Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOUNDS WHICH CAN BE USED FOR THE TREATMENT OF CANCERS
Document Type and Number:
WIPO Patent Application WO/2009/150248
Kind Code:
A1
Abstract:
The present invention relates to a compound of general formula (I) : and also to the pharmaceutically acceptable salts thereof, to the isomers or isomer mixtures thereof in all proportions, in particular to an enantiomer mixture, and especially to a racemic mixture. The present invention also relates to the use of these compounds as a medicament, and in particular for the treatment of cancer, and also to the compositions containing them.

Inventors:
CARNIATO DENIS (FR)
JAILLARDON KARINE (FR)
BUSNEL OLIVIER (FR)
GUTMANN MATHIEU (FR)
BRIAND JEAN-FRANCOIS (FR)
DEPREZ BENOIT (FR)
THOMAS DOMINIQUE (FR)
BOUGERET CECILE (FR)
Application Number:
PCT/EP2009/057371
Publication Date:
December 17, 2009
Filing Date:
June 15, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CYTOMICS SYSTEMS (FR)
CARNIATO DENIS (FR)
JAILLARDON KARINE (FR)
BUSNEL OLIVIER (FR)
GUTMANN MATHIEU (FR)
BRIAND JEAN-FRANCOIS (FR)
DEPREZ BENOIT (FR)
THOMAS DOMINIQUE (FR)
BOUGERET CECILE (FR)
International Classes:
A61K31/5375; A61K31/433; C07C237/20; C07D207/09; C07D231/56; C07D233/64; C07D257/04; C07D285/06; C07D295/092; C07D317/58; C07D317/60; C07D319/18; C07D333/24; C07D409/12; C07D417/12
Domestic Patent References:
WO2008008022A12008-01-17
WO2007025249A22007-03-01
WO2003016335A22003-02-27
Foreign References:
DE102005062991A12007-07-05
US5200426A1993-04-06
Other References:
WARREN M. K. ET AL.: "Inhibition of 3C Protease from Human Rhinovirus Strain 1B by Peptidyl Bromomethylketonehydrazides", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 362, no. 2, 1999, pages 363 - 375, XP002507077
AKRITOPOULOU-ZANZE I ET AL: "A versatile synthesis of fused triazolo derivatives by sequential Ugi/alkyne-azide cycloaddition reactions", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, vol. 45, no. 46, 8 November 2004 (2004-11-08), pages 8439 - 8441, XP004602232, ISSN: 0040-4039
WRIGHT D L ET AL: "Studies on the sequential multi-component coupling/Diels-Alder cycloaddition reaction", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, vol. 43, no. 6, 4 February 2002 (2002-02-04), pages 943 - 946, XP004333932, ISSN: 0040-4039
Attorney, Agent or Firm:
WARCOIN,AHNER,TEXIER,LE FORESTIER,CALLON DE LAMARCK,COLLIN,TETAZ,FAIVRE PETIT-Cabinet Regimbeau (Paris Cedex 17, Paris Cedex 17, FR)
Download PDF:
Claims:
CLAIMS

1. Compound of general formula (I) :

as well as the pharmaceutically acceptable salts thereof, the isomers or isomer mixtures thereof in all proportions, in particular an enantiomer mixture, and especially a racemic mixture, for which :

Rl represents a hydrogen atom or a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, (C 3 - Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, (Ci-C 6 )alkoxy, -NH 2 , -COOH, -CN, -OH, -NR 7 R 8 , -O-

(Ci-C 6 )alkyl-NR 7 R 8 , benzyloxy, aryloxy, -C(O)O-(C i-C 6 )alkyl, -NH-C(O)O-

(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 9 R 10 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, - SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 11 R 12 , -NR 13 SO 2 R 14 and a (Ci-C 6 )alkyl group optionally substituted by one or more halogen atoms,

- R2 represents a hydrogen atom or a (Ci-Ce)alkyl, advantageously (Ci -C 4 ) alkyl group, or

Rl and R2 together form, with the nitrogen atom carrying them: " a heteroaryl optionally substituted by one or more groups selected from a halogen atom, a -CN, -NH 2 , -NR 40 R 41 , -NO 2 , -OH, (Ci-C 6 )alkoxy, aryloxy, benzyloxy, -0(C i-C 6 )alky 1-NR 42 R 43 , -C(O)O-(C i-C 6 )alkyl, - NHC(O)O-(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 44 R 45 , -SO 2 NH 2 , - SO 2 NR 46 R 47 and -NR 48 SO 2 R 49 group, or • a 3 to 7-membered heterocycle optionally substituted by one or more groups selected from a halogen atom, a (C 3 -Cio)cycloalkyl, (C 3 - Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-Ce)alkyl, heteroaryl- (Ci-C 6 )alkyl, heterocycloalkyl-(Ci-C 6 )alkyl, -OH, -NH 2 , -C(O)OH,

-C(O)NH 2 , -C(S)NH 2 , -OR 50 , -OC(O)R 51 , -C(O)R 52 , -C(O)OR 53 , -NHC(O)R 54 , -NHC(O)OR 55 , -SO 2 R 56 -(d-C 6 )alkyle-C(O)OR 57 , -NR 58 R 59 , -C(O)NR 60 R 61 , -C(O)N(R 62 )(aryl), C(O)N(R 63 )(heteroaryl), -C(O)NHNR 64 R 65 , -C(S)NR 66 R 67 , -C(S)N(R 68 )(aryl), -C(S)N(R 69 )(heteroaryl), -C(S)NHNR 70 R 71 , -OC(O)-NR 72 R 73 ,

-(Ci-C 6 )alkyl-C(O)-NR 74 R 75 , -(Ci-C 6 )alkyl-NR 103 -C(O)-OR 104 ,

-(Ci-C 6 )alkyl-NR 76 R 77 , -C(NOR 78 )-aryl radical, and a (Ci-C 6 )alkyl group optionally substituted by one or more halogen atoms, the aryl and heteroaryl unit of said radical, when present, being optionally substituted by one or more groups selected from a halogen atom, a -CN, -OH, (Ci-C 6 )alkyl, (Ci-C 6 )alkoxy, -NR 79 R 80 , - (Ci-C 6 )alkyl-NR 81 R 82 and -O-(d-C 6 )alkyl-NR 83 R 84 group, R3 represents a hydrogen atom or a (Ci-Ce)alkyl, advantageously (C 1 - C 4 )alkyl, or -(Ci-C 4 )alkyl-NR 15 R 16 group, R4 represents a hydrogen atom or a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, aryl, advantageously phenyl, heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -(CF 3 ) 2 OH, -CN, -NH 2 , -OPO 3 H 2 , -NR 17 R 18 , -NO 2 , -COOH, -OH, -O(Ci-C 6 )alkyl-OPO 3 H2, -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, -0(Ci- C 6 )alkyl-NR 19 R 20 , -NR 81 (d-C 6 )alkyl-NR 85 R 86 , benzyloxy, -C(O)O-(Ci-

C 6 )alkyl, -NHC(O)O-(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 21 R 22 , -S-(Ci- C 6 )alkyl, -S(O)-(Ci-C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 23 R 24 , -NR 25 SO 2 R 26 , 3 to 7-membered heterocycloalkyl, aryloxy radical, a (C 1 - Ce)alkyl group optionally substituted by one or more halogen atoms and a (Ci-C6)alkoxy optionally substituted by one or more fluorine atoms, and the aryl and heteroaryl unit of said radical, when present, being optionally fused to a 5 or 6-membered heterocycle, or

R3 and R4 form with the carbon carrying them a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, said ring being optionally substituted by a (Ci-C 6 )alkyl, -C(O)-(Ci-C 6 )alkyl, -C(O)O-

(Ci-C 6 )alkyl group,

R5 represents a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, (C 3 -Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, (C 3 -Ci 0 )cycloalkyl- (Ci-Ce)alkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C 6 )alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -NH 2 , -COOH, -CN, -OH, -NO 2 , -B(OH) 2 , (Ci-C 6 )alkoxy, -

O-(Ci-C 6 )alkyl-NR 27 R 28 , -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, aryloxy, -C(O)O- (Ci-C 6 )alkyl, (C 2 -C 6 )alkynyl, -NR 29 R 30 , -NHC(O)O-(C i-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 31 R 32 , -S-(Ci-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, - SO 2 NH 2 , -SO 2 NR 33 R 34 , -NR 35 SO 2 R 36 , aryl, heteroaryl, (Ci- C 6 )alkylheteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms, the aryl or heteroaryl unit of said radical, when present, being optionally fused to a 5 or 6-membered heterocycle, and - R6 represents a -CHR 37 HaI or -C≡CR 38 group, with Hal representing a halogen atom,

wherein :

- R 7 to R 13 , R 15 to R 18 , R 21 to R 25 , R 27 to R 35 , R 37 , R 40 to R 48 , R 58 to R 84 , R 89 to R 102 represent, independently of one another, a hydrogen atoam or a (C 1 -

Ce)alkyl group, preferably a (Ci-Ce)alkyl group, or, if two groups are carried by the same nitrogen, the two groups form with the nitrogen atom carrying them a 3 to 7-membered heterocycloalkyl, R 14 , R 26 , R 36 and R 49 represent, independently of one another, a (Ci-C 6 )alkyl group,

R 38 represents a hydrogen atom, a (Ci-Ce)alkyl group, preferably a methyl, or a phenyl group,

- R 50 to R 57 , R 87 and R 88 represent, independently of one another, a (Ci-C 6 )alkyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, (Ci-C 6 )alkyl-aryl or (C i-Ce)alkyl- heteroaryl group, and

- R 19 , R 20 , R 85 et R 86 represent, independently of one another, a (Ci-C 6 )alkyl group, or (R 19 and R 20 ) and/or (R 85 and R 86 ) together form, with the nityrogen atom carrying them, a 3 to 7-membered heterocycloalkyl optionally substituted by one or more groups selected from a halogen atom, a (C3-Cio)cycloalkyl, aryl, heteroaryle, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-

C 6 )alkyl, -C(O)OR 87 , -SO 2 R 88 , -OH, (Ci-C 6 )alkoxy, -OC(O)-(C i-C 6 )alkyl, - OC(O)-NR 89 R 90 , -NHC(O)O-(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 91 R 92 , -C(S)NR 93 R 94 , -C(O)NHNR 95 R 96 , -C(S)NHNR 97 R 98 radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms, the aryl et heteroaryl unit of said radical, when present, being optionally substituted by one or more groups, selected from a halogen atom and a (Ci- C 6 )alkyl, -CN, -OH, NR 99 R 100 , (d-C 6 )alkoxy, -O-(Ci-C 6 )alkyl-NR 101 R 102 group

with the exclusion of the compounds of formula (I) for which R6 = -C≡CR 38 and Rl is an optionally substituted l,3-thiazol-2-yl group,

for use thereof as a medicament.

2. Compound according to claim 1, characterised in that R2 represents a hydrogen atom, and Rl represents a (C 3 -Cio)cycloalkyl or aryl-(Ci-Ce)alkyl group, and preferably cyclohexyl, cyclopentyl ou benzyl, said group being optionally substituted by one or more groups selected from a halogen atom, a (Ci-C 6 )alkoxy, -NH 2 , -COOH, -CN, -OH, -NR 7 R 8 , -O- (Ci-C 6 )alkyl-NR 7 R 8 , benzyloxy, aryloxy, -C(O)O-(d-C 6 )alkyl, -NH-C(O)O- (Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 9 R 10 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, - SO 2 -(Ci -C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 11 R 12 , -NR 13 SO 2 R 14 radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms, and preferably selected from a halogen atom and a (Ci-Ce)alkoxy, -NH 2 , -COOH, benzyloxy, aryloxy, -C(O)O((d-C 6 )alkyl), -NHC(0)0((d-C 6 )alkyl) group, the radicals R 7 and R 8 being as defined in claim 1.

3. Compound according to claim 1, characterised in that -NR1R2 will represent the following piperazine ring:

R 104 representing a ahydrogen atom, a (C 3 -Cio)cycloalkyl, (C 3 -Cio)cycloalkenyl, aryl, hetreroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, heterocycloalkyl-

(Ci-C 6 )alkyl, -C(O)R 52 , -C(O)OR 53 , -C(O)OH, -C(O)NH 2 , -C(S)NH 2 , -

C(O)NR 60 R 61 , -C(S)NR 66 R 67 , -SO 2 R 56 , -C(O)NHNR 64 R 65 , -C(S)NHNR 70 R 71 radical, and a (Ci-C 6 )alkyl group optionally substituted by one or more halogen atoms, the aryl and heteroaryl unit of said radical, when present, being optionally substituted by one or more groups selected from a haloge atom, a -CN, -OH, (C 1 -

C 6 )alkoxy, -NR 79 R 80 , and -O-(Ci-C 6 )alkyl-NR 83 R 84 .group, the radicals R 52 , R 53 , R 56 , R 60 , R 61 , R 64 to R 67 , R 70 , R 71 , R 79 , R 80 , R 83 and R 84 being as defined in claim 1.

4. Compound according to any one of claims 1 to 3, characterised in that R3 represents a hydrogen atom and R4 represents an aryl group, advantageously phenyl, or heteroaryl group, advantageously thiophenyl, group said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 , -NO 2 , -COOH, 3 to 7- membered heterocycloalkyl, (Ci-Ce)alkyl, -S-(Ci-Ce)alkyl, aryloxy, -0(Ci-

Ce)alky 1-NR 19 R 20 radical and a (Ci-C6)alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle, the radicals R 17 , R 18 , R 19 and R 20 being as defined in claim 1

5. Compound according to any one of claims 1 to 4, characterised in that R5 represents a (Ci-Ce)alkyl, heteroaryl, (C 3 -Cio)cycloalkyl-(Ci-C 6 )alkyl, aryl-(Ci- Ce)alkyl or aryl group,

the aryl core of the aryl or aryl-(Ci-C 6 )alkyl group being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being optionally substituted by one or more groups selected from a halogen atom, a - CF 3 , -CN, -NR 29 R 30 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-C 6 )alkoxy, aryloxy, (d-C 6 )alkyl, (C 2 -C 6 )alkynyl, aryl and 5 or 6-membered heterocycloalkyl group, R 29 and R 30 being as defined in claim 1.

6. Compound according to any one of claims 1 to 5, characterised in that the compound is selected from :

7. Compound of formula (I) according to any one of claims 1 to 6, including the compounds of formula (I) for which R6 = -C≡CR 38 and Rl is an optionally substituted l,3-thiazol-2-yl group, for use thereof as a medicament intended to treat or prevent a cancer, and preferably a cancer resistant to chemotherapy.

8. Pharmaceutical composition comprising at least one compound of formula (I) according to any one of claims 1 to 7, in association with one or more pharmaceutically acceptable excipients.

9. Pharmaceutical composition according to claim 8, characterised in that it comprises at least one other active principle.

10. Pharmaceutical composition according to claim 9, characterised in that the active principle(s) is/are selected from cisplatin and the derivatives thereof such as carbop latin and oxaliplatin ; taxanes such as taxol, taxotere, paclitaxel and docetaxel ; vinca alkaloids such as vinblastine, vincristine and vinorelbine ; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2- chlorodeoxyadenosine ; topoisomerase I inhibitors such as compounds of camptothecin, like irinotecan and topotecan ; topoisomerase II inhibitors such as

epipodophyllotoxin, podophyllotoxin and the derivatives thereof like etoposide and teniposide ; antitumoural nucleoside derivatives such as 5-fluorouracil, leucovorin, gemcitabine or capecitabine ; alkylating agents such as nitrogen mustards like cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitrosoureas like carmustine, lomustine and streptozocin, alkyl sulphonates like busulphan, ethyleneimines and methylmelamines like thiotepa and hexamethylmelamine, and tetrazines like dacarbazine ; antitumoural anthracycline derivatives such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone ; molecules targeting the IGF-I receptor such as picropodophyllin ; tetracarcin derivatives such as tetrocarcin A ; corticosteroids such as prednisone ; antibodies such as trastuzumab (anti-HER2 antibody), rituximab (anti-CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; selective oestrogen receptor antagonists or modulators such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene ; aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole ; differentiating agents such as retinoids like retinoic acid and vitamin D and retinoic acid metabolism blocking agents such as accutane ; DNA methyltransferase inhibitors such as azacytidine and decitabine ; antifolates such as disodium permetrexed ; antibiotics such as antinomycin D, bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin ; antimetabolites such as chlofarabine, aminopterin, cytosine arabinoside, floxuridine and methotrexate ; apoptosis inducing agents and Bcl-2 inhibitor antiangiogenic agents such as YC 137, BH 312, ABT 737, gossypol, HA 14-1, TW 37 and decanoic acid ; agents binding to tubulin such as combrestatin, colchicine derivatives and nocodazole ; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib and gefϊtinib ; farnesyltransferase inhibitors such as tipifarnib ; histone deacetylase inhibitors such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ-26481585 and trichostatin A ; inhibitors of the ubiquitin proteasome system such as MLN .41, bortezomib and yondelis ; and telomerase inhibitors such as telomestatin.

11. Pharmaceutical composition comprising :

(iii) at least one compound of formula (I) according to any one of claims 1 to 7, and

(iv) at least one other active principle, as combination products for use simultaneously, separately or spread over time.

