobis (triphenylphosphine) palladium (II) (1.45g, 2.06mmol) followed by flash column chromatography over silica gel (230-400

mesh) using 6-10% ethyl acetate in hexane as the eluent, the title compound (2.25g, 94%) was obtained.

'H NMR (300 MHz, CDC13) : # 7.08 (s, 1H), 6. 84 (2s, 2H), 3.31 (s, 2H), 2.15 (s, 3H), 1.95 (s, 3H), 1.41 (m, 1H), 0.25-0. 00 (m, 4H), 0.00 (s, 9H).

Cyclopropyl-(3-ethynyl-4-mthyl-benzyl)_methyl-amine (Intermediate 99) A solution of cyclopropyl-methyl- (4-methyl-3-trimethylsilanylethynyl- benzyl) -amine (Intermediate 98,0. 95g, 3. 5mmol) in methanol (lOmL) was treated with potassium carbonate (2.3g, 16.6mmol) and the resulting reaction mixture was stirred at ambient temperature for lh. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (0.67g, 96%).

'H NMR (300 MHz, CDC13) : 8 7.12 (s, 1H), 6.87 (2s, 2H), 3.33 (s, 2H), 2.98 (s, 1H), 2.16 (s, 3H), 1.96 (s, 3H), 1.42 (m, 1H), 0.24-0. 00 (m, 4H).

(E)-3-(4-{5-[(Cyclopropyl-methyl-amino)-methyl]-2-methyl- phenylethynyl}- phenyl)-acrylic acid ethyl ester (INtermediate 100) Following General Procedure B and using cyclopropyl- (3-ethynyl-4-methyl- benzyl) -methyl-amine (Intermediate 99,0. 095g, 0.48mmol), ethyl-4-iodo- cinnamate (Reagent 3,0. 144g, 0. 47mmol), triethyl amine (13mL), copper (I) iodide (0. 019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 071g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5-20% ethyl acetate in hexane as the eluent, the title compound was obtained (0.14g, 82%).

'HNM NMR (300 MHz, CDC13) : 8 7.66 (d, 1H, J= 15.9Hz), 7.53 (Abq, 4H, J= 6.3Hz), 7.41 (s, 1H), 7.15 (2s, 2H), 6.44 (d, 1H, J= 15.9Hz), 4.26 (q, 2H, J= 7.2Hz), 3.62 (s, 2H), 2.48 (s, 3H), 2.24 (s, 3H), 1.68 (m, 1H), 1.33 (t, 3H, J= 7.2Hz), 0.49-0. 41 (m, 4H).

(E)-3-(4-{5-[(Cyclopropyl-methyl-amino)-methyl]-2-methyl- phenylethynyl}- phenyl)-acrylic acid (Compound 34) A solution of (E)-3-(4-{5-[(cyclopropyl-methyl-amino)-methyl]-2-methyl- phenylethynyl}-phenyl)-acrylic acid ethyl ester (Intermediate 100,0. 14g,

0. 37mmol) in ethanol (3mL) and tetrahydrofuran (3mL) was treated with a 3M solution of potassium hydroxide (lmL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 5% methanol in ethyl acetate as the eluent to afford the title product as an amorphous solid (0.071g, 55%).

'H NMR (300 MHz, CDC13) : 6 7.62 (d, 1H, J= 15.9Hz), 7.61 (s, 1H), 7. 38 (s, 4H), 7.19 (s, 2H), 6.56 (d, 1H, J= 15.9Hz), 3.87 (s, 2H), 2.50 (s, 3H), 2.49 (s, 3H), 1.94 (m, 1H), 0.89-0. 83 (m, 2H), 0.60-0. 57 (m, 2H). SiMe3 OH DMAP, CH2C'2 OTf Pd (PPh3) 2CI2, TMS SiMe3 CuL NEt3, 70 C NTf Intermediate 101 Intermediate 102 COOH K2C03, MEOH 1. Pd (PPh3) 2CI2, Cul, NEt3, /\ COOEt Intermediate 103 Compound 35 P Reagent 3 2. NaOH

Reaction Scheme 18 Trifluoro-methanesulfonic acid 3-tert-butyl-phenyl ester (Intermediate 101) A stirred, cooled (ice bath) solution of 3-tert-butyl phenol (Aldrich, 2g, 13. 3mmol) in anhydrous dichloromethane (15mL) was treated with 2- [N, N'- bis (trifluoromethylsulfonyl) amino]-5-chloropyridine (7.8g, 20mmol) followed by 4-

(dimethylamino) pyridine (3.2g, 26.6mmol). The cooling bath was removed and the reaction mixture was stirred at ambient temperature for 18h. It was diluted with ethyl acetate, washed with 2N hydrochloric acid, 2N sodium hydroxide, and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil.

Flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent afforded the title product as a clear oil (3. 06g, 82%).

1H NMR (300 MHz, CDC13) : 5 7.42-7. 32 (m, 2H), 7. 24 (d, 1H, J = 1. 8Hz), 7.10- 7. 06 (m, 1H), 1.33 (s, 9H).

(3-tert-Butyl-phenylethynyl)-trimethyl-silane (Intermediate 102) Following General Procedure D and using trifluoromethanesulfonic acid, 3- 'tert-butyl-phenyl ester (Intermediate 101,2. 54g, 9. 0mmol), triethyl amine (2mL), copper (I) iodide (0.63g, 3. 33mmol), trimethylsilyl acetylene (5mL, 36mmol) and dichlorobis (triphenylphosphine) palladium (II) (1.6g, 2. 25mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10% ethyl acetate in hexane as the eluent, the title compound was obtained as a brown oil that was used as such for the next step. l-tert-Butyl-3-ethynyl-benzene (Intermediate 103) A solution 3-tert-butyl-trimethylsilanylethynyl benzene (Intermediate 102, 0.47g, 2. 04mmol) in methanol (20mL) was treated with potassium carbonate (2.8g, 20. 2mmol) and the resulting reaction mixture was stirred at ambient temperature for 3 days. The reaction mixture was diluted with ethyl acetate, washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil. Flash column chromatography over silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent afforded the title compound as a light yellow oil (0.125g, 39%).

'H NMR (300 MHz, CDC13) : 8 7.40 (d, 1H, J= 1. 5Hz), 7.39-7. 10 (m, 3H), 2.91 (s, 1H), 1.18 (s, 9H).

(E)-3-f4-(3-tert-Butyl-phenYlethynyl)-phenyl]-acrylic acid (Compound 35) A solution of (E)-3- [4- (3-tert-butyl-phenyletliynyl)-phenyl]-acrylic acid ethyl ester (Intermediate 103, 0. 015g, 0. 047mmol) in ethanol (2mL) and tetrahydrofuran (2mL) was treated with a 2M solution of lithium hydroxide (lmL,

2mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with 10% aqueous hydrochloric acid and evaporated in vacuo to a solid that was washed with water and hexane and dried to afford the title product as a white solid (0.012g, 85%).'H NMR (300 MHz, CDC13) : 5 7.78 (d, 1H, J= 16.2Hz), 7.59-7. 26 (m, 8H), 6.47 (d, 1H, J= 16.2Hz), 1.34 (s, 9H). OH TiC'4, CH2C'2, OH 1-DMAP, CH2CI2 S OH C12CHOCH3 ( CHO CI. N NTf2 OH 2 Intermediate 104 2. NaBH4, MeOH I t di t 106 OH 1. Pd (PPh3) zCl2, = TMS H2, Pd-C, EtOAc i PhNTf2, DMAP, ,pTMS CH2CI2 CuI, NEt3, 70°C 2. MeOH, K2CO3 Intermediate 107 Intermediate 108 + COOH 1. Pd (PPh3) 2CI2, CuI, NEt3, COOET w covet li i Intermediate 110 2. KOH Compound 36

Reaction Scheme 19 4-tert-Butyl-2-hydroxy-benzaldehyde (Intermediate 104) A stirred, cooled (ice bath) solution of 3-tert-butyl phenol (1.5g, lOmmol) in anhydrous dichloromethane was treated with titanium tetrachloride (1. 86mL, 17mmol) followed by a, α-dichloromethyl ether (0.9mL, 20mmol). The reaction was allowed to warm to ambient temperature over lh, quenched cautiously with ice

and water and extracted with dichloromethane. The organic extract was washed with water and brine, dried over sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography using 2-2.5% ethyl acetate in hexane as the eluent to afford the title compound (1.37g, 77%). 1H NMR (300 MHz, CDC13) : 8 11.02 (s, 1H), 9.81 (s, 1H), 7.45 (d, J=8. 2Hz, 1H), 7.03 (dd, J=8. 2,1. 7Hz, 1H), 6.99 (d, J=1. 7 Hz, 1H), 1. 31 (s, 9H).

Trifluoro-methanesulfonic acid 5-tert-butyl-2-formYl-phenel ester (Intermediate 105) A stirred, cooled (ice-bath) solution of 4-tert-butyl-2-hydroxy-benzaldehyde (Intermediate 104,0. 75g, 4. 21mmol) in anhydrous dichloromethane (lOmL) was treated with triethyl amine (1.76mL, 12.64mmol) followed by 2- [N, N- bis (trifluoromethylsulfonyl) amino] pyridine (1. 81g, 4. 62mmol). The reaction mixture was allowed to warm to ambient temperature overnight. The volatiles were evaporated and the residue was subjected to flash column chromatography using 2- 2. 5% ethyl acetate in hexane as the eluent to afford the title compound (0.16g) and a 1: 1 mixture of product and starting material (0.47g). The title compound was used as such for the next step.

5-tert-Butvl-2-hydroxmethyl-phenol (Intermediate 106) A stirred, cooled (ice-bath) solution of a 1: 1 mixture of trifluoro- methanesulfonic acid 5-tert-butyl-2-formyl-phenyl ester and 4-tert-butyl-2-hydroxy- benzaldehyde (Intermediate 105,0. 47g) in methanol (8mL) was treated with sodium borohydride (0. lg, 2.64mmol). After lh, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography on silica gel (230-400 mesh) to afford the title product (0.3g).

'H NMR (300 MHz, CDC13) : 5 6.94-6. 84 (m, 3H), 4.72 (s, 2H), 1.26 (s, 9H).

5-tert-Butyl-2-methyl-phenol (Intermediate 107) A solution of 5-tert-butyl-2-hydroxymethyl-phenol (Intermediate 106, 0.215g, 1. 19mmol) in ethyl acetate was treated with 5% palladium on carbon (0.04g) and the resulting reaction mixture was stirred under an atmosphere of hydrogen at

ambient temperature for 2. 5h. The reaction mixture was then filtered over a bed of celite and the filtrate was evaporated in vacuo to afford the title compound as a white solid (0.19g, 97%).

'H NMR (300 MHz, CDC13) : 8 7.03 (d, J=7. 9Hz, 1H), 6.86 (dd, J=7. 9,1. 7Hz, 1H), 6.78 (d, J=1. 7 Hz, 1H), 5.20 (s, 1H), 2.20 (s, 3H), 1.25 (s, 9H).

Trifluoro-methanesulfonic acid 5-tert-butYl-2-methYl-phenel ester (Intermediate 108) A solution of 5-tert-butyl-2-methyl-phenol (Intermediate 107,0. 19g, 1. 15mmol) and 4- (dimethylamino) pyridine (0. 28g, 2.3mmol) in anhydrous dichloromethane (8mL) was treated with N-phenyltrifluoromethanesulfonimide (0.54g, 1. 5mmol), and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was concentrated in vacuo and the residue was subjected to flash column chromatography over silica gel (230- 400mesh) to afford the title compound as a colorless oil (0. 28g, 82%).

H NMR (300 MHz, CDC13) : 8 7.30-7. 20 (m, 3H), 2.33 (s, 3H), 1.30 (s, 9H).

(5-tert-butyl-2-methyl-phenylethynyl)-trimethyl-silane (Intermediate 109) Following General Procedure D and using trifluoro-methanesulfonic acid 5- tert-butyl-2-methyl-phenyl ester (Intermediate 108,0. 28g, 0. 94mmol), triethyl amine (3mL), trimethylsilyl acetylene (1 mL, 7mmol), N, N-dimethylformamide (6mL) and dichlorobis (triphenylphosphine) palladium (II) (0.053g, 0. 076mmol) followed by flash column chromatography over silica gel (230-400 mesh) using hexane as the eluent, the title compound (0. 16g, 69%) was obtained.'H NMR (300 MHz, CDC13) : 8 7.44 (d, J=1. 7Hz, 1H), 7.22 (dd, J=8. 2,1. 7Hz, 1H), 7.10 (d, J=8. 2Hz, 1H), 2.39 (s, 3H), 1. 28 (s, 9H), 0.26 (s, 9H).

4-tert-Butyl-2-ethynyl-1-methyl-benzene (Intermediate 110) Following general procedure F and using (5-tert-butyl-2-methyl- phenylethynyl)-trimethyl-silane (Intermediate 109,0. 16g, 0. 66mmol), methanol (5mL) and potassium carbonate (0. 05g, 0. 36mmol), the title compound was obtained (0. 08g, 67%).

IH NMR (300 MHz, CDC13) : 8 7.49 (d, J=1. 7Hz, 1H), 7.30 (dd, J=8. 2, 1. 7Hz, 1H), 7.15 (d, J=8. 2Hz, 1H), 3.16 (s, 1H), 2.42 (s, 3H), 1.32 (s, 9H).

3-E4-(5-tert-Butyl-2-nlethyl-phenylethynyl)-phen-yll-acwlic acid ethyl ester (Intermediate 111) Following General Procedure B and using 4-tert-butyl-2-ethynyl-1-methyl- benzene (Intermediate 110,0. 08g, 0. 47mmol), ethyl-4-iodocinnamate (0.12g, 0.4mmol), triethyl amine (8mL), copper (I) iodide (0. 019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 2-4% ethyl acetate in hexane as the eluent, the title compound was obtained (0.09g, 55%).

'H NMR (300 MHz, CDC13) : 8 7.67 (d, J=16. 1Hz, 1H), 7.56-7. 48 (m, SH), 7.28 (dd, J=8. 2, 1. 7Hz, 1H), 7.16 (d, J=8. 2Hz, 1H), 6.44 (d, J=16. 1Hz, 1H), 4.27 (q, J=7.1Hz, 2H), 2.48 (s, 3H), 1. 33 (t, J=7.1Hz, 3H), 1. 32 (s, 9H).

3-[4-(5-tert-Butyl-2-methyl-phenylethynyl)-phenyl]-acryli c acid (Compound 36) A solution of 3- [4- (5-tert-butyl-2-methyl-phenylethynyl)-phenyl]-acrylic acid ethyl ester (Intermediate 111,0. 09g, 0.26mmol) in ethanol (3mL) and tetrahydrofuran (3mL) was treated with 3M potassium hydroxide solution (1mL, 3mmol) and the resulting reaction mixture was stirred overnight at ambient temperature. The reaction mixture was concentrated in vacuo slightly, the residue was neutralized with dilute hydrochloric acid, and the solid that was formed was filtered and washed with water and acetonitrile and dried to afford title product (0.064g, 77%).

1H NMR (300 MHz, CDC13) : 8 7.78 (d, J=16. 1Hz, 1H), 7.58-7. 53 (m, 5H), 7. 29 (dd, J=7. 9, 1. 7Hz, 1H), 7.17 (d, J=7. 9Hz, 1H), 6.47 (d, J=16. 1Hz, 1H), 2.48 (s, 3H), 1.32 (s, 9H). CHO N Br HCOOH-IN Br Ti (OPr) 4, EYgBr tNCSBr THF, Ether Intermediate 112 Intermediate 113 1. Pd (PPh3) 2CI2, =-TMS 1 Pd (PPh3) 2Cl2, Cul, NEt3, V //\ COOEt 0 J. COOEt CuI, NEt3, THF, 70°C C 2. K2CO3, MeOH Intermediate 115 Reagent 3 2. NaOH \ COOH cool N I w Compound 37

Reaction Scheme 20 N-f(3-Bromo-phenyl)-N-methyl-formamide (Intermediate 112) A solution of 3-bromo-N-methyl aniline (made as described by Lopez et al. in Tet. Lett., 1999,40, 11, p2071-2074 incorporated herein by reference; 7.4g, 39. 5mmol) in formic acid (20mL) was refluxed for 3h. The reaction mixture was then cooled to ambient temperature, diluted with water and extracted with diethyl ether. The organic phase was washed with saturated, aqueous sodium bicarbonate solution, water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a dark brown oil.

(3-Bromo-phenvl)-cyclopropvl-methyl-amine (Intermediate 113) A stirred, cooled (0°C) solution of N- (3-bromo-phenyl)-N-methyl-formamide (Intermediate 112,2. 6g, 9. 7mmol) and titanium tetra-iso-propoxide (3. 9mL, 10. 67mmol) in tetrahydrofuran (40mL) was treated with a 3M solution of ethyl

magnesium bromide in ether (8.08mL, 24. 25mmol) under argon and the resulting reaction mixture was allowed to warm to ambient temperature gradually and refluxed at 55°C overnight. It was then cooled in an ice-bath, quenched with saturated aqueous ammonium chloride solution, filtered over celite and the aqueous phase was extracted with diethyl ether. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford an oil. Flash column chromatography over silica gel (230-400 mesh) using 1.5% ethyl acetate in hexane as the eluent afforded the title compound (0321 g, 15%).

Cyclopropyl-methyl- (3-trimethylsilanylethynyl-phen)-amine (Intermediate 114) Following General Procedure D and using (3-bromo-phenyl)-cyclopropyl- methyl-amine (Intermediate 113,0. 056g, 0.25mmol), triethyl amine (3mL), copper (I) i6dide (0.025g, 0.13mmol), trimethylsilyl acetylene (2. 5mL, 17.6mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.065g, 0. 09mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 1.5% ethyl acetate in hexane as the eluent, the title compound (0.051 g, 84%) was obtained.

Cyclopropyl- (3-ethvnyl-phenyl)-meth l-amine (Intermediate 115) A solution of cyclopropyl-methyl- (3-trimethylsilanylethynyl-phenyl)-amine (Intermediate 114, 0. 05g, 0. 2mmol) in methanol (5mL) was treated with potassium carbonate (0. 063g, 0.46mmol) and the resulting reaction mixture was heated at 80°C for 3h. The solvent was evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (0.035g, 100%).

(E)-3- {4- [3- (Cyclopropyl-methyl-ammo)-phenylethynyl}-acrylic acid ethyl ester (Intermediate 116) Following General Procedure B and using cyclopropyl- (3-ethynyl-phenyl)- methyl-amine (Intermediate 115,0. 035g, 0. 2mmol), ethyl-4-iodo-cinnamate (0. 082g, 0. 27mmol), triethyl amine (3mL), copper (I) iodide (0.025g, 0. 13mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.033g, 0.047mmol) followed by flash column chromatography over silica gel (230-400 mesh), and preparative

normal phase HPLC using 10% ethyl acetate in hexane as the mobile phase, the title compound was obtained (0.020g, 29%).

(E)-3-{4-[3-(Cyclopropyl-methyl-amino)-phenylethynyl]-phe nyl}-acrylic acid (Compound 37) A solution of (E)-3- {4- [3- (cyclopropyl-methyl-amino)-phenylethynyl}- acrylic acid ethyl ester (Intermediate 116,0. 020g, 0. 057mmol) in ethanol (ImL) was treated with a 1M solution of sodium hydroxide (lmL, lmmol) and the resulting reaction mixture was heated at 80°C for 30 minutes. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford a residue that on preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase afforded the title product as a yellow solid (0.006g, 33%). Bri PrOH, conc. H2SO4, benzene, \/Br reflux /1. NHz, CH3CN Hoot 2. NBS, Cri4, AIBN o J 2. MeI, K2CO3, acetone Br Intermediate 118 B 1. TMSC : CH, Pd (PPh3) 2CI2, CuI, THF, NEt3, 70°C I l. Pd (PPh3) zClz, CuI, NEt3, lu 0 R5 O 2. K2C03, MeOH COOMe I R R2= H R5=H Intermediate 120 Intermediate 122 R2 = F, Rs = H Reagent 1 R2 = H, R5 = Me R5 2. LiOH, MeOH, THF, H20 COOH Y R2 0 Y jet °Y"r N A Compound 38 R2 H R5H Compound 39 R2 = F, R5 = H Compound 40 R2 H, R5 Me

Reaction Scheme 21 4-Bromo-2-methvl-benzoic acid isopropyl ester (Intermediate 117) A solution of 4-bromo-2-methyl-benzoic acid (Aldrich, 5.4g, 25mmol) in benzene (75mL) and isopropanol (75mL) was treated with concentrated sulfuric acid (1. 5mL) and heated to reflux over 4 days using a Dean-Stark water trap. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted

with diethyl ether. The organic phase was washed with water and saturated, aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a clear oil that was used as such for the next step (6.12g, 95%).

4-Bromo-2-bromomethyl-benzoic acid isopropyl ester (Intermediate 118) A solution of 4-bromo-2-methyl-benzoic acid isopropyl ester (Intermediate 117,6. 12g, 23. 8mmol) in carbon tetrachloride (120mL) was treated with N- bromosuccinimide (4.6g, 26. 18mmol) and 2,2'-azobisisobutyronitrile (0.6g) and the resulting reaction mixture was refluxed overnight. It was cooled to ambient temperature, the solids were filtered off and washed with 1 : 1 hexane : diethyl ether, and the filtrate and washings were evaporated in vacuo to afford an oil (5. 1g, 64%) that was used as such for the next step.

4-Bromo-2-cvclopropylaminomethyl-benzoic acid isopropyl ester (Intermediate 119) A stirred, cooled (ice bath) solution of 4-bromo-2-bromomethyl-benzoic acid isopropyl ester (Intermediate 118,5. 1g, 15.17mmol) in acetonitrile (25mL) was treated with cyclopropyl amine (2mL, 28. 9mmol). The reaction mixture was allowed to warm to ambient temperature. After 2h, the volatiles were evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil. Flash column chromatography over silica gel (230- 400mesh) using 4-20% ethyl acetate in hexane as the eluent to afforded the title product (1.33g, 28%).

'H NMR (300 MHz, CDC13) : 8 7.73 (d, 1H, J= 8. 4Hz), 7.56 (d, 1H, J= 2. lHz), 7.41 (dd, 1H, J= 2.1, 8. 4Hz), 5.21 (heptet, 1H, J= 6.3Hz), 4.00 (s, 2H), 2.39 (br s, 1H), 2.06 (m, 1H), 1. 35 (d, 6H, J= 6. 3Hz), 0.42-0. 34 (m, 4H).

4-Bromo-2-f (cyclopropvl-methyl-amino)-methvl]-benzoic acid isopropyl ester (Intermediate 120) A solution of 4-bromo-2-cyclopropylaminomethyl-benzoic acid isopropyl ester (Intermediate 119,1. 33g, 4. 26mmol) in acetone (8mL) was treated with potassium carbonate (2.36g, 17. 05mmol) and methyl iodide (0.53mL, 8.52mmol)

and the resulting reaction mixture was stirred at ambient temperature for 3h. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered over a short bed of silica gel (230-400mesh) and evaporated in vacuo to afford the title product (1.23g, 70%).

IH NMR (300 MHz, CDC13) : # 7.64 (d, 1H, J= 2. 1Hz), 7.58 (d, 1H, J= 8.4Hz), 7. 39 (dd, 1H, J= 2.1, 8.4Hz), 5.20 (heptet, 1H, J= 6. 0Hz), 3.97 (s, 2H), 2.22 (s, 3H), 1.77 (m, 1H), 1.35 (d, 6H, J= 6. 0Hz), 0.46-0. 38 (m, 4H).

2-L (Cyclopropyl-methyl-amino !-methyl]-4-trimemylsilanyleth-ynyl-benzoic acid isopropyl ester (Intermediate 121) Following General Procedure D and using 4-bromo-2- [ (cyclopropyl-methyl- amino)-methyl]-benzoic acid isopropyl ester (Intermediate 120,1. 23g, 3. 68mmol), triethyl amine (lOmL), tetrahydrofuran (5mL), copper (I) iodide (0. 21g, l. lmmol), trimethylsilyl acetylene (2. 1mL, 14. 7mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.77g, 1. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 7% ethyl acetate in hexane as the eluent, the title compound was obtained as an oil (1. 2g, #100%).

H NMR (300 MHz, CDC13) : 8 7.62 (d, 1H, J= 8. 1Hz), 7.53 (s, 1H), 7.35 (d, 1H, J = 8. 4Hz), 5.20 (heptet, 1H, J= 6.3Hz), 3.95 (s, 2H), 2.22 (s, 3H), 1.74 (m, 1H), 1.36 (d, 6H, J= 6.3Hz), 0.37-0. 28 (m, 4H), 0.27 (s, 9H).

2- [ (Cyclopropyl-methyl-amino)-methvl1-4-ethynyl-benzoic acid isopropyl ester (Intermediate 122) A solution 2-[(cyclopropyl-methyl-amino)-methyl]-4- trimethylsilanylethynyl-benzoic acid isopropyl ester (Intermediate 121,0. 34g, lmmol) in methanol (2mL) was treated with potassium carbonate (0.207g, 1. 5mmol) and the resulting reaction mixture was stirred at ambient temperature for 4 h. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound as an oil (0.21g, 78%).

'H NMR (300 MHz, CDCl3) : 87. 67 (d, 1H, J= 7. 8Hz), 7.64 (d, 1H, J= 1. 8Hz), 7. 38 (dd, 1H, J= 1.8, 7.8Hz), 5.21 (heptet, 1H, J= 6. 0Hz), 3.96 (s, 2H), 3.16 (s, 1H), 2.22 (s, 3H), 1.74 (m, 1H), 1. 36 (d, 6H, J= 6. 0Hz), 0. 44-0.33 (m, 4H).

2- [ (Cyclopropyl-methyl-amino)-methyll-4- (4-methoxycarbonylmethyl- phenylethynvD-benzoic acid isopropyl ester (Intermediate 123) Following General Procedure B and using 2-[(cyclopropyl-methyl-amino)- methyl]-4-ethynyl-benzoic acid isopropyl ester (Intermediate 122,0. 09g, 0. 33mmol), 4-iodophenyl acetic acid methyl ester (0.09g, 0. 33mmol), triethyl amine (2mL), copper (I) iodide (0.04g, 0.21mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. lg, 0.14mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10-15% ethyl acetate in hexane as the eluent, the title compound was obtained as an oil. (0. lg, 72%).

'H NMR (300 MHz, CDC13) : 8 7.70 (d, 1H, J= 7.8Hz), 7.62 (d, 1H, J= 1. 8Hz), 7.52 (d, 2H, J= 8. 1Hz), 7.43 (dd, 1H, J= 1. 8, 7.8Hz), 7.28 (d, 2H, J = 8.1Hz), 5.25 (heptet, 1H, J= 6. 0Hz), 4.00 (s, 2H), 3.71 (s, 3H), 3.65 (s, 2H), 2.26 (s, 3H), 1.78 (m, 1H), 1. 38 (d, 6H, J= 6. 0Hz), 0.44-0. 40 (m, 4H).

4-(4-Carboxymethyl-phenylethynyl)-2-[(cyclopropyl-methyl- amino)-methyl]- benzoic acid isopropyl ester (Compound 38) A solution of 2-[(cyclopropyl-methyl-amino)-methyl]-4-(4- methoxycarbonylmethyl-phenylethynyl)-benzoic acid isopropyl ester (Intermediate 123, 0. lg, 0.23mmol) in a mixture of methanol (2mL), tetrahydrofuran (2mL) and water (lmL) was treated with lithium hydroxide monohydrate (0.042g, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated, aqueous ammonium chloride solution and extracted with ethyl acetate. The combined organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a solid. Preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase afforded the title product as a white solid (0.068g, 72%). 1H NMR (300 MHz, CDC13) : 8 9.05 (br s, 1H), 7.73 (d, 1H, J= 8.4Hz), 7.66 (s, 1H), 7.44-7. 37 (m, 3H), 7.23-7. 21 (m, 2H), 5.20 (heptet, 1H, J= 6. 0Hz), 4.21 (s,

2H), 3.52 (s, 2H), 2.36 (s, 3H), 1.94 (m, 1H), 1.36 (d, 6H, J= 6. 0Hz), 0.55-0. 43 (m, 4H).

2- [ (Cvclopropyl-methyl-amino)-methvl]-4- (3-fluoro-4-methoxvcarbonyImethvl- phenylethynyl)-benzoic acid isopropyl ester (Intermediate 124) Following General Procedure B and using 2- [ (cyclopropyl-methyl-amino)- methyl]-4-ethynyl-benzoic acid isopropyl ester (Intermediate 122, 0. 05g, 0. 18mmol), 2-fluoro-4-iodo phenylacetic acid methyl ester (0.07g, 0. 24mmol), triethyl amine (2mL), copper (I) iodide (0.04g, 0. 21mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 15-16% ethyl acetate in hexane as the eluent, the title compound was obtained as an oil (0.04g, 50%).

'H NMR (300 MHz, CDC13) : 5 7.63 (d, 1H, J= 7. 8Hz), 7.55 (d, 1H, J= 1. 2Hz), 7. 35 (dd, 1H, J= 1.2, 7.8Hz), 7.26-7. 17 (m, 3H), 5.16 (heptet, 1H, J= 6.3Hz), 3.93 (s, 2H), 3.66 (s, 3H), 3.64 (s, 2H), 2.20 (s, 3H), 1.71 (m, 1H), 1.31 (d, 6H, J= 6.3Hz), 0.40-0. 33 (m, 4H).

4- (4-Carboxymethyl-3-fluoro-phenylethynvl)-2-r (cyclopropyl-methvl-amino)- methyl]-benzoic acid isopropyl ester (Compound 39) A solution of 2- [ (cyclopropyl-methyl-amino)-methyl]-4- (3-fluoro-4- methoxycarbonylmethyl-phenylethynyl)-benzoic acid isopropyl ester (Intermediate 124,0. 04g, 0.09mmol) in a mixture of methanol (2mL), tetrahydrofuran (2mL) and water (1mL) was treated with lithium hydroxide monohydrate (0.042g, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated, aqueous ammonium chloride solution and extracted with ethyl acetate. The combined organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a solid. Preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase afforded the title product as a white solid (0.026g, 54%). 1H NMR (300 MHz, CDC13) : 8 7.71 (d, 1H, J= 8. 1Hz), 7.64 (s, 1H), 7.41 (d, 1H, J= 8. 1Hz), 7.17-7. 09 (m, 3H), 5.20 (heptet, 1H, J= 6.3Hz), 4.16 (s, 2H), 3.54 (s, 2H), 2.34 (s, 3H), 1.91 (m, 1H), 1.36 (d, 6H, J= 6.3Hz), 0.50-0. 41 (m, 4H).

2-r (Cvclopropyl-methyl-amino (4-methoxycarbonylmethyl- phenylethynyll-benzoic acid isopropyl ester (Intermediate 125) Following General Procedure B and using 2- [ (cyclopropyl-methyl-amino)- methyl]-4-ethynyl-benzoic acid isopropyl ester (Intermediate 122,0. 07g, 0.26mmol), methyl-2- (4-iodophenyl)-propionate (Reagent 1, 0. 081g, 0. 29mmol), triethyl amine (2mL), copper (I) iodide (0.03g, 0. 158mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10-15% ethyl acetate in hexane as the eluent, the title compound was obtained as an oil (0.09g, 81%).

IH NMR (300 MHz, CDC13) : b 7.57 (d, 1H, J= 8. lHz), 7.49 (d, 1H, J= 1. 8Hz), 7.39 (d, 2H, J= 8.4Hz), 7.30 (dd, 1H, J= 1.8, 8. 1Hz), 7.18 (d, 2H, J= 8.4Hz), 5.10 (heptet, 1H, J= 6. 0Hz), 3. 88 (s, 2H), 3.63 (q, 1H, J= 7.2Hz), 3.56 (s, 3H), 2.13 (s, 3H), 1.65 (m, 1H), 1.40 (d, 3H, J= 7.2Hz), 1.25 (d, 6H, J = 6. 0Hz), 0. 35-0. 27 (m, 4H). <BR> <BR> <BR> <BR> <P>4-r4- (1-Carboxy-ethy)-phen leynyl]-2- [ (cyclopropyl-meyl-amino)-methyl]- benzoic acid isopropyl ester (Compound 40) A solution of 2- [ (cyclopropyl-methyl-amino)-methyl]-4- (4- methoxycarbonylmethyl-phenylethynyl) -benzoic acid isopropyl ester (Intermediate 125,0. 09g, 0. 21mmol) in a mixture of methanol (2mL), tetrahydrofuran (2mL) and water (1mL) was treated with lithium hydroxide monohydrate (0.042g, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 4h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated, aqueous ammonium chloride solution and extracted with ethyl acetate. The combined organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a white solid foam (0.053g, 61%).

IH NMR (300 MHz, CDC13) : 8 7. 68 (d, 1H, J= 8. 1Hz), 7.58 (d, 1H, J= 1. 8Hz), 7.44-7. 25 (m, 5H), 5.13 (heptet, 1H, J= 6. 0Hz), 4.18 (s, 2H), 3.79 (m, 1H), 2.32 (s, 3H), 1.89 (m, 1H), 1.39 (d, 3H, J= 6.6Hz), 1.28 (d, 6H, J= 6.3Hz), 0.52-0. 21 (m, 4H). SiMe3 1. (CH3) 2CHI, K2CO3, acetone, Xn,/Pd (PPII3) 2Cl2, CuI, NEt3, I I > 1 11 > 2. IZCO3, MeOH COOMe 0 OH o o i Intermediate 66 Intermediate 127 coome COOME 1, "NHz, NaCNBH3, CH3CN, CH2Clz, CH3CO2H O O N O 2. MeI, K2CO3, acetone Intermediate 128 Intermediate 129 COOL LiOH, MeOH, THF, H20 N 0 N\ O Compound 41 Reaction Scheme 22

4, *4-Dimethyl-8-(2-propoxy !-6-trimethylsilanylethanyl-3 4-dihydro-2H-naphthalen- 1-one (Intermediate 126) A solution of 8-hydroxy-4, 4-dimethyl-6-trimethylsilanylethynyl-3, 4- dihydro-2H-naphthalen-l-one (Intermediate 66,0. 32g, 1.12mmol) in acetone (20mL) was treated with potassium carbonate (0.773g, 5. 6mmol) and 2-iodopropane (2g, 11. 76mmol) and the resulting reaction mixture was refluxed for 3 days. It was cooled to ambient temperature, the solids were filtered off and the filtrate was evaporated in vacuo to an oil that was subjected to flash column chromatography over silica gel (230-400mesh) using 2-6% ethyl acetate in hexane as the eluent to afford the title product as (0. 055g, 15%).

'H NMR (300 MHz, CDC13) : 6 7.04 (d, 1H, J= 1. 2Hz), 6.89 (d, 1H, J= 1. 2Hz), 4.57 (heptet, 1H, J= 6. 3Hz), 2.66 (t, 2H, J= 7. 2Hz), 1.92 (t, 2H, J= 7. 2Hz), 1.38 (d, 6H, J= 6.3Hz), 1.33 (s, 6H), 0.27 (s, 9H).

4. 4-Dimethvl-6-ethvnyl-8- (2-propoxy)-3, 4-dihydro-2H-naphthalen-l-onc (Intermediate 127) A solution 4, 4-dimethyl-8- (2-propoxy)-6-trimethylsilanylethynyl-3, 4- dihydro-2H-naphthalen-l-one (Intermediate 126, 0. 055g, 0.167mmol) in methanol (5mL) was treated with potassium carbonate (0.03g, 0. 22mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The solvent was, evaporated in vacuo, the residue was diluted with water and extracted with ethyl acetate. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (0.042g, 98%).

'H NMR (300 MHz, CDC13) : 5 7.08 (d, 1H, J= 1. 2Hz), 6.93 (d, 1H, J= 1. 2Hz), 4.56 (heptet, 1H, J= 6. 0Hz), 3.19 (s, 1H), 2.67 (t, 2H, J= 6.9Hz), 1.93 (t, 2H, J= 6.9Hz), 1.39 (d, 6H, J= 6. 0Hz), 1.34 (s, 6H).

{4-[8,8-Dimethyl-5-oxo-4-(2-propoxy)-5,6,7,8-terahydro-na phthalen-2-ylethynyl]- phenylT-acetic acid methyl ester (Intermediate 128) Following General Procedure B and using 4, 4-dimethyl-6-ethynyl-8- (2- <BR> <BR> <BR> propoxy) -3, 4-dihydro-2H-naphthalen-l-one (Intermediate 127, 0.075g, 0.29mmol), 4-iodo phenyl acetic acid methyl ester (0. 081g, 0. 29mmol), triethyl amine (8mL), tetrahydrofuran (3mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5-15% ethyl acetate in hexane as the eluent, the title compound was obtained as a yellow oil (0.07g, 64%).

'H NMR (300 MHz, CDC13) : 8 7.52 (d, 2H, J= 8. 4Hz), 7.29 (d, 2H, J= 8.4Hz), 7.12 (d, 1H, J= 1. 5Hz), 6.97 (d, 1H, J= 1. 5Hz), 4.60 (heptet, 1H, J= 5.8Hz), 3.71 (s, 3H), 3.66 (s, 2H), 2.68 (t, 2H, J= 6. 6Hz), 1.95 (t, 2H, J= 6.6Hz), 1.41 (d, 6H, J = 5.8Hz), 1.36 (s, 6H).

{4- [5- (Cvclopropyl-methyl-amino)-4-isopropoxy-8, 8-dimethyl-5. 6J. 8-tetrahydro- naphthalen-2-ylethynyl'j-phenyl}-acetic acid methyl ester (Intermediate 129) A solution of {4- [8, 8-dimethyl-5-oxo-4- (2-propoxy)-5, 6,7, 8-tetrahydro- naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 128,0. 07g, 0. 187mmol) in dichloromethane (3mL) and acetonitrile (1. 5mL) was treated with cyclopropyl amine (lmL, 14.45mmol). After 5 minutes, acetic acid (1mL) was added followed by sodium cyanoborohydride (0.12g, 1. 9lmmol). The reaction mixture was stirred overnight at ambient temperature. It was then diluted with water and saturated aqueous sodium carbonate solution and extracted with dichloromethane (x2). The combined organic extract was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to an oil. The oil was dissolved in acetone (15mL) and treated with potassium carbonate (0.2g, 1. 45mmol) followed by methyl iodide (lmL, 15. 8mmol) and the resulting reaction mixture was stirred overnight at ambient temperature. The precipitated solids were filtered off, the filtrate was evaporated in vacuo to a residue. Flash column chromatography over silica gel (230-400 mesh) using 2.5-6% ethyl acetate in hexane as the eluent afforded the title compound (0.045g, 53%).

'H NMR (300 MHz, CDC13) : 6 7.50 (d, 2H, J= 8. 4Hz), 7. 26 (d, 2H, J = 8. 4Hz), 7.12 (d, 1H, J= 1. 5Hz), 6.77 (d, 1H, J= 1. 5Hz), 4.58 (heptet, 1H, J= 6.3Hz), 4.04 (m, 1H), 3.70 (s, 3H), 3.64 (s, 2H), 2.32 (s, 3H), 2.10-1. 95 (m, 2H), 1.84-1. 78 (m, 1H), 1.66-1. 60 (m, 1H), 1.40-1. 26 (m, 1H), 1.39 and 1.35 (2d, 6H, J= 6.3Hz), 1.34 (s, 3H), 1.19 (s, 3H), 0.29-0. 22 (m, 2H), 0.083-0. 00 (m, 2H).

{4-[5-(Cyclopropyl-methyl-amino)-4-isopropoxy-8,8-dimethy l-5,6,7,8-tetrahydro- naphthalen-2-ylethynyl]-phenvl}-acetic acid (Compound 41) A solution of {4- [5- (cyclopropyl-methyl-amino)-4-isopropoxy-8, 8-dimethyl- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 129,0. 045g, 0. 098mmol) in methanol (2mL) and tetrahydrofuran (2mL) was treated with 2M lithium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature for 2h. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase

was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 5% methanol in ethyl acetate as the eluent to afford the title product as a white solid (0.027g, 61%).

1H NMR (300 MHz, CDC13) : 8 7.46 (d, 2H, J= 8. lHz), 7.29 (d, 2H, J= 8. lHz), 7.14 (d, 1H, J= 1. 2Hz), 6.80 (d, 1H, J= 1. 2Hz), 4.62 (heptet, 1H, J= 6. 0Hz), 4.31 (m, 1H), 3.58 (s, 2H), 2.46 (s, 3H), 2.46-2. 39 (m, 1H), 2.14-1. 87 (m, 2H), 1.72-1. 67 (m, 1H), 1.42-1. 23 (m, 1H), 1.40 and 1.34 (2d, 6H, J= 6. 0Hz), 1.31 (s, 3H), 1.16 (s, 3H), 0.80-0. 70 (m, 1H), 0.53-0. 38 (m, 2H), 0.23-0. 18 (m, 1H). \/1. TMSC : CH, Pd (PPh3) 2Cl2, -4 ETOO EtOOC CuI, THF, NEt3, 70°C 2. K2CO3, EtOH Intermediate 130 < COOH 1. Pd (PPh3) 2Cl2, CuI, NEt3, //\ Rz EtOOC I EtOOC R2 R2 Intermediate 132 Compound 42 R2 = H Compound 43 R2 = F R2=F 2. LiOH, EtOH, THF, H20 0 Br l. i-PrOH, HZS04 O/SiMe3 HO Y\ / O 2. Pd (PPh3) 2Cl2, = TMS Cul, NEt3, THF, 70°C Intermediate 136 < COOH 1. TBAF, THF » F 0 % v F 2. Pd (PPh3) 2Cl2, CuI, NEt3, Xo) 9 COOET Compound 44 3. LiOH, i-PrOH, THF, H20

Reaction Scheme 23 2-(3-Bromo-phenyl)-2-methyl-propionic acid ethyl ester (Intermediate 130) A solution of 2- (3-bromo-phenyl)-2-methyl-propionitrile (prepared as described by Barlaam et al. J. Med. Chem., 1999,42, 23, 4890-4908 incorporated herein by reference ; 1.4g, 6. 24mmol) was dissolved in ethanol (40mL), treated with concentrated sulfuric acid (ImL) and the resulting reaction mixture was refluxed for

36h. The reaction mixture was cooled to ambient temperature, diluted with water and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230- 400mesh) using 5% ethyl acetate in hexane as the eluent to afford the title product as an orange oil (0.77g, 46%).

'H NMR (300 MHz, CDC13) : 8 7.48 (s, 1H), 7. 36 (dd, 1H, J = 2. 8, 7.7Hz), 7.26 (dd, 1H, J= 2. 8, 8. 3Hz), 7.20 (dd, 1H, J= 7.8, 8. 3Hz), 4.12 (q, 2H, J= 7. 0Hz), 1.55 (s, 6H), 1.18 (t, 3H, J=7. 0Hz).

2-Methyl-2-(3-trimethylsilanylethynyl-phenyl !-propionic acid ethyl ester (Intermediate 131) Following General Procedure D and using 2- (3-bromo-phenyl)-2-methyl- propionic acid ethyl ester (Intermediate 130,0. 77g, 2.84mmol), triethyl amine (5mL), copper (I) iodide (0.044g, 0. 23mmol), trimethylsilyl acetylene (2mL, 14. 1mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.159g, 0. 23mmol) followed by flash column chromatography over silica gel (230-400 mesh) using hexane to 5% ethyl acetate in hexane as the eluent, the title compound (0.74g, 90%) was obtained as an orange oil.

'H NMR (300 MHz, CDC13) : 6 7.45 (s, 1H), 7.33-7. 24 (m, 3H), 4. 12 (q, 2H, J= 7. 0Hz), 1.56 (s, 6H), 1.17 (t, 3H, J= 7. 0Hz), 0.25 (s, 9H).