12. Pharmaceutical composition according to claim 11, characterised in that the active principle(s) is/are selected from cisp latin and the derivatives thereof such as carbop latin and oxaliplatin ; taxanes such as taxol, taxotere, paclitaxel and docetaxel ; vinca alkaloids such as vinblastine, vincristine and vinorelbine ; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2- chlorodeoxyadenosine ; topoisomerase I inhibitors such as compounds of camptothecin, like irinotecan and topotecan ; topoisomerase II inhibitors such as epipodophyllotoxin, podophyllotoxin and the derivatives thereof like etoposide and teniposide ; antitumoural nucleoside derivatives such as 5-fluorouracil, leucovorin, gemcitabine or capecitabine ; alkylating agents such as nitrogen mustards like cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitrosoureas like carmustine, lomustine and streptozocin, alkyl sulphonates like busulphan, ethyleneimines and methylmelamines like thiotepa and hexamethylmelamine, and tetrazines like dacarbazine ; antitumoural anthracycline derivatives such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone ; molecules targeting the IGF-I receptor such as picropodophyllin ; tetracarcin derivatives such as tetrocarcin A ; corticosteroids such as prednisone ; antibodies such as trastuzumab (anti-HER2 antibody), rituximab (anti-CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; selective oestrogen receptor antagonists or modulators such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene ; aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole ; differentiating agents such as retinoids like retinoic acid and vitamin D and retinoic acid metabolism blocking agents such as accutane ; DNA methyltransferase inhibitors such as azacytidine and decitabine ; antifolates such as disodium permetrexed ; antibiotics such as antinomycin D,

bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin ; antimetabolites such as chlofarabine, aminopterin, cytosine arabinoside, floxuridine and methotrexate ; apoptosis inducing agents and Bcl-2 inhibitor antiangiogenic agents such as YC 137, BH 312, ABT 737, gossypol, HA 14-1, TW 37 and decanoic acid ; agents binding to tubulin such as combrestatin, colchicine derivatives and nocodazole ; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib and gefϊtinib ; farnesyltransferase inhibitors such as tipifarnib ; histone deacetylase inhibitors such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ-26481585 and trichostatin A ; inhibitors of the ubiquitin proteasome system such as MLN .41, bortezomib and yondelis ; and telomerase inhibitors such as telomestatin.

13. Pharmaceutical composition according to either of claims 11 and 12, for use thereof as a medicament intended to treat or prevent a cancer, and preferably a cancer resistant to chemotherapy.

14. Compound of general formula (I) :

of which the radicals Rl, R2, R3, R4, R5 and R6 are as defined in claims 1 to 5, provided that :

if R6 = -C≡CR 38 with R 38 as defined hereinbefore, then Rl does not represent an optionally substituted l,3-thiazol-2-yl group,

if Rl represents a cyclopentyl or cyclohexyl group or a benzyl group optionally substituted by a fluorine atom, R2 and R3 represent a hydrogen atom and R6 represents a -C≡CH group, then R4 does not represent a thiophenyl or furyl group or a phenyl group optionally substituted by a fluorine atom, a chlorine atom or a methoxy group,

if Rl represents a hydrogen atom, a tert-butyl, sec-butyl, cyclohexyl, hexyl, ethyl or methyl group, or a phenyl group, optionally substituted by one or more groups selected from F, ethoxy and CF 3 , R2 represents a hydrogen atom or a methyl group, or Rl and R2 together form, with the nitrogen atom carrying them, a morpholine or piperidine group, R3 represents a hydrogen atom , and R4 represents a hydrogen atom, a methyl or ethyl group or a phenyl group optionally substituted with one or more groups selected from Cl, OH, methoxy, NO 2 or NMe 2 , or R3 and R4 together form, with the carbon atom carrying them, a cyclopentane or cyclohexane, and R6 represents a -CH 2 Cl group, then R5 does not represent a prop-2-yne, (Ci-Cs)alkyl, furylmethyl, tetrahydro- pyrane, thiopyrane or 1,3-benzodioxolyl-methyl group; or a benzyl group optionally substituted by a chlorine atom or NO 2 ; or a phenyl group optionally substituted by one or more Br, ethyl or methyl groups, and

if Rl represents a tert-butyi or benzyl group, R2 and R3 each represent a hydrogen atom, R4 represents a furyl or pyrrole group substituted on the nitrogen atom by a -SO 2 Me group, and R6 represents a -C≡CMe or -C≡CPh group, then R5 does not represent a tert-butyi group or a benzyl group optionally substituted by a bromine atom or a phenyl.

15. Compound according to claim 14, characterised in that the compound is selected from :

Description:

COMPOUNDS WHICH CAN BE USED FOR THE TREATMENT OF

CANCERS

The present invention relates to new compounds which can be used for the treatment of cancer, and to the compositions containing them.

An increasing life expectancy means that cancer, the leading cause of mortality in France, is affecting more and more people; yet it remains difficult to treat.

The development of resistance to chemotherapeutic agents is a serious problem representing a considerable obstacle to the treatment of many types of cancer. Tolerance to one agent is frequently accompanied by cross-resistance to a variety of other agents. This multidrug resistance, MDR, is the result of numerous mechanisms, only a small number of which have been well described. They include an increase in drug efflux, an increase in the cell's detoxification capabilities, a change in a drug's target, changes in the DNA repair system, and changes to the apototic pathways (Gatti et al. Methods MoI. Med. 2005, 111, 127-

148 ; Longley et al. J. Pathol. 2005, 205, 275-292 ; Kohno et al. Eur. J. Cancer 2005, 41, 2577-2586).

Numerous attempts have been made to inhibit these mechanisms, but as yet no substance has demonstrated convincing inhibitory activity.

There therefore remains a real need to develop new anticancer compounds which are able in particular to resolve the problems of multidrug resistance. The present invention concerns more particularly a compound of general formula (I) :

as well as the pharmaceutically acceptable salts thereof, the isomers or isomer mixtures thereof in all proportions, in particular an enantiomer mixture, and especially a racemic mixture, for which : - Rl represents a hydrogen atom or a (Ci-C 6 )alkyl, (C 3 -Co)cycloalkyl, (C 3 - Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, (Ci-C 6 )alkoxy, -NH 2 , -COOH, -CN, -OH, -NR 7 R 8 , -O- (Ci-C 6 )alkyl-NR 7 R 8 , benzyloxy, aryloxy, -C(O)O-(C i-C 6 )alkyl, -NH-C(O)O-

(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 9 R 10 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 11 R 12 , -NR 13 SO 2 R 14 and a (Ci-C 6 )alkyl group optionally substituted by one or more halogen atoms, R2 represents a hydrogen atom or a (Ci-C6)alkyl, advantageously (Ci -C 4 ) alkyl group, or

Rl and R2 together form, with the nitrogen atom carrying them:

a heteroaryl optionally substituted by one or more groups selected from a halogen atom, a -CN, -NH 2 , -NR 40 R 41 , -NO 2 , -OH, (Ci-C 6 )alkoxy, aryloxy, benzyloxy, -O(d-C 6 )alkyl-NR 42 R 43 , -C(O)O- (Ci-C 6 )alkyl, -NHC(O)O-(d-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 44 R 45 ,

-SO 2 NH 2 , -SO 2 NR 46 R 47 and -NR 48 SO 2 R 49 , or

a 3 to 7-membered heterocycle optionally substituted by one or more groups selected from a halogen atom, a (C 3 -Cio)cycloalkyl, (C 3 - Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl- (Ci-C 6 )alkyl, heterocycloalkyl-(d-C 6 )alkyl, -OH, -NH 2 , -C(O)OH,

-C(O)NH 2 , -C(S)NH 2 , -OR 50 , -OC(O)R 51 , -C(O)R 52 , -C(O)OR 53 , -NHC(O)R 54 , -NHC(O)OR 55 , -SO 2 R 56 -(d-C 6 )alkyl-C(O)OR 57 , -NR 58 R 59 , -C(O)NR 60 R 61 , -C(O)N(R 62 )(aryl), C(O)N(R 63 )(heteroaryl), -C(O)NHNR 64 R 65 , -C(S)NR 66 R 67 , -C(S)N(R 68 )(aryl), -C(S)N(R 69 )(heteroaryl), -C(S)NHNR 70 R 71 , -OC(O)-NR 72 R 73 ,

-(Ci-C 6 )alkyl-C(O)-NR 74 R 75 , -(d-C 6 )alkyl-NR 103 -C(O)-OR 104 ,

-(Ci-C 6 )alkyl-NR 76 R 77 , -C(NOR 78 )-aryl radical, and a (Ci-C 6 )alkyl group optionally substituted with one or more halogen atoms, the aryl and heteroaryl unit of said radical, when present, being optionally substituted by one or more groups selected from a halogen atom, and a -CN, -OH, (Ci-C 6 )alkyl, (Ci-C 6 )alkoxy, -NR 79 R 80 , -

(Ci-C 6 )alkyl-NR 81 R 82 and -O-(d-C 6 )alkyl-NR 83 R 84 group, R3 represents a hydrogen atom or a (Ci-Ce)alkyl group, avantageously (C 1 - C 4 )alkyl, or -(Ci-C 4 )alkyl-NR 15 R 16 ,

R4 represents a hydrogen atom or a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, aryl, advantageously phenyl, heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -C(CF 3 ) 2 OH, -CN, -NH 2 , -OPO 3 H 2 , -NR 17 R 18 , -NO 2 , - COOH, -OH, -O(Ci-C 6 )alkyl-OPO 3 H 2 , -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, - O(Ci-C 6 )alkyl-NR 19 R 20 , -NR 81 (d-C 6 )alkyl-NR 85 R 86 , benzyloxy, -C(O)O- (Ci-C 6 )alkyl, -NHC(O)O-(d-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 21 R 22 , -S-(Ci-

C 6 )alkyl, -S(O)-(Ci-C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 23 R 24 , -NR 25 SO 2 R 26 , 3 to 7-membered heterocycloalkyl, aryloxy radical, a (C 1 - Ce)alkyl group optionally substituted by one or more halogen atoms and a (Ci-Ce)alkoxy optionally substituted by one or more fluorine atoms, and the aryl and heteroaryl unit of said radical, when present, being optionally fused to a 5 or 6-membered heterocycle, or

- R3 and R4 form with the carbon carrying them a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, said ring being optionally substituted by a (Ci-C 6 )alkyl, -C(O)-(C i-C 6 )alkyl, -C(O)O- (Ci-C 6 )alkyl group,

- R5 represents a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, (C 3 -Cio)cycloalkenyl, aryl (advantageouslys phenyl), heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci- Ce)alkyl, (C 3 -Cio)cycloalkyl-(Ci-C 6 )alkyl, (3 to 7-membered hetero- cycloalkyl)-(Ci-C 6 )alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -NH 2 , -COOH, -CN, -OH, -NO 2 , -B(OH) 2 , (d-C 6 )alkoxy, -

O-(Ci-C 6 )alkyl-NR 27 R 28 , -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, aryloxy, -C(O)O- (Ci-C 6 )alkyl, (C 2 -C 6 )alkynyl, -NR 29 R 30 , -NHC(O)O-(C i-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 31 R 32 , -S-(Ci-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, - SO 2 NH 2 , -SO 2 NR 33 R 34 , -NR 35 SO 2 R 36 , aryl, heteroaryl, (Ci-C 6 )alkyl- heteroaryle 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical and a (Ci-C6)alkyl group optionally substituted by one or more halogen atoms, the aryl or heteroaryl unit of said radical, when present, being optionally fused to a 5 or 6-membered heterocycle, and - R6 represents a -CHR 37 HaI or -C≡CR 38 group, with Hal representing a halogen atom, advantageously chlorine or bromine, wherein :

- R 7 to R 13 , R 15 to R 18 , R 21 to R 25 , R 27 to R 35 , R 37 , R 40 to R 48 , R 58 to R 84 , R 89 to R 103 represent, independently of one another, a hydrogen atom or a (Ci- Ce)alkyl group, and preferably a (Ci-C6)alkyl group or, if two groups are carried by the same nitrogen, the two groups form with the nitrogen atom carrying them a 3 to 7-membered heterocycloalkyl,

- R 14 , R 26 , R 36 and R 49 represent, independently of one another, a (Ci-C 6 )alkyl group, - R 38 represents a hydrogen atom, a (Ci-Ce)alkyl group, preferably a methyl, or a phenyl group,

R 50 to R 57 , R 87 , R 88 and R 104 represent, independently of one another, a (Ci-C 6 )alkyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, (Ci-Ce)alkyl-aryl or (C i-Ce)alkyl- heteroaryl group, and - R 19 , R 20 , R 85 and R 86 represent, independently of one another, a (Ci-C 6 )alkyl group, or (R 19 and R 20 ) and/or (R 85 and R 86 ) together form, with the nitrogen atom carrying them, a 3 to 7-membered heterocycle optionally substituted by one or more groups selected from a halogen atom, a (C 3 -Cio)cycloalkyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, -C(O)OR 87 , -SO 2 R 88 , - OH, (Ci-C 6 )alkoxy, -OC(O)-(C i-C 6 )alkyl, -OC(O)-NR 89 R 90 , -NHC(O)O-(Ci-

C 6 )alkyl, -C(O)NH 2 , -C(O)NR 91 R 92 , -C(S)NR 93 R 94 , -C(O)NHNR 95 R 96 ,

-C(S)NHNR 97 R 98 radical and a (Ci-C 6 )alkyl group optionally substituted by one or more atoms of halogen, the aryl and heteroaryl unit of said radical, when present, being optionally substituted with one or more groups selected from a halogen atom and a (C 1 - C 6 )alkyl, -CN, -OH, NR 99 R 100 , (d-C 6 )alkoxy, -O-(Ci-C 6 )alkyl-NR 101 R 102 group, for use thereof as a medicament- Compounds of formula (I), for which R6 = -C≡CR 38 and Rl is an optionally substituted l,3-thiazol-2-yl group, are preferably not claimed as compounds suitable for use as a medicament. Indeed, these compounds are described in DElO 2005 062 991 as inhibitors of the mGluR5 receptor, but not as anticancer agents.

The present invention will therefore similarly relate to compounds of formula (I) such as those described above, including compounds for which R6 = - C≡CR 38 and Rl is an optionally substituted l,3-thiazol-2-yl group, for use thereof as a medicament intended to treat or prevent a cancer, and in particular a cancer resistant to chemotherapy.

The term « halogen » refers in the sense of the present invention to a fluorine, bromine, chlorine or iodine atom. Advantageously, it is a fluorine, bromine or chlorine atom.

The term « alkyl » group refers in the sense of the present invention to any saturated linear or branched hydrocarbon group, comprising preferably 1 to 6 carbon atoms, and advantageously 1 to 4 carbon atoms for the groups R2 and R3, in particular, the methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyi, n-pentyl, neopentyl or n-hexyl groups. Advantageously it is a methyl, isopropyl, tert-butyl, isobutyl or neopentyl group.

The alkyl group can be substituted by one or more halogen atoms, in particular bromine, chlorine and fluorine and advantageously fluorine. It will in particular in this case be the -CF 3 group.

The term « alkynyl » group refers in the sense of the present invention to any linear or branched hydrocarbon group, comprising at least one triple bond and comprising preferably 2 to 6 carbon atoms. Advantageously it is a -C≡CH group.

The term « alkoxy » group refers in the sense of the present invention to an -O-(Ci-C6)alkyl group, i.e. an alkyl group as defined hereinbefore bound to the molecule via an oxygen atom. Examples of an alkoxy group include the methoxy, ethoxy or else tert-butoxy group. Advantageously, it is methoxy or tert-butoxy, and even more advantageously, it is methoxy.

The alkoxy group can be substituted by one or more fluorine atoms. In this case, it will advantageously be the -OCHF 2 or -OCF 3 group.

The term « aryl » group refers in the sense of the present invention to an aromatic group, comprising preferably 5 to 10 carbon atoms and comprising one or more fused rings. Advantageously, it is phenyl or naphthyl, and more advantageously, phenyl (Ph). The term « heteroaryl » group refers in the sense of the present invention to any aryl group as defined hereinbefore in which one or more carbon atoms have been replaced by one or more heteroatoms, advantageously 1 to 4 and, even more advantageously 1 to 2, such as for example sulphur, nitrogen or oxygen atoms. Advantageously, it is a furyl, thiophenyl, pyridinyl, pyrimidinyl, tetrazolyl, quinolinyl, 1,2,3-thiadiazolyl, benzoimidazolyl, indazolyl or 1,2,3-benzotriazolyl group. Also advantageously, it is a thiophenyl, and in particular, a thiophen-2-yl.

The term « aryloxy » group refers in the sense of the present invention to an -O-(aryl) group, i.e. an aryl group as defined hereinbefore bound to the molecule via an oxygen atom. It is advantageously a phenyloxy group. The term « cycloalkyl » group refers in the sense of the present invention to a saturated hydrocarbon ring comprising 3 to 10 carbon atoms, advantageously 3 to 7 carbon atoms, also advantageously 3 to 7 carbon atoms and even more advantageously 5 to 6 carbon atoms, in particular the cyclopropyl, cyclohexyl or cyclopentyl group. Advantageously, it is a cyclopentyl or a cyclohexyl, and more particularly a cyclohexyl. Also advantageously, it is a cyclopropyl.

The term « cycloalkenyl » group refers in the sense of the present invention to a hydrocarbon ring comprising at least one double bond and comprising 3 to 10 carbon atoms, advantageously 3 to 7 carbon atoms, also advantageously 3 to 6 carbon atoms and even more advantageously 5 to 6 carbon atoms. Advantageously, it is a cyclohexenyl.

The term « heterocycloalkyl » group refers in the sense of the present invention to any cycloalkyl group as defined hereinbefore, comprising advantageously 3 to 7 members, in which one or more carbon atoms have been replaced by one or more heteroatoms, advantageously 1 to 4 and, even more advantageously 1 to 2, such as for example sulphur, nitrogen or oxygen atoms. Advantageously, it is a tetrahydrofuranyl, piperidinyl, pyrrolidinyl or else morpholinyl group.

The term « heterocycle » refers in the sense of the present invention to a 5 or 6-membered non-aromatic hydrocarbon ring (unless otherwise stated) which can comprise one or more unsaturation and comprising one or more heteroatoms, advantageously 1 to 4 and, even more advantageously 1 to 2, such as for example sulphur, nitrogen or oxygen atoms.