2-3-Ethynyl-phenyl)-2-methyl-propionic acid ethyl ester (Intermediate 132) A solution of 2-methyl-2- (3-trimethylsilanylethynyl-phenyl)-propionic acid ethyl ester (Intermediate 131,0. 74g, 2. 56mmol) in ethanol (lOmL) was treated with potassium carbonate (0.2g, 1. 45mmol). The resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo and the residue was diluted with water and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400mesh) using 1-5% ethyl acetate in hexane as the eluent to afford the title product (0.4g, 72%).

IH NMR (300 MHz, CDC13) : 8 7.56 (s, 1H), 7.45-7. 33 (m, 3H), 4.18 (q, 2H, J= 7. 0Hz), 3.14 (s, 1H), 1.63 (s, 6H), 1.24 (t, 3H, J= 7. 0Hz). <BR> <BR> <BR> <P>2- [3- (4-Methoxvcarbonylmethvl-phenvlethvnyl')-phenyl]-2-methvl-pr opionicacid ethyl ester (Intermediate 133) Following General Procedure B and using 2- (3-ethynyl-phenyl)-2-methyl- propionic acid ethyl ester (Intermediate 132, 0. 101 g, 0.47mmol), 4-iodo phenyl acetic acid methyl ester (0.129g, 0. 47mmol), triethyl amine (8mL), copper (I) iodide (O. Olg, 0. 05mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.035g, 0. 05mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10-15% ethyl acetate in hexane as the eluent, the title compound was obtained as an oil (0.14g, 82%).

'H NMR (300 MHz, CDC13) : 8 7.52-7. 25 (m, 8H), 4.13 (q, 2H, J= 7. 0Hz), 3.70 (s, 3H), 3.64 (s, 2H), 1.58 (s, 6H), 1.18 (t, 3H, J= 7. 0Hz).

2- [3- (4-Methoxvcarbonylmethvl-phenylethynyl)-phenyl]-2-methyl-pro pionic acid (Compound 42) A solution of 2- [3- (4-methoxycarbonylmethyl-phenylethynyl)-phenyl]-2- methyl-propionic acid ethyl ester (Intermediate 133,0. 12g, 0.33mmol) in ethanol (2mL) and tetrahydrofuran (2mL) was treated with 2M lithium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature for lh.

The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate.

The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as an oil (0. llg, 95%).

IH NMR (300 MHz, CDC13): 8 7.48 (s, 1H), 7.35-7. 04 (m, 7H), 4.11 (q, 2H, J= 7. 0Hz), 3.32 (s, 2H), 1.50 (s, 6H), 1.11 (t, 3H, J = 7. 0Hz).

2- [3- (3-Fluoro-4-methoxycarbonylmvl-phenyleth rn)-phenyl]-2-methvl- propionic acid ethyl ester (Intermediate 134) Following General Procedure B and using 2- (3-ethynyl-phenyl)-2-methyl- propionic acid ethyl ester (Intermediate 132, 0. 10g, 0. 46mmol), 2-fluoro-4-iodo phenyl acetic acid methyl ester (0. 136g, 0.46mmol), triethyl amine (8mL),

copper (I) iodide (0. Olg, 0. 05mmol) and dichlorobis (triphenylphosphine)- palladium (II) (0.035g, 0. 05mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10-15% ethyl acetate in hexane as the eluent, the title compound was obtained as an oil (0. 15g, 85%).

'H NMR (300 MHz, CDC13) : 6 7.52 (s, 1H) 7.39-7. 21 (m, 6H), 4.13 (q, 2H, J= 7. 0Hz), 3.71 (s, 3H), 3.68 (s, 2H), 1.58 (s, 6H), 1.18 (t, 3H, J= 7. 0Hz).

2- [3- (3-Fluoro-4-methoxycarbonylmethyl-phenylethvnvl)-phenyl]-2-m emyl- propionic acid (Compound 43) A solution of 2- [3- (3-fluoro-4-methoxycarbonylmethyl-phenylethynyl)- phenyl] -2-methyl-propionic acid ethyl ester (Intermediate 134,0. 13g, 0. 34mmol) in ethanol (2mL) and tetrahydrofuran (2mL) was treated with 2M lithium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature for 45 minutes. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0.125g, #100%).

1H NMR (300 MHz, CDCl3): # 7.48 (s, 1H) 7.34-7.06 (m, 6H), 4.10 (q, 2H, J = 7. 0Hz), 3.41 (s, 2H), 1.52 (s, 6H), 1.13 (t, 3H, J= 7. 0Hz).

3-Bromo-benzoic acid isopropyl ester (Intermediate 135) A solution of 3-bromo benzoic acid (Aldrich, 2.4g, 11. 9mmol) in isopropanol (20mL) was treated with 1mL of concentrated sulfuric acid and the resulting reaction mixture was refluxed overnight. The reaction mixture was then cooled to ambient temperature and diluted with water and extracted with diethyl ether. The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to an oil that was subjected to flash column chromatography over silica gel (230-400 mesh) using 10% ethyl acetate in hexane as the eluent to afford the title compound as an oil (2.54g, 88%).

'H NMR (300 MHz, CDC13): 8 8.14 (s, 1H), 7.95 (d, J=7. 6Hz, 1H), 7.64 (d, J=7. 6Hz, 1H), 7.29 (t, J=7. 6Hz, 1H), 5.24 (hept, J=6. 1Hz, 1H), 1.35 (d, J=6. 1Hz, 6H).

3-Trimethylsilanvlethynvl-benzoic acid isopropyl ester (Intermediate 136) Following General Procedure D and using 3-bromo-benzoic acid isopropyl ester (Intermediate 135,1. 25g, 5. 14mmol), triethyl amine (12mL), copper (I) iodide (0.078g, 0. 41mmol), trimethylsilyl acetylene (4mL, 28. 16mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.288g, 0. 41mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 3% ethyl acetate in hexane as the eluent, the title compound (1.25g, 94%) was obtained as an orange oil.

'H NMR (300 MHz, CDC13): 5 8.09 (s, 1H), 7.96 (d, J=7. 6Hz, 1H), 7.59 (d, J=7. 6Hz, 1H), 7.35 (t, J=7. 6Hz, 1H), 5.24 (hept, J=6. 1Hz, 1H), 1. 35 (d, J=6. 1Hz, 6H), 0.25 (s, 9H).

3-Ethynvl-benzoic acid isopropyl ester (Intermediate 137) A solution of 3-trimethylsilanylethynyl-benzoic acid isopropyl ester (Intermediate 136,0. 6g, 2. 3mmol) in anhydrous tetrahydrofuran (3mL) was treated with a 1M solution of tetra-n-butyl ammonium fluoride in tetrahydrofuran (4.6mL, 4.6mmmol) and the resulting reaction mixture was stirred in an ice bath for 5 min.

Water was added and the reaction mixture was extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated to an oil that was purified by flash column chromatography using 5%-30% ethyl acetate in hexane as the eluent to afford the title compound as a solid (0.33g, 76%).

'H NMR (300 MHz, CDC13) : 8 8.15 (s, 1H), 8.01 (d, J=7. 6Hz, 1H), 7.64 (d, J=7. 6Hz, lH), 7.39 (t, J=7. 6Hz, 1H), 5. 25 (hept, J=6. 1Hz, 1H), 3.13 (s, 1H), 1.37 (d, J=6. 1Hz, 6H).

3- (4-Ethoxvcarbonylmethvl-3-fluoro-phenylethynyl)-benzoic acid isopropyl ester (Intermediate 138) Following General Procedure B and using 3-ethynyl-benzoic acid isopropyl ester (Intermediate 137,0. 099g, 0. 53mmol), 2-fluoro-4-iodo phenyl acetic acid ethyl ester (0.164g, 0. 53mmol), triethyl amine (3mL), copper (I) iodide (0. Olg, 0. 05mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.035g, 0. 5mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 7-

10% ethyl acetate in hexane as the eluent, the title compound was obtained as a light orange oil (0.08g, 92%).

1H NMR (300 MHz, CDC13) : 5 8.17 (s, 1H), 8.01 (d, J=7. 6Hz, 1H), 7.67 (d, J=7. 6Hz, 1H), 7.42 (t, J=7.6Hz, 1H), 7.29-7. 22 (m, 3H), 5.21 (hept, J=6. 1Hz, 1H), 4.18 (q, J=7. 1Hz, 2H), 3.68 (s, 2H), 1.38 (d, J=6. 1Hz, 6H), 1.26 (t, J=7. 1Hz, 3H).

3-94-Carboxymethyl-3-fluoro-phenylethynyl)-benzoic acid isopropyl ester (Compound 44) A solution of 3- (4-ethoxycarbonylmethyl-3-fluoro-phenylethynyl)-benzoic acid isopropyl ester (Intermediate 138, 0. 1 g, 0. 27mmol) in isopropanol (2mL) and tetrahydrofuran (2mL) was treated with a 2M solution of lithium hydroxide (1mL, 2mmol). After 40 min. at ambient temperature, the reaction mixture was concentrated in vacuo a bit, neutralized with 10% hydrochloric acid and the solid formed was filtered, washed with water and dried to afford the title compound (0.09g, 97%).

1H NMR (300 MHz, CDCl3) : 8 8. 18 (s, 1H), 8. 02 (d, J=7. 6Hz, 1H), 7.68 (d, J=7. 6Hz, 1H), 7.44 (t, J=7. 6Hz, 1H), 7.31-7. 24 (m, 3H), 5.27 (hept, J=6. 1Hz, 1H), 3.74 (s, 2H), 1.39 (d, J=6. 1Hz, 6H). Br 40H, H2so4, CH2C'2 XB r TiC14, C12H (OCH3), CH2C12 / HO HO Intermediate 139 Br NaH, THF ; (CH3) 2CHI XBr TMSC : CH, Pd (PPh3) 2C12, Ho CHO H CuI, NEt3, 90 C CHO CHO Intermediate 140 Intermediate 141 SiMe3 I2CO3, MeOH I /Pd (PPh3) 2CI2, CuI, NEt3, / CHO CHO IJCf COOMe I "0 0 -COOMe Intermediate 142 Intermediate 143 COOME OH \ \ O 1. Me3SiCH (Li) N2, THF X 2. LiOH, MeOH, THF, H20>0 OSA Intermediate 144 Compound 45 l. Ph3P=CH2, THF 2. LiOH, MeOH, THF, H20 OH \ I O >X v Compound 46 Reaction Scheme 24

4-Bromo-2-tert-butyl-5-methyl-phenol (Intermediatel39) A solution of 4-bromo-3-methylphenol (Aldrich, 5. 1 g, 27. 3mmol) in anhydrous dichloromethane (50mL) was treated with 2-methyl-2-propanol (15mL) and concentrated sulfuric acid (3mL) and stirred at ambient temperature for 3 months. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil. Flash column chromatography using 3-5% ethyl acetate in hexane as the eluent afforded the title compound as a deep yellow oil (3. 42g, 51%). It was used as such for the next step.

'H NMR (300 MHz, CDC13) : 8 7.40 (s, 1H), 6.56 (s, 1H), 5.23 (s, 1H), 2.30 (s, 3H), 1.41 (s, 9H).

3-Bromo-5-tert-butyl-6-hydroxy-2-methyl-benzaldehyde (Intermediate 140) A stirred, cooled (ice bath) solution of 4-bromo-2-tert-butyl-5-methyl-phenol (Intermediate 139,0. 85g, 3. 5mmol) in anhydrous dichloromethane (7mL) was treated with titanium tetrachloride (0.64mL, 5. 8mmol) followed by oc, a-dichloro methyl ether (0.3g, 3. 5mmol). The reaction mixture was allowed to warm to ambient temperature for 4h. The reaction mixture was diluted with diethyl ether, washed with brine (xl) and dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue which was subjected to flash column chromatography over silica gel (230-400 mesh) using 1% ethyl acetate in hexane to afford the title compound as a yellow solid (0.58g, 61%).

'H NMR (300 MHz, CDC13) : 8 12.89 (s, 1H), 10.32 (s, 1H), 7.60 (s, 1H), 2.63 (s, 3H), 1.38 (s, 9H).

3-Bromo-5-tert-butyl-6-isopropoxv-2-methyl-benzaldehyde (Intermediate 141) A stirred, cooled (ice bath) solution of 3-bromo-5-tert-butyl-6-hydroxy-2- methyl-benzaldehyde (Intermediate 140, 0. 58g, 2.14mmol) in anhydrous N, N- dimethylformamide (lOmL) was treated with sodium hydride (0. 34g of 60% suspension in mineral oil, 8. 56mmol). After 30 minutes, 2-iodopropane (1. 3mL, 12. 84mmol) was added and the reaction mixture was heated at 75°C overnight. The reaction mixture was then cooled and poured into iced water and extracted with

diethyl ether. The organic extract was then washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to an oil. Flash column chromatography using 2-4% ethyl acetate in hexane as the eluent afforded the title product (0.43g, 64%).

1H NMR (300 MHz, CDC13) : 8 10.23 (s, 1H), 7.68 (s, 1H), 4.34 (heptet, 1H, J= 6.2Hz), 2.57 (s, 3H), 1.40 (s, 9H), 1.28 (d, 6H, J= 6.2Hz).

3-tert-Bu l-2-isopropoxy-6-methyl-5-trimethylsilanlvl-benzaldehyde (Intermediate 142) Following General Procedure D and using 3-bromo-5-tert-butyl-6- isopropoxy-2-methyl-benzaldehyde (Intermediate 141,0. 43g, 1. 37mmol), triethyl amine, copper (I) iodide (0. 021g, 0. 1 lmmol), trimethylsilyl acetylene (1mL), and dichlorobis (triphenylphosphine) palladium (II) (0.077g, 0. 11 mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 2% ethyl acetate in hexane as the eluent, the title compound was obtained (0. 45g, ~100%).

IH NMR (300 MHz, CDC) : 8 10. 10 (s, 1H), 7.41 (s, 1H), 4.19 (heptet, 1H, J= 6. 1Hz), 2.44 (s, 3H), 1.21 (s, 9EI), 1. 09 (d, 6H, J= 6. 1Hz), 0.08 (s, 9H).

3-tert-Butyl-5-ethnvl-2-isopropoxy-6-methvl-benzaldehyde (Intermediate 143) A solution of 3-tert-butyl-2-isopropoxy-6-methyl-5-trimethylsilanylethynyl - benzaldehyde (Intermediate 142,0. 45g, 1. 37mmol) in methanol (5mL) and tetrahydrofuran was treated with potassium carbonate (0.2g, 1. 45mmol) and the resulting reaction mixture was stirred at ambient temperature for 3h. The reaction mixture was evaporated in vacuo and the residue was extracted with diethyl ether and washed with water and brine. The organic phase was dried, filtered and evaporated in vacuo to afford the title compound (0.35 g, 90%).

'H NMR (300 MHz, CDC13) : 8 10.28 (s, 1H), 7.63 (s, 1H), 4. 38 (heptet, 1H, J= 6.2Hz), 3. 48 (s, 1H), 2.63 (s, 3H), 1.39 (s, 9H), 1.29 (d, 6H, J= 6.2Hz). <BR> <BR> <BR> <P>[4- (5-tert-Butyl-3-formyl-4-isopropoxy-2-methyl-phenylethynyl)- phenyll-acetic acid methyl ester (Intermediate 144) Following General Procedure B and using 3-tert-butyl-5-ethynyl-2- isopropoxy-6-methyl-benzaldehyde (Intermediate 143, 0. 35g, 1. 35mmol), 4-iodo phenyl acetic acid methyl ester (0.374g, 1. 35mmol), triethyl amine (8mL),

copper (I) iodide (0.02g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.072g, 0. lmmol) followed by flash column chromatography over silica gel (230- 400 mesh) using 3-5% ethyl acetate in hexane as the eluent, the title compound was obtained as a white solid (0.37g, 75%).

IH NMR (300 MHz, CDC13) : 6 10.29 (s, 1H), 7.65 (s, 1H), 7. 48 (d, 2H, J= 8. 2Hz), 7.53 (d, 2H, J= 8.2Hz), 4.38 (heptet, 1H, J= 6. 1Hz), 3.68 (s, 3H), 3.62 (s, 2H), 2.68 (s, 3H), 1.41 (s, 9H), 1.27 (d, 6H, J= 6. 1Hz). t [4- !-phenyl]-acetic acid methyl ester (Intermediate 145) Anhydrous tetrahydrofuran (3mL) was added to a 2M solution of trimethylsilyl diazomethane in hexanes (0.37mL, 0. 74mmol) and the resulting reaction mixture was cooled to-78°C. A solution of 1.6M n-butyl lithium in hexanes (0. 5mL, 0. 8mmol) was added followed, after 30 minutes, by a solution of [4- (5-tert-butyl-3-formyl-4-isopropoxy-2-methyl-phenylethynyl)- phenyl]-acetic acid methyl ester (Intermediate 144,0. 2g, 0. 49mmol) in anhydrous tetrahydrofuran and the resulting reaction mixture was stirred at -78°C for lh and at 0°C for 40 minutes.

The reaction mixture was then quenched with saturated aqueous ammonium chloride solution and extracted with diethyl ether. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400 mesh) using 2.5-4% ethyl acetate in hexane as the eluent followed by preparative normal phase HPLC using 5% ethyl acetate in hexane as the mobile phase to afford the title product as a colorless oil (0.023g, 11. 6%). 1H NMR (300 MHz, CDC13) : 6 7.49 (d, 2H, J= 8. 0Hz), 7.44 (s, 1H), 7.26 (d, 2H, J= 8. 0Hz), 5.76 (heptet, 1H, J= 6. 1Hz), 3.70 (s, 3H), 3.64 (s, 2H), 3. 58 (s, 1H), 2.58 (s, 3H), 1.39 (s, 9H), 1.31 (d, 6H, J = 6.1Hz). <BR> <BR> <BR> <BR> <P>[4- (5-tert-Butyl-3-ethynvl-4-isopropoxv-2-methyl-phenvlethynall -pheny]-acetic acid (Compound 45) A solution of [4- (5-tert-butyl-3-ethynyl-4-isopropoxy-2-methyl- phenylethynyl)-phenyl]-acetic acid methyl ester (Intermediate 145,0. 023g, 0. 057mmol) in methanol (1. 5mL) and tetrahydrofuran (1. 5mL) was treated with 1M

lithium hydroxide (0. SmL, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 45 minutes. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0.020g, 91%).

IH NMR (300 MHz, CDC13) : 8 7.47 (d, 2H, J= 8. 0Hz), 7.43 (s, 1H), 7. 24 (d, 2H, J = 8. 0Hz), 5.75 (heptet, 1H, J= 6. 1Hz), 3.62 (s, 2H), 3.57 (s, 1H), 2.57 (s, 3H), 1.38 (s, 9H), 1. 30 (d, 6H, J= 6. 1Hz). <BR> <BR> <BR> <BR> <P>[4- (5-tert-Butvl-4-isopropoxy-2-methyl-3-vinyl-phenylethynyrl)- phenyl]-acetic acid methyl ester (Intermediate 146) A solution of methylidene triphenyl phosphorane [5mL of 0. 1 M solution, 0. 5mmol, generated from methyl triphenylphosphonium bromide (2. 5g, 7mmol) and 1. 6M n-butyllithium solution in hexanes (2.9mL, 4. 7mmol) in 50mL of tetrahydrofuran] was added to a solution of [4- (5-tert-butyl-3-formyl-4-isopropoxy- 2-methyl-phenylethynyl)-phenyl]-acetic acid methyl ester (Intermediate 144, 0.052g, 0. 13mmol) in tetrahydrofuran (1mL). After lh the reaction mixture was quenched with water and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a clear oil that after flash column chromatography over silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent afforded the title compound (0.02g, 39%).

IH NMR (300 MHz, CDC13) : 6 7.48 (d, 2H, J= 7.9Hz), 7.39 (s, 1H), 7.25 (d, 2H, J = 7. 9Hz), 6.73 (dd, 1H, J= 11.4, 17.9Hz), 5.49 (dd, 1H, J= 2. 0,11. 4Hz), 5. 37 (dd, 1H, J= 2.1, 17.9Hz), 4.93 (heptet, 1H, J= 6.4Hz), 3.70 (s, 3H), 3.63 (s, 2H), 2.44 (s, 3H), 1.40 (s, 9H), 1.17 (d, 6H, J= 6.4Hz). r4-(5-tert-Butyl-4-isopropoxv-2-methyl-3-vinyl-phenvlethynyl ?-phenyl]-acetic acid (Compound 46) A solution of [4- (5-tert-butyl-4-isopropoxy-2-methyl-3-vinyl- phenylethynyl)-phenyl]-acetic acid methyl ester (Intermediate 146,0. 02g, 0.049mmol) in methanol (1. 5mL) and tetrahydrofuran (1. 5mL) was treated with 1M

lithium hydroxide (0. 5mL, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 45 minutes. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0. 020g, # 100%).

'H NMR (300 MHz, CDC13) : 8 7.48 (d, 2H, J= 8.2Hz), 7.39 (s, 1H), 7.24 (d, 2H, J = 8.2Hz), 6.72 (dd, 1H, J= 11.4, 17.9Hz), 5.49 (dd, 1H, J= 2.0, 11.4Hz), 5.37 (dd, 1H, J= 2.1, 17.9Hz), 4.92 (heptet, 1H, J= 6.2Hz), 3.64 (s, 2H), 2.43 (s, 3H), 1.40 (s, 9H), 1.17 (d, 6H, J= 6. 2Hz). COOMe \ I COOMe NaBH4, MeOH /'O O CHO OH OH Intermediate 142 Intermediate 147 coome NBS, PPh3, CH Cl \ 1 = TMS, Pd (PPh3) 2Cl2, NEt3, DMF, 90°C --O2 >Ot 2. LiOH, MeOH, THF, H20 Br Intermediate 148 OH ici \ I O \ Compound 47 Reaction Scheme 25

L4- !-phenyl]- acetic acid methyl ester (Intermediate 147) A stirred, cooled (ice bath) solution of [4- (5-tert-butyl-3-formyl-4- isopropoxy-2-methyl-phenylethynyl) -phenyl] -acetic acid methyl ester (Intermediate 142,0. 172g, 0. 42mmol) in methanol (4mL) was treated with sodium borohydride (0.02g, 0. 51mmol) and the resulting reaction mixture was stirred for 1. 5h. The reaction mixture was quenched with water and extracted with diethyl ether. The organic phase was washed with water (xl) and brine (xl), dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography over silica gel (230-400 mesh) using 15- 20% ethyl acetate in hexane as the eluent to afford the title product as a white solid (0. 15g, 88%).

IH NMR (300 MHz, CDC13) : 5 7. 48 (d, 2H, J= 8. 5Hz), 7.47 (s, 1H), 7.25 (d, 2H, J = 8. 5Hz), 4.74 (br s, 2H), 4.74-4. 60 (m, 1H), 3.69 (s, 3H), 3.63 (s, 2H), 2.60 (s, 3H), 1.40 (s, 9H), 1.27 (d, 6H, J= 6.2Hz). <BR> <BR> <BR> <BR> <P>[4- 3-Bromomethyl-5-tert-butyl-4-isopropoxy-2-methyl-phenylethyn yl)-phenyl]- acetic acid methyl ester (Intermediate 148) A stirred, cooled (ice bath) solution of [4- (5-tert-butyl-3-hydroxymethyl-4- isopropoxy-2-methyl-phenylethynyl) -phenyl] -acetic acid methyl ester (Intermediate 147, 0. 15g, 0. 37mmol) and triphenylphosphine (0. 125g, 0. 48mmol) in anhydrous dichloromethane (5mL) was treated with N-bromo succinimide (0. 085g, 0. 48mmol) under argon and the resulting reaction mixture was allowed to warm to ambient temperature and stirred overnight. The reaction mixture was quenched with dilute, aqueous sodium bicarbonate solution and extracted with diethyl ether. The organic phase was washed with water (xl) and brine (xl), dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that on flash column chromatography over silica gel (230-400mesh) using 4-5% ethyl acetate in hexane as the eluent afforded the title compound (0.12g, 69%) as a colorless oil. It was used as such for the next step.

{4- [5-e-Butyl-4-isopropoxy-2-methyl-3- ('3-trimethylsilanyl-prop-2-vnvl)- phenylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 149) A solution of [4- (3-bromomethyl-5-tert-butyl-4-isopropoxy-2-methyl- phenylethynyl) -phenyl] -acetic acid methyl ester (Intermediate 148,0. 12g, 0. 25mmol) in triethyl amine (1mL) and N, N-dimethylformamide (4mL) was sparged with argon and treated with trimethylsilylacetylene (0. 5mL, 3. 5mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.025g, 0. 036mmol). The resulting reaction mixture was heated at 85°C overnight at the end of which it was cooled to ambient temperature and subjected to flash column chromatography over silica gel (230-400 mesh) using 4% ethyl acetate in hexane as the eluent followed by preparative normal phase HPLC using 3% ethyl acetate in hexane as the mobile phase to afford the title compound as an oil (0. 038g, 31%).

'H NMR (300 MHz, CDC13) : 8 7.50 (d, 2H, J= 7.9Hz), 7.48 (s, 1H), 7.26 (d, 2H, I = 7.9Hz), 4.89 (heptet, 1H, J= 6. 5Hz), 3.70 (s, 3H), 3.64 (s, 2H), 3.50 (s, 2H), 2.57 (s, 3H), 1.40 (s, 9H), 1.27 (d, 6H, J= 6. 5Hz), 0.12 (s, 9H).

[4- !-phenyl- acetic acid (Compound 47) A solution of {4- [5-tert-butyl-4-isopropoxy-2-methyl-3- (3-trimethylsilanyl- prop-2-ynyl)-phenylethynyl]-phenyl}-acetic acid methyl ester (Intermediate 149, 0.038g, 0. 078mmol) in methanol (1. 5mL) and tetrahydrofuran (1. 5mL) was treated with 2M lithium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature for 1. 5h. The volatiles were evaporated in vacuo to a residue that was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0.032g, 98%). 1H NMR (300 MHz, CDC13): 8 7.50 (d, 2H, J= 8. 1Hz), 7.43 (s, 1H), 7.27 (d, 2H, J= 8. 1Hz), 4.82 (heptet, 1H, J= 6.4Hz), 3.67 (s, 2H), 3. 48 (d, 2H, J= 2. 5Hz), 2.58 (s, 3H), 1.39 (s, 9H), 1.28 (d, 6H, J= 6.4Hz). COO OMe HO 1. Et3SiH, CF3COZH OMe 1. 85% H2S04 OMe A. Bu3SnCH=CH2, 2. MeMgBr, THF ~ 2. Cr03, H20, o sr sr CH3COOH, o gr DMF, Pd (PPh3) 4 Intermediate 150 Intermediate 152 Intermediate 154 OMe 1. pd (OAc) 2, CH2N2, ether OCH3 1. PhNTf2, DMAP, CH2CI2 2. NACN, DMSO 2. Pd (PPh3) 2CI2, = TMS 0 0 CuI, NEt3, THF, 70°C Intennediate 155 Intermediate 156 SiMe3 1 FNH2, NacNBH CHZCIZ, CH3CN, CH3COOH I 1. Pd (PPh3) 2CI2, CuI, NEt3, / 2. MeI, K2C03, CH3COCH3 5 R O ß 3. K2CO3, MeOH X /I COOMe I Intermediate 159 Intermediate 164 Reagent 1 R$ = H, R5 Me 5 115 Reagent 2 50 R5 = R, = Me COOH COOH 2. LiOH/KOH, MeOH, THF, H20 1 '7/N Compound 49 R$ = H, Rus1 = Me Compound 50 RS = RS1 = Me i 1. Pd (PPh3) 2CI2, CuI, NEt3, cooed W COOEt W 7/N N I' d 2. LiOH/KOH, MeOH, THF, H20 Compound 48 Intermediate 164 Reaction Scheme 26

4- (2-Bromo-4-methoxy-phenyl)-4-oxo-butyric acid ethyl ester (Intermediate 150) A stirred, cooled (-30°C) solution of 3-bromo anisole (18. 7g, 100mmol) and ethyl succinyl chloride (21mL, 150mmol) in anhydrous dichloromethane (200mL) was treated with aluminum chloride (26.6g, 200mmol) and the reaction mixture was allowed to warm to ambient temperature and stirred overnight. The reaction mixture was poured into water and extracted with dichloromethane (x2). The combined organic phase was washed with brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a brown oil. A solid separated out on standing. The supernatant liquid was decanted and the solid was washed with 1: 3 dichloromethane: hexane and dried to afford the isomer 4- (4-bromo-2-methoxy-phenyl)-4-oxo-butyric acid ethyl ester. The combined mother liquor and washings was evaporated to a brown oil that was subjected to flash column chromatography over silica gel (230- 400mesh) using 15% ethyl acetate in hexane as the eluent to afford the isomer 4- (4- bromo-2-methoxy-phenyl) -4-oxo-butyric acid ethyl ester (overall 12g, 38%), and the title compound (11. 4g, 36%) and a 1: 1 mixture of both (2g, 6. 3%).

'H NMR (300 MHz, CDC13) : 8 7.59 (d, 1H, J= 8.8Hz), 7.14 (d, 1H, J= 2.6Hz), 6. 87 (dd, 1H, J= 2.6, 8. 8Hz), 4.14 (q, 2H, J= 7. 0Hz), 3.83 (s, 3H), 3.23 (t, 2H, J= 6.4Hz), 2.74 (t, 2H, J= 6.4Hz), 1.25 (t, 3H, J= 7. 0Hz).

4 (2-Bromo-4-methoxv-phenyl)-butyric acid ethyl ester (Intermediate 151) A solution of 4- (2-bromo-4-methoxy-phenyl)-4-oxo-butyric acid ethyl ester (Intermediate 150,6. 45g, 20. 5mmol) in trifluoroacetic acid (32mL, 409mmol) was treated with triethylsilane (14.4mL, 90mmol) and the resulting reaction mixture was heated at 55°C for 3h. The reaction mixture was then cooled to ambient temperature, neutralized with solid sodium bicarbonate, diluted with water and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (5.4g, 88%) as a colorless oil.

IH NMR (300 MHz, CDC13) : 8 7.11 (d, 1H, J= 8. 2Hz), 7.08 (d, 1H, J= 2.6Hz), 6.79 (dd, 1H, J= 2.6, 8.2Hz), 4.13 (q, 2H, J= 7.3Hz), 3.76 (s, 3H), 2.71 (t, 2H, J= 7.6Hz), 2.34 (t, 2H, J= 7.6Hz), 1.92 (quintet, 2H, J= 7. 6Hz), 1.26 (t, 3H, J= 7.3Hz).

5- (2-Bromo-4-methoxy-phenyl)-2-methyl-pentan-2-ol (Intermediate 152) A stirred, cooled (-10°C) solution of 4- (2-bromo-4-methoxy-phenyl)-butyric acid ethyl ester (Intermediate 151,5. 4g, 18mmol) in anhydrous tetrahydrofuran (lOOmL) was treated with a 3M solution of methyl magnesium bromide (16mL, 48mmol) and the resulting reaction mixture was allowed to warm to ambient temperature over 3h. It was quenched with saturated, aqueous ammonium chloride solution, diluted with water and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a viscous oil (5. 16g,-100%).

IH NMR (300 MHz, CDC13) : 8 7.11 (d, 1H, J= 8. 5Hz), 7.08 (d, 1H, J= 2.6Hz), 6.78 (dd, 1H, J= 2.6, 8. 5Hz), 3.77 (s, 3H), 2.67 (t, 2H, J= 7.3Hz), 1.69-1. 43 (m, 4H), 1. 21 (s, 6H). <BR> <BR> <BR> <BR> <BR> <P>5-Bromo-2-methoxy-l, l-dimethyl-1, 2, 3, 4-tetrahvdro-naphthalene (Intermediate 153) 5- (2-Bromo-4-methoxy-phenyl)-2-methyl-pentan-2-ol (Intermediate 152, 5.16g, 17. 9mmol) was treated with 85% sulfuric acid (50mL) at ambient temperature. After 30 minutes, the reaction mixture was diluted with cold water and extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (4.63g, 96%) as a pale yellow oil.

IH NMR (300 MHz, CDC13) : 8 6.96 (d, 1H, J= 2.6Hz), 6.86 (d, 1H, J= 2.6Hz), 3.76 (s, 3H), 2.68 (t, 2H, J= 6.7Hz), 1.83-1. 75 (m, 2H), 1.62-1. 58 (m, 2H), 1.26 (s, 6H).

8-Bromo-6-metho-4, 4-dimethyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 154) A solution of 5-bromo-2-methoxy-l, l-dimethyl-1, 2,3, 4-tetrahydro- naphthalene (Intermediate 153,4. 6g, 17. 1mmol) in glacial acetic acid (20mL) was cooled to 0°C and treated with a solution of chromium trioxide (5. 5g, 55mmol) in acetic acid and water (20mL each). The reaction mixture was then allowed to warm to ambient temperature and stirred for 24h. It was diluted with water and extracted with diethyl ether (x2). The combined organic phase was washed with water (x3),

saturated aqueous sodium bicarbonate (xl) and brine (xl), dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title compound (3.9g, 81 %) as a yellow oil.

IH NMR (300 MHz, CDC13) : S 7.09 (d, 1H, J= 2.6Hz), 6.87 (d, 1H, J= 2.6Hz), 3.85 (s, 3H), 2.71 (t, 2H, J= 7. 0Hz), 1.96 (t, 2H, J= 7. 0Hz), 1.35 (s, 6H).

6-Methoxv-4n4-dimethyl-8-vinvl-3*4-dihydro-2H-naphthalen-l-o ne (Intermediate 155) A solution of 8-bromo-6-methoxy-4,4-dimethyl-3, 4-dihydro-2H-naphthalen- 1-one (Intermediate 154,2. 83g, lOmmol) and tributyl (vinyl) tin (3mL, lOmmol) in anhydrous N, N-dimethyl formamide (30mL) was sparged with argon and treated with tetrakis (triphenylphosphine) palladium (0) (0.3g, 0.26mmol). The resulting reaction mixture was heated to 91°C for two days at the end of which it was cooled to ambient temperature, diluted with water and extracted with diethyl ether (x2).

The combined organic phase was washed with water (xl), and brine (xl), dried over anhydrous magnesium sulfate, filtered and evaporated to a pale yellow oil. Flash chromatography using 15% ethyl acetate in hexane as the eluent afforded the title product (1.7g, 73%) as a pale yellow oil.

'H NMR (300 MHz, CDC13) : 8 7.50 (dd, 1H, J= 10.8, 17. 3Hz), 6.85 (s, 2H), 5.50 (dd, 1H, J= 1.4, 17.3Hz), 5.28 (dd, 1H, J= 1.4, 10. 8Hz), 3. 88 (s, 3H), 2.68 (t, 2H, J = 6.7Hz), 1.95 (t, 2H, J= 6.7Hz), 1.35 (s, 6H).

8-Cyclopropyl-6-methoxy-4*4-dimethyl-3 4-dihydro-2H-naphthalen-1-one (Intermediate 156) A stirred, cooled (-40°C) solution of 6-methoxy-4, 4-dimethyl- 8-vinyl-3, 4-dihydro-2H-naphthalen-l-one (Intermediate 155,51. 7g, 7. 4mmol) in diethyl ether (lOmL) was treated with a solution of diazomethane in ether (40mmol in 50mL of ether) followed by palladium (II) acetate (0. 08g) and the resulting reaction mixture was warmed to-25°C when effervescence was observed. The reaction mixture was then filtered through a plug of silica and the filtrate was evaporated to afford a dark brown residue that was subjected to flash column chromatography over silica gel (23-400mesh) using 20% ethyl acetate in hexane as the eluent to afford the title product as a pale yellow solid (1. 5g, 83%).

'HNMR (30O MHz, CDC13) : 8 6.71 (d, 1H, J= 2. 6Hz), 6.44 (d, 1H, J= 2. 6Hz), 3.82 (s, 3H), 2.98 (m, 1H), 2.69 (t, 2H, J= 6.7Hz), 1.94 (t, 2H, J= 6.7Hz), 1.34 (s, 6H), 1.02-0. 88 (m, 2H), 0.65-0. 59 (m, 2H).

8-Ceclopropyl-6-hYdroxe-3 4-dihydro-2H-naphthalen-1-one (Intermediate 157) A solution of 8-cyclopropyl-6-methoxy-4, 4-dimethyl-3,4-dihydro-2H- naphthalen-l-one (Intermediate 156, 1. 5g, 6. 14mmol) and sodium cyanide (2g, 40. 8mmol) in anhydrous dimethylsulfoxide (25mL) was heated at 230°C overnight under argon. The reaction mixture was then cooled to ambient temperature, poured into ice and acidified (Caution ! Hydrogen cyanide evolution!) with dilute hydrochloric acid and extracted with ethyl acetate (x2). The combined organic extract was washed with brine (xl), dried over anhydrous sodium sulfate, filtered and evaporated to afford a dark brown oil. Flash column chromatography on silica gel (230-400mesh) using 25% ethyl acetate in hexane as the eluent afforded the title compound as a solid (l. lg, 78%).

'H NMR (300 MHz, CD3COCD3) : 8 8.14 (s, 1H), 6.75 (d, 1H, J= 2.4Hz), 6.40 (d, 1H, J= 2.4Hz), 3.02 (m, 1H), 2.62 (t, 2H, J= 6.8Hz), 1.94 (t, 2H, J= 6.8Hz), 1.33 (s, 6H), 0.93-0. 89 (m, 2H), 0.59-0. 55 (m, 2H).

Trifluoro-methanesulfonic acid 4-cvclopropyl-8*8-dimethyl-5-oxo-5*6*7*8- tetrahydro-naphthalen-2 ester (Intermediate 158) A solution of 8-cyclopropyl-6-hydroxy-4, 4-dimethyl-3, 4-dihydro-2H- naphthalen-1-one (Intermediate 157, l. lg, 4.78mmol) and 4- dimethylaminopyridine (1.22g, lOmmol) in anhydrous dichloromethane (20mL) was treated 2- [NN-bis (trifluoromethylsulfonyl) amino] -5-chloro-pyridine (2.07g, 5. 26mmol) under argon at ambient temperature. After 3. 5h, the reaction mixture was subjected to flash column chromatography on silica gel (230-400mesh) using 10% ethyl acetate in hexane as the eluent to afford the title compound as solid (1.76g, 100%).

'H NMR (300 MHz, CDC13) : 8 7.10 (d, 1H, J= 2.3Hz), 6.78 (d, 1H, J= 2.3Hz), 2.90 (m, 1H), 2.78 (t, 2H, J= 7. 0Hz), 2.01 (t, 2H, J= 7. 0Hz), 1.38 (s, 6H), 1.10-1. 04 (m, 2H), 0.67-0. 62 (m, 2H).

8-Cyclopropyl-4,4-dimethyl-6-(trimethylsilanyl)ethynyl-3, 4-dihydro-2H- naphthalen-l-one (Intermediate 159) Following General Procedure B and using trifluoro-methanesulfonic acid 4- cyclopropyl-8, 8-dimethyl-5-oxo-5,6, 7, 8-tetrahydro-naphthalen-2yl ester (Intermediate 158,1. 09g, 3mmol), triethyl amine (5mL), tetrahydrofuran (5mL), copper (I) iodide (0.12g, 0. 6mmol), dichlorobis (triphenylphosphine) palladium (II) (0.42g, 0. 6mmol) and (trimethylsilyl) acetylene (2.2mL, 15mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 7% ethyl acetate in hexane as the eluent, the title compound was obtained as an orange oil (1. 05g, quantitative).

IH NMR (300 MHz, CDC13) : 8 7.29 (d, 1H, J= 1. 2Hz), 6.98 (d, 1H, J= 1. 2Hz), 2.81 (m, 1H), 2.72 (t, 2H, J= 6.7Hz), 1.95 (t, 2H, J= 6.7Hz), 1.34 (s, 6H), 1.01-0. 95 (m, 2H), 0.66-0. 61 (m, 2H), 0.26 (s, 9H).

8-Cyclopropyl-4n4-dimethyl-6-ethynyl-1-tekalone (Intermediate 160) Following General Procedure F and using 8-cyclopropyl-4,4-dimethyl-6- (trimethylsilanyl) ethynyl-l-tetralone (Intermediate 159, 1. 05g, 3. 38mmol), methanol (20mL) and potassium carbonate (I g, 14. 5mmol) followed by flash column chromatography using 7% ethyl acetate in hexane as the eluent, the title compound was obtained (0.57g, 80%) as a pale yellow solid.

'H NMR (300 MHz, CDC13) : 8 7.34 (d, 1H, J= 2. 5Hz), 7.02 (d, 1H, J= 2. 5Hz), 3.19 (s, 1H), 2.83 (m, 1H), 2.74 (t, 2H, J= 6.7Hz), 1.97 (t, 2H, J= 6.7Hz), 1. 35 (s, 6H), 1.03-0. 86 (m, 2H), 0.66-0. 61 (m, 2H).

3-[4-(4-Cyclopropyl-8,8-dimethyl-5-oxo-5,6,7,8-tetrahydro -naphthalen-2- vIethynvD-phenyl-acrvlic acid ethyl ester (Intermediate 161) Following General Procedure B and using 8-cyclopropyl-4,4-dimethyl-6- ethynyl-1-tetralone (Intermediate 160, 0. 1g, 0. 42mmol), (E)-3- (4-iodo-phenyl)- acrylic acid ethyl ester (0. 13g, 0. 42mmol), triethyl amine (lmL), copper (I) iodide (0.02g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.070g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh), the title compound was obtained (0.12g, 69%).

'H NMR (300 MHz, CDC13) : 8 7.65 (d, 1H, J= 15.8Hz), 7.52 (ABq, 4H, J= 8. 1Hz), 7. 37 (d, 2H, J= 1. 5Hz), 7.05 (d, 1H, J= 1. 5Hz), 6.45 (d, 1H, J= 15. 8Hz), 4.26 (q, 2H, J= 7.2Hz), 2.88-2. 79 (m, 1H), 2.77-2. 71 (m, 2H), 2.00-1. 92 (m, 2H), 1.36-1. 21 (m, 9H), 1.04-0. 97 (m, 2H), 0.69-0. 59 (m, 2H).

3- {4- [4-Cvclopropyl-5- (cvclopropvl-methvl-amino)-8. 8-dimethyl-5, 6, 7, 8- tekahydro-naphthalen-2-ylethynel]-phenyl}-acr-ylic acid ethyl ester (Intermediate 162) Following General Procedure C and using 3- [4- (4-cyclopropyl-8, 8-dimethyl- 5-oxo-5, 6, 7, 8-tetrahydro-naphthalen-2-ylethynyl)-phenyl]-acrylic acid ethyl ester (Intermediate 161,0. 12g, 0. 29mmol) in dichloromethane (4mL) and acetonitrile (2mL), cyclopropyl amine (lmL, 14. 5mmol), acetic acid (1mL) and sodium cyanoborohydride (0.16g, 2. 4mmol) followed by work up afforded an intermediate as an oil, that was used as such for the next step. The residue (crude 0. 18g) was dissolved in acetone (6mL) and treated with potassium carbonate (0.28g, 2mmol) and methyl iodide (lmL, 16mmol). The resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated ira vacuo, the residue was diluted with water and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated to an oil. Flash column chromatography over silica gel (230-400 mesh) followed by preparative normal phase HPLC using 5% ethyl acetate in hexane as the mobile phase afforded the title compound (0. 08g) as a clear oil, which was used as such for the next step.

3- 4- [4-Cvclopropyl-5- (cvclopropyl-methyl-amino)-8, 8-dimethyl-5, 6, 7, 8- tetrahydro-naphthalen-2-ylethynyl]-phenyl}-acrylic acid (Compound 48) A solution of 3- {4- [4-cyclopropyl-5- (cyclopropyl-methyl-amino)-8, 8- dimethyl-5,6, 7, 8-tekahydro-naphthalen-2-ylethynyl]-phenyl}-acrylic acid ethyl ester (Intermediate 164, 0. 08g, 0. 17mmol) in methanol (3mL) and tetrahydrofuran (3mL) was treated with 2M sodium hydroxide solution (2mL, 4mmol) and the resulting reaction mixture was refluxed overnight. The reaction mixture was cooled to ambient temperature, the volatiles were evaporated in vacuo, the residue was diluted with saturated aqueous ammonium chloride solution, and extracted with

ethyl acetate (x2). The combined organic extract was dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a solid. Preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase afforded the title product as a solid (0.04g, 50%).