When it is fused to an aryl or heteroaryl group, this will advantageously be a group of the following structure :

the bond indicated by broken lines representing the bond common with the aryl or heteroaryl ring.

When the group is NR1R2, NR 19 R 20 or NR 85 R 86 , the heterocycle will advantageously be a 5 or 6-membered ring, preferably saturated or comprising a double bond, and optionally comprising a heteroatom in additioan to the nitrogen atom already present, this heteroatom advatangeously being an oxygen or nitrogen atom. The heterocycle can be in particular a morpholine, piperidine, piperazine, pyrrolidine, 2,5-dihydropyrrole and 1,2,5,6-tetrahydropyridine group. It will preferably be a piperazine group.

The term « aryl-(Ci-C 6 )alkyl » group refers in the sense of the present invention to an aryl group as defined hereinbefore bound to the molecule via an alkyl group as defined hereinbefore. Advantageously, it is a benzyl or 1- phenylethyl group, and even more advantageously a phenyl. The term « heteroaryl-(Ci-C 6 )alkyl » group refers in the sense of the present invention to a heteroaryl group as defined hereinbefore bound to the molecule via an alkyl group as defined hereinbefore. Advantageously, it will be a heteroarylmethyl group, the heteroaryl group being advantageously a pyridinyl group, especially bound in position 2 or 3, or a furanyl group, especially bound in position 2.

The term « (C 3 -Cio)cycloalkyl-(Ci-C 6 )alkyl » group refers in the sense of the present invention to a cycloalkyl group as defined hereinbefore bound to the molecule via an alkyl group as defined hereinbefore. Advantageously, the alkyl unit will be a methyl, and also advantageously, the cycloalkyl unit will be a cyclopropyl.

The term « (3 to 7-membered heterocycloalkyl)-(Ci-C 6 )alkyl » group refers in the sense of the present invention to a heterocycloalkyl group as defined hereinbefore bound to the molecule via an alkyl group as defined hereinbefore. Advantageously, the alkyl unit will be a methyl, and also advantageously, the heterocycloalkyl unit will be 5 or 6-membered, especially will be a tetrahydro furanyl group.

The term « (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy » group refers in the sense of the present invention to a heterocycloalkyl group as defined hereinbefore bound to the molecule via an alkoxy group as defined hereinbefore. Advantageously, the alkoxy unit will comprise 1 to 3 carbon atoms, and also advantageously will be a linear propoxy. Advantageously, the heterocycloalkyl unit will be 5 or 6-membered, preferably 6-membered, and especially will be a morpholinyl group.

The term « (Ci-C 6 )alkyl-heteroaryl group » refers in the sense of the present invention to an alkyl group as defined hereinbefore bound to the molecule

via a heteroaryl group as defined hereinbefore. Advantageously, it will be a methylpyridine or methylimidazole group.

The term « (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy group » refers in the sense of the present invention to a heterocycloalkyl group as defined hereinbefore bound to the molecule via an alkoxy group as defined hereinbefore.

Advantageously, the alkoxy unit will be an n-propoxy and the heterocycloalkyl unit will be a morpholinyl bound by its nitrogen atom to the alkoxy group.

In the present invention, the term « pharmaceutically acceptable » refers to that which can be used in the preparation of a pharmaceutical composition which is generally safe, non-toxic and neither biologically nor otherwise undesirable and which is acceptable both for veterinary and for human pharmaceutical use.

The term « pharmaceutically acceptable salts » of a compound refers in the present invention to salts which are pharmaceutically acceptable, as defined in the present document, and which have the desired pharmacological activity of the parent compound. Such salts include :

(1) hydrates and solvates,

(2) acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulphuric acid, nitric acid, phosphoric acid and the like ; or formed with organic acids such as acetic acid, benzenesulphonic acid, benzoic acid, camphorsulphonic acid, citric acid, ethanesulphonic acid, fumaric acid, glucoheptonic acid, gluconic acid, glutamic acid, glycolic acid, hydroxynaphthoic acid, 2-hydroxyethanesulphonic acid, lactic acid, maleic acid, malic acid, mandelic acid, methanesulphonic acid, muconic acid, 2-naphthalenesulphonic acid, propionic acid, salicylic acid, succinic acid, dibenzoyl-L-tartaric acid, tartaric acid, p-toluenesulphonic acid, trimethylacetic acid, trifluoroacetic acid and the like, advantageously, this will be hydrochloric acid ; and

(3) the salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, for example an alkali metal ion (Na + , K + or Li + for example), an alkaline earth metal ion (like Ca 2+ or Mg 2+ ) or an aluminium ion ; or is coordinated with an organic or inorganic base. Acceptable organic bases include diethanolamine, ethanolamine, N-methylglucamine, triethanolamine,

tromethamine and the like. Acceptable inorganic bases include aluminium hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate and sodium hydroxide.

In the present invention, the term « isomers » refers in the sense of the present invention to diastereoisomers or enantiomers. They are therefore optical isomers also known as « stereoisomers ». Stereoisomers which are not mirror images of one another are thus referred to as « diastereoisomers », and stereoisomers which are non-superimposable mirror images are referred to as « enantiomers ». A carbon atom bound to four non- identical substituents is called a « chiral centre ».

An equimolar mixture of two enantiomers is called a racemic mixture. When the NR1R2 group represents a heteroaryl or heterocycle, it is of course possible for said cycle to comprise one or more other heteroatoms, preferably zero or one another, heteroatom(s) in addition to the nitrogen atom carrying Rl and R2 which is already present, said heteroaryl or heterocycle advantageously having 5 to 6 members. Said heteroatom will therefore be advantageously selected from O, S and N, and preferably from O and N. Advantageously, it will be a piperidine, morpholine or piperazine group, and preferably piperazine.

The same comment also applies to the groups NR 19 R 20 and NR 85 R 86 , when they form heterocycles.

Advantageously, Rl does not represent a hydrogen atom. Advantageously, Rl and/or R4 do(es) not represent a hydrogen atom. Even more advantageously, Rl and R4 do not represent a hydrogen atom.

According to a particular embodiment of the invention, Rl : represents a hydrogen atom or a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, (C 3 - Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a (Ci-C 6 )alkoxy, -NH 2 , -COOH, -CN, -OH, -NR 7 R 8 , -O-

(Ci-C 6 )alkyl-NR 7 R 8 , benzyloxy, -C(O)O-(Ci -C 6 )alkyl, -NH-C(O)O- (Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 9 R 10 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, - SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 11 R 12 , -NR 13 SO 2 R 14 radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms, or - forms, with R2 and the nitrogen atom carrying them, a 3 to 7-membered heterocycloalkyl, said heterocycloalkyl being optionally substituted by one or more groups selected from a halogen atom and a (Ci-C 6 )alkyl group optionally substituted by one or more halogen atoms.

Advantageously, Rl represents a hydrogen atom or a (Ci-C 6 )alkyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, (C 3 -Cio)cycloalkyl group, said group being optionally substituted by one or more groups selected from - NH 2 , -COOH, benzyloxy, -C(O)O((d-C 6 )alkyl), -NHC(O)O((d-C 6 )alkyl).

Also advantageously, Rl represents a (Ci-Ce)alkyl, aryl, aryl-(Ci-Ce)alkyl,

(C3-Cio)cycloalkyl group, said group being optionally substituted by one or more groups selected from -NH 2 , -COOH, benzyloxy, -C(O)O((d-C 6 )alkyl), -

NHC(O)O((Ci-C 6 )alkyl), and advantageously from benzyloxy and -C(O)O((Ci-

C 6 )alkyl).

Also advantageously, Rl represents a (Ci-C6)alkyl group optionally substituted by a -C(O)O((Ci-Ce)alkyl) group; an aryl group optionally substituted by a -C(O)O((Ci-Ce)alkyl) or benzyloxy group; an aryl-(Ci-Ce)alkyl group; or a (C 3 -Cio)cycloalkyl group.

Even more advantageously, Rl represents a cyclohexyl, cyclopentyl, benzyl, -C 6 H 4 -C(O)OMe, -C 6 H 4 -OBn, -CH 2 CH 2 -CO 2 Me or -CH 2 CH 2 -C0 2 tBu group. Also advantageously, Rl represents a cyclohexyl, cyclopentyl or benzyl, and also advantageously cyclohexyl group.

In one particular embodiment, R2 represents a hydrogen atom. According to a first preferred embodiment of the invention, Rl represents a (C 3 -Cio)cycloalkyl or aryl-(Ci-C 6 )alkyl group, and preferably cyclohexyl, cyclopentyl or benzyl,

said group being optionally substituted by one or more groups selected from a halogen atom, a (Ci-C 6 )alkoxy, -NH 2 , -COOH, -CN, -OH, -NR 7 R 8 , -O- (Ci-C 6 )alkyl-NR 7 R 8 , benzyloxy, aryloxy, -C(O)O-(d-C 6 )alkyl, -NH-C(O)O- (Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 9 R 10 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, - SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 11 R 12 , -NR 13 SO 2 R 14 radical and a (Ci-Ce)alkyl group optionally substituted by one or more groups selected from a halogen atom, a (Ci-C 6 )alkoxy, -NH 2 , -COOH, benzyloxy, aryloxy, -C(O)O((Ci- C 6 )alkyl), -NHC(O)O((Ci-C 6 )alkyl) group.

Advantageously, Rl represents a (C 3 -Cio)cycloalkyl or aryl-(Ci-C 6 )alkyl group, preferably cyclohexyl, cyclopentyl or benzyl, said group being optionally substituted by one or more groups from a halogen atom, -OH and (Ci-Ce)alkoxy.

In this case, Rl advantageously represents a (C3-Cio)cycloalkyl group, and preferably cyclohexyl, preferably unsubstituted, and R2 advantageously represents a hydrogen atom. According to a second preferred embodiment of the invention, Rl forms, with R2 and the nitrogen atom carrying them, a 3 to 7-membered heterocycle optionally substituted by one or more groups selected from a halogen atom, a (d- Cio)cycloalkyl, (C 3 -Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-Ce)alkyl, heteroaryl-(Ci-C 6 )alkyl, heterocycloalkyl-(Ci-C 6 )alkyl, -OH, -NH 2 , -C(O)OH, -C(O)NH 2 , -C(S)NH 2 , -OR 50 , -OC(O)R 51 , -C(O)R 52 , -C(O)OR 53 , -NHC(O)R 54 , - NHC(O)OR 55 , -SO 2 R 56 -(Ci-C 6 )alkyl-C(O)OR 57 , -NR 58 R 59 , -C(O)NR 60 R 61 , - C(O)N(R 62 )(aryl), C(O)N(R 63 )(heteroaryl), -C(O)NHNR 64 R 65 , -C(S)NR 66 R 67 , - C(S)N(R 68 )(aryl), -C(S)N(R 69 )(heteroaryl), -C(S)NHNR 70 R 71 , -OC(O)-NR 72 R 73 , -(Ci-C 6 )alkyl-C(O)-NR 74 R 75 , -(Ci-C 6 )alkyl-NR 103 -C(O)-OR 104 , -(d-C 6 )alkyl- NR 76 R 77 , -C(NOR 78 )-aryl radical, and a (d-C 6 )alkyl group optionally substituted by one or more halogen atoms, the aryl and heteroaryl unit of said radical, when present, being optionally substituted by one or more groups selected from a halogen atom, a -CN, -OH, (Ci-C 6 )alkyl, (d-C 6 )alkoxy, -NR 79 R 80 , -(d-C 6 )alkyl-NR 81 R 82 and -O- (Ci-C 6 )alkyl-NR 83 R 84 group.

In this case the heterocycle will advantageously be 5 or 6-membered and preferably saturated. It will advantageously be piperazine.

Thus, -NR1R2 will advantageously represent the following piperazine cycle:

R 104 representing a hydrogen atom, a (C 3 -Cio)cycloalkyl, (C 3 -Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, heterocycloalkyl- (Ci-C 6 )alkyl, -C(O)R 52 , -C(O)OR 53 , -C(O)OH, -C(O)NH 2 , -C(S)NH 2 , - C(O)NR 60 R 61 , -C(S)NR 66 R 67 , -SO 2 R 56 , -C(O)NHNR 64 R 65 , -C(S)NHNR 70 R 71 radical, and a (Ci-C 6 )alkyl group optionally substituted by one or more halogen atoms, the aryl and heteroaryl unit of said radical, when present, being optionally substituted with one or more groups selected from a halogen atom, a -CN, -OH, (Ci-C 6 )alkoxy, -NR 79 R 80 , and -O-(d-C 6 )alkyl-NR 83 R 84 group. Advantageously, R 104 represents a (C 3 -Cio)cycloalkyl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, -C(O)R 52 , -C(O)OR 53 , -C(O)NH 2 , -C(O)NR 60 R 61 , - SO 2 R 56 or -C(O)NHNR 64 R 65 group, and preferablya represents a (C 3 - Cio)cycloalkyl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, -C(O)R 52 , -C(O)OR 53 , -C(O)NR 60 R 61 or -SO 2 R 56 group. According to a particular embodiment of the invention, R4: represents a hydrogen atom or a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, aryl advantageously phenyl, or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -C(CF 3 ) 2 OH, -CN, -NH 2 , -OPO 3 H 2 , -NR 17 R 18 , -NO 2 , - COOH, -OH, -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, -O(d-C 6 )alkyl-NR 19 R 20 (with

R 19 and R 20 each representing a (Ci-C 6 )alkyl), benzyloxy, -C(O)O- (Ci-C 6 )alkyl, -NHC(O)O-(C i-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 21 R 22 , -S-(Ci- C 6 )alkyl, -S(O)-(Ci-C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 23 R 24 , -NR 25 SO 2 R 26 group, a 3 to 7-membered heterocycloalkyl, aryloxy radical, a

(Ci-Ce)alkyl optionally substituted by one or more halogen atoms, and a (C 1 - Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group, when it is an aryl or heteroaryl, being optionally fused to a 5 or 6- membered heterocycle, or - forms, with R3 and the carbon carrying them, a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, said cycle being optionally substituted by a (Ci-C 6 )alkyl, -C(O)-(Ci-C 6 )alkyl, -C(O)O- (Ci-C 6 )alkyl group.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom or a (Ci-C 6 )alkyl, aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 (R 17 and R 18 being as defined hereinbefore), -NO 2 , -COOH, 3 to 7-membered heterocycloalkyl, (C 1 - Ce)alkyl, -S-(Ci-C 6 )alkyl, aryloxy radical and a (Ci-Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group, if it is an aryl or heteroaryl, being optionally fused to a 5 or 6- membered heterocycle, or R3 and R4 form with the carbon carrying them a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, said ring being optionally substituted by a -C(O)O((d-C 6 )alkyl group).

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom or an aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 , -NO 2 , -COOH, 3 to 7- membered heterocycloalkyl, (Ci-C 6 )alkyl, -S-(Ci-Ce)alkyl, aryloxy radical and a (Ci-Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle, or

R3 and R4 form with the carbon carrying them a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, advantageously a 3 to 7- membered heterocycloalkyl, said ring being optionally substituted by a - C(O)O((Ci-C 6 )alkyl) group, R 17 and R 18 being as defined hereinbefore.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom or an aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 , -NO 2 , -COOH, 3 to 7- membered heterocycloalkyl, (Ci-C 6 )alkyl, -S-(Ci-Ce)alkyl, aryloxy radical and a (Ci-Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle, R 17 and R 18 being as defined hereinbefore. Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom; a heteroaryl, preferably thiophenyl, group optionally substituted by a (Ci-C 6 )alkyl group; or an aryl, preferably phenyl, group optionally fused to a 5 or 6-membered heterocycle comprising preferably two oxygen atoms, and optionally substituted by one or more groups selected from a halogen atom and a -CN, -NR 17 R 18 , -NO 2 , (Ci-C 6 )alkyl, (Ci-C 6 )alkoxy, (C 5 -C 6 )heterocycloalkyl, -S- (d-C 6 )alkyl and aryloxy group, or

R3 and R4 form with the carbon carrying them a (Cs-CβXycloalkyl or 5 or 6- membered heterocycloalkyl ring, advantageously a 5 or 6-membered heterocycloalkyl, said ring being optionally substituted by a -C(O)O((Ci-Ce)alkyl) group, R 17 and R 18 being as defined hereinbefore.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom; or a heteroaryl, preferably thiophenyl, group optionally substituted by a (Ci-C 6 )alkyl group; or an aryl, preferably phenyl, group optionally fused to a 5 or 6-membered

heterocycle comprising preferably two oxygen atoms, and optionally substituted by one or more groups selected from a halogen atom and a -CN, -NR 17 R 18 , -NO 2 , (Ci-C 6 )alkyl, (Ci-C 6 )alkoxy, (C 5 -C 6 )heterocycloalkyl, -S-(d-C 6 )alkyl and aryloxy group, R 17 and R 18 being as defined hereinbefore.

Even more advantageously, R4 does not represent a hydrogen atom.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom.

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a thiophenyl group optionally substituted by a methyl; a 1,3-benzodioxolyl; group or a phenyl group optionally substituted by one or more groups selected from a halogen atom and a -CN, -

NR 17 R 18 , preferably -NMe 2 , -NO 2 , (d-C 6 )alkyl, preferably methyl or isopropyl,

(Ci-C6)alkoxy, preferably methoxy, pyrrolidinyl, -S-(Ci-C6)alkyl, preferably thiomethoxy, and phenoxy group, or tBu

R3 and R4 form with the carbon carrying them a ring of formula

R 17 and R 18 being as defined hereinbefore.

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a thiophenyl group optionally substituted by a methyl, a 1,3-benzodioxolyl group or a phenyl group optionally substituted by one or more groups selected from a halogen atom and a -CN, -

NR 17 R 18 , preferably -NMe 2 , -NO 2 , (Ci-C6)alkyl, preferably methyl or isopropyl,

(Ci-C6)alkoxy, preferably methoxy, pyrrolidinyl, -S-(Ci-C6)alkyl, preferably thiomethoxy, and phenoxy group, R 7 and R 8 being as defined hereinbefore.