'H NMR (300 MHz, CDC13) : 8 7.76 (d, 1H, J= 15.8Hz), 7.54 (Abq, 4H, J= 8.8Hz), 7.38 (d, 1H, J= 1. 5Hz), 6.96 (d, 1H, J= 1. 5Hz), 6.47 (d, 1H, J= 15.8Hz), 4. 31 (t, 1H, J= 4.7Hz) 2.27 (s, 3H), 2.40-1. 43 (m, 6H), 1. 38 (s, 3H), 1.23 (s, 3H), 0.98-0. 78 (m, 4H), 0.39-0. 13 (m, 4H).

8-Cvclopropyl-5- (cyclopropvl-methyl-amino)-4. 4-dimethyl- (2- trimethylsilanyl) ethvnvl-1, 2, 3, 4-tetrahvdronaphthalene (Intermediate 163) Following General Procedure C and using 8-cyclopropyl-4,4-dimethyl-6- (trimethylsilanyl) ethynyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 159, 0.77g, 2. 5mmol) in dichloromethane (6mL) and acetonitrile (3mL), cyclopropyl amine (3mL, 45mmol), acetic acid (1mL) and sodium cyanoborohydride (0.63g, 9. 5mmol) followed by work up afforded an intermediate as an oil, that was used as such for the next step. Th residue (crude 2. 5mmol) was dissolved in acetone (20mL) and treated with potassium carbonate (1.03g, 7. 5mmol) and methyl iodide (1. 55mL, 25mmol). The resulting reaction mixture was stirred at ambient temperature over 2 days. The solids were filtered off, thr filtrate and washings were evaporated in vacuo to an oil. Flash column chromatography over silica gel (23Q-400 mesh) using 2-4% ethyl acetate in hexane as the mobile phase afforded the title compound (0.58g, 75%).

IH NMR (300 MHz, CDC13): 8 7.31 (d, J=1. 6Hz, 1H), 6. 89 (d, J=1. 6Hz, 1H), 4.27 (br s, 1H), 2.40-2. 30 (m, 1H), 2.30-2. 20 (m, 1H), 2.24 (s, 3H), 2.10-2. 00 (m, 1H), 2.00- 1.80 (m, 2H), 1.60-1. 50 (m, 1H), 1.35 (s, 3H), 1.20 (s, 3H), 0.90-0. 75 (m, 4H), 0.40- 0.25 (m, 3H), 0.26 (s, 9H), 0.20-0. 10 (m, 1H).

8-Cyclopropyl-5-(cyclopropyl-methyl-amino !-2-ethynyl-4*4-dimethyl-l 234- tetrahydronaphthalene (Intermediate 164) A solution of 8-cyclopropyl-5- (cyclopropyl-methyl-amino)-4, 4-dimethyl- (2- trimethylsilanyl) ethynyl-1, 2,3, 4-tetrahydronaphthalene (Intermediate 163,0. 3g, 0. 82mmol) in methanol (lOmL) was treated with potassium carbonate (0.2g,

1. 44mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The solids were filtered off, the residue was diluted with water and extracted with diethyl ether. The organic phase was dried over anhydrous magnesium sulfate, fltered and evaporated to aford the title compound (0.22g, 92%).

1H NMR (300 MHz, CDCl3) : # 7. 44 (d, J=1. 6Hz, 1H), 7.01 (d, J=1. 6Hz, 1H), 4.38 (br s, 1H), 3.11 (s, 1H), 2.48-2. 38 (m, 1H), 2.38-2. 28 (m, 1H), 2.34 (s, 3H), 2.18- 2.08 (m, 1H), 2.05-1. 85 (m, 2H), 1.70-1. 60 (m, 1H), 1.44 (s, 3H), 1.30 (s, 3H), 1.00- 0.85 (m, 4H), 0.50-0. 35 (m, 3H), 0.30-0. 18 (m, 1H).

2-{4-[4-Cyclopropyl-5-(cyclopropyl-methyl-amino)-8,8-dime thyl-5,6,7,8- tetrahydro-naphthalen-2-ylethvnyl]-phenyl-propionic acid methyl ester (Intermediate 165) Following General Procedure B and using 8-cyclopropyl-5- (cyclopropyl- methyl-amino) -2-ethynyl-4,4-dimethyl-1, 2,3, 4-tetrahydronaphthalene (Intermediate 164, 0. 11 g, 0.37mmol), methyl-2- (4-iodo phenyl) propionate (Reagent 1,0. 108g, 0. 37mmol), triethyl amine (lOmL), copper (I) iodide (0.019g, O. 1mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by work up and flash column chromatography over silica gel (230-400 mesh) using 1%-4% ethyl acetate in hexane as the eluent, the title compound was obtained as a pale yellow amorphous solid (0.148g, 87%).

'H NMR (300 MHz, CDC13) : 8 7. 51 (d, J=8. 5Hz, 2H), 7.39 (d, J=1. 6Hz, 1H), 7.29 (d, J=8. 5Hz, 2H), 6.97 (d, J=1. 6Hz, 1H), 4.32 (bs, 1H), 3.75 (q, J=7. 0Hz, 1H), 3.70 (s, 3H), 2.40-2. 30 (m, 1H), 2.30-2. 20 (m, lH), 2.28 (s, 3H), 2.18-2. 08 (m, 1H), 2.02- 1.82 (m, 2H), 1.62-1. 52 (m, 1H), 1.52 (d, J=7.0Hz, 3H), 1.39 (s, 3H), 1.25 (s, 3H), 0. 98-0. 80 (m, 4H), 0.45-0. 25 (m, 3H), 0.20-0. 15 (m, 1H).

2- {4- [4-Cyclopropyl-5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-5. 6, 7, 8- tekahedro-naphthalen-2-ylethynyl]-phenyl}-propionic acid (Compound 49) A solution of 2-14- [4-cyclopropyl-5- (cyclopropyl-methyl-amino)-8, 8- dimethyl-5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-propionic acid methyl ester (Intermediate 165,0. 075g, 0. 16mml) in methanol (2mL) and tetrahydrofuran (2mL) was treated with 2M lithium hydroxide (1mL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature for 5h. The reaction mixture

was neutralized with ammonium chloride and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford the title product as a yellow solid (0. 07g, 96%).

IH NMR (300 MHz, CDC13) : 8 7.50 (d, J=8. 5Hz, 2H), 7.39 (d, J=1. 6Hz, 1H), 7. 31 (d, J=8. 5Hz, 2H), 6.97 (d, J=1. 6Hz, 1H), 4.34 (bs, 1H), 3.74 (q, J=7. OHz, 1H), 2.40- 2.30 (m, 1H), 2.30-2. 20 (m, 1H), 2.29 (s, 3H), 2.18-2. 08 (m, 1H), 2.02-1. 82 (m, 2H), 1.62-1. 52 (m, 1H), 1.52 (d, J=7. 0Hz, 3H), 1.39 (s, 3H), 1.24 (s, 3H), 0.98-0. 80 (m, 4H), 0.40-0. 30 (m, 3H), 0.20-0. 15 (m, 1H).

2-{4-[4-(Cyclopropyl-5-(cyclopropyl-methyl-amino)-8,8-dim ethyl-5,6,7,8- tetrahydro-naphthalen-2-ylethynyl]-phenyl}-2-methyl-propioni c acid methyl ester (Intermediate 166) Following General Procedure B and using 8-cyclopropyl-5- (cyclopropyl- methyl-amino) -2-ethynyl-4, 4-dimethyl-1, 2,3, 4-tetrahydronaphthalene (Intermediate 164,0. 11g, 0. 37mmol), methyl-2- (4-iodo phenyl)-2-methyl- propionate (Reagent 2, 0.118g, 0. 39mmol), triethyl amine (lOmL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by work up and flash column chromatography over silica gel (230-400 mesh) using 1%-4% ethyl acetate in hexane as the eluent, the title compound was obtained as a pale yellow amorphous solid (0.125g, 70%).

'H NMR (300 MHz, CDC13) : 8 7.51 (d, J=8. 5Hz, 2H), 7.39 (d, J=1. 6Hz, 1H), 7.33 (d, J=8. 5Hz, 2H), 6.97 (d, J=1. 6Hz, 1H), 4.32 (bs, 1H), 3. 68 ( s, 3H), 2.40-2. 30 (m, 1H), 2.30-2. 20 (m, 1H), 2.28 (s, 3H), 2.15-2. 05 (m, 1H), 2.00-1. 80 (m, 2H), 1.61 (s, 6H), 1.62-1. 52 (m, 1H), 1.39 (s, 3H), 1.25 (s, 3H), 0.95-0. 80 (m, 4H), 0.45-0. 30 (m, 3H), 0.20-0. 10 (m, 1H).

2-f 4- [4-Cyclopropyl-5- (cyclopropyl-methyl-amino)-8, 8-dimethvl-5, 6, 7, - tetrahydro-naphthalen-2-ylethynyl]-phenyl}-2-methyl-propioni c acid (Compound 50) A solution of 2-{4-[4-cyclopropyl-5-(cyclopropyl-methyl-amino)-8, 8- dimethyl-5,6, 7,8-

tetrahydro-naphthalen-2-ylethynyl]-phenyl}-2-methyl-propioni c acid methyl ester (Intermediate 166,0. 125g, 0. 266mmol) in methanol (2. 5mL) and tetrahydrofuran (2. 5mL) was treated with 3M potassium hydroxide (lmL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with ammonium chloride and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford the title product as an amorphous pale yellow solid (0.12g, 98%).

IH NMR (300 MHz, CDC13): 5 7. 51 (d, J=8. 5Hz, 2H), 7.40-7. 38 (m, 3H), 6.97 (d, J=1. 6Hz, 1H), 4.33 (bs, 1H), 2.40-2. 30 (m, 1H), 2.30-2. 20 (m, 1H), 2.28 (s, 3H), 2.10- 2. 100 (in, 1H), 2.00-1. 80 (m, 2H), 1.62 (s, 6H), 1.60-1. 50 (m, 1H), 1.39 (s, 3H), 1.24 (s, 3H), 0.95-0. 80 (m, 4H), 0.45-0. 30 (m, 3H), 0.20-0. 10 (m, 1H). TMS 1. NaCNBH3, I/-NN ACOH, ACCN 1. Pd (PPh3) 2C'2, CU', NEt3, 2. MeI, IzC03, CH3COCH3 0 3. MeOH, K2C03 71"1 Coome I U. S. Patent No. Intermediate 168 6, 252, 090 6, 252, 090 Reagent 1 R5 = H, R51 = Me Reagent 2 R5 = R51 = Me R5 R5 COOH 2. LiOH/KOH, MeOH, THF, H20 Compound 51 R5 = H, R51 = Me Compound 52 R5 = R5 I = Me

Reaction Scheme 27

Cyclopropyl- (4, 4-dimethyl-6-trimethvlsilanvlethvnyl-1, 2, 3, 4-tetrahvdro-naphthalen- 1-yl)-methyl-amine (Intermediate 167) Following General Procedure C and using 4,4-dimethyl-6- trimethylsilanylethynyl-3, 4-dihydro-2H-naphthalen-l-one (described in US 6,252, 090,1. 23g, 4.6mmol) in dichloromethane (7mL) and acetonitrile (3mL), cyclopropyl amine (2. 5mL, 36mmol), acetic acid (2. 5mL) and sodium cyanoborohydride (0.58g, 8. 6mmol) followed by work up and flash column chromatography over silica gel (230-400 mesh) using 8% ethyl acetate in hexane as the eluent afforded an intermediate as a golden yellow solid (1.07g, 76%). The intermediate (0.67g, 2. 62mmol) was dissolved in acetone (lOmL) and treated with potassium carbonate (2.2g, 16mmol) and methyl iodide (0. 75mL, 12mmol). The resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated to an oil which was used as such for the next step. <BR> <BR> <BR> <BR> <P>Cyclopropyl- (6-ethynyl-4, 4-dimethyl-1, 2, 3, 4-tetrahvdro-naphthalen-l-vl)-methvl- amine (Intermediate 168) A solution of cyclopropyl- (4, 4-dimethyl-6-trimethylsilanylethynyl-1, 2,3, 4- tetrahydro-naphthalen-1-yl)-methyl-amine (Intermediate 167,0. 67g, 2. 62mmol) in methanol (lOmL) was treated with potassium carbonate (1 g, 7.23 mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo and the residue was diluted with water and extracted with diethyl ether. The organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a light yellow oil (0. 5g, 75%).

'H NMR (300 MHz, CDC13) : 8 7.47 (d, 1H, J= 8. 2Hz), 7.41 (d, 1H, J= 1. 4Hz), 6.79 (dd, 1H, J= 8. 2, 1. 4Hz), 3.92 (t, 1H, J= 8.2Hz), 3.01 (s, 3H), 2.11 (s, 3H), 2.15-2. 07 (m, 1H), 1.95-1. 57 (m, 4H), 1.29 (s, 3H), 1.24 (s, 3H), 0.53-0. 37 (m, 4H).

2- {4- [5-fCyclopropyl-methyl-amino)-8, 8-dimethyl-5, 6, 7, 8-tetrahydro-naphthalen-2- vlethvnyl]-phenyl}-propionic acid methyl ester (Intermediate 169) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8, 8-dimethyl-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 168,0. 116g, 0.46mmol), methyl-2- (4-iodophenyl) propionate (Reagent 1,0. 17g, 0. 59mmol), triethyl amine (0.75mL), copper (I) iodide (0.07g, 0. 37mmol) and tetrakis (triphenylphosphine) palladium (0) (0.022g, 0.019mmol) followed by flash column chromatography over silica gel (230-400 mesh) and preparative normal phase HPLC using 5% ethyl acetate in hexane as the eluent, the title compound was obtained (0.08g, 42%).

'H NMR (300 MHz, CDC13) : 6 7.51-7. 43 (m, 3H), 7.29-7. 22 (m, 4H), 3.94 (t, 1H, J = 7. 9Hz), 3.76-3. 62 (m, 1H), 3.65 (s, 3H), 2.12 (s, 3H), 2.15-2. 08 (m, 1H), 2.00-1. 54 (2m, 4H), 1.52-1. 46 (2d, 3H, J= 7.4Hz), 1.31 (s, 3H), 1.27 (s, 3H), 0.53-0. 38 (m, 4H).

2-{4-[5-(Cyclopropyl-methyl-amino)-8,8-dimethyl-5,6,7,8-t etrahydro-naphthalen- 2-ylethYnyll-phenyl}-propionic acid (Compound 51) A solution of 2-14- [5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-5, 6,7, 8- tetrahydro-naphthalen-2-ylethynyl]-phenyl}-propionic acid methyl ester (Intermediate 169,0. 022g, 0. 05mmol) in methanol (2mL) and tetrahydrofuran (2mL) was treated with a 2M solution of sodium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The reaction mixture was neutralized with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase to afford the title product (0.008g, 40%).

'H NMR (300 MHz, CDC13) : b 7.50-7. 44 (m, 3H), 7.31-7. 27 (m, 3H), 7.20 (dd, 1H, J= 8.2, 1. 5Hz), 4.00 (t, 1H, J= 8.2Hz), 3.74 (q, 1H, J= 7. 1Hz), 1H), 2.15 (s, 3H), 2.15-2. 10 (m, 1H), 1. 98-1. 81 (m, 2H), 1.80-1. 63 (m, 2H), 1.51 (d, 3H, J= 7. 1Hz), 1.31 (s, 3H), 1.27 (s, 3H), 0.52-0. 49 (m, 4H).

2- 4-f5-(Cvclopropyl-methyl-amino)-8,8-dimethyl-5 6, 7 8-tetrahydro-naphthalen-2- ylethynyl]-phenyl}-2-methyl-propionic acid methyl ester (Intermediate 170) Following General Procedure B and using 5- (cyclopropyl-methyl-amino)-2- ethynyl-8,8-dimethyl-5, 6,7, 8-tetrahydro-naphthalene (Intermediate 168,0. 16g, 0. 63mmol), methyl-2- (4-iodophenyl)-2-methyl-propionate (Reagent 2,0. 18g, 0. 58mmol), triethyl amine (3mL), copper (I) iodide (0. 048g, 0. 25mmol) and tetrakis (triphenylphosphine) palladium (0) (0.032g, 0. 027mmol) followed by flash column chromatography over silica gel (230-400 mesh) and preparative normal phase HPLC using 6% ethyl acetate in hexane as the mobile phase, the title compound was obtained (0.14g, 56%).

'H NMR (300 MHz, CDC13) : 8 7.54-7. 47 (m, 4H), 7.34-7. 26 (m, 3H), 3.97 (t, 1H, J = 7.9Hz), 3.68 (s, 3H), 2.16 (s, 3H), 2.16-2. 00 (m, 1H), 2.00-1. 61 (2m, 4H), 1.61 (s, 6H), 1.35 (s, 3H), 1.30 (s, 3H), 0.56-0. 44 (m, 4H).

2-{4-[5-(Cyclopropyl-methyl-amino)-8,8-dimethyl-5,6,7,8-t etrahydro-naphthalen-2- vlethvnvl]-phenvl}-2-methyl-propionic acid (Compound 52) A solution of 2- {4- [5- (cyclopropyl-methyl-amino)-8, 8-dimethyl-5,6, 7,8- tetrahydro-naphthalen-2-ylethynyl]-phenyl}-2-methyl-propioni c acid methyl ester (Intermediate 170,0. 08g, 0.19mmol) in methanol (3mL) and tetrahydrofuran (3mL) was treated with a 2M solution of sodium hydroxide (2mL, 4mmol) and the resulting reaction mixture was refluxed overnight. The volatiles were evaporated in vacuo and the residue was diluted with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0. 07g, #100%).

'H NMR (300 MHz, CDC13) : 8 9.47 (br s, 1H), 7.53-7. 49 (m, 4H), 7.39 (d, 2H, J= 8. 5Hz), 7.26 (dd, 1H, J= 7.9, 1. 5Hz), 3. 97 (t, 1H, J= 7. 9Hz), 2.16 (s, 3H), 2.16-2. 00 (m, 1H), 2.00-1. 61 (2m, 4H), 1.61 (s, 6H), 1.35 (s, 3H), 1.30 (s, 3H), 0.56-0. 44 (m, 4H). Me NACN H PbNTf2, DMAP, CH2C12 CH3) 25 230°C O O Published U. S. Application No Intermediate 171 2003/0166932. 1. Pd (PPh3) 2CI2, CuI, SiMe3 NEt3, THF, 70°C/ OF - TMS ° 2. NaCNgH3 FNH2 Ns Intermediate 172 AcOH, AcCN V' 3. MeI, K2CO3, acetone Intermediate 173 COOL / McOH 1. Pd (PPh3) Clz, Cul, NEt3, vC // v N\ I < COOMe v N\ \/n \ I Intermediate 174 2 KOH

Reaction Scheme 28 6-Hydroxy-4,4,7-trimethyl-3,4-dihydro-2H-naphthalen-1-one (Intermediate 171) A solution of 6-methoxy-4,4, 7-trimethyl-3, 4-dihydro-2H-naphthalen-l-one (described in US 2003/0166932, published Sept 4,2003, incorporated herein by reference ; 5. 5g, 25.6mmol) and sodium cyanide (6.25g, 127mmol) in anhydrous dimethylsulfoxide (lOOmL) was heated at 230°C for 48h under argon. The reaction mixture was then cooled to ambient temperature, poured into ice and acidified (Caution! Hydrogen cyanide evolution!) with dilute hydrochloric acid and extracted with ethyl acetate (x2). The combined organic extract was washed with brine (xl), dried over anhydrous sodium sulfate, filtered and evaporated to afford the title compound, which was used as such for the next step (5. 2g,-100%).

'H NMR (300 MHz, CDC13) : # 7.86 (s, 1H), 6. 87 (s, 1H), 2.70 (t, 2H, J= 7. 0Hz), 2.24 (s, 3H), 1.97 (t, 2H, J= 7. 0Hz), 1.32 (s, 6H).

Trifluoro-methanesulfonic acid 3,8,8-trimethyl-5-oxo-5,6,7,8-tetrahydro-naphtalen- 2-yl ester (Intermediate 172) A solution of 6-hydroxy-4,4, 7-trimethyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 171,5. 2g, 25. 6mmol) and 4-dimethylaminopyridine (6. 1g, 50mmol) in anhydrous dichloromethane (50mL) was treated with N- phenyltrifluoromethanesulfonimide (9.54g, 26. 7mmol) under argon and stirred at ambient temperature for 1h. The reaction mixture was subjected to flash column chromatography on silica gel (230-400mesh) using 6-7% ethyl acetate in hexane as the eluent to afford the title compound (6.4g, 75%).

IH NMR (300 MHz, CDC13) : 6 7.96 (s, 1H), 7.28 (s, 1H), 2.74 (t, 2H, J= 7. 0Hz), 2.37 (s, 3H), 2.04 (t, 2H, J= 7. 0Hz), 1.39 (s, 6H).

464 7-Trimethyl-6-trimethylsilanylethynyl-3 *4-dihydro-2H-naphthalen-1-one (Intermediate 173) Following General Procedure D and using trifluoro-methanesulfonic acid 3,8, 8-trimethyl-5-oxo-5,6, 7, 8-tetrahydro-naphthalen-2-yl ester (Intermediate 172, 5.04g, 15mmol), triethyl amine (20mL), copper (I) iodide (0.6g, 3mmol), trimethylsilyl acetylene (5. 3mL, 37. 5mmol) and dichlorobis (triphenylphosphine) palladium (II) (2.2g, 3mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 6% ethyl acetate in hexane as the eluent, the title compound (4g, 93%) was obtained as a pale yellow solid.

'H NMR (300 MHz, CDC13) : 8 7.54 (s, 1H), 7.19 (s, 1H), 2.42 (t, 2H, J= 7. 0Hz), 2.14 (s, 3H), 1.70 (t, 2H, J=7.0 Hz), 1.08 (s, 6H), 0.00 (s, 9H). <BR> <BR> <BR> <P>Cyclopropyl-(6-ethynyl-447-trimethyl-1 23z4-tetrahydro-naphthalen-1-yl !-methyl- amine (Intermediate 174) Following General Procedure C and using 4,4, 7-trimethyl-6- trimethylsilanylethynyl-3, 4-dihydro-2H-naphthalen-l-one (Intermediate 173,4g, 14mmol) in dichloromethane (30mL) and acetonitrile (lOmL), cyclopropyl amine (3. 11mL, 45mmol), acetic acid (3.2mL) and sodium cyanoborohydride (2g,

30mmol) followed by work up and flash column chromatography over silica gel (230-400 mesh) using 10% ethyl acetate in hexane as the eluent afforded an intermediate as a pale yellow solid, that was used as such for the next step (4. 1 g, 90%). The intermediate (4. 1g, 13mmol) was dissolved in acetone (40mL) and treated with potassium carbonate (lOg, 72mmol) and methyl iodide (2. 5mL, 40mmol). The resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo, the residue was dissolved in methanol (lOOmL) and treated with potassium carbonate (lOg, 72mmol) and the resulting reaction mixture was stirred at ambient temperature for 1. 5h. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated to an oil that was filtered over a short plug of silica gel (230-400 mesh) to afford the title compound (3. 2g, 92%) as a clear oil.

'H NMR (300 MHz, CDC13): 8 7.42 (s, 1H), 7.38 (s, 1H), 3.49 (t, 1H, J= 7. 0Hz), 3.23 (s, 1H), 2.40 (s, 3H), 2.15 (s, 3H), 2.15-2. 10 (m, 1H), 1.97-1. 62 (2m, 4H), 1.30 (s, 3H), 1.26 (s, 3H), 0.56-0. 28 (m, 4H). <BR> <BR> <BR> <BR> <P>2- {4- [5- (Cvclopropyl-methvl-amino)-3. 8, 8-trimethyl-5. 6, 7, 8-tetrahydro-naphthalen- 2-ylethynyl]-phenyl}-2-methvl-propionic acid methyl ester (Intermediate 175) Following General Procedure B and using cyclopropyl- (6-ethynyl-4, 4,7- trimethyl-1, 2, 3, 4-tetrahydro-naphthalen-1-yl)-methyl-amine (Intermediate 174, 0. 1 g, 0. 29mmol), methyl-2- (4-iodophenyl)-2-methyl-propionate (Reagent 2,0. 09g, 0. 29mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 1-2% ethyl acetate in hexane as the eluent, the title compound was obtained (0. 035g, 26%).

'H NMR (300 MHz, CDC13) : 5 7.49 (d, J=8. 5Hz, 2H), 7.41 (s, 1H), 7.38 (d, J=8. 5Hz, 2H), 7.32 (s, 1H), 3.92 (m, 1H), 3.67 (s, 3H), 2.43 (s, 3H), 2.18-2. 10 (m, 1H), 2.14 (s, 3H), 1.98-1. 85 (m, 2H), 1.80-1. 64 (m, 2H), 1.60 (s, 6H), 1.31 (s, 3H), 1.26 (s, 3H), 0.58-0. 42 (m, 4H).

2-{4-[5-(Cyclopropyl-methyl-amino)-3,3,8-trimethyl-5,6,7, 8-tetrahydro-naphthalen- 2-ylethvnvl]-phenyl}-2-methvl-propionic acid (Compound 53) A solution of 2- {4- [5- (cyclopropyl-methyl-amino)-3, 8, 8-trimethyl-5, 6,7, 8- tetrahydro-naphthalen-2-ylethynyl]-phenyl}-2-methyl-propioni c acid methyl ester (Intermediate 175,0. 035g, 0. 08mmol) in methanol (2mL) and tetrahydrofuran (2mL) was treated with a 2M solution of sodium hydroxide (2mL, 4mmol) and the resulting reaction mixture was refluxed for 2 days. The volatiles were evaporated in vacuo and the residue was neutralized with 5% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was purified by preparative reverse phjase HPLC using 10% water in acetonitrile as the mobile phase to afford the title product (0.022g, 64%).

IH NMR (300 MHz, CDC13) : 8 7.48 (d, J=8. 5Hz, 2H), 7.41 (s, 1H), 7.37-7. 34 (m, 3H), 3.95 (m, 1H), 2.40 (s, 3H), 2.18-2. 10 (m, 1H), 2.14 (s, 3H), 1.98-1. 85 (m, 2H), 1.80-1. 64 (m, 2H), 1.57 (s, 6H), 1.29 (s, 3H), 1.25 (s, 3H), 0. 56-0. 42 (m, 4H). OMe OMe l-H2nPd/c, EtOAc + OH1. PhNTf2, DMAP, CH2Cl2 4 AJ 2. NaCN, DMSO v 2. Pd (PPh3) 2Cl2, CuI, 0 W ° \ NEt3, THF, 70°C - TMS Intermediate 155 Intermediate 177 Site, 3 MEOH, 1. Pd (PPh3) 2CI2, CuI, NEt3, /---T/ o I KZC03 I i COOMe t Intermediate 179 Intermediate 180 2. . NHZ, NaCNBH3, CHZCl2, CH3CN, CH3COOH 3. MeI, K2CO3, CH3COCH3 4. KOH COOH i I N Compound 54

Reaction Scheme 29 8-Ethyl-4,4-dimethyl-6-methoxy-3,4-dihydro-2H-naphthalen-1-o ne (Intermediate 176) A solution of 8-vinyl-6-methoxy-4,4-dimethyl-3, 4-dihydro-2H-naphthalen- 1-one (Intermediate 155,1. 12g, 4. 86mmol) in ethyl acetate (lOmL) was treated with 10% palladium on carbon (lOOmg) and the resulting reaction mixture was stirred under an atmosphere of hydrogen overnight. The reaction mixture was

filtered over a bed of celite and the filtrate was evaporated to afford the title product (l. lg, 98%).

'H NMR (300 MHz, CDC13) : 8 6.77 (d, 1H, J= 2.6Hz), 6.54 (d, 1H, J= 2.6Hz), 3.87 (s, 3H), 3.05 (q, 2H, J= 7.3Hz), 2.67 (t, 2H, J= 6.7Hz), 1.95 (t, 2H, J= 6.7Hz), 1. 36 (s, 6H), 1.23 (t, 3H, J= 7. 3Hz).

8-Ethyl-6-hydroxy-4*4-dimethyl-3*4-dihydro-2H-naphthalen-l-o ne (Intermediate 177) A solution of 8-ethyl-4,4-dimethyl-6-methoxy-3, 4-dihydro-2H-naphthalen-l- one (Intermediate 176, l. lg, 4.73mmol) and sodium cyanide (1.6g, 33mmol) in anhydrous dimethylsulfoxide (20mL) was heated at 210°C overnight under argon.

The reaction mixture was then cooled to ambient temperature, poured into ice and acidified (Caution! Hydrogen cyanide evolution!) using 10% hydrochloric acid and extracted with ethyl acetate. The combined organic extract was washed with brine (xl), dried over anhydrous sodium sulfate, filtered and evaporated to afford a dark orange solid. Flash column chromatography on silica gel (230-400mesh) using 10- 20% ethyl acetate in hexane as the eluent afforded the title compound as a yellow solid (0.82g, 82%).

'H NMR (300 MHz, CD3COCD3) : 8 8.99 (s, 1H), 6.81 (d, 1H, J= 2.6Hz), 6.64 (d, 1H, J= 2. 6Hz), 2.99 (q, 2H, J= 7.3Hz), 2.60 (t, 2H, J= 6. 7Hz), 1.93 (t, 2H, J= 6.7Hz), 1.34 (s, 6H), 1.17 (t, 3H, J= 7. 3Hz).

Trifluoro-methanesulfonic acid 4-ethyl-898-dimethYl-5-oxo-56*78-tetrahYdro- naphthalen-2vl ester (Intermediate 178) A solution of 8-ethyl-6-hydroxy-4,4-dimethyl-3, 4-dihydro-2H-naphthalen- 1-one (Intermediate 177,0. 27g, 1. 24mmol) and 4-dimethylaminopyridine (0.242g, 1. 98mmol) in anhydrous dichloromethane (lOmL) was treated with 2- [N, N- bis (trifluoromethylsulfonyl) amino]-5-chloro-pyridine (0. 58g, 1. 48mmol) under argon at ambient temperature for 5h. The reaction mixture was subjected to flash column chromatography on silica gel (230-400mesh) using 5% ethyl acetate in hexane as the eluent to afford the title compound (0.43g, 98%).

'H NMR (300 MHz, CDC13) : 8 7.15 (d, 1H, J= 2.6Hz), 7.04 (d, 1H, J= 2.6Hz), 3.05 (q, 2H, J= 7. 3Hz), 2.74 (t, 2H, J= 6.7Hz), 2.00 (t, 2H, J= 6.7Hz), 1.38 (s, 6H), 1.24 (t, 3H, J= 7.3Hz). <BR> <BR> <BR> <P>8-Ethyl-44-dimethyl-6-(trimethvlsilanyl ! ethynYl-3 4-dihYdro-2H-naphthalen-1-one (Intermediate 179) Following General Procedure D and using trifluoro-methanesulfonic acid 4- ethyl-8,8-dimethyl-5-oxo-5, 6,7, 8-tetrahydro-naphthalen-2yl ester (Intermediate 178,0. 9g, 2. 57mmol), triethyl amine (6mL), anhydrous N, N-dimethylformamide (5mL), dichlorobis (triphenylphosphine) palladium (II) (0.144g, 0. 2mmol) and (trimethylsilyl) acetylene (2mL, 13. 64mmol), the reaction was conducted overnight in a sealed tube at 90°C. Work-up followed by flash column chromatography over silica gel (230-400 mesh) using 2-3% ethyl acetate in hexane as the eluent to afforded the title compound as an orange oil (0.82g, quantitative).

'H NMR (300 MHz, CDC13) : 6 7.34 (d, 1H, J= 1. 5Hz), 7.21 (d, 1H, J= 1. 5Hz), 2.97 (q, 2H, J= 7.6Hz), 2.69 (t, 2H, J= 6. 7Hz), 1.95 (t, 2H, J= 6. 7Hz), 1. 35 (s, 6H), 1.20 (t, 3H, J= 7.6Hz), 0.27 (s, 9H).

8-Ethvl-6-ethynvl-4, 4-dimethyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 180) Following General Procedure F and using 8-ethyl-4,4-dimethyl-6- (trimethylsilanyl) ethynyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 179, 0.66g, 2. 2mmol), methanol (lOmL) and potassium carbonate (0.4g, 2. 9mmol) the title compound was obtained as an orange oil (0.59g, 100%). 1H NMR (300 MHz, CDC13) : 8 7.51 (d, 1H, J= 1. 5Hz), 7.37 (d, 1H, J= 1. 5Hz), 3.32 (s, 1H), 3.10 (q, 2H, J= 7.3Hz), 2.84 (t, 2H, J= 6. 7Hz), 2. 08 (t, 2H, J= 6.7Hz), 1.48 (s, 6H), 1.33 (t, 3H, J= 7.3Hz).

2-[4-(4-Ethyl-8,8-dimethyl-5-oxo-5,6,7,8-tetrahydronaphth alen-2-ylethynyl)- phenvll-2-methyl-propionic acid methyl ester (Intermediate 181) Following General Procedure B and using 8-ethyl-6-ethynyl-4,4-dimethyl- 3, 4-dihydro-2H-naphthalen-1-one (Intermediate 180,0. 09g, 0. 39mmol), methyl-2- (4-iodo phenyl) -2-methyl-propionate (Reagent 2,0. 152g, 0. 5mmol), triethyl amine (8mL), copper (I) iodide (0.024g, 0. 12mmol) and

dichlorobis (triphenylphosphine) palladium (II) (0. 087g, 0.12mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 2-10% ethyl acetate in hexane as the eluent, the title compound was obtained as an oil (0.095g, 59%).

IH NMR (300 MHz, CDC13) : 8 7.53 (d, J=8. 8Hz, 2H), 7.43 (d,. J=1. 8Hz, 1H), 7.35 (d, J=8. 8Hz, 2H), 7.30 (d, J=1. 8Hz, 1H), 3.68 (s, 3H), 3.03 (q, J=7. 3Hz, 2H), 2.73 (t, J=6. 9Hz, 2H), 1. 99 (t, J=6. 9Hz, 2H), 1. 61 (s, 6H), 1.40 (s, 6H), 1.25 (t, J=7. 3Hz, 3H).

2-{4-[5-(Cyclopropyl-methyl-amino)-4-ethyl-8,8-dimethyl-5 ,6,7,8-tetrahydro- naphthalen-2-vlethynl-phenyl-2-methvl-propionic acid methyl ester (Intermediate 182) Following General Procedure C and using 2- [4- (4-ethyl-8, 8-dimethyl-5-oxo- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl)-phenyl]-2-methyl-propio nic acid methyl ester (Intermediate 181,0. 095g, 0. 23mmol) in dichloromethane (3mL) and acetonitrile (1. 5mL), cyclopropyl amine (lmL, 14. 5mmol), acetic acid (1mL) and sodium cyanoborohydride (0.12g, 1. 91mmol) followed by work up afforded an intermediate as an oil, that was used as such for the next step. The intermediate (crude 0. 23mmol, 0. 13g) was dissolved in acetone (6mL) and treated with potassium carbonate (0.23g, 1.66mmol) and methyl iodide (1. 5mL, 25mmol). The resulting reaction mixture was stirred at ambient temperature overnight. The solids were filtered off, the filtrate and washings were evaporated in vacuo to an oil. Flash column chromatography over silica gel (230-400 mesh) using 5-10% ethyl acetate in hexane as the eluent afforded the title compound (0.07, 65%).

'H NMR (300 MHz, CDC13) : 8 7.55 (d, J=8. 8Hz, 2H), 7.43 (d, J=1. 7Hz, 1H), 7.37 (d, J=8. 8Hz, 2H), 7.22 (d, J=1. 7Hz, 1H), 4.13 (m, 1H), 3.72 (s, 3H), 2.78-2. 68 (m, 2H), 2.32-2. 24 (m, 1H), 2.25 (s, 3H), 2.18-2. 08 (m, 1H), 1.99-1. 79 (m, 2H), 1.65 (s, 6H), 1.63-1. 53 (m, 1H), 1.42 (s, 3H), 1.29 (s, 3H), 1.23 (t, J=7. 3Hz, 3H), 0.50-0. 40 (m, 3H), 0.30-0. 20 (m, 1H).

2- 4- [5- (Cyclopropyl-methvl-amino)-4-ethvl-8, 8-dimethyl-5, 6, 7, 8-tetrahydro- naphthalen-2-ylethnyl]-phenyl}-2-methyl-propionic acid (Compound 54) A solution of 2- {4- [5- (cyclopropyl-methyl-amino)-4-ethyl-8, 8-dimethyl- 5,6, 7, 8-tetrahydro-naphthalen-2-ylethynyl]-phenyl}-2-methyl-propio nic acid methyl ester (Intermediate 182,0. 035g, 0. 076mmol) in methanol (3mL) and

tetrahydrofuran (2mL) was treated with 3M potassium hydroxide (2mL, 4mmol) and the resulting reaction mixture was heated at 80°C for 2 days. The reaction mixture was neutralized with ammonium chloride and extracted with ethyl acetate. The organic phase was washed with water and brine, and dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to afford a residue that was purified by preparative reverse phase HPLC to afford the title product (0.023g, 69%).

IH NMR (300 MHz, CDC13) : 8 7.49 (d, J=8. 4Hz, 2H), 7. 36-7. 26 (m, 3H), 7.16 (d, J=1. 7Hz, 1H), 4.06 (m, 1H), 2.71-2. 63 (m, 2H), 2.25-2. 17 (m, 1H), 2.18 (s, 3H), 2.05- 2.00 (m, 1H), 1.95-1. 78 (m, 2H), 1.60-1. 50 (m, 1H), 1.58 (s, 6H), 1.35 (s, 3H), 1.22 (s, 3H), 1. 16 (t, J=7. 3Hz, 3H), 0.4-0. 3 (m, 3H), 0.2-0. 1 (m, 1H). SiMe3 SiMe3 1. NaN (TMS) 2, THF, PhNTF2 vsiMe3 2. Pd (OAc) 2, dppp, CO (g, EtOH, < O DMF, NEt3 COOEt Intermediate 184 Intermediate 173 YCOOH COOH 1. EtOH, K2CO3 R2 2. Pd (PPh3) 2Cl2, CuI, NEt3, COOMe COOEt oR2 R2=H Compound55 R2=H z 2 R2= F Compound56 R2= F 3. LiOH, EtOH, H2O OH 1. TBSCI, imidazole, DMF TBS 1. H2, Pd/C, EtOAc 2. TBAF, THF 2. NaN (TMS) 2, THF ; PhNTf2 ° 3. Pd (OAc) 2, dppp, CO (g), EtOH, 3. PhNTf2, DMAP, CH2C12 Intermediate 171 DMF, NEt3 Intermediate 190 COOH 1. Pd (PPh3) 2Cl2, CuI,// NEt3, THF, 70°C C - TMS 2. TBAF, THF COOEt Intermediate 192 3. Pd (PPh3) 2CI2, CuI, NEt3, C 0 0 B u'Compound 57 I Reagent 10 4. HCOOH, 1, 4-dioxane Reaction Scheme 30

Trifluoro-methanesulfonic acid 447-trimethyl-6-trimethelsilanylethYnYl-34- dihydro-naphthalen-1-yl ester (Intermediate 183) A stirred, cooled (-78°C) solution of 4,4, 7-trimethyl-6- trimethylsilanylethynyl-3, 4-dihydro-2H-naphthalen-1-one (Intermediate 173, 0.95g, 3. 33mmol) in anhydrous tetrahydrofuran (lOmL) under argon was treated with a 1M solution of sodium bis (trimethylsilyl) amide in tetrahydrofuran (5mL, 5mmol). After lh, N-phenyltrifluoromethanesulfonimide (1.08g, 3. 33mmol) was added and the reaction mixture was stirred at ambient temperature for lh. The reaction was quenched with saturated aqueous ammonium chloride solution, diluted with water and extracted with diethyl ether (x2). The combined organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography on silica gel using 2-4% ethyl acetate in hexane as the eluent to afford the title compound (0. 73g, 52%).

'H NMR (300 MHz, CDC13) : 8 7.08 (s, 1H), 6.92 (s, 1H), 5.67 (t, 2H, J= 5. 0Hz), 2.15 (s, 3H), 2.08 (d, 2H, J= 5. 0Hz), 1.00 (s, 6H), 0.00 (s, 9H).

4, 4, 7-Trimethyl-6-trimethylsilanylethynyl-3, 4-dihydro-naphtlialene-1-carboxylic acid ethyl ester (Intermediate 184) Following General Procedure E and using trifluoro-methanesulfonic acid 4,4, 7-trimethyl-6-trimethylsilanylethynyl-3, 4-dihydro-naphthalen-1-yl ester (Intermediate 183,0. 73g, 1. 75mmol), palladium acetate (0. lg, 0.45mmol), 1,3- bis (diphenylphosphino) propane (0. lg, 0. 24mmol), N, N-dimethylformamide (3. 5mL), ethanol (3. 5mL) and triethyl amine (3. 5mL) followed by flash column chromatography over silica gel (230-400 mesh) using 5-10% ethyl acetate in hexane as the eluent the title compound was obtained (0.435g, 73%).

'H NMR (300 MHz, CDC13) : 8 7.42 (s, 1H), 7.10 (s, 1H), 6.76 (t, 2H, J= 5. 0Hz), 4.04 (q, 2H, J= 7. 0Hz), 2.15 (s, 3H), 2.02 (d, 2H, J= 5. 0Hz), 1.09 (t, 3H, J= 7. 0Hz), 0.97 (s, 6H), 0.00 (s, 9H).

6-EthYnY1-4n47-trimethyl-34-dihydro-naphthalene-l-carboxylic acid ethyl ester (Intermediate 185) Following General Procedure F and using 4,4, 7-trimethyl-6- trimethylsilanylethynyl-3, 4-dihydro-naphthalene-1-carboxylic acid ethyl ester

(Intermediate 184,0. 43g, 1. 3mmol), ethanol (4mL) and potassium carbonate (0.84g, 6. 06mmol), the title compound was obtained (0.33g, 95%).

'H NMR (300 MHz, CDC13) : 8 7.70 (s, 1H), 7.40 (s, 1H), 7.05 (t, 2H, J= 5. 0Hz), 4.30 (q, 2H, J= 7. 0Hz), 2.43 (s, 3H), 2. 30 (d, 2H, J= 5. 0Hz), 1. 36 (t, 3H, J= 7. 0Hz), 1.23 (s, 6H).

6- (4-Methoxycarbonvlmethyl-phenvlethynyl)-4, 4, 7-trimethyl-3, 4-dihydro- naphthalene-1-carboxylic acid ethyl ester (Intermediate 186) Following General Procedure B and using 6-ethynyl-4,4, 7-trimethyl-3,4- dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 185, 0.126g, 0. 47mmol), 4-iodo phenyl acetic acid methyl ester (0.13g, 0. 47mmol), triethyl amine (2mL), copper (I) iodide (0.029g, 0. 15mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, O. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10-12% ethyl acetate in hexane as the eluent, the title compound was obtained as a viscous oil (0.144g, 74%).

IH NMR (300 MHz, CDC13) : 8 7.72 (s, 1H), 7.47 (d, 2H, J= 8. 1Hz), 7. 35 (s, 1H), 7.27 (d, 2H, J= 8. 1Hz), 7.05 (t, 2H, J= 5. 0Hz), 4.34 (q, 2H, J= 7. 0Hz), 3.70 (s, 3H), 3.64 (s, 2H), 2.48 (s, 3H), 2.32 (d, 2H, J= 5. 0Hz), 1. 38 (t, 3H, J= 7. 0Hz), 1.27 (s, 6H).

6-(4-Carboxymethyl-phenylethynyl)-4,4,7-trimethyl-3,4-dih ydro-naphthalene-1- carboxylic acid ethyl ester (Compound 55) A solution of 6- (4-carboxymethyl-phenylethynyl)-4, 4,7-trimethyl-3, 4- dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 186,0. 144g, 0. 35mmol) in ethanol (2mL) was treated with a 1M solution of lithium hydroxide (lmL, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 3h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated aqueous ammonium chloride solution and extracted with diethyl ether and ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was purified by preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase to afford the title product (0. 071g, 50%).