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a thiophenyl, advantageously thiophen-2-yl group.

According to a first preferred embodiment of the invention, R3 and R4 each represent, independently of each other, a (Ci-Ce)alkyl group, such as methyl. According to a second preferred embeodiment of the invention, R3 represents a hydrogen atom, and R4 represents an aryl, advantageously phenyl or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -C(CF 3 ) 2 OH, -CN, -NH 2 , -OPO 3 H 2 , -NR 17 R 18 , -NO 2 , -COOH, - OH, -O(Ci-C 6 )alkyl-OPO 3 H 2 , -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, -O(Ci-C 6 )alkyl- NR 19 R 20 , -NR 81 (Ci-C 6 )alkyl-NR 85 R 86 , benzyloxy, -C(O)O-(C i-C 6 )alkyl, - NHC(O)O-(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 21 R 22 , -S-(d-C 6 )alkyl, -S(O)-(Ci- C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 23 R 24 , -NR 25 SO 2 R 26 , 3 to 7- membered heterocycloalkyl, aryloxy radical, a (Ci-C 6 )alkyl optionally substituted by one or more halogen atoms, and a (Ci-Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle.

In this case, R4 advantageously represents an aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 (R 17 and R 18 being as defined above), -NO 2 , -COOH, 3 to 7-membered heterocycloalkyl, (C 1 -C 6 )alkyl, - S-(Ci-C 6 )alkyl, aryloxy, -O(d-C 6 )alkyl-NR 19 R 20 radical and a (Ci-C 6 )alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle

R4 preferably represents an unsubstituted thiophenyl group, preferably thiophen-2-yl; or a phenyl group optionally substituted by one or more groups selected frorm a halogen atom and a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 group (R 17 and R 18 being as defined above), -NO 2 , -COOH, 3 to 7-membered heterocycloalkyl, (Ci-C 6 )alkyl, -S-(d-C 6 )alkyl, aryloxy, -0(C i-C 6 )alky 1-NR 19 R 20 radical and a (Ci-C6)alkoxy optionally substituted by one or more f;luorine atoms, and

optionally fused to or , the bond shown as a dotted line representing the bond common with phenyl.

Advantageously, R5 represents a (Ci-Ce)alkyl, aryl, heteroaryl, aryl-(Ci- C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, (C 3 -Ci 0 )cycloalkyl-(Ci-C 6 )alkyl, (3 to 7- membered heterocycloalkyl) -(Ci-C 6 )alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -CN, -OH, -NR 29 R 30 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-C 6 )alkoxy, aryloxy, -S-(d-C 6 )alkyl, -C(O)O((d-C 6 )alkyl), (C 2 -C 6 )alkynyl, aryl, heteroaryl, (Ci-C 6 )alkyl-heteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical and a (Ci-C6)alkyl optionally substituted by one or more fluorine atoms, and the aryl or heteroaryl core of said group, when present, being optionally fused to a 5 or 6-membered heterocycle, R 29 and R 30 being as defined hereinbefore. Also advantageously, R5 represents a (Ci-C6)alkyl, heteroaryl, (C 3 -

Cio)cycloalkyl-(Ci-C 6 )alkyl, aryl-(Ci-C 6 )alkyl, or aryl group, the aryl core of the aryl or aryl-(Ci-C 6 )alkyl group being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being optionally substituted by one or more groups selected from a halogen atom, a - CF 3 , -CN, -OH, -NR 29 R 30 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-C 6 )alkoxy, aryloxy, -S-(Ci- C 6 )alkyl, -C(O)O((Ci-C 6 )alkyl), (C 2 -C 6 )alkynyl, aryl, heteroaryl, (Ci- C 6 )alkylheteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical, and a (Ci-C6)alkyl optionally substituted by one or more fluorine atoms, R 29 and R 30 being as defined hereinbefore.

Advantageously, R5 represents a (Ci-Ce)alkyl, heteroaryl, (C 3 - Cio)cycloalkyl-(Ci-C 6 )alkyl, aryl-(Ci-C 6 )alkyl, or aryl group, the aryl core of the aryl or aryl-(Ci-C 6 )alkyl group being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being

optionally substituted by one or more groups selected from a halogen atom, a - CF 3 , -CN, -NR 29 R 30 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-C 6 )alkoxy, aryloxy, (d-C 6 )alkyl, (C 2 -Ce)alkynyl, aryl and 5 or 6-membered heterocycloalkyl group, R 29 and R 30 being as defined hereinbefore. Also advantageously, R5 represents a (Ci-C6)alkyl, preferably methyl or isobutyl; indazolyl; phenyl-(Ci-C 6 )alkyl, preferably benzyl; cyclopropyl- (Ci-C6)alkyl, preferably, cyclopropylmethyl; 1,3-benzodioxolyl; 1,3- benzodioxolylmethyl; naphthyl; or phenyl group, said phenyl group being optionally substituted by one or more groups selected from a halogen atom, preferably a fluorine or chlorine atom, a -CF 3 , -CN, -NR 29 R 30 , preferably -NMe 2 or -NEt 2 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-Ce)alkoxy, preferably methoxy, phenoxy, (Ci-Ce)alkyl, preferably methyl, isopropyl or tert-butyl, (C 2 -Ce)alkynyl, preferably -C≡CH, phenyl and morpholinyl group, R 29 and R 30 being as defined hereinbefore. Also advantageously, R5 represents a phenyl group, being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being optionally substituted by one or more groups selected from a halogen atom, a -NH 2 , -COOH, -CN, -OH, -NO 2 , -B(OH) 2 , (d-C 6 )alkoxy, -O-(d-C 6 )alkyl- NR 27 R 28 , -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, aryloxy, -C(O)O-(C i-C 6 )alkyl, (C 2 -C 6 )alkynyl, -NR 29 R 30 , -NHC(O)O-(d-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 31 R 32 , - S-(Ci -C 6 )alkyl, -S(O)-(d-C 6 )alkyl, -SO 2 -(Ci -C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 33 R 34 , -NR 35 SO 2 R 36 , aryl, heteroaryl, (Ci-C 6 )alkylheteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C 6 )alkoxy radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms, R 29 to R 36 being as defined hereinbefore.

Even more advantageously, R5 represents a 1,3-benzodioxolyl or phenyl group, said phenyl group being optionally substituted by one or more groups selected from a halogen atom, preferably a fluorine or chlorine atom, a -CF 3 , -CN, -NR 29 R 30 , preferably -NMe 2 or -NEt 2 , -NO 2 , -C(CF 3 ) 2 OH, (d-C 6 )alkoxy, preferably methoxy, phenoxy, (Ci-Ce)alkyl, preferably methyl, isopropyl or tert- butyl, (C 2 -Ce)alkynyl, preferably -C≡CH, phenyl and morpholinyl group,

R 29 and R 30 being as defined hereinbefore.

Also advantageously, R6 represents a -CH 2 HaI or -C≡CR 12 group, with Hal and R 12 as defined hereinbefore.

Even more advantageously, R6 is selected from -CH 2 Cl, -CH 2 Br, -CH 2 F, - C≡CH, -C≡CMe and -C≡CPh, and advantageously R6 is selected from -CH 2 Cl and -C≡CH.

In one particular embodiment, R6 represents the -CH 2 Cl group.

In another particular embodiment, R6 represents the -C≡CH group.

In one particular embodiment, the compounds according to the invention will be selected from the compounds of formula (I) for which Rl represents a cyclohexyl, R2 and R3 represent a hydrogen atom, R4 represents a thiophenyl, R6 represents a -CH 2 Cl or -C≡CH group and R5 represents a phenyl group, said phenyl group being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being optionally substituted by one or more groups selected from a halogen atom, a -NH 2 , -COOH, -CN, -OH, -NO 2 ,

-B(OH) 2 , (Ci-C 6 )alkoxy, -O-(d-C 6 )alkyl-NR 27 R 28 , -O-(Ci-C 6 )alkyl-O-(Ci-

C 6 )alkyl, aryloxy, -C(O)O-(C i-C 6 )alkyl, (C 2 -C 6 )alkynyl, -NR 29 R 30 , -NHC(O)O-

(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 31 R 32 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, -

SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 33 R 34 , -NR 35 SO 2 R 36 , aryl, heteroaryl, (Ci- Ce)alkylheteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms,

R 29 to R 36 being as defined hereinbefore.

In another particular embodiment, the compounds according to the invention will be selected from the compounds of formula (I) for which Rl represents a cyclohexyl, R2 and R3 represent a hydrogen atom, R4 represents a thiophenyl, R6 represents a -CH 2 Cl or -C≡CH group and R5 represents a 1,3- benzodioxolyl or phenyl group, said phenyl group being optionally substituted by one or more groups selected from a halogen atom, preferably a fluorine or chlorine atom, a -CF 3 , -CN, -NR 29 R 30 , preferably -NMe 2 or -NEt 2 , -NO 2 , -

C(CFs) 2 OH, (Ci-Ce)alkoxy, preferably methoxy, phenoxy, (Ci-Ce)alkyl,

preferably methyl, isopropyl or tert-butyl, (C 2 -Ce)alkynyl, preferably -C=CH, phenyl and morpholinyl group,

R 29 and R 30 being as defined hereinbefore.

In one particular embodiment, the compound of the invention is selected from the following molecules:

N. B. It should be noted that when nitrogen atoms present only 2 substituents on the above molecules, the 3 rd substituent is, of course, a hydrogen atom.

The present invention also relates to the use of a compound of formula (I) as defined hereinbefore for the production of a medicament, in particular intended to treat or prevent a cancer, and in particular a cancer resistant to chemotherapy.

The present invention also relates to a method for the treatment or prevention of cancer comprising the administration of an effective quantity of a compound of formula (I) as defined hereinbefore to a patient In need thereof. The present invention also concerns a pharmaceutical composition comprising at least one compound of formula (I) as defined hereinbefore, in association with one or more pharmaceutically acceptable excipients.

The compounds of formula (I) for which R6 = -C≡CR 38 and Rl is an optionally substituted l,3-thiazol-2-yl group will preferably be excluded from the pharmaceutical compositions not comprising another active principle, such as an anticancer agent.

In one particular embodiment, this composition may comprise at least one other active principle.

In particular, this/these active principle(s) may be anticancer agents conventionally used in the treatment of cancer. These anticancer agents may be

selected in particular from cisplatin and the derivatives thereof such as carboplatin and oxaliplatin ; taxanes such as taxol, taxotere, paclitaxel and docetaxel ; vinca alkaloids such as vinblastine, vincristine and vinorelbine ; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine ; topoisomerase I inhibitors such as compounds of camptothecin, like irinotecan and topotecan ; topoisomerase II inhibitors such as epipodophyllotoxin, podophyllotoxin and the derivatives thereof like etoposide and teniposide ; antitumoural nucleoside derivatives such as 5-fluorouracil, leucovorin, gemcitabine or capecitabine ; alkylating agents such as nitrogen mustards like cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitrosoureas like carmustine, lomustine and streptozocin, alkyl sulphonates like busulphan, ethyleneimines and methylmelamines like thiotepa and hexamethylmelamine, and tetrazines like dacarbazine ; antitumoural anthracycline derivatives such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone ; molecules targeting the IGF-I receptor such as picropodophyllin ; tetracarcin derivatives such as tetrocarcin A ; corticosteroids such as prednisone ; antibodies such as trastuzumab (anti-HER2 antibody), rituximab (anti-CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; selective oestrogen receptor antagonists or modulators such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene ; aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole ; differentiating agents such as retinoids like retinoic acid and vitamin D and retinoic acid metabolism blocking agents such as accutane ; DNA methyltransferase inhibitors such as azacytidine and decitabine ; antifolates such as disodium permetrexed ; antibiotics such as antinomycin D, bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin ; antimetabolites such as chlofarabine, amino pterin, cytosine arabinoside, floxuridine and methotrexate ; apoptosis inducing agents and Bcl-2 inhibitor antiangiogenic agents such as YC 137, BH 312, ABT 737, gossypol, HA 14-1, TW 37 and decanoic acid ; agents binding to tubulin such as combrestatin, colchicine derivatives and nocodazole ; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib and gefitinib ; farnesyltransferase inhibitors such as

tipifarnib ; histone deacetylase inhibitors such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ-26481585 and trichostatin A ; inhibitors of the ubiquitin proteasome system such as MLN .41, bortezomib and yondelis ; and telomerase inhibitors such as telomestatin. The compounds according to the invention can be administered orally, sublingually, parenterally, subcutaneously, intramuscularly, intravenously, transdermally, locally or rectally.

In the pharmaceutical compositions of the present invention for oral, sublingual, parenteral, subcutaneous, intramuscular, intravenous, transdermal, local or rectal administration, the active ingredient can be administered in unitary forms of administration, in a mixture with conventional pharmaceutical carriers, to animals or to human beings. Appropriate unitary forms of administration include forms to be administered orally such as tablets, capsules, powders, granules and oral solutions or suspensions, forms to be administered sublingually and buccally, forms to be administered parenterally, subcutaneously, intramuscularly, intravenously, intranasally or intraocularly and forms to be administered rectally.

During preparation of a solid composition in the form of tablets, the main active ingredient is mixed with a pharmaceutical vehicle such as gelatin, starch, lactose, magnesium stearate, talc, gum arabic or the like. Tablets made of sucrose or other suitable materials can be coated or else treated in such a way that they display prolonged or delayed activity and that they continuously release a predetermined quantity of active principle.

A capsule preparation is obtained by mixing the active ingredient with a diluent and by pouring the mixture obtained into soft or hard capsules.

A preparation in the form of a syrup or elixir can contain the active ingredient in conjunction with a sweetening agent, an antiseptic, and also a flavour-imparting agent and an appropriate dye.

Water-dispersible powders or granules can contain the active ingredient in a mixture with dispersing agents or wetting agents, or suspending agents, and also with taste modifiers or sweetening agents.

For rectal administration, use is made of suppositories prepared with binders which melt at rectal temperature, for example cocoa butter or polyethylene glycols.

For parenteral, intranasal or intraocular administration, use is made of aqueous suspensions, isotonic saline solutions or sterile and injectable solutions containing pharmacologically compatible dispersing agents and/or wetting agents. The active principle can also be formulated in the form of microcapsules, optionally with one or more additive carriers.

The compounds of the invention can be used at doses of between 0.01 mg and 1,000 mg per day, given in a single dose once per day or administered in a plurality of doses over the course of the day, for example twice per day in equal doses. The daily administered dose is advantageously comprised between 5 mg and 500 mg, even more advantageously between 10 mg and 200 mg. It may be necessary to use doses outside these ranges; a person skilled in the art will be able to take account of this himself.

The present invention also concerns a pharmaceutical composition comprising :

(i) at least one compound of formula (I) as defined hereinbefore, and (ii) at least one other active principle, as combination products for use simultaneously, separately or spread over time.

Indeed, it is common to treat cancer by double or triple therapy. It may be useful especially to combine the molecules of the invention with one or more anticancer compounds, thus allowing the treatment of cancer, on the one hand, and the prevention of the appearance of resistant cancer cells, on the other hand. In particular, this/these active principle(s) may be anticancer agents used conventionally in the treatment of cancer. These anticancer agents may be selected in particular from cisplatin and the derivatives thereof such as carboplatin and oxaliplatin ; taxanes such as taxol, taxotere, paclitaxel and docetaxel ; vinca alkaloids such as vinblastine, vincristine and vinorelbine ; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine ; topoisomerase I inhibitors such as compounds of camptothecin, like irinotecan

and topotecan ; topoisomerase II inhibitors such as epipodophyllotoxin, podophyllotoxin and the derivatives thereof like etoposide and teniposide ; antitumoural nucleoside derivatives such as 5-fluorouracil, leucovorin, gemcitabine or capecitabine ; alkylating agents such as nitrogen mustards like cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitrosoureas like carmustine, lomustine and streptozocin, alkyl sulphonates like busulphan, ethyleneimines and methylmelamines like thiotepa and hexamethylmelamine, and tetrazines like dacarbazine ; antitumoural anthracycline derivatives such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone ; molecules targeting the IGF-I receptor such as picropodophyllin ; tetracarcin derivatives such as tetrocarcin A ; corticosteroids such as prednisone ; antibodies such as trastuzumab (anti-HER2 antibody), rituximab (anti-CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; selective oestrogen receptor antagonists or modulators such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene ; aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole ; differentiating agents such as retinoids like retinoic acid and vitamin D and retinoic acid metabolism blocking agents such as accutane ; DNA methyltransferase inhibitors such as azacytidine and decitabine ; antifolates such as disodium permetrexed ; antibiotics such as antinomycin D, bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin ; antimetabolites such as chlofarabine, amino pterin, cytosine arabinoside, floxuridine and methotrexate ; apoptosis inducing agents and Bcl-2 inhibitor antiangiogenic agents such as YC 137, BH 312, ABT 737, gossypol, HA 14-1, TW 37 and decanoic acid ; agents binding to tubulin such as combrestatin, colchicine derivatives and nocodazole ; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib and gefitinib ; farnesyltransferase inhibitors such as tipifarnib ; histone deacetylase inhibitors such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ-26481585 and trichostatin A ; inhibitors of the ubiquitin proteasome system such as MLN .41, bortezomib and yondelis ; and telomerase inhibitors such as telomestatin.

The present invention also concerns a pharmaceutical composition as defined hereinbefore, for use thereof as a medicament intended to treat or to prevent cancer, in particular a cancer which is resistant to chemotherapy.

The present invention also relates to the use of a pharmaceutical composition comprising :

(i) at least one compound of formula (I) as defined hereinbefore,

(ii) at least one other active principle, and in particular the active principle(s) cited hereinbefore, as combination products for use simultaneously, separately or spread over time, for the production of a medicament intended to treat cancer, and in particular a cancer resistant to chemotherapy.

The present invention also relates to a process for preparing a compound of formula (I) as defined hereinbefore for which R2 represents a hydrogen atom, according to the following steps : - reacting a ketone of formula R3-CO-R4 with an amine of formula R5-

NH 2 , a carboxylic acid of formula R6-COOH and an isonitrile of formula Rl-NC, Rl, R3, R4, R5 and R6 being as defined hereinbefore, to produce the compound of formula (I), and separating the compound of formula (I) obtained in the preceding step from the reaction medium.

The first step of this process corresponds to a multicomponent reaction known as an Ugi reaction (U-4MCRs), the conditions for the implementation of which are well known to a person skilled in the art.

Each of the four reagents used for this reaction (ketone, amine, carboxylic acid and isonitrile) can be either commercially available or prepared using organic synthesis methods well known to a person skilled in the art.

Advantageously, the four reagents are introduced in the following order : ketone, amine, carboxylic acid and isonitrile.

Advantageously, the reaction is carried out in methanol as a solvent, and advantageously at ambient temperature.

The ketone used will be an aldehyde where R3 represents a hydrogen atom.

Moreover, additional protection/deprotection and/or molecule functionalisation steps, well known to a person skilled in the art, are conceivable in the preceding process for the preparation of compounds of formula (I).

Other processes for the preparation of the compounds of the invention may be used as described below in examples 2 to 5.

The present invention also concerns compounds of general formula (I) :

as well as the pharmaceutically acceptable salts thereof, the isomers or isomer mixtures thereof in all proportions, in particular an enantiomer mixture, and especially a racemic mixture, for which Rl, R2, R3, R4, R5 and R6 are as defined hereinbefore, provided that : ■ if Rl represents a cyclopentyl or cyclohexyl group or a benzyl group optionally substituted by a fluorine atom, R2 and R3 represent a hydrogen atom and R6 represents a -C≡CH group, then R4 does not represent a thiophenyl, furyl or furylmethyl group or a phenyl group optionally substituted by a fluorine atom, a chlorine atom or a methoxy group, and ■ if Rl represents a tert-butyi group, R2 and R3 represent a hydrogen atom, R4 represents a phenyl group substituted by a chlorine atom or an OH group and R6 represents a -CH 2 Cl group, then R5 does not represent a furylmethyl or 1,3- benzodioxolylmethyl group.

Compounds 3 and 158 to 184 of the present invention are in fact commercially available from Asinex.

The subject of the present invention is more particularly compounds of the general formula (I):

as well as the pharmaceutically acceptable salts thereof, the isomers or isomer mixtures thereof in all proportions, in particular an enantiomer mixture, and especially a racemic mixture, for which Rl, R2, R3, R4, R5 and R6 are as defined hereinbefore, provided that :

• if R6 = -C≡CR 38 with R 38 as defined hereinbefore, then Rl does not represent an optionally substituted l,3-thiazol-2-yl group,

• if Rl represents a cyclopentyl or cyclohexyl or a benzyl group optionally substituted by a fluorine atom, R2 and R3 represent a hydrogen atom and R6 represents a -C≡CH group, then R4 does not represent a thiophenyl or furyl group or a phenyl group optionally substituted by a fluorine atom, a chlorine atom or a methoxy group,

• if when Rl represents a hydrogen atom, a tert-butyl, sec-butyl, cyclohexyl, hexyl, ethyl or methyl group, or a phenyl group optionally substituted by one or more groups selected from F, ethoxy and CF3, R2 represents a hydrogen atom or a methyl group, or Rl and R2 together form, with the nitrogen atom carrying them, a morpholine or piperidine group, R3 represents a hydrogen atom, and R4 represents a hydrogen atom, a methyl or ethyl group, or a phenyl group optionally substituted by one or more groups selected from Cl, OH, methoxy, NO 2 or NMe 2 , or R3 and R4 together form, with the carbon atom carrying them, a cyclopentane or a cyclohexane, and R6 represents a -CH 2 Cl group, then R5 does not represent a prop-2-yne, (Ci-Cs)alkyl, furylmethyl, tetrahydro- pyrane, thiopyrane ou 1,3-benzodioxolylmethyl group; or a benzyl group optionally substituted by a chlorine atom or NO 2 ; or a phenyl group optionally substituted by one or more Br, ethyl or methyl groups, and

• if Rl represents a tert-butyi or benzyl group, R2 and R3 each represent a hydrogen atom, R4 represents a furyl or pyrrole group substituted on the nitrogen atom by a -SO 2 Me group, and R6 represents a -C≡CMe or -C≡CPh group, then R5 does not represent a a tert-butyl group or a benzyl group optionally substituted by a bromine atom or a phenyl.

Derivates of formula (I) are in fact described, without any biological activity not being reported elsewhere, in: WO 008/008 022, US 4 944 796, US 4 205 168, Neo et al. Tetrahedron Lett. 2005, 7977-7979 and Wright et al. Tetrahedron Lett. 2002, 943-946. Subject to the same limitations as set out hereinbefore, the compounds of the invention will be advantageously characterised as follows.

When the NR1R2 group represents a heteroaryl or heterocycle, it is of course possible for said cycle to comprise one or more other heteroatoms, preferably zero or one another, heteroatom(s) in addition to the nitrogen atom carrying Rl and R2 which is already present, said heteroaryl or heterocycle advantageously having 5 to 6 members. Said heteroatom will therefore be advantageously selected from O, S and N, and preferably from O and N. Advantageously, it will be a piperidine, morpholine or piperazine group, and preferably piperazine. The same comment also applies to the groups NR 19 R 20 and NR 85 R 86 , when they form heterocycles.

Advantageously, Rl does not represent a hydrogen atom. Advantageously, Rl and/or R4 do(es) not represent a hydrogen atom. Even more advantageously, Rl and R4 do not represent a hydrogen atom. According to a particular embodiment of the invention, Rl : represents a hydrogen atom or a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, (C 3 - Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a (Ci-C 6 )alkoxy, -NH 2 , -COOH, -CN, -OH, -NR 7 R 8 , -O-

(Ci-C 6 )alkyl-NR 7 R 8 , benzyloxy, -C(O)O-(Ci -C 6 )alkyl, -NH-C(O)O-

(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 9 R 10 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, - SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 11 R 12 , -NR 13 SO 2 R 14 radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms, or - forms, with R2 and the nitrogen atom carrying them, a 3 to 7-membered heterocycloalkyl, said heterocycloalkyl being optionally substituted by one or more groups selected from a halogen atom and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms.

Advantageously, Rl represents a hydrogen atom or a (Ci-Ce)alkyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, (C 3 -Cio)cycloalkyl group, said group being optionally substituted by one or more groups selected from -

NH 2 , -COOH, benzyloxy, aryloxy, -C(O)O((d-C 6 )alkyl), -NHC(0)0((Ci-

C 6 )alkyl).

Also advantageously, Rl represents a (Ci-Ce)alkyl, aryl, aryl-(Ci-Ce)alkyl,

(C3-Cio)cycloalkyl group, said group being optionally substituted by one or more groups selected from -NH 2 , -COOH, benzyloxy, aryloxy, -C(O)O((Ci-C 6 )alkyl), -

NHC(O)O((Ci-C 6 )alkyl), and advantageously from benzyloxy and -C(O)O((Ci-

C 6 )alkyl).

Also advantageously, Rl represents a (Ci-Ce)alkyl group optionally substituted by a -C(O)O((Ci-Ce)alkyl) group; an aryl group optionally substituted by a -C(O)O((Ci-Ce)alkyl) or benzyloxy group; an aryl-(Ci-Ce)alkyl group; or a (C 3 -Cio)cycloalkyl group.

Even more advantageously, Rl represents a cyclohexyl, cyclopentyl, benzyl, -C 6 H 4 -C(O)OMe, -C 6 H 4 -OAr (with Ar = aryl), -C 6 H 4 -OBn, -CH 2 CH 2 - CO 2 Me or -CH 2 CH 2 -C0 2 tBu group. Also advantageously, Rl represents a cyclohexyl, cyclopentyl or benzyl, and also advantageously cyclohexyl group.

In one particular embodiment, R2 represents a hydrogen atom. According to a first preferred embodiment of the invention, Rl represents a (C 3 -Cio)cycloalkyl or aryl-(Ci-C 6 )alkyl group, and preferably cyclohexyl, cyclopentyl or benzyl,

said group being optionally substituted by one or more groups selected from a halogen atom, a (Ci-C 6 )alkoxy, -NH 2 , -COOH, -CN, -OH, -NR 7 R 8 , -O- (Ci-C 6 )alkyl-NR 7 R 8 , benzyloxy, aryloxy, -C(O)O-(d-C 6 )alkyl, -NH-C(O)O- (Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 9 R 10 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, - SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 11 R 12 , -NR 13 SO 2 R 14 radical and a (Ci-Ce)alkyl group optionally substituted by one or more groups selected from a halogen atom, a (Ci-C 6 )alkoxy, -NH 2 , -COOH, benzyloxy, aryloxy, -C(O)O((Ci- C 6 )alkyl), -NHC(O)O((Ci-C 6 )alkyl) group.

Advantageously, Rl represents a (C 3 -Cio)cycloalkyl or aryl-(Ci-C 6 )alkyl group, preferably cyclohexyl, cyclopentyl or benzyl, said group being optionally substituted by one or more groups from a halogen atom, -OH and (Ci-Ce)alkoxy.

In this case, Rl advantageously represents a (C3-Cio)cycloalkyl group, and preferably cyclohexyl, preferably unsubstituted, and R2 advantageously represents a hydrogen atom. According to a second preferred embodiment of the invention, Rl forms, with R2 and the nitrogen atom carrying them, a 3 to 7-membered heterocycle optionally substituted by one or more groups selected from a halogen atom, a (d- Cio)cycloalkyl, (C 3 -Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-Ce)alkyl, heteroaryl-(Ci-C 6 )alkyl, heterocycloalkyl-(Ci-C 6 )alkyl, -OH, -NH 2 , -C(O)OH, -C(O)NH 2 , -C(S)NH 2 , -OR 50 , -OC(O)R 51 , -C(O)R 52 , -C(O)OR 53 , -NHC(O)R 54 , - NHC(O)OR 55 , -SO 2 R 56 -(Ci-C 6 )alkyl-C(O)OR 57 , -NR 58 R 59 , -C(O)NR 60 R 61 , - C(O)N(R 62 )(aryl), C(O)N(R 63 )(heteroaryl), -C(O)NHNR 64 R 65 , -C(S)NR 66 R 67 , - C(S)N(R 68 )(aryl), -C(S)N(R 69 )(heteroaryl), -C(S)NHNR 70 R 71 , -OC(O)-NR 72 R 73 , -(Ci-C 6 )alkyl-C(O)-NR 74 R 75 , -(Ci-C 6 )alkyl-NR 103 -C(O)-OR 104 , -(d-C 6 )alkyl- NR 76 R 77 , -C(NOR 78 )-aryl radical, and a (d-C 6 )alkyl group optionally substituted by one or more halogen atoms, the aryl and heteroaryl unit of said radical, when present, being optionally substituted by one or more groups selected from a halogen atom, a -CN, -OH, (Ci-C 6 )alkyl, (d-C 6 )alkoxy, -NR 79 R 80 , -(d-C 6 )alkyl-NR 81 R 82 and -O- (Ci-C 6 )alkyl-NR 83 R 84 group.

In this case the heterocycle will advantageously be 5 or 6-membered and preferably saturated. It will advantageously be piperazine.

Thus, -NR1R2 will advantageously represent the following piperazine cycle:

R 104 representing a hydrogen atom, a (C 3 -Cio)cycloalkyl, (C 3 -Cio)cycloalkenyl, aryl, heteroaryl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, heterocycloalkyl- (Ci-C 6 )alkyl, -C(O)R 52 , -C(O)OR 53 , -C(O)OH, -C(O)NH 2 , -C(S)NH 2 , - C(O)NR 60 R 61 , -C(S)NR 66 R 67 , -SO 2 R 56 , -C(O)NHNR 64 R 65 , -C(S)NHNR 70 R 71 radical, and a (Ci-C 6 )alkyl group optionally substituted by one or more halogen atoms, the aryl and heteroaryl unit of said radical, when present, being optionally substituted with one or more groups selected from a halogen atom, a -CN, -OH, (Ci-C 6 )alkoxy, -NR 79 R 80 , and -O-(d-C 6 )alkyl-NR 83 R 84 group. Advantageously, R 104 represents a (C 3 -Cio)cycloalkyl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, -C(O)R 52 , -C(O)OR 53 , -C(O)NH 2 , -C(O)NR 60 R 61 , - SO 2 R 56 or -C(O)NHNR 64 R 65 group, and preferablya represents a (C 3 - Cio)cycloalkyl, aryl-(Ci-C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, -C(O)R 52 , -C(O)OR 53 , -C(O)NR 60 R 61 or -SO 2 R 56 group. According to a particular embodiment of the invention, R4: represents a hydrogen atom or a (Ci-Ce)alkyl, (C 3 -Cio)cycloalkyl, aryl advantageously phenyl, or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -C(CF 3 ) 2 OH, -CN, -NH 2 , -OPO 3 H 2 , -NR 17 R 18 , -NO 2 , - COOH, -OH, -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, -O(d-C 6 )alkyl-NR 19 R 20 (with

R 19 and R 20 each representing a (Ci-C 6 )alkyl), benzyloxy, -C(O)O- (Ci-C 6 )alkyl, -NHC(O)O-(C i-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 21 R 22 , -S-(Ci- C 6 )alkyl, -S(O)-(Ci-C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 23 R 24 , -NR 25 SO 2 R 26 group, a 3 to 7-membered heterocycloalkyl, aryloxy radical, a

(Ci-Ce)alkyl optionally substituted by one or more halogen atoms, and a (C 1 - Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group, when it is an aryl or heteroaryl, being optionally fused to a 5 or 6- membered heterocycle, or - forms, with R3 and the carbon carrying them, a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, said cycle being optionally substituted by a (Ci-C 6 )alkyl, -C(O)-(Ci-C 6 )alkyl, -C(O)O- (Ci-C 6 )alkyl group.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom or a (Ci-C 6 )alkyl, aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 (R 17 and R 18 being as defined hereinbefore), -NO 2 , -COOH, 3 to 7-membered heterocycloalkyl, (C 1 - Ce)alkyl, -S-(Ci-Ce)alkyl, aryloxy radical and a (Ci-C 6 )alkoxy optionally substituted by one or more fluorine atoms, and said group, if it is an aryl or heteroaryl, being optionally fused to a 5 or 6- membered heterocycle, or R3 and R4 form with the carbon carrying them a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, said ring being optionally substituted by a -C(O)O((d-C 6 )alkyl group).

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom or an aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 , -NO 2 , -COOH, 3 to 7- membered heterocycloalkyl, (Ci-C 6 )alkyl, -S-(Ci-C 6 )alkyl, aryloxy radical and a (Ci-C6)alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle, or

R3 and R4 form with the carbon carrying them a ring selected from a (C 3 - Cio)cycloalkyl and a 3 to 7-membered heterocycloalkyl, advantageously a 3 to 7- membered heterocycloalkyl, said ring being optionally substituted by a - C(O)O((Ci-C 6 )alkyl) group, R 17 and R 18 being as defined hereinbefore.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom or an aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 , -NO 2 , -COOH, 3 to 7- membered heterocycloalkyl, (Ci-Ce)alkyl, -S-(Ci-Ce)alkyl, aryloxy radical and a (Ci-Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle, R 17 and R 18 being as defined hereinbefore. Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom; a heteroaryl, preferably thiophenyl, group optionally substituted by a (Ci-C 6 )alkyl group; or an aryl, preferably phenyl, group optionally fused to a 5 or 6-membered heterocycle comprising preferably two oxygen atoms, and optionally substituted by one or more groups selected from a halogen atom and a -CN, -NR 17 R 18 , -NO 2 , (Ci-C 6 )alkyl, (Ci-C 6 )alkoxy, (C 5 -C 6 )heterocycloalkyl, -S- (d-C 6 )alkyl and aryloxy group, or

R3 and R4 form with the carbon carrying them a (Cs-CβXycloalkyl or 5 or 6- membered heterocycloalkyl ring, advantageously a 5 or 6-membered heterocycloalkyl, said ring being optionally substituted by a -C(O)O((Ci-Ce)alkyl) group, R 17 and R 18 being as defined hereinbefore.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a hydrogen atom; or a heteroaryl, preferably thiophenyl, group optionally substituted by a (Ci-C 6 )alkyl group; or an aryl, preferably phenyl, group optionally fused to a 5 or 6-membered

heterocycle comprising preferably two oxygen atoms, and optionally substituted by one or more groups selected from a halogen atom and a -CN, -NR 17 R 18 , -NO 2 , (Ci-C 6 )alkyl, (Ci-C 6 )alkoxy, (C 5 -C 6 )heterocycloalkyl, -S-(d-C 6 )alkyl and aryloxy group, R 17 and R 18 being as defined hereinbefore.

Even more advantageously, R4 does not represent a hydrogen atom.

Advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom.

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a thiophenyl group optionally substituted by a methyl, a 1,3-benzodioxolyl group or a phenyl group optionally substituted by one or more groups selected from a halogen atom and a -CN, -

NR 17 R 18 , preferably -NMe 2 , -NO 2 , (d-C 6 )alkyl, preferably methyl or isopropyl,

(Ci-Ce)alkoxy, preferably methoxy, pyrrolidinyl, -S-(Ci-Ce)alkyl, preferably thiomethoxy, and phenoxy group, or tBu

R3 and R4 form with the carbon carrying them a ring of formula

R 17 and R 18 being as defined hereinbefore.