'HNMR (300 MHz, CDC13) : # 7. 68 (s, 1H), 7.47 (br d, 2H, J= 8. 1Hz), 7.41 (s, 1H), 7.21 (br d, 2H), 7.04 (t, 2H, J= 5. OHz), 4.31 (q, 2H, J= 7. 0Hz), 3.65 (br s, 2H), 2.46 (s, 3H), 2.30 (d, 2H, J= 5. 0Hz), 1.37 (t, 3H, J= 7. 0Hz), 1.24 (s, 6H). <BR> <BR> <BR> <P>6- ('3-Fluoro-4-methoxvcarbonylmethyl-phenvlethynyl)-4, 4, 7-trimethvl-3, 4-dihydro- naphthalene-l-carboxylic acid ethyl ester (Intermediate 187) Following General Procedure B and using 6-ethynyl-4,4, 7-trimethyl-3,4- dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 185, 0.2g, 0. 75mmol), 2-fluoro-4-iodo phenyl acetic acid methyl ester (0.22g, 0. 75mmol), triethyl amine (2mL), copper (I) iodide (0.03g, 0. 16mmol) and dichlorobis (triphenylphosphine) palladium (II) (O. 1g, 0. 14mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 10-12% ethyl acetate in hexane as the eluent, the title compound was obtained as a viscous oil (0. 23g, 73%).

'H NMR (300 MHz, CDC13) : b 7.73 (s, 1H), 7.42 (s, 1H), 7. 30-7. 20 (m, 3H), 7.06 (t, 2H, J= 5. 0Hz), 4. 32 (q, 2H, J= 7. 0Hz), 3.71 (s, 3H), 3. 68 (s, 2H), 2.47 (s, 3H), 2.32 (d, 2H, J= 5. 0Hz), 1.37 (t, 3H, J= 7. 0Hz), 1.26 (s, 6H).

6-(4-Carboxymethyl-3-fluoro-phenylethynyl)-4,4,7-trimethy l-3,4-dihydro- naphthalene-l-carboxylic acid ethyl ester (Compound 56) A solution of 6-(4-carboxymethyl-3-fluoro-phenylethynyl)-4 4, 7-trimethyl- 3, 4-dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 187,0. 24g, 0. 54mmol) in ethanol (2mL) was treated with a 2M solution of lithium hydroxide (lmL, 2mmol) and the resulting reaction mixture was stirred at ambient temperature for 3h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated aqueous ammonium chloride solution and extracted with diethyl ether and ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was purified by preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase to afford the title product (0. 05g, 22%).

'H NMR (300 MHz, CDC13) : 5 7.69 (s, 1H), 7.41 (s, 1H), 7.27-7. 19 (m, 3H), 7.05 (t, 2H, J= 4.7Hz), 4.32 (q, 2H, J= 7. 0Hz), 3.64 (br s, 2H), 2.45 (s, 3H), 2.31 (d, 2H, J = 4.7Hz), 1. 37 (t, 3H, J= 7. 0Hz), 1.25 (s, 6H).

6-(tert-Butyl-dimethyl-silanyloxy)-4,4,7-trimethyl-3,4-di hydro-2H-naphthalen-1-one (Intermediate 188) A solution of 6-hydroxy-4,4, 7-trimethyl-3, 4-dihydro-2H-naphthalen-l-one (Intermediate 171,2. 04g, lOmmol) in anhydrous N, N-dimethyl formamide (IOmL) under argon was treated with imidazole (lg, 14. 7mmol) followed by tert- butyldimethylsilyl chloride (1. 5g, 10mmol). After stirring the reaction mixture at ambient temperature overnight, it was poured into water and extracted with diethyl ether (x2). The combined organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to a residue that was purified by flash column chromatography on silica gel (230-400mesh) usng 8-14% ethyl acetate in hexane as the eluent to afford the title compound (2. 5g, 79%).

'H NMR (300 MHz, CDC13): 8 7.74 (s, 1H), 6.65 (s, 1H), 2.56 (t, 2H, J= 6.8Hz), 2.09 (s, 3H), 1. 88 (t, 2H, J= 6.8Hz), 1.24 (s, 6H), 0.93 (s, 9H), 0.17 (s, 6H).

Trifluoro-methanesulfonic acid 6-tert-butyl-dimethyl-silanyloxy)-4, 4, 7-trimethyl- 34-dihydro-naphthalen-1-yl ester (Intermediate 189) A stirred, cooled (-78°C) solution of trifluoro-methanesulfonic acid 6- (tert- butyl-dimethyl-silanyloxy) -4,4, 7-trimethyl-3, 4-dihydro-naphthalen-1-yl ester (Intermediate 188,2. 53g, 8mmol) in anhydrous tetrahydrofuran (25mL) under argon was treated with a 1M solution of sodium bis (trimethylsilyl) amide in tetrahydrofuran (12mL, 12mmol). After lh, N-phenyltrifluoromethanesulfonimide (4.28g, 12mmol) was added and the reaction mixture was stirred at ambient temperature for lh. The reaction was quenched with saturated aqueous ammonium chloride solution, diluted with water and extracted with diethyl ether (x2). The combined organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography on silica gel using 4% ethyl acetate in hexane as the eluent to afford the title compound (1.4g, 39%).

IH NMR (300 MHz, CDC13) : 6 6.90 (s, 1H), 6.49 (s, 1H), 5.53 (t, 2H, J= 5. 0Hz), 2.09 (d, 2H, J= 5. 0Hz), 1.95 (s, 3H), 1. 01 (s, 6H), 0. 78 (s, 9H), 0.00 (s, 6H).

6-(tert-Butyl-dimethal-silanyloxy)-44l7-trimethYl-3 4-dihydro-naphthalene-1- carboxylic acid ethyl ester (Intermediate 190) Following General Procedure E and using trifluoro-methanesulfonic acid 6- (tert-butyl-dimethyl-silanyloxy) -4,4, 7-trimethyl-3,4-dihydro-naphthalen-1-yl ester (Intermediate 189,3. 4g, 7. 55mmol), palladium acetate (0.36g, 1.62mmol), 1,3- bis (diphenylphosphino) propane (0.36g, 0.86mmol), N, N-dimethylformamide (7mL), ethanol (7mL) and triethyl amine (7mL) followed by flash column chromatography over silica gel (230-400 mesh) using 7% ethyl acetate in hexane as the eluent the title compound was obtained (1.35g, 48%).

IH NMR (300 MHz, CDC13): 6 7.40 (s, 1H), 6.65 (t, 2H, J= 5. 0Hz), 6.65 (s, 1H), 4.08 (q, 2H, J= 7. 0Hz), 2.04 (d, 2H, J= 5. 0Hz), 1.96 (s, 3H), 1.13 (t, 3H, J= 7. 0Hz), 0.99 (s, 6H), 0.79 (s, 9H), 0.00 (s, 6H).

6-(tert-Butyl-dimethyl-silanyloxy)-4,4,7-trimethyl-1,2,3, 4-tetrahydro-naphthalene- 1-carboxylic acid ethyl ester (Intermediate 191) A solution of 6-(tert-butyl-dimethyl-silanyloxy)-4, 4,7-trimethyl-3, 4-dihydro- naphthalene-1-carboxylic acid ethyl ester (Intermediate 190,0. 95g, 2. 54mmol) in ethanol was treated with a slurry of 5% palladium on carbon (0.3g) in ethyl acetate (0.5mL) and the resulting reaction mixture was stirred under an atmosphere of hydrogen overnight. The solids were filtered over a bed of celite and the filtrate was evaporated in vacuo to aford the title compound as a viscous oil (0. 95g,#100%).

IH NMR (300 MHz, CDC13) : 8 6.66 (s, 1H), 6.51 (s, lH), 3.95 (q, 2H, J= 7. 0Hz), 3.46 (m, 1H), 1.92 (s, 3H), 1.93-1. 75 (m, 2H), 1.64-1. 55 (m, 1H), 1. 38-1. 30 (m, 1H), 1.06 (s, 3H), 1.01 (t, 3H, J= 7. 0Hz), 1.01 (s, 3H), 0.80 (s, 9H), 0.00 (s, 6H). <BR> <BR> <BR> <P>4. 4 *7-Trimethyl-6-trifluoromethanesulfonyloxy-1 *23 4-tetrahedro-naphthalene-1- carboxylic acid ethyl ester (Intermediate 192) 6-(Tert-butyl-dimethyl-silanyloxy)-4, 4, 7-trimethyl-1, 2,3, 4-tetrahydro- naphthalene-1-carboxylic acid ethyl ester (Intermediate 191, 0.95g, 2.54mmol) was treated with a 1M solution of tetra-n-butyl ammonium fluoride in tetrahydrofuran (4mL, 2mmmol) under argon and the resulting reaction mixture was stirred at ambient temperature for 45 min. Water was added and the reaction mixture was extracted with 10% ethyl acetate in diethyl ether. The organic phase was washed

with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated to an oil that was used for the next step. The oil was dissolved in anhydrous dichloromethane under argon and treated with 4- (dimethylamino) pyridine (0.62g, 5. 1mmol) and N-phenyltrifluoromethanesulfonimide (0. 91g, 2. 54mmol). After lh at ambient temperature, the reaction mixture was subjected to flash column chromatography using 8% ethyl acetate in hexane as the eluent to afford the title compound as an oil (0.86g, 86%).

IH NMR (300 MHz, CDCl3) : 8 7.19 (s, 1H), 7.07 (s, 1H), 4.17 (q, 2H, J= 7. 0Hz), 3.73 (t, 1H, J= 5.9Hz), 2.30 (s, 3H), 2.18-1. 97 (m, 2H), 1.87-1. 78 (m, 1H), 1.70- 1.56 (m, 1H), 1.31-1. 25 (2s, 3H and It, 3H, overlapping).

4, 4, 7-Trimethyl-6-trimethylsilanylethynyl-1, 2,3,4-tetrahydro-naphthalene-1- carboxylic acid ethyl ester (Intermediate 193) Following General Procedure D in a sealed tube and using 4,4, 7-trimethyl-6- trifluoromethanesulfonyloxy-1, 2,3, 4-tetrahydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 192, 0. 86g, 2.2mmol), triethyl amine (2mL), copper (I) iodide (0. 083g, 0. 44mmol), trimethylsilyl acetylene (2mL, 14mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.306g, 0. 44mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent, and preaprative normal phase HPLC using 5% ethyl acetate in hexane as the mobile phase in order to separate recovered starting material from the product, the title compound (0.26g) was obtained.

'H NMR (300 MHz, CDC13) : 8 7.21 (s, 1H), 6.72 (s, IH), 3.95 (q, 2H, J= 7. OHz), 3.49 (t, 1H, J= 5. 8Hz), 2.13 (s, 3H), 1.95-1. 62 (m, 2H), 1.60-1. 48 (m, 1H), 1.42- 1.31 (m, 1H), 1.10-1. 00 (2s, 3H and 1t, 3H, overlapping), 0.04 (s, 9H).

6-(4-tert-Butoxycarbonylmethyl-phenylethynyl)-4,4,7-trime thyl-1,2, 3, 4-tetrahydro- naphthalene-1-carboxylic acid ethyl ester (Intermediate 194) 4,4, 7-Trimethyl-6-trimethylsilanylethynyl-1, 2,3, 4-tetrahydro-naphthalene-1- carboxylic acid ethyl ester (Intermediate 193,0. 26g, 0. 76mmol) was treated with a 1M solution of tetra-n-butyl ammonium fluoride in tetrahydrofuran (3mL, 3mmmol) under argon and the resulting reaction mixture was stirred at ambient temperature for lh. Water was added and the reaction mixture was extracted with diethyl ether.

The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated to an oil that was used as such for the next step.

Following General Procedure B and using the oil (0. 76mmol), 4-iodo-tert-butyl phenyl acetate (Reagent 10,0. 23g, 0.72mmol), triethyl amine (2mL), copper (I) iodide (0.06g, 0. 32mmol) and dichlorobis (triphenylphosphine)- palladium (II) (0.14g, 0. 2mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 12% ethyl acetate in hexane as the eluent, the title compound was obtained as a viscous, pale yellow oil (0.23g, 66%).

'H NMR (300 MHz, CDC13) : 6 7.50 (s, 1H), 7.48 (d, 2H, J= 8. 5Hz), 7.24 (d, 2H, J = 8. 5Hz), 6.98 (s, 1H), 4.17 (q, 2H, J= 7. 0Hz), 3.74 (t, 1H, J= 5.8Hz), 3.52 (s, 2H), 2.42 (s, 3H), 2.27-1. 99 (m, 2H), 1. 87-1. 78 (m, 1H), 1.63-1. 44 (m, 1H), 1.43 (s, 9H), 1.32 (s, 3H), 1.26 (s, 3H), 1.23 (t, 3H, buried). <BR> <BR> <BR> <BR> <P>6- (4-Carboxvmethyl-phenylethynyl)-4, 4, 7-trimethyl-1, 2, 3, 4-tetrahydro-naphthalene- 1-carboxylic acid ethyl ester (Compound 57) A solution of 6- (4-tert-butoxycarbonylmethyl-phenylethynyl)-4, 4,7- trimethyl-1, 2,3, 4-tetrahydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 194,0. 23g, 0. 5mmol) in 1, 4-dioxan (1mL) was treated with formic acid (3mL) and the resulting reaction mixture was stirred at ambient temperature for 6h. Water was added and the reaction mixture was extracted with ethyl acetate (x2).

The combined organic phase was washed with water, dried over anhydrous magnesium sulfate, filtered and evaporated to an oil. Preparative reverse phase HPLC using 10% water in acetonitrile as the mobile phase afforded the title compound (0. 15g, 74%). IH NMR (300 MHz, CDCl3) : 6 7.48 (s, 1H), 7.46 (br d, 2H), 7.23 (br d, 2H), 6.96 (s, 1H), 4.17 (q, 2H, J= 7. 0Hz), 3.73 (t, 1H, J= 5.8Hz), 3.54 (br s, 2H), 2.40 (s, 3H), 2.29-1. 95 (m, 2H), 1. 85-1. 77 (m, 1H), 1.62-1. 44 (m, 1H), 1.31 (s, 3H), 1.26 (s, 3H), 1.25 (t, 3H, buried). COOMe F % v F Tf20, CH2CI2, i 2, 6-di-t-Bu-4-Me-pyridine of O Intermediate 203 U. S. Patent No. 6, 252, 090 mCOOH 1. Pd (OAc) 2, dppp, CO (ge, EtOH, A F DMF, NEt3 2 LiOH, THF, MeOH, Hz0 3. HPLC cooEt Compound 60 OMe 1. LDA, THF ; Mel, OH 1. PhNTf2, DMAP, CH2C'21 86% + 2. NaCN, DMSO < 2. Pd (PPh3) 2Cl2, Cul, NEt3, THF, = TMS O 0 70°C Intermediate 195 SiMe3 SiMe3 1. 2, 6-di-t-butyl-4-Me-pyridine,/ - tuf20, 2. Pd (OAc) 2, dppp, CO, EtOH, DMF, NEt3 COOEt 0 Intermediate 197, Intermediate 199 COOL 1. EtOH, K2C03 R2 , 2. Pd (PPh3) 2Cl2, CuI, NEt3, COOMe /COOEt zu Compound 58 R = H R2 = H Compound 59 R2 = F R2 =F 3. LiOH, H20, EtOH, Reaction Scheme 31

6-Hydroxv-2 4*4-trimethyl-3*4-dihYdro-2H-naphthalen-l-one (Intermediate 195) A solution 6-methoxy-2,4, 4-trimethyl-3, 4-dihydro-2H-naphthalen-l-one (described in Journal of Pharmaceutival Sciences, 1970, 59 (6), p 869-870, Floyd et al. incorporated herein by reference; 1.2g, 5. 5mmol) and sodium cyanide (2g, 41mmol) in anhydrous dimethylsulfoxide (15mL) was heated at 230°C for 24h under argon. The reaction mixture was then cooled to ambient temperature, poured into ice and acidified (Caution! Hydrogen cyanide evolution ! ) with dilute hydrochloric acid and extracted with ethyl acetate (x2). The combined organic extract was washed with brine (xl), dried over anhydrous sodium sulfate, filtered and evaporated to afford the title compound, which was used as such for the next step (lg, 89%).

Trifluoro-methanesulfonic acid 6848-trimetheI-5-oxo-56, 7, 8-tetrahYdro-naphthalen- 2-yl ester (Intermediate 196) A solution of 6-hydroxy-2,4, 4-trimethyl-3, 4-dihydro-2H-naphthalen-l-one (Intermediate 195, 1 g, 5mmol) and 4- (dimethylamino) pyridine (1.22g, 1 Ommol) in anhydrous dichloromethane (1 OmL) was treated with N- phenyltrifluoromethanesulfonimide (1.78 g, 10mmol), and the resulting reaction mixture was stirred at ambient temperature for 2h. Flash column chromatography of the reaction mixture over silica gel (230-400mesh) using 5% ethyl acetate in hexane as the eluent afforded the title compound as a white solid (1.45g, 86%).

'H NMR (300 MHz, CDC13) : 5 8.06 (d, 1H, J= 8. 5Hz), 7.25 (d, 1H, J= 2. 0Hz), 6.79 (dd, 1H, J= 8.5, 2. 0Hz), 2.79 (m, 1H), 1.94 (m, 2H), 1.41 (s, 3H), 1.37 (s, 3H), 1.22 (d, 3H, J= 6. 7Hz).

24, 4-Trimethyl-6-trimethvlsilanylethynvl-3 4-dihvdro-2H-naphthalen-1-one (Intermediate 197) Following General Procedure D and using trifluoro-methanesulfonic acid 6,8, 8-trimethyl-5-oxo-5, 6,7, 8-tetrahydro-naphthalen-2-yl ester (Intermediate 196, 1.45g, 4. 3mmol), triethyl amine (5mL), copper (I) iodide (0.21g, 0.26mmol), trimethylsilyl acetylene (3mL, 21mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.75g, 1. 07mmol) followed by flash

column chromatography over silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent, the title compound (1. 28g,#100%) was obtained.

'H NMR (300 MHz, CDC13) : 8 7.64 (d, 1H, J= 7.9 Hz), 7.22 (d, 1H, J= 2. 0Hz), 7.08 (dd, 1H, J= 7. 9,2. 0Hz), 2.50 (m, 1H), 1.94 (d, 2H, J= 8.8Hz)), 1.13 (s, 3H), 1.08 (s, 3H), 0.96 (d, 3H, J= 6.8Hz), 0.00 (s, 9H).

Trifluoro-methanesulfonic acid 2,4,4-trimethyl-6-trimethylsilanylethynyl-3,4- dihydro-naphthalen-l-vl ester (Intermediate 198) A stirred, cooled (ice bath) solution of 2, 4,4-trimethyl-6- trimethylsilanylethynyl-3, 4-dihydro-2H-naphthalen-l-one (Intermediate 197, 1.28g, 4. 5mmol) in anhydrous dichloromethane (lOmL) was treated with 2, 6-di-t- butyl-4-methyl pyridine (2.04g, 9. 91mmol) and trifluoromethanesulfonic anhydride (1.52mL, 9mmol) and the resulting reaction mixture was stirrred at ambient temperature for 5 days at the end of which it was subjected to flash column chromatography on silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent to afford the title compound as an oil (1.59g, 85%).

IH NMR (300 MHz, CDC13) : 8 7.09 (d, 1H, J= 7.9Hz), 7.07 (d, 1H, J= 1. 5Hz), 6.98 (dd, 1H, J=7.9, 1.5Hz), 2.04 (s, 2H), 1.72 (s, 3H), 1.03 (s, 6H), 0.00 (s, 9H).

2,4,4-Trimethyl-6-trimethylsilanylethynyl-3,4-dihydro-nap hthalene-1-carboxylic acid ethyl ester (Intermediate 199) Following General Procedure E and using trifluoro-methanesulfonic acid 2,4, 4-trimethyl-6-trimethylsilanylethynyl-3, 4-dihydro-naphthalen-1-yl ester (Intermediate 198,1. 59g, 3. 8mmol), palladium acetate (0. lg, 0. 45mmol), 1,3- bis (diphenylphosphino) propane (0. 1 g, 0. 24mmol), N, N-dimethylformamide (2.4mL), ethanol (2.4mL) and triethyl amine (2.4mL) followed by flash column chromatography over silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent the title compound was obtained (0. 31g, 24%) as a yellow oil.

'H NMR (300 MHz, CDC13) : 8 7.12 (d, 1H, J= 1. 5Hz), 7.01 (dd, 1H, J= 8.2, 1. 8Hz), 6.77 (d, lH, J= 8. 2Hz), 4.10 (q, 2H, J= 7. 0Hz), 1.93 (s, 2H), 1.73 (s, 3H), 1.08 (t, 3H, J= 7. 0Hz), 0.99 (s, 6H), 0.00 (s, 9H).

6-Ethynyl-2, 4, 4-trimethyl-3, 4-dihydro-naphthalene-l-carboxylic acid ethyl ester (Intermediate 200) Following general procedure F and using 2,4, 4-trimethyl-6- trimethylsilanylethynyl-3, 4-dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 199,0. 31g, 0. 92mmol), ethanol (2mL) and potassium carbonate (0.3g, 2. 2mmol), the title compound was obtained (0.26g, >100%).

1H NMR (300 MHz, CDC13) : # 7.32 (d, 1H, J= 1. 5Hz), 7.20 (dd, 1H, J= 8.2, 1. 5Hz), 6.96 (d, 1H, J= 8.2Hz), 4.27 (q, 2H, J= 7. 0Hz), 3.00 (s, 1H), 2.10 (s, 2H), 1.90 (s, 3H), 1.27 (t, 3H, J= 7. 0Hz), 1.16 (s, 6H).