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a thiophenyl group optionally substituted by a methyl; a 1,3-benzodioxolyl group; or a phenyl group optionally substituted by one or more groups selected from a halogen atom and a -CN, -

NR 17 R 18 , preferably -NMe 2 , -NO 2 , (Ci-Ce)alkyl, preferably methyl or isopropyl,

(Ci-Ce)alkoxy, preferably methoxy, pyrrolidinyl, -S-(Ci-Ce)alkyl, preferably thiomethoxy, and phenoxy group, R 7 and R 8 being as defined hereinbefore.

Also advantageously, R3 represents a hydrogen atom or a methyl, and advantageously a hydrogen atom, and R4 represents a thiophenyl, advantageously thiophen-2-yl group.

According to a first preferred embodiment of the invention, R3 and R4 each represent, independently of each other, a (Ci-Ce)alkyl group, such as methyl. According to a second preferred embeodiment of the invention, R3 represents a hydrogen atom, and R4 represents an aryl, advantageously phenyl or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -C(CF 3 ) 2 OH, -CN, -NH 2 , -OPO 3 H 2 , -NR 17 R 18 , -NO 2 , -COOH, - OH, -O(Ci-C 6 )alkyl-OPO 3 H 2 , -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, -O(Ci-C 6 )alkyl- NR 19 R 20 , -NR 81 (Ci-C 6 )alkyl-NR 85 R 86 , benzyloxy, -C(O)O-(C i-C 6 )alkyl, - NHC(O)O-(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 21 R 22 , -S-(d-C 6 )alkyl, -S(O)-(Ci- C 6 )alkyl, -SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 23 R 24 , -NR 25 SO 2 R 26 , 3 to 7- membered heterocycloalkyl, aryloxy radical, a (Ci-Ce)alkyl optionally substituted by one or more halogen atoms, and a (Ci-Ce)alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle.

In this case, R4 advantageously represents an aryl, advantageously phenyl, or heteroaryl, advantageously thiophenyl, group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 (R 17 and R 18 being as defined above), -NO 2 , -COOH, 3 to 7-membered heterocycloalkyl, (C 1 -C 6 )alkyl, - S-(Ci-C 6 )alkyl, aryloxy, -O(d-C 6 )alkyl-NR 19 R 20 radical and a (Ci-C 6 )alkoxy optionally substituted by one or more fluorine atoms, and said group being optionally fused to a 5 or 6-membered heterocycle

R4 preferably represents an unsubstituted thiophenyl group, preferably thiophen-2-yl; or a phenyl group optionally substituted by one or more groups selected frorm a halogen atom and a -CF 3 , -B(OH) 2 , -CN, -OH, -NR 17 R 18 group (R 17 and R 18 being as defined above), -NO 2 , -COOH, 3 to 7-membered heterocycloalkyl, (Ci-C 6 )alkyl, -S-(d-C 6 )alkyl, aryloxy, -0(C i-C 6 )alky 1-NR 19 R 20 radical and a (Ci-C6)alkoxy optionally substituted by one or more f;luorine atoms, and

optionally fused to or , the bond shown as a dotted line representing the bond common with phenyl.

Advantageously, R5 represents a (Ci-Ce)alkyl, aryl, heteroaryl, aryl-(Ci- C 6 )alkyl, heteroaryl-(Ci-C 6 )alkyl, (C 3 -Ci 0 )cycloalkyl-(Ci-C 6 )alkyl, (3 to 7- membered heterocycloalkyl) -(Ci-Ce)alkyl group, said group being optionally substituted by one or more groups selected from a halogen atom, a -CF 3 , -CN, -OH, -NR 29 R 30 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-C 6 )alkoxy, aryloxy, -S-(d-C 6 )alkyl, -C(O)O((d-C 6 )alkyl), (C 2 -C 6 )alkynyl, aryl, heteroaryl, (C i-Ce)alkyl- heteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical and a (Ci-C6)alkyl optionally substituted by one or more fluorine atoms, and the aryl or heteroaryl core of said group, when present, being optionally fused to a 5 or 6-membered heterocycle, R 29 and R 30 being as defined hereinbefore. Also advantageously, R5 represents a (Ci-C6)alkyl, heteroaryl, (C 3 -

Cio)cycloalkyl-(Ci-C 6 )alkyl, aryl-(Ci-C 6 )alkyl, or aryl group, the aryl core of the aryl or aryl-(Ci-C 6 )alkyl group being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being optionally substituted by one or more groups selected from a halogen atom, a - CF 3 , -CN, -OH, -NR 29 R 30 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-C 6 )alkoxy, aryloxy, -S-(Ci- C 6 )alkyl, -C(O)O((Ci-C 6 )alkyl), (C 2 -C 6 )alkynyl, aryl, heteroaryl, (Ci- C 6 )alkylheteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical, and a (Ci-C6)alkyl optionally substituted by one or more fluorine atoms, R 29 and R 30 being as defined hereinbefore.

Advantageously, R5 represents a (Ci-Ce)alkyl, heteroaryl, (C 3 - Cio)cycloalkyl-(Ci-C 6 )alkyl, aryl-(Ci-C 6 )alkyl, or aryl group, the aryl core of the aryl or aryl-(Ci-C 6 )alkyl group being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being

optionally substituted by one or more groups selected from a halogen atom, a - CF 3 , -CN, -NR 29 R 30 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-C 6 )alkoxy, aryloxy, (d-C 6 )alkyl, (C 2 -Ce)alkynyl, aryl and 5 or 6-membered heterocycloalkyl group, R 29 and R 30 being as defined hereinbefore. Also advantageously, R5 represents a (Ci-C6)alkyl, preferably methyl or isobutyl; indazolyl; phenyl-(Ci-C 6 )alkyl, preferably benzyl; cyclopropyl- (Ci-Ce)alkyl, preferably, cyclopropylmethyl; 1,3-benzodioxolyl; 1,3- benzodioxolylmethyl; naphthyl; or phenyl group, said phenyl group being optionally substituted by one or more groups selected from a halogen atom, preferably a fluorine or chlorine atom, a -CF 3 , -CN, -NR 29 R 30 , preferably -NMe 2 or -NEt 2 , -NO 2 , -C(CF 3 ) 2 OH, (Ci-Ce)alkoxy, preferably methoxy, phenoxy, (Ci-Ce)alkyl, preferably methyl, isopropyl or tert-butyl, (C 2 -Ce)alkynyl, preferably -C≡CH, phenyl and morpholinyl group, R 29 and R 30 being as defined hereinbefore. Also advantageously, R5 represents a phenyl group, being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being optionally substituted by one or more groups selected from a halogen atom, a -NH 2 , -COOH, -CN, -OH, -NO 2 , -B(OH) 2 , (d-C 6 )alkoxy, -O-(d-C 6 )alkyl- NR 27 R 28 , -O-(Ci-C 6 )alkyl-O-(Ci-C 6 )alkyl, aryloxy, -C(O)O-(C i-C 6 )alkyl, (C 2 -C 6 )alkynyl, -NR 29 R 30 , -NHC(O)O-(d-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 31 R 32 , - S-(Ci -C 6 )alkyl, -S(O)-(d-C 6 )alkyl, -SO 2 -(Ci -C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 33 R 34 , -NR 35 SO 2 R 36 , aryl, heteroaryl, (Ci-C 6 )alkylheteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms, R 29 to R 36 being as defined hereinbefore.

Even more advantageously, R5 represents a 1,3-benzodioxolyl or phenyl group, said phenyl group being optionally substituted by one or more groups selected from a halogen atom, preferably a fluorine or chlorine atom, a -CF 3 , -CN, -NR 29 R 30 , preferably -NMe 2 or -NEt 2 , -NO 2 , -C(CF 3 ) 2 OH, (d-C 6 )alkoxy, preferably methoxy, phenoxy, (Ci-Ce)alkyl, preferably methyl, isopropyl or tert- butyl, (C 2 -Ce)alkynyl, preferably -C≡CH, phenyl and morpholinyl group,

R 29 and R 30 being as defined hereinbefore.

Also advantageously, R6 represents a -CH 2 HaI or -C≡CR 12 group, with Hal and R 12 as defined hereinbefore.

Even more advantageously, R6 is selected from -CH 2 Cl, -CH 2 Br, -CH 2 F, - C≡CH, -C≡CMe and -C≡CPh, and advantageously R6 is selected from -CH 2 Cl and -C≡CH.

In one particular embodiment, R6 represents the -CH 2 Cl group.

In another particular embodiment, R6 represents the -C≡CH group.

In one particular embodiment, the compounds according to the invention will be selected from the compounds of formula (I) for which Rl represents a cyclohexyl, R2 and R3 represent a hydrogen atom, R4 represents a thiophenyl, R6 represents a -CH 2 Cl or -C≡CH group and R5 represents a phenyl group, said phenyl group being optionally fused to a 5 or 6-membered heterocycle, comprising preferably two oxygen atoms, and being optionally substituted by one or more groups selected from a halogen atom, a -NH 2 , -COOH, -CN, -OH, -NO 2 ,

-B(OH) 2 , (Ci-C 6 )alkoxy, -O-(d-C 6 )alkyl-NR 27 R 28 , -O-(Ci-C 6 )alkyl-O-(Ci-

C 6 )alkyl, aryloxy, -C(O)O-(C i-C 6 )alkyl, (C 2 -C 6 )alkynyl, -NR 29 R 30 , -NHC(O)O-

(Ci-C 6 )alkyl, -C(O)NH 2 , -C(O)NR 31 R 32 , -S-(d-C 6 )alkyl, -S(O)-(d-C 6 )alkyl, -

SO 2 -(Ci-C 6 )alkyl, -SO 2 NH 2 , -SO 2 NR 33 R 34 , -NR 35 SO 2 R 36 , aryl, heteroaryl, (Ci- Ce)alkylheteroaryl, 3 to 7-membered heterocycloalkyl, (3 to 7-membered heterocycloalkyl)-(Ci-C6)alkoxy radical and a (Ci-Ce)alkyl group optionally substituted by one or more halogen atoms,

R 29 to R 36 being as defined hereinbefore.

In another particular embodiment, the compounds according to the invention will be selected from the compounds of formula (I) for which Rl represents a cyclohexyl, R2 and R3 represent a hydrogen atom, R4 represents a thiophenyl, R6 represents a -CH 2 Cl or -C≡CH group and R5 represents a 1,3- benzodioxolyl or phenyl group, said phenyl group being optionally substituted by one or more groups selected from a halogen atom, preferably a fluorine or chlorine atom, a -CF 3 , -CN, -NR 29 R 30 , preferably -NMe 2 or -NEt 2 , -NO 2 , -

C(CFs) 2 OH, (Ci-C6)alkoxy, preferably methoxy, phenoxy, (Ci-Ce)alkyl,

preferably methyl, isopropyl or tert-butyl, (C 2 -Ce)alkynyl, preferably -C=CH, phenyl and morpholinyl group,

R 29 and R 30 being as defined hereinbefore.

In one particular embodiment, the compound of the invention is selected from the molecules cited hereinbefore of number 1, 2, 4-6, 8-157, and also 185- 206.

The invention will be better understood on reading the following examples, these examples serving merely to illustrate the invention.

EXAMPLES

Compounds Nos. 3 and 158 to 184 are sold by Asinex.

EXAMPLE 1 : Synthesis of the compounds of the invention by an Ugi reaction

The compounds of formula (I) for which R2 = H can be prepared via the multicomponent reaction known as the Ugi reaction (U-4MCRs) as described in reaction scheme II.

Compound of general formula (I)

Reaction scheme II

The reaction conventionally uses four chemical reagents which are an isonitrile (Rl-NC), an aldehyde or a ketone (R3-CO-R4), an amine (R5-NH 2 ) and a carboxylic acid (R6-COOH), but can also use three chemical reagents, one of the reagents then being bifunctionalised. Each of the reagents can be commercially available or be prepared beforehand by methods known to a person skilled in the art. The product obtained is in the form of a racemic mixture. The groups Rl, R3, R4, R5 and R6 can be aliphatic, aromatic and also functionalised by any additional synthesis steps. The functions Rl and COR6 can be protective groups

which can be cleaved using suitable synthesis methods or else reactive functions which can give rise to additional synthesis steps. Experimental part: General method E: The amine 115-NH 2 (1 eq.) was added to a millimolar aldehyde or ketone

R3-CO-R4 (1 eq) solution in methanol. The solution was stirred at ambient temperature for 0.5 hours. After the addition of carboxylic acid R6-COOH (1 eq) the reaction medium was stirred for 10 minutes. The isonitrile Rl-NC (1 eq) was then added. The reaction medium was stirred for 2 hours. Once it had reacted, the reaction medium was concentrated then taken up in dichloromethane. The organic phase, in accordance with the nature of the groups Rl, R3, R4, R5 and R6, was washed with a IM HCl aqueous solution, a IM NaHCO 3 aqueous solution and with water. After drying on MgSO 4 and filtration, the solvent was evaporated to recover the crude product either in the form of a solid or in the form of an oil. The solid was washed with a little organic solvent (usually diisopropyl ether, also pentane or diethyl ether). If necessary, the solid can be recrystallised, or purified on silica gel. If there is no precipitation, the oil is also purified on silica gel.

Synthesis of Example 1 Propynoic acid (benzylcarbamoylthiophen-2-yl- methyl)-(3-trifluoromethylphenyl)amide. Example 1 was obtained in the form of a white solid using general method E. Yield = 50 %: C 23 Hi 7 F 3 N 2 O 2 S: MS [M+H] = 443; [M+Na] = 465.

NMR H 1 (CDCl 3 , 300): δ = 2.89 (s, IH, ≡CH); 4.50 (AB, IH, J = 15.0 6.1 Hz, CH 2 ); 4.57 (AB, IH, J = 15.0 5.7 Hz, CH 2 ); 6.25 (s, IH, CH); 6.29 (br, IH, NH); 6.90 (dd, IH, J = 5.1 3.6 Hz, CH); 6.97 (dl, IH, J = 2.7 Hz, CH); 7.25-7.47 (m, 8H, CH); 7.51 (d, IH, J = 8.4 Hz, CH); 7.59 (d, IH, J = 7.5 Hz, CH).

Synthesis of Example 2: Propynoic acid (cyclohexylcarbamoylthiophen-2- yl-methyl)-(4-trifluoromethylphenyl)amide.

Example 2 was obtained in the form of a white solid using general method E. Yield = 55 %; C 22 H 2 IF 3 N 2 O 2 S; MS [M+H] = 435; [M+Na] = 457. NMR H 1 (CDCl 3 , 300): δ = 1.10-1.24 (m, 3H, CH 2 ); 1.26-1.46 (m, 2H, CH 2 ); 1.55-1.77 (m, 3H, CH 2 ); 1.86-2.01 (m, 2H, CH 2 ); 2.88 (s, IH, ≡CH); 3.75-3.90

(m, IH, CH-NH); 5.84 (dl, IH, J = 5.1 Hz, NH); 6.23 (s, IH, CH); 6.91 (dd, IH, J

= 5.4 3.6 Hz, CH); 6.97 (d, IH, J = 2.7 Hz, CH); 7.29 (d, IH, J = 5.4 Hz, CH);

7.38 (d, 2H, J = 8.1 Hz, CH); 7.54 (d, 2H, J = 8.1 Hz, CH).

Synthesis of Example 3: Propynoic acid (cyclohexylcarbamoylthiophen-2- yl-methyl)-(3-trifluoromethylphenyl)amide.

Example 3 was obtained in the form of a white solid using general method E.

Yield = 47 %; C 22 H 2I F 3 N 2 O 2 S; MS [M+H] = 435; [M+Na] = 457.

NMR H 1 (CDCl 3 , 300): δ = 1.10-1.24 (m, 3H, CH 2 ); 1.27-1.46 (m, 2H, CH 2 );

1.60-1.78 (m, 3H, CH 2 ); 1.87-2.02 (m, 2H, CH 2 ); 2.87 (s, IH, ≡CH); 3.75-3.90 (m, IH, CH-NH); 5.84 (d, IH, J = 7.8 Hz, NH); 6.25 (s, IH, CH); 6.90 (dd, IH, J

= 5.1 3.6 Hz, CH); 6.96 (d, IH, J = 2.7 Hz, CH); 7.29 (dd, IH, J = 4.8 1.2 Hz,

CH); 7.39-7.46 (m, 2H, CH); 7.53 (d, 2H, J = 7.8 Hz, CH); 7.57 (d, 2H, J = 8.4

Hz, CH).

Synthesis of Example 4: Propynoic acid (benzylcarbamoylthiophen-2-yl- methyl)-(4-trifluoromethylphenyl)amide.

Example 4 was obtained in the form of a white solid using general method E.

Yield = 63 %; C 23 H n F 3 N 2 O 2 S; MS [M+H] = 443; [M+Na] = 465.

NMR H 1 (CDCl 3 , 300): δ = 2.89 (s, IH, ≡CH); 4.50 (AB, IH, J = 15 5.7 Hz,

CH 2 ); 4.57 (AB, IH, J = 15 5.7 Hz, CH 2 ); 6.23 (s, IH, CH); 6.28 (br, IH, NH); 6.90 (dd, IH, J = 5.1 3.6 Hz, CH); 6.98 (d, IH, J = 3.0 Hz, CH); 7.26-7.41 (m,

8H, CH); 7.55 (d, 2H, J = 8.1 Hz, CH).

Synthesis of Example 5: Propynoic acid (phenylcarbamoylthiophen-2-yl- methyl)-(3-trifluoromethylphenyl)amide.

Example 5 was obtained in the form of lightly coloured oil using general method E.

Yield = 11 %; C 25 Hi 5 F 3 N 2 O 2 S; MS [M+H] = 429; [M+Na] = 451.

NMR H 1 (CDCl 3 , 300): δ = 2.91 (s, IH, ≡CH); 6.46 (s, IH, CH); 6.94 (dd, IH, J

= 4.8 3.6 Hz, CH); 7.05 (d, IH, J = 3.0 Hz, CH); 7.16 (t, IH, J = 7.5 Hz, CH);

7.31-7.62 (m, 9H, CH); 7.84 (s, IH, NH) Synthesis of Example 6: Propynoic acid (phenylcarbamoylthiophen-2-yl- methyl)-(4-trifluoromethylphenyl)amide.

Example 6 was obtained in the form of lightly coloured oil using general method

E.

Yield = 8 %; C 25 Hi 5 F 3 N 2 O 2 S; MS [M+H] = 429; [M+Na] = 451.

NMR H 1 (CDCl 3 , 300): δ = 2.90 (s, IH, ≡CH); 6.48 (s, IH, CH); 6.93 (dd, IH, J = 5.1 3.6 Hz, CH); 7.04 (d, IH, J = 3.3 Hz, CH); 7.16 (t, IH, J = 7.5 Hz, CH);

7.30-7.42 (m, 5H, CH); 7.49-7.58 (m, 4H, CH); 7.97 (s, IH, NH)

Synthesis of Example 8: Propynoic acid (benzylcarbamoylthiophen-2-yl- methyl)-((S)- 1 -phenylethyl)amide.

Example 8 was obtained in the form of a white solid using general method E. Yield = 9 %; C 24 H 22 N 2 O 2 S; MS [M+H] = 403; [M+Na] = 425.

NMR H 1 (CDCl 3 , 300): δ = 1.54 (d, 3H, J = 7.2 Hz, CH), 3.24 (s, IH, ≡CH), 4.14

(dd, IH, J = 15.0 5.1 Hz, CH), 4.52 (dd, IH, J = 15.0 6.6 Hz, CH), 4.92 (s, IH,

CH), 5.91-6.01 (m, 2H, CH-CH 3 +NH), 6.95 (dd, IH, J = 5.1 3.6 Hz, CH), 6.96

(d, IH, J = 3.3 Hz, CH), 7.17-7.47 (m, 9H, CH), 7.55-7.60 (m, 2H, CH). Synthesis of Example 9: Propynoic acid (benzylcarbamoylthiophen-2-yl- methyl)-((R)- 1 -phenylethyl)amide.

Example 9 was obtained in the form of a white solid using general method E.

Yield = 33 %; C 24 H 22 N 2 O 2 S; MS [M+H] = 403; [M+Na] = 425.

NMR H 1 (CDCl 3 , 300): δ = 1.86 (d, 3H, J = 6.9 Hz, CH), 3.25 (s, IH, ≡CH), 4.28 (dd, IH, J = 15.0 5.1 Hz, CH), 4.62 (dd, IH, J = 15.0 6.6 Hz, CH), 4.84 (s, IH,

CH), 5.92 (q, IH, J = 7.2 Hz, CH), 6.21-6.26 (m, 2H, CH-CH 3 +NH), 6.62 (dd,

IH, J = 5.1 3.6 Hz, CH), 7.11 (dd, IH, J = 5.1 1.2 Hz, CH), 7.20-7.33 (m, 1OH,

CH).

Synthesis of Example 10: 3-Phenylpropynoic acid (cyclohexylcarbamoyl thiophen-2-yl-methyl)-(4-trifluoromethylphenyl)amide.

Example 10 was obtained in the form of a white solid using general method E.

Yield = 49 %; C 28 H 25 F 3 N 2 O 2 S; MS [M+H] = 511; [M+Na] = 533.

NMR H 1 (CDCl 3 , 300): δ = 1.10-1.28 (m, 3H, CH 2 ); 1.29-1.47 (m, 2H, CH 2 );

1.53-1.77 (m, 3H, CH 2 ); 1.85-2.03 (m, 2H, CH 2 ); 3.77-3.93 (m, IH, CH-NH); 5.91-6.06 (1, IH, NH); 6.34 (s, IH, CH); 6.91 (dd, IH, J = 5.2 3.6 Hz, CH); 6.96-

7.07 (m, 3H, CH); 7.16-7.49 (m, 4H, CH); 7.44 (d, 2H, J = 8.2 Hz, CH), 7.58 (d,

2H, J = 8.2 Hz, CH).

Synthesis of Example 11: 3-Phenylpropynoic acid

(benzylcarbamoylthiophen-2-yl-methyl)-(3-trifluoromethylp henyl)amide. Example 11 was obtained in the form of a white solid using general method E.

Yield = 53 %; C 29 H 2I F 3 N 2 O 2 S; MS [M+H] = 519; [M+Na] = 541.

NMR H 1 (CDCl 3 , 300): δ = 4.51 (AB, IH, J = 14.6 5.5 Hz, CH 2 ); 4.58 (AB, IH, J

= 14.6 5.5 Hz, CH 2 ); 6.35 (s, IH, CH); 6.41-6.54 (1, IH, NH); 6.90 (t, 2H, J = 4.3

Hz, CH), 6.98-7.14 (m, 3H, CH); 7.17-7.69 (m, 13H, CH). Synthesis of Example 12: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)isobutylamide.

Example 12 was obtained in the form of a white solid using general method E.

Yield = 7 %; Ci 9 H 26 N 2 O 2 S; MS [M+H] = 347; [M+Na] = 369.

NMR H 1 (CDCl 3 , 300): δ = 0.84 (d, 3H, J = 6.6 Hz, CH 3 ), 0.87 (d, 3H, J = 6.7 Hz, CH 3 ), 1.06-1.26 (m, 3H, CH 2 ); 1.26-1.44 (m, 2H, CH 2 ); 1.59-1.77 (m, 3H,

CH 2 ); 1.77-1.99 (m, 3H, CH+CH 2 ); 3.18 (s, IH, ≡CH), 3.29 (AB, IH, J = 14.6

6.5 Hz, CH 2 ); 3.49 (AB, IH, J = 14.5 8.4 Hz, CH 2 ), 3.69-3.87 (m, IH, CH-NH);

5.83 (s, IH, CH); 6.27-6.38 (1, IH, NH), 7.02, (dd, IH, J = 5.1 3.6 Hz, CH); 7.18

(d, IH, J = 2.9 Hz, CH), 7.39 (d, IH, J = 4.3 Hz, CH). Synthesis of Example 13: 3-Phenylpropynoic acid (cyclohexylcarbamoyl thiophen-2-yl-methyl)-(3-trifluoromethylphenyl)amide.

Example 13 was obtained in the form of a white solid using general method E.

Yield = 37 %; C 28 H 25 F 3 N 2 O 2 S; MS [M+H] = 511; [M+Na] = 533.

NMR H 1 (CDCl 3 , 300): δ = 1.08-1.30 (m, 3H, CH 2 ); 1.30-1.49 (m, 2H, CH 2 ); 1.54-1.78 (m, 3H, CH 2 ); 1.86-2.05 (m, 2H, CH 2 ); 3.77-3.94 (m, IH, CH-NH);

5.90-6.07 (1, IH, NH); 6.34 (s, IH, CH); 6.91 (dd, IH, J = 5.0 3.7 Hz, CH); 6.97-

7.13 (m, 3H, CH); 7.17-7.39 (m, 4H, CH); 7.40-7.53 (m, 2H, CH); 7.53-7.65 (m,

2H, CH).

Synthesis of Example 14: 3-Phenylpropynoic acid (cyclohexylcarbamoyl thiophen-2-yl-methyl)isobutylamide.

Example 14 was obtained in the form of a white solid using general method E.

Yield = 28 %; C 25 H 30 N 2 O 2 S; MS [M+H] = 423; [M+Na] = 445.

NMR H 1 (CDCl 3 , 300): δ = 0.88 (d, 3H, J = 6.8 Hz, CH 3 ), 0.91 (d, 3H, J = 6.8 Hz, CH 3 ), 1.07-1.27 (m, 3H, CH 2 ); 1.27-1.45 (m, 2H, CH 2 ); 1.51-1.75 (m, 3H, CH 2 ); 1.83-1.99 (m, 3H, CH+CH 2 ); 3.36 (AB, IH, J = 14.6 6.6 Hz, CH 2 ); 3.56 (AB, IH, J = 14.6 8.5 Hz, CH 2 ), 3.71-3.88 (m, IH, CH-NH); 5.94 (s, IH, CH); 6.45 (dl, IH, J = 6.3 Hz, NH); 7.02 (dd, IH, J = 5.1 3.5 Hz, CH); 7.21 (d, IH, J = 2.8 Hz, CH), 7.32-7.48 (m, 4H, CH); 7.50-7.59 (m, 2H, CH).

Synthesis of Example 15: 3-Phenylpropynoic acid (cyclohexylcarbamoyl thiophen-2-yl-methyl)cyclopropylmethylamide. Example 15 was obtained in the form of a white solid using general method E. Yield = 30 %; C 25 H 28 N 2 O 2 S; MS [M+H] = 421; [M+Na] = 443.

NMR H 1 (CDCl 3 , 300): δ = 0.07-0.22 (m, IH, CH 2 ); 0.26-0.56 (m, 3H, CH 2 ), 0.90-1.08 (m, IH, CH), 1.09-1.28 (m, 3H, CH 2 ); 1.28-1.47 (m, 2H, CH 2 ); 1.52- 1.75 (m, 3H, CH 2 ); 1.82-1.99 (m, 2H, CH 2 ); 3.52 (AB, IH, J = 15.2 6.6 Hz, CH 2 ); 3.62 (AB, IH, J = 15.3 7.4 Hz, CH 2 ), 3.73-3.92 (m, IH, CH-NH); 6.18 (s, IH, CH); 6.40 (dl, IH, J = 7.0 Hz, NH); 7.02 (dd, IH, J = 5.0 3.6 Hz, CH); 7.24 (d, IH, J = 3.1 Hz, CH), 7.31-7.49 (m, 4H, CH); 7.49-7.59 (m, 2H, CH).

Synthesis of Example 16: Propynoic acid (benzylcarbamoylthiophen-2-yl- methyl)isobutylamide. Example 16 was obtained in the form of a white solid using general method E. Yield = 39 %; C 20 H 22 N 2 O 2 S; MS [M+H] = 355; [M+Na] = 377.

NMR H 1 (CDCl 3 , 300): δ = 0.80 (d, 3H, J = 6.6 Hz, CH 3 ), 0.90 (d, 3H, J = 6.6 Hz, CH 3 ), 1.69-1.91 (m, IH, CH); 3.18 (s, IH, ≡CH), 3.38 (AB, IH, J = 14.6 6.8 Hz, CH 2 ); 3.53 (AB, IH, J = 14.7 8.2 Hz, CH 2 ), 4.38 (AB, IH, J = 15.0 5.44 Hz, CH 2 ); 4.55 (AB, IH, J = 15.0 6.2 Hz, CH 2 ), 5.74 (s, IH, CH); 6.53-6.66 (1, IH, NH), 7.00, (dd, IH, J = 5.2 3.6 Hz, CH); 7.15-7.41 (m, 7H, CH).

Synthesis of Example 17: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)cyclopropylmethylamide. Example 17 was obtained in the form of a white solid using general method E. Yield = 48 %; Ci 9 H 24 N 2 O 2 S; MS [M+H] = 345; [M+Na] = 367.

NMR H 1 (CDCl 3 , 300): δ = 0.03-0.15 (m, IH, CH 2 ); 0.18-0.53 (m, 3H, CH 2 ),

0.85-1.01 (m, IH, CH), 1.06-1.25 (m, 3H, CH 2 ); 1.25-1.44 (m, 2H, CH 2 ); 1.50-

1.75 (m, 3H, CH 2 ); 1.79-2.01 (m, 2H, CH 2 ); 3.16 (s, IH, ≡CH), 3.45 (AB, IH, J =

15.4 6.8 Hz, CH 2 ); 3.54 (AB, IH, J = 15.4 7.5 Hz, CH 2 ), 3.69-3.85 (m, IH, CH- NH); 6.06 (s, IH, CH); 6.19-6.34 (1, IH, NH); 7.01 (dd, IH, J = 5.1 3.6 Hz, CH);

7.18-7.22 (m, IH, CH); 7.36 (dd, IH, J = 5.1 1.2 Hz, CH).

Synthesis of Example 18: Propynoic acid (benzylcarbamoylthiophen-2-yl- methy l)cy clopropy lmethy lamide .

Example 18 was obtained in the form of a white solid using general method E. Yield = 26 %; C 20 H 20 N 2 O 2 S; MS [M+H] = 353; [M+Na] = 375.

NMR H 1 (CDCl 3 , 300): δ = 0.03-0.14 (m, IH, CH 2 ); 0.23-0.52 (m, 3H, CH 2 ),

0.83-0.99 (m, IH, CH), 3.13 (s, IH, ≡CH), 3.50 (AB, IH, J = 15.3 6.7 Hz, CH 2 );

3.58 (AB, IH, J = 15.3 7.5 Hz, CH 2 ), 4.43 (AB, IH, J = 15.0 5.6 Hz, CH 2 ); 4.53

(AB, IH, J = 14.8 5.6 Hz, CH 2 ), 6.04 (s, IH, CH); 6.53-6.68 (1, IH, NH); 7.01 (dd, IH, J = 5.2 3.6 Hz, CH); 7.12-7.43 (m, 7H, CH).

Synthesis of Example 19: Propynoic acid [cyclohexylcarbamoyl-(5- methylthiophen-2-yl)-methyl]-(3-trifluoromethylphenyl)amide.

Example 19 was obtained in the form of a white solid using general method E.

Yield = 16 %; C 23 H 23 F 3 N 2 O 2 S; MS [M+H] = 449. NMR H 1 (CDCl 3 , 300): δ = 1.03-1.27 (m, 3H, CH 2 ); 1.27-1.47 (m, 2H, CH 2 );

1.52-1.80 (m, 3H, CH 2 ); 1.82-2.02 (m, 2H, CH 2 ); 2.39 (s, 3H, CH 3 ); 2.85 (s, IH,

≡CH); 3.72-3.93 (m, IH, CH-NH); 5.81 (dl, IH, J = 7.1 Hz, NH); 6.10 (s, IH,

CH); 6.53 (dd, IH, J = 3.5 1.0 Hz, CH); 7.71 (d, IH, J = 3.4 Hz, CH), 7.37-7 '.47

(m, 2H, CH); 7.51-7.63 (m, 2H, CH). Synthesis of Example 20: But-2-ynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(3-trifluoromethylphenyl)amide.

Example 20 was obtained in the form of a white solid using general method E.

Yield = 51 %; C 23 H 23 F 3 N 2 O 2 S; MS [M+H] = 349; [M+Na] = 371.

NMR H 1 (CDCl 3 , 300): δ = 1.04-1.27 (m, 3H, CH 2 ); 1.27-1.48 (m, 2H, CH 2 ); 1.55-1.76 (m, 6H, CH 3 +CH 2 ); 1.84-2.01 (m, 2H, CH 2 ); 3.75-3.91 (m, IH, CH-

NH); 5.93 (dl, IH, J = 6.8 Hz, NH); 6.26 (s, IH, CH); 6.88 (dd, IH, J = 5.1 3.8

Hz, CH); 6.96 (d, IH, J = 3.3 Hz, CH), 7.25 (dd, IH, J = 5.2 1.0 Hz, CH); 7.35-

7.43 (m, 2H, CH); 7.44-7.57 (m, 2H, CH).

Synthesis of Example 21: Propynoic acid [benzylcarbamoyl-(5- methylthiophen-2-yl)-methyl]-(3-trifluoromethylphenyl)amide. Example 21 was obtained in the form of a white solid using general method E.

Yield = 5 %; C 24 H 29 F 3 N 2 O 2 S; MS [M+Na] = 479.

NMR H 1 (CDCl 3 , 300): δ = 2.38 (s, 3H, CH 3 ); 2.86 (s, IH, ≡CH); 4.48 (AB, IH, J

= 15.2 5.4 Hz, CH 2 ); 4.55 (AB, IH, J = 14.7 5.8 Hz, CH 2 ), 6.20-6.34 (m, IH,

NH); 6.46-6.59 (m, IH, CH); 6.73 (d, IH, J = 3.1 Hz, CH), 7.22-7.39 (m, 5H, CH), 7.39-7.66 (m, 4H, CH).

Synthesis of Example 22: But-2-ynoic acid (benzylcarbamoylthiophen-2- yl-methyl)-(3-trifluoromethylphenyl)amide.

Example 22 was obtained in the form of a white solid using general method E.

Yield = 65 %; C 24 Hi 9 F 3 N 2 O 2 S; MS [M+H] = 457; [M+Na] = 479. NMR H 1 (CDCl 3 , 300): δ = 1.71 (s, 3H, CH 3 ); 4.48 (AB, IH, J = 14.9 4.9 Hz,

CH 2 ); 4.56 (AB, IH, J = 14.5 5.5 Hz, CH 2 ), 6.25 (s, IH, CH); 6.31-6.46 (1, IH,

NH); 6.88 (dd, IH, J = 5.1 3.6 Hz, CH); 6.93-7.01 (1, IH, CH); 7.25-7.60 (m,

1OH, CH).

Synthesis of Example 23: 2-(Benzylpropynoylamino)-4,4- dimethylpentanoic acid cyclohexylamide.

Example 23 was obtained in the form of a white solid using general method E.

Yield = 68 %; C 23 H 32 N 2 O 2 ; MS [M+H] = 369; [M+Na] = 391.