6-(4-Methoxycarbonylmethyl-phenylethynyl)-2,4,4-trimethyl -3,4-dihydro- naphthalene-1-carboxvlic acid ethyl ester (Intermediate 201) Following General Procedure B and using 6-ethynyl-2,4, 4-trimethyl-3,4- dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 200, 0.106g, 0. 38mmol), 4-iodo phenyl acetic acid methyl ester (0.106g, 0.38mmol), triethyl amine (2mL), copper (I) iodide (0.02g, 0. 105mmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 12-15% ethyl acetate in hexane as the eluent, the title compound was obtained as a pale yellow oil (0.075g, 47%).

1H NMR (300 MHz, CDC13) : b 7. 49 (d, 2H, J= 7.9Hz), 7.45 (d, 1H, J= 1. 5Hz), 7.32 (dd, 1H, J= 7.9, 1. 5Hz), 7.26 (d, 2H, J= 7.9Hz), 7.07 (d, 1H, J= 7.9Hz), 4.37 (q, 2H, J= 7. 0Hz), 3.70 (s, 3H), 3.63 (s, 2H), 2.22 (s, 2H), 2.00 (s, 3H), 1. 38 (t, 3H, J= 7. 0Hz), 1.27 (s, 6H). <BR> <BR> <BR> <BR> <P>6- (4-Carboxvmethyl-phenvlethvnvl)-2, 4. 4-tnmethyl-3. 4-dihydro-naphthalene-l- carboxylic acid ethyl ester (Compound 58) A solution of 6-(4-carboxymethyl-phenylethynyl)-2, 4,4-trimethyl-3, 4- dihydro-naphthalene-1-carboxylic acid ethyl ester (0.075g, 0. 18mmol) in ethanol (2mL) was treated with a 1M solution of lithium hydroxide (lmL, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 0. 5h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated aqueous ammonium chloride solution and extracted with diethyl ether and ethyl acetate. The

organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0. 055g, 76%).

'H NMR (300 MHz, CDC13) : 6 7.48 (d, 2H, J= 7.9Hz), 7.44 (d, 1H, J= 1. 5Hz), 7.31 (dd, 1H, J= 7.9, 1. 7Hz), 7.23 (br d, 2H, J= 7.7Hz), 7.06 (d, 1 H, J = 7.9Hz), 4.36 (q, 2H, J= 7. 0Hz), 3.60 (br s, 2H), 2.20 (s, 2H), 1.99 (s, 3H), 1.37 (t, 3H, J= 7. 0Hz), 1. 26 (s, 6H).

6-(3-Fluoro-4-methoxycarbonylmethyl-phenylethynyl)-2,4,4- trimethyl-3,4-dihydro- naphthalene-1-carboxylic acid ethyl ester (Intermediate 202) Following General Procedure B and using 6-ethynyl-2,4, 4-trimethyl-3,4- dihydro-naphthalene-1-carboxylic acid ethyl ester (0.16g, 0. 59mmol), 2-fluoro-4- iodo phenyl acetic acid methyl ester (Intermediate 200,0. 16g, 0. 56mmol), triethyl amine (2mL), copper (I) iodide (0.07g, 0. 37mmol) and dichlorobis (triphenylphosphine) palladium (II) (0. 1 g, 0. 16mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 12-15% ethyl acetate in hexane as the eluent, the title compound was obtained as a viscous oil (0. 15g, 58%).

'H NMR (300 MHz, CDC13) : 8 7.44 (d, 1H, J= 1. 5Hz), 7.32 (dd, 1H, J= 7.9, 1. 5Hz), 7.30-7. 19 (m, 3H), 7. 08 (d, 1H, J= 7.9Hz), 4.37 (q, 2H, J= 7. 0Hz), 3.71 (s, 3H), 3. 68 (s, 2H), 2.21 (s, 2H), 2.00 (s, 3H), 1.37 (t, 3H, J= 7. 0Hz), 1. 27 (s, 6H).

6- (4-Carboxymcthyl-3-fIuoro-phenylethvnyl)-2. 4, 4-trimethvl-3. 4-dihydro- naphthalene-1-carboxylic acid ethyl ester (Compound 59) A solution of 6- (4-carboxymethyl-3-fluoro-phenylethynyl)-2, 4,4-trimethyl- 3, 4-dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 202, 0. 15g, 0. 35mmol) in ethanol (2mL) was treated with a 1M solution of lithium hydroxide (lmL, lmmol) and the resulting reaction mixture was stirred at ambient temperature for 0. 5h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated aqueous ammonium chloride solution and extracted with diethyl ether and ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product (0. lg, 67%).

1H NMR (300 MHz, CDC13) : # 7. 44 (d, 1H, J= 1. 5Hz), 7.32 (dd, 1H, J= 8. 2, 1. 5Hz), 7.22-7. 18 (m, 3H), 7.07 (d, 1H, J= 7.9Hz), 4.36 (q, 2H, J= 7. 0Hz), 3.66 (br s, 2H), 2.20 (s, 2H), 1.99 (s, 3H), 1.37 (t, 3H, J= 7. 0Hz), 1.26 (s, 6H).

[4- (8, 8-Dimnethyl-5-trifluoromethanesulfonyloxy-7,8-dihydro-naphth alen-2- ylethYnyl !-2-fluoro-phenal]-acetic acid methyl ester (Intermediate 203) A solution of [4- (8, 8-dimethyl-5-oxo-5,6, 7,8-tetrahydro-naphthalen-2- ylethynyl) -2-fluoro-phenyl] -acetic acid methyl ester (U. S. Patent No. 6,252, 090; 0.28g, 0.77mmol) in anhydrous dichloromethane (5mL) was treated with 2, 6-di-t- butyl-4-methyl pyridine (0. 189g, 0.92mmol) and trifluoromethanesulfonic anhydride (0.136mL, 0. 81mmol) and the resulting reaction mixture was stirrred at ambient temperature for 4h at the end of which it was diluted with water and extracted with ethyl acetate. The organic extract was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated in vacuo to a residue that was subjected to flash column chromatography on silica gel (230-400 mesh) using 5% ethyl acetate in hexane as the eluent to afford the title compound as a pale orange oil (0.32g, 84%).

'H NMR (300 MHz, CDC13) : 8 7.46-7. 22 (m, 6H), 6.00 (t, J=4. 8Hz, 1H), 3.72 (s, 3H), 3.70 (s, 2H), 2. 41 (d, J=4. 8Hz, 2H), 1.33 (s, 6H).

6-(3-Fluoro-4-methoxycarbonylemthyl-phenylethynyl)-4,4-di methyl-3,4-dihydro- naphthalenc-1-carboxylic acid ethyl ester (Intermediate 204) Following General Procedure E and using [4- (8, 8-dimethyl-5- trifluoromethanesulfonyloxy-7,8-dihydro-naphthalen-2-ylethyn yl)-2-fluoro-phenyl]- acetic acid methyl ester (Intermediate 203,0. 32g, 0. 65mmol), palladium acetate (0. 015g, 0. 064mmol), 1, 3-bis (diphenylphosphino) propane (0.027g, 0. 064mmol), N, N-dimethylformamide (5mL), ethanol (2mL) and triethyl amine (2mL) followed by flash column chromatography over silica gel (230-400 mesh) using 5-15% ethyl acetate in hexane as the eluent the title compound was obtained (0. 1 5g, 55%) as a yellow oil.

'H NMR (300 MHz, CDCl3) : 8 7.84 (d, J=8. 2Hz, 1H), 7.47 (d, J=1. 7Hz, 1H), 7.37 (dd, J=8. 2, 1. 7Hz, 1H), 7.30-7. 15 (m, 3H), 7. 08 (t, J=4. 8Hz, 1H), 4. 31 (q,

J=7. 0Hz, 2H), 3.71 (s, 3H), 3.68 (s, 2H), 2.34 (d, J=4. 8Hz, 2H), 1.37(t, J=7.0Hz, 3H), 1.28 (s, 6H).

6- (4-Carboxvmethyl-3-fluoro-phenylethvny)-4, 4-dimethyl-3, 4-dihydro- naphthalene-l-carboxylic acid ethyl ester (Compound 60) A solution of 6- (3-fluoro-4-methoxycarbonylmethyl-phenylethynyl)-4, 4- dimethyl-3, 4-dihydro-naphthalene-1-carboxylic acid ethyl ester (Intermediate 204, 0. 15g, 0. 36mmol) in ethanol (3mL) and tetrahydrofuran (3mL) was treated with a 2M solution of lithium hydroxide (1. 5mL, 3mmol) and the resulting reaction mixture was stirred at ambient temperature for 1. 5h. The volatiles were evaporated in vacuo, the residue was neutralized with saturated aqueous ammonium chloride solution and extracted with diethyl ether and ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue that was purified by preparative reverse phase HPLC using 5% water in acetonitrile as the mobile phase to afford the title product (0.04g, 27%). IH NMR (300 MHz, CDC13) : # 7.81 (d, J=8. 2Hz, 1H), 7.46 (d,. J=1. 7Hz, 1H), 7.37 (dd, J=8. 2 &1. 7Hz, 1H), 7.27-7. 09 (m, 3H), 7.07 (t, J=4. 8Hz, 1H), 4. 31 (q, J=7. 0Hz, 2H), 3.66 (s, 2H), 2.33 (d, J=4. 8Hz, 2H), 1.37 (t, J=7. 0Hz, 3H), 1.27 (s, 6H). O 0 Br l. i-PrOH, H2S04 ho/ 2. Pd (PPh3) 2Cl2, = TOMS Br Cul, NEt3, THF, 70°C l l 3. TBAF, THF Intermediate 205 1. Pd (PPh3) 2Cl2, Cul, NEt3, COOH O Hw F COOMe I F 3. LiOH, i-PrOH, THF, H20 lll Compound 61 F o/ Fo 0 Pd (PPh3) 2Cl2, CuI, NEt3, F /_. O ozon rr'Y Y ) XC090Y ; I F Reagent 11 Compound 62

Reaction Scheme 32 3, 5-Dibromo-benzoic acid isopropyl ester (Intermediate 205) A solution of 3, 5-dibromobenzoic acid (Aldrich, 2.4g, 8.6mmol) in benzene (150mL) and isopropanol (50mL) was treated with concentrated sulfuric acid (2mL) and heated to reflux overnight using a Dean-Stark water trap. The volatiles were evaporated in vacuo, the residue was diluted with water and extracted with diethyl ether. The organic phase was washed with water and saturated, aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulfate, filtered and

evaporated in vacuo to afford the title product as a clear oil that was used as such for the next step (2. 7g,-100%).

3, 5-Diethynyl-benzoic acid isopropyl ester (Intermediate 206) Following General Procedure D and using 3,5-dibromo-benzoic acid isopropyl ester (Intermediate 205,2. 7g, 8. 6mmol), triethyl amine (30mL), copper (I) iodide (0.45g, 2. 4mmol), trimethylsilyl acetylene (6.8mL, 48mmol) and dichlorobis (triphenylphosphine) palladium (II) (1.75g, 2. 4mmol) followed by flash column chromatography over silica gel (230-400 mesh) using 3% ethyl acetate in hexane as the eluent, the intermediate 3,5-bis-trimethylsilanylethynyl-benzoic acid isopropyl ester was obtained. The intermediate (2.8g, 7. 85mmol) was treated with a 1M solution of tetra-n-butyl ammonium fluoride in tetrahydrofuran (25mL, 25mmmol) and the resulting reaction mixture was stirred in an ice bath for lh.

Water was added and the reaction mixture was extracted with diethyl ether. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated to an oil that was redissolved in diethyl ether (lOmL) and treated with hexane (150mL). The solid that precipitated out was filtered and dried to afford the title compound (1.3g, 78%).

'H NMR (300 MHz, CDC13) : 8 8.08 (d, 1H, J= 1. 4Hz), 7.73 (d, 1H, J= 1. 4Hz), 5.23 (heptet, 1H, J= 6.3Hz), 3.13 (s, 2H), 1.35 (d, 6H, J= 6. 1Hz).

3-Ethvnyl-5- [3-fluoro-4- (3-trimethylsilanvl-propoxvcarbonvlmethvl)- phenylethynyl]-benzoic acid isopropyl ester (Intermediate 207) Following General Procedure B and using 3,5-diethynyl-benzoic acid isopropyl ester (Intermediate 206,0. 36g, 1. 72mmol), (2-fluoro-4-iodo-phenyl) - acetic acid 2-trimethylsilanyl-ethyl ester (0.132g, 0.86mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, O. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 5-10% ethyl acetate in hexane as the eluent, the title compound was obtained as a colorless oil (0. 15g, 37%).

'H NMR (300 MHz, CDC13) : 8 8.10 (m, 1H), 8.07 (m, 1H), 7.75 (m, 1H), 7.19- 7.25 (m, 3H), 5.24 (hept, J=6. 2Hz, 1H), 4.19 (t, J=8. 5Hz, 2H), 3.64 (s, 2H), 3.14 (s, 1H), 1.35 (d, J=6. 2Hz, 6H), 0.97 (t, J=8. 5Hz, 2H), 0.00 (s, 9H). <BR> <BR> <BR> <P>3- 4-Carboxymethyl-3-fluoro-phenylethynyl)-5-ethvnyl-benzoic acid isopropvl ester (Compound 61) A solution of 3-ethynyl-5- [3-fluoro-4- (3-trimethylsilanyl- propoxycarbonylmethyl)-phenylethynyl]-benzoic acid isopropyl ester (Intermediate 207,0. 15g, 0. 32mmol) in anhydrous dimethysulfoxide (4mL) was treated with tetra- n-ethyl ammonium fluoride (0. 19mL, 1.3mmmol) and the resulting reaction mixture was stirred at ambient temperature for 5 min. Water was added and the reaction mixture was extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and evaporated to an oil that was purified by recrystallization from ethyl acetate/hexane to afford the title compound as a white solid (0.045g, 38%).

'H NMR (300 MHz, CDC13) : 8 8.13 (m, 1H), 8.10 (m, 1H), 7.78 (m, 1H), 7.23- 7.30 (m, 3H), 5.29 (hept, J=6. 4Hz, 1H), 3.74 (s, 2H), 3.15 (s, 1H), 1.38 (d, J=6. 4Hz, 6H). <BR> <BR> <BR> <P>3- !-5-ethenyl-benzoic acid isopropyl ester (Compound 62) Following General Procedure B and using 3,5-diethynyl-benzoic acid isopropyl ester (Intermediate 206,0. 27g, 1. 27mmol), (2-fluoro-4-iodo-phenyl) - acetic acid acetoxymethyl ester (0.224g, 0. 64mmol), triethyl amine (8mL), copper (I) iodide (0.019g, O. lmmol) and dichlorobis (triphenylphosphine) palladium (II) (0.07g, 0. lmmol) followed by flash column chromatography over silica gel (230-400 mesh) using 2.5-20% ethyl acetate in hexane as the eluent, the title compound was obtained as an orange solid (0.09g, 32%).

'H NMR (300 MHz, CDC13) : 8 8. 13 (m, 1H), 8.10 (m, 1H), 7.79 (m, 1H), 7.23- 7.32 (m, 3H), 5.78 (s, 2H), 5.27 (hept, J=6. 4Hz, 1H), 3.75 (s, 2H), 3.15 (s, 1H), 2.12 (s, 3H), 1.38 (d, J=6. 4Hz, 6H). < COOEt CF3SO3Ag < COOEtl. = SiMe3Pd (PPh3) CuI, NEt, CH2CI2 2. NaOH, EtOH 2C'2 1 2. NAOH, ETOH Intermediate 36 Intermediate 208 COOH CON3 1. PhCH3, 140°C l. C1COOEt, NEt3, THF i 2. NaN3 2, HN F Cooed COOEt Intermediate 210 Intermediate 211 LiOH, MeOH, THF NN F o r cooEt o O COOH Intermediate 212 Compound 63 Reaction Scheme 33

Ethvl-8-iodo-2, 2A4-tetramethylchroman-6-carboxylate (Intermediate 208) A solution of ethyl-2,2, 4, 4-tetramethyl chroman-6-carboxylate (Intermediate 36,0. 733g, 2. 8mmol) in anhydrous dichloromethane (10 mL) was treated with silver (I) trifluoromethanesulfonate (0.719g, 2. 8mmol) and iodine (0.71g, 2.8mmol) and the resulting solution was stirred at ambient temperature for 4h. The reaction mixture was treated with saturated, aqueous sodium thiosulfate solution and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to a residue which was subjected to flash column chromatography over silica gel (230-400mesh) using 5- 10% ethyl acetate in hexane as the eluent to afford the title compound (0. 88g, 81%) as a pale yellow oil.

IH NMR (300 MHz, CDC13): 8 8.26 (d, 1H, J= 2. 0Hz), 7.96 (d, 1H, J= 2. 0Hz), 4.34 (q, 2H, J= 7. 1Hz), 1.87 (s, 2H), 1.40 (s, 6H), 1.37 (s, 6H), 1. 41-1. 35 (m, 3H).

Ethvl-8-trimethylsilanylethynyl-2, 2, 4, 4-tetramethyl chroman-6-carboxvlate (Intermediate 209) A solution of ethyl-8-iodo-2, 2,4, 4-tetramethyl chroman-6-carboxylate (Intermediate 208,0. 88g, 2.26mmol) in triethyl amine (lOmL) was treated with copper (I) iodide (0.043g, 0. 226mmol) and sparged with argon for 5 minutes.

Trimethylsilyl acetylene (3 mL, 21. 22mmol) was then added followed by dichlorobis (triphenylphosphine) palladium (II) (0. 159g, 0.226mmol). The resulting reaction mixture was heated at 70°C overnight in a sealed tube. It was then cooled to ambient temperature, diluted with diethyl ether and filtered over a bed of celite.

The filtrate was evaporated vacuo to an oil which was subjected to flash column chromatography over silica gel (230-400 mesh) using 10% ethyl acetate in hexane as the eluent to afford the title compound (0.803g, 99%).

H NMR (300 MHz, CDC13) : 8 7.93 (s, 1H), 7.92 (s, 1H), 4.32 (q, 2H, J= 7. 0Hz), 1.86 (s, 2H), 1.38 (s, 6H), 1.34 (s, 6H), 1. 38-1. 34 (m, 3H), 0.24 (s, 9H).

8-Eth, nyl-2, 2, 4, 4-tetramethyl chroman-6-carboxylic acid (Intermediate 210) A solution of ethyl-8-trimethylsilanylethynyl-2,2, 4,4-tetramethylchroman-6- carboxylate (Intermediate 209,0. 525g, 1.47 mmol) in ethanol (5mL) was treated with 2N aqueous sodium hydroxide solution (5mL, lOmmol) and the resulting solution was adjusted to pH-5 with 10% aqueous hydrochloric acid and extracted with ethyl acetate. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated in vacuo to afford the title product as a brown solid (0.316g, 84%).

'H NMR (300 MHz, CDC13) : 8 8.02 (s, 2H), 3.23 (s, 1H), 1.89 (s, 2H), 1.42 (s, 6H), 1.38 (s, 6H).

8-Ethvnyl-2, 2, 4, 4-tetramethyl-chroman-6-carboxylic acid azide (Intermediate 211) A stirred, cooled (ice bath) solution of 8-ethynyl-2,2, 4,4-tetramethyl- chroman-6-carboxylic acid (Intermediate 210,0. 52g, 2mmol) in anhydrous tetrahydrofuran (lOmL) under argon, was treated with triethyl amine (0. 86mL, 6mmol) follwed by ethyl chloroformate (0.25mL, 2. 6mmol) and the resulting reaction mixture was allowed to warm to ambient temperature and stirred for 2h.

Sodium azide 0. 19g, 3mmol) was added and the reaction mixture was stirred

overnight. The reaction mixture was then diluted with water and extracted with diethyl ether. The organic extract was dried over anhydrous magnesium sulfate, filtered and evaporated to a residue that was purified by flash column chromatography over silica gel (230-400 mesh) to afford the title compound as a yellow solid (0.32g, 56%).

'H NMR (300 MHz, CDC13) : 8 7.96 (ABq, 2H, J= 2. 1Hz), 3.24 (s, 1H), 1.89 (s, 2H), 1.42 (s, 6H), 1.37 (s, 6H).

4- [3- (8-Ethynyl-2, 2. 4, 4-tetramethyl-chroman-6-vl)-ureido1-2-fluoro-benzoic acid ethyl ester (Intermediate 212) A solution of 8-ethynyl-2,2, 4,4-tetramethyl-chroman-6-carboxylic acid azide (Intermediate 211,0. 104g, 0.37mmol) in anhydrous toluene was refluxed under argon overnight. Ethyl-4-amino-2-fluoro-benzoate (described in Teng et al, Journal of Medicinal Chemistry, 1996, 39, p3035-3038, 0.114g, 0. 622mmol) was added and the reaction mixture was refluxed for 5. 5h. The reaction mixture was cooled to ambient temperature and subjected to flash column chromatography over silica gel (230-400mesh) using 20-33% ethyl acetate in hexane as the eluent to afford the title compound contaminated with some ethyl-4-amino-2-fluoro-benzoate. It was used as such for the next step.

4- [3- (8-Ethynvl-2, 2, 4 4-tetramethvl-chroman-6-yl)-ureido]-2-fluoro-benzoic acid (Compound 63) A solution of 4- [3- (8-ethynyl-2, 2,4, 4-tetramethyl-chroman-6-yl)-ureido]-2- fluoro-benzoic acid ethyl ester (Intermediate 212,0. 12g) in methanol (2mL), tetrahydrofuran (2mL) and water (1mL) was treated with lithium hydroxide (0.177g, 4.2mmol) and the resulting reaction mixture was stirred at ambient temperature overnight. The volatiles were evaporated in vacuo, the residue was diluted with water and neutralized with dilute hydrochloric acid and extracted with ethyl acetate.

The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated to afford the title compound as a solid (0.07g, 46% for two steps).

H NMR (300 MHz, CD30D) : 8 7.86 (dd, 1H, J= 8. 8, 8. 5Hz), 7.53 (dd, 1H, J= 13.7, 2. 0Hz), 7.42 (d, 1H, J= 2.3Hz), 7.28 (d, 1H, J= 2.3Hz), 7.14 (dd, 1H, J= 2.0, 8.8Hz), 3.50 (s, 1H), 1. 86 (s, 2H), 1.35 (s, 12H).