NMR H 1 (CDCl 3 , 300): δ = 0.82 (s, 9H, CH 3 ), 1.00-1.87 (m, 1OH, CH 2 ), 1.28 (dd,

IH, J = 14.1 3.6 Hz, CH 2 ), 2.20 (dd, IH, J = 13.9 8.8 Hz, CH 2 ), 3.12 (s, IH, ≡CH), 3.42-3.59 (m, IH, CH), 4.73 (dd, IH, J = 9.0 3.6 Hz, CH), 4.82 (sys AB,

IH, J = 16.5 Hz, CH 2 ), 4.89 (sys AB, IH, J = 16.5 Hz, CH 2 ), 6.29 (dl, IH, J =

7.8 Hz, NH), 7.20-7.37 (m, 5H, CH).

Synthesis of Example 24: 2-(Benzylpropynoylamino)-4,4- dimethylpentanoic acid benzylamide. Example 24 was obtained in the form of a white solid using general method E.

Yield = 33 %; C 24 H 28 N 2 O 2 ; MS [M+H] = 377; [M+Na] = 399.

NMR H 1 (CDCl 3 , 300): δ = 0.83 (s, 9H, CH 3 ), 1.34 (dd, IH, J = 14.1 3.6 Hz, CH 2 ), 1.23 (sys dd, IH, J = 14.1 8.4 Hz, CH 2 ), 3.13 (s, IH, ≡CH); 4.10 (sys AB, IH, J = 14.7 5.4 Hz, CH 2 ), 4.33 (sys AB, IH, J = 14.7 6.3 Hz, CH 2 ), 4.79-4.95 (m, 3H, CH 2 +CH), 6.78 (tl, IH, J = 5.4 Hz, NH), 7.10-7.35 (m, 1OH, CH). Synthesis of Example 25: l-[Propynoyl-(4-trifluoromethylphenyl) amino]cyclohexane carboxylic acid cyclohexylamide.

Cyclohexanecarbaldehyde, 4-trifluoromethylphenylamine, propargylic acid and isocyanocyclohexane were reacted as described in general method E. Compound 25 was obtained in the form of a yellow oil. Yield = 50 %; C 23 H 27 F 3 N 2 O 2 ; MS [M+H] = 421

NMR H 1 (CDCl 3 , 300): δ = 1.15-1.78 (m, 16H) ; 1.95-2.04 (m, 2H) ; 2.25-2.29 (m, 2H) ; 2.77 (s, IH) ; 3.17 (s, IH) ; 3.75-3.91 (m, IH) ; 6.26 (d, J = 7.8 Hz, IH) ; 7.58 (d, J = 8.4 Hz, 2H) ; 7.66 (d, J = 8.4 Hz, 2 H).

Synthesis of Example 26: 1 -[Propynoyl-(3-trifluoromethylphenyl) amino]cyclohexane carboxylic acid cyclohexylamide.

Cyclohexanecarbaldehyde, 3-trifluoromethylphenylamine, propargylic acid and isocyanocyclohexane were reacted as described in general method E. The compound from Example 26 was obtained in the form of a white solid. Yield = 28 %; C 23 H 27 F 3 N 2 O 2 ; MS [M+H] = 421. NMR H 1 (CDCl 3 , 300): δ = 1.19-1.78 (m, 16H) ; 1.95-2.00 (m, 2H) ; 2.15-2.39 (m, 2H) ; 2.77 (s, IH) ; 2.76 (s, IH) ; 3.78-3.92 (m, IH) ; 6.24 (d, J = 7.8 Hz, IH) ; 7.52 (t, J = 7.8 Hz, IH) ; 7.63-7.69 (m, 2 H) ; 7.72 (s, IH).

Synthesis of Example 27: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(3-nitrophenyl)amide. Example 27 was obtained in the form of a brown solid using general method E. Yield = 63 %; C 2 iH 2 iN 3 O 4 S; MS [M+H] = 412; [M+Na] = 434.

Synthesis of Example 28: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(4-[ 1 ,2,3]thiadiazol-4-yl-phenyl)amide. Example 28 was obtained in the form of a brown foam using general method E. Yield = 63 %; C 23 H 22 N 4 O 2 S 2 ; MS [M+H] = 451; [M+Na] = 473.

Synthesis of Example 29: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-[4-(2,2,2-trifluoro- 1 -hydroxy- 1 -trifluoromethy let hyl)phenyl] amide. Example 29 was obtained in the form of an orange foam using general method E. Yield = 27 %; C 24 H 22 N 4 F 6 O 2 S; MS [M+H] = 533; [M+Na] = 555. Synthesis of Example 30: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(4-hydroxyphenyl)amide.

Example 30 was obtained in the form of a white solid using general method E. Yield = 27 %; C 2 iH 22 N 2 O 3 S; MS [M+H] = 383; [M+Na] = 405.

Synthesis of Example 31: Propynoic acid (3-cyanophenyl)(cyclohexyl carbamoylthiophen-2-yl-methyl)amide.

Example 31 was obtained in the form of a brown oil using general method E. Yield = 90 %; C 22 H 2I N 3 O 2 S; MS [M+H] = 392; [M+Na] = 414.

Synthesis of Example 32: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(4-diethylaminophenyl)amide. Example 32 was obtained in the form of a brown foam using general method E. Yield = 44 %; C 25 H 3 iN 3 O 2 S; MS [M+H] = 438.

Synthesis of Example 33: Propynoic acid (2-chlorophenyl)(cyclohexyl carbamoylthiophen-2-yl-methyl)amide.

Example 33 was obtained in the form of a red oil using general method E. Yield = 26 %; C 21 H 21 CIN 2 O 2 S; MS [M+H] = 401.

Synthesis of Example 34: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(2-methylsulphanylphenyl)amide.

Example 34 was obtained in the form of a brown oil using general method E. Yield = 22 %; C 22 H 24 N 2 O 2 S 2 ; MS [M+H] = 413. Synthesis of Example 35: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(2-phenoxyphenyl)amide.

Example 35 was obtained in the form of a brown oil using general method E. Yield = 25 %; C 27 H 26 N 2 O 3 S; MS [M+H] = 459; [M+Na] = 481.

Synthesis of Example 36: Propynoic acid benzo[l,3]dioxol-5-yl- (cyclohexyl carbamoylthiophen-2-yl-methyl)amide.

Example 36 was obtained in the form of a brown oil using general method E.

Yield = 61 %; C 22 H 22 N 2 O 4 S; MS [M+H] = 411; [M+Na] = 433.

Synthesis of Example 37: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(3,4-difluorophenyl)amide.

Example 37 was obtained in the form of a white solid using general method E. Yield = 71 %; C 2I H 20 F 2 N 2 O 2 S; MS [M+H] = 403; [M+Na] = 425.

Synthesis of Example 38: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-[3-(2-methylpyrimidin-4-yl)-phenyl]amide. Example 38 was obtained in the form of a red foam using general method E. Yield = 65 %; C 26 H 26 N 4 O 2 S; MS [M+H] = 459. Synthesis of Example 39: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(3-methylsulphanylphenyl)amide.

Example 39 was obtained in the form of a brown oil using general method E. Yield = 47 %; C 22 H 24 N 2 O 2 S 2 ; MS [M+H] = 413.

Synthesis of Example 40: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(2-methoxyphenyl)amide.

Example 40 was obtained in the form of a brown oil using general method E. Yield = 22 %; C 22 H 24 N 2 O 3 S 2 ; MS [M+H] = 397.

Synthesis of Example 41: Propynoic acid (4-chlorophenyl)(cyclohexyl carbamoylthiophen-2-yl-methyl)amide. Example 41 was obtained in the form of a white solid using general method E. Yield = 67 %; C 21 H 21 CIN 2 O 2 S; MS [M+H] = 401.

Synthesis of Example 42: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(2-hydroxyphenyl)amide.

Example 42 was obtained in the form of a yellow foam using general method E. Yield = 66 %; C 2I H 22 N 2 O 3 S; MS [M+H] = 383; [M+Na] = 405.

Synthesis of Example 43: 2-[(Cyclohexylcarbamoylthiophen-2-yl- methyl)propynoylamino]benzoic acid methyl ester.

Example 43 was obtained in the form of an orange oil using general method E. Yield = 54 %; C 23 H 24 N 2 O 4 S; MS [M+H] = 425. Synthesis of Example 44: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(2,6-dimethylphenyl)amide.

Example 44 was obtained in the form of a brown oil using general method E. Yield = 27 %; C 23 H 26 N 2 O 2 S; MS [M+H] = 395.

Synthesis of Example 45: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-/?-tolylamide. Example 45 was obtained in the form of a white solid using general method E. Yield = 86 %; C 22 H 24 N 2 O 2 S; MS [M+H] = 381; [M+Na] = 403.

Synthesis of Example 46: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(3-methoxyphenyl)amide.

Example 46 was obtained in the form of an orange oil using general method E. Yield = 65 %; C 22 H 24 N 2 O 3 S; MS [M+H] = 397; [M+Na] = 419.

Synthesis of Example 47: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(2-trifluoromethyl-lH-benzoimidazol-5-yl)-amide . Example 47 was obtained in the form of a white solid using general method E. Yield = 83 %; C 23 H 2 IF 3 N 4 O 2 S; MS [M+H] = 475. Synthesis of Example 48: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(4-morpholin-4-yl-phenyl)amide.

Example 48 was obtained in the form of a white solid using general method E. Yield = 73 %; C 25 H 29 N 3 O 3 S; MS [M+H] = 452; [M+Na] = 474.

Synthesis of Example 49: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(lH-indazol-5-yl)-amide.

Example 49 was obtained in the form of a white solid using general method E. Yield = 84 %; C 22 H 22 N 4 O 2 S; MS [M+H] = 407.

Synthesis of Example 50: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(2,4-difluorophenyl)amide. Example 50 was obtained in the form of a white solid using general method E. Yield = 28 %; C 2 IH 20 F 2 N 2 O 2 S; MS [M+H] = 403; [M+Na] = 425.

Synthesis of Example 51: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(2,4-dimethylphenyl)amide.

Example 51 was obtained in the form of a yellow solid using general method E. Yield = 61 %; C 23 H 26 N 2 O 2 S; MS [M+H] = 395; [M+Na] = 417.

Synthesis of Example 52: Propynoic acid (4-tert-butylphenyl)(cyclohexyl carbamoylthiophen-2-yl-methyl)amide.

Example 52 was obtained in the form of a white solid using general method E.

Yield = 49 %; C 25 H 30 N 2 O 2 S; MS [M+H] = 423; [M+Na] = 445. Synthesis of Example 53: Propynoic acid (4-cyanophenyl)(cyclohexyl carbamoylthiophen-2-yl-methyl)amide.

Example 53 was obtained in the form of a white solid using general method E.

Yield = 79 %; C 22 H 2 iN 3 O 2 S; MS [M+H] = 392; [M+Na] = 414.

Synthesis of Example 54: Propynoic acid (2-cyanophenyl)(cyclohexyl carbamoylthiophen-2-yl-methyl)amide.

Example 54 was obtained in the form of a brown oil using general method E.

Yield = 18 %; C 22 H 2I N 3 O 2 S; MS [M+H] = 392; [M+Na] = 414.

Synthesis of Example 55: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(4-phenoxyphenyl)amide. Example 55 was obtained in the form of a white solid using general method E.

Yield = 84 %; C 27 H 26 N 2 O 3 S; MS [M+H] = 459; [M+Na] = 481.

Synthesis of Example 56: Propynoic acid (cyclohexylcarbamoylthiophen-2-yl- methyl)-(3-ethynylphenyl)amide.

Example 56 was obtained in the form of a brown foam using general method E. Yield = 59 %; C 23 H 22 N 2 O 2 S; MS [M+H] = 391; [M+Na] = 413.

Synthesis of Example 57: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(4-isopropylphenyl)amide.

Example 57 was obtained in the form of a yellow solid using general method E.

Yield = 58 %; C 24 H 28 N 2 O 2 S; MS [M+H] = 409; [M+Na] = 431. Synthesis of Example 58: Propynoic acid biphenyl-3-yl-

(cyclohexylcarbamoylthiophen-2-yl-methyl)amide.

Example 58 was obtained in the form of a brown foam using general method E.

Yield = 84 %; C 27 H 26 N 2 O 2 S; MS [M+H] = 443; [M+Na] = 465.

Synthesis of Example 59: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-(2-fluorophenyl)amide.

Example 59 was obtained in the form of an orange solid using general method E.

Yield = 49 %; C 21 H 21 FN 2 O 2 S; MS [M+H] = 385; [M+Na] = 407.

Synthesis of Example 60: Propynoic acid (cyclohexylcarbamoylthiophen- 2-yl-methyl)-o-tolylamide.

Example 60 was obtained in the form of a white solid using general method E. Yield = 68 %; C 22 H 24 N 2 O 2 S; MS [M+H] = 381.

Synthesis of Example 61: Propynoic acid biphenyl-4-yl- (cyclohexylcarbamoylthiophen-2-yl-methyl)amide.

Example 61 was obtained in the form of a white solid using general method E. Yield = 80 %; C 27 H 26 N 2 O 2 S; MS [M+H] = 443; [M+Na] = 465. Synthesis of Example 62: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-(3-pyrimidin-5-yl-phenyl)amide.

Example 62 was obtained in the form of an orange solid using general method E. Yield = 88 %; C 25 H 24 N 4 O 2 S; MS [M+H] = 445.

Synthesis of Example 63: Propynoic acid (benzo[l,3]dioxol-5-yl- cyclohexyl carbamoylmethyl)-(3-trifluoromethylphenyl)amide.

Example 63 was obtained in the form of a white solid using general method E. Yield = 58 %; C 25 H 23 F 3 N 2 O 4 ; MS [M+H] = 473; [M+Na] = 495.

Synthesis of Example 64: Propynoic acid [cyclohexylcarbamoyl-(3- fluorophenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 64 was obtained in the form of a white solid using general method E. Yield = 26 %; C 24 H 22 F 4 N 2 O 2 ; MS [M+H] = 447; [M+Na] = 469.

Synthesis of Example 65: Propynoic acid [cyclohexylcarbamoyl-(3,4- dimethoxyphenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 65 was obtained in the form of a white solid using general method E. Yield = 96 %; C 26 H 27 F 3 N 2 O 4 ; MS [M+H] = 489; [M+Na] = 411.

Synthesis of Example 66: Propynoic acid (cyclohexylcarbamoyl phenylmethyl)-(3-trifluoromethylphenyl)amide.

Example 66 was obtained in the form of a white solid using general method E. Yield = 24 %; C 24 H 23 F 3 N 2 O 2 ; MS [M+H] = 429; [M+Na] = 451. Synthesis of Example 67: Propynoic acid [cyclohexylcarbamoyl-(4- hydroxyphenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 67 was obtained in the form of a white solid using general method E. Yield = 97 %; C 24 H 23 F 3 N 2 O 3 ; MS [M+H] = 445; [M+Na] = 467.

Synthesis of Example 68: Propynoic acid [cyclohexylcarbamoyl-(4- difluoromethoxyphenyl)methyl]-(3-trifluoromethylphenyl)amide . Example 68 was obtained in the form of a white solid using general method E. Yield = 44 %; C 25 H 23 F 5 N 2 O 3 ; MS [M+H] = 495; [M+Na] = 517.

Synthesis of Example 69: Propynoic acid (cyclohexylcarbamoyl-/?- tolylmethyl)-(3-trifluoromethylphenyl)amide.

Example 69 was obtained in the form of a white solid using general method E. Yield = 62 %; C 25 H 25 F 3 N 2 O 2 ; MS [M+H] = 443; [M+Na] = 465.

Synthesis of Example 70: Propynoic acid (cyclohexylcarbamoyl-o- tolylmethyl)-(3-trifluoromethylphenyl)amide.

Example 70 was obtained in the form of a white solid using general method E. Yield = 42 %; C 25 H 25 F 3 N 2 O 2 ; MS [M+H] = 443; [M+Na] = 465. Synthesis of Example 71: Propynoic acid [(2-chlorophenyl)cyclohexyl- carbamoylmethyl] -(3 -trifluoromethylphenyl)amide .

Example 71 was obtained in the form of a white solid using general method E. Yield = 45 %; C 24 H 22 ClF 3 N 2 O 2 ; MS [M+H] = 463; [M+Na] = 485.

Synthesis of Example 72: Propynoic acid [cyclohexylcarbamoyl-(2- fluorophenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 72 was obtained in the form of a white solid using general method E. Yield = 71 %; C 24 H 22 F 4 N 2 O 2 ; MS [M+H] = 447; [M+Na] = 469.

Synthesis of Example 73: Propynoic acid [cyclohexylcarbamoyl-(3,4- difluorophenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 73 was obtained in the form of a white solid using general method E. Yield = 35 %; C 24 H 2 IF 5 N 2 O 2 ; MS [M+H] = 465; [M+Na] = 487.

Synthesis of Example 74: Propynoic acid [cyclohexylcarbamoyl-(4- fluorophenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 74 was obtained in the form of a white solid using general method E. Yield = 30 %; C 24 H 22 F 4 N 2 O 2 ; MS [M+H] = 447; [M+Na] = 469.

Synthesis of Example 75: Propynoic acid [cyclohexylcarbamoyl-(4- hydroxy-3 -methoxyphenyl)methyl] -(3 -trifluoromethylphenyl)amide. Example 75 was obtained in the form of a white solid using general method E. Yield = 98 %; C 25 H 25 F 3 N 2 O 4 ; MS [M+H] = 475; [M+Na] = 497. Synthesis of Example 76: Propynoic acid [cyclohexylcarbamoyl-(4- dimethylaminophenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 76 was obtained in the form of a white solid using general method E. Yield = 53 %; C 26 H 28 F 3 N 3 O 2 ; MS [M+H] = 472.

Synthesis of Example 77: Propynoic acid [cyclohexylcarbamoyl-(3- nitrophenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 77 was obtained in the form of a white solid using general method E. Yield = 72 %; C 24 H 22 F 3 N 3 O 4 MS [M+H] = 474.

Synthesis of Example 78: Propynoic acid [(2-chloro-5-trifluoromethyl phenyl)cyclohexylcarbamoylmethyl]-(3-trifluoromethylphenyl)a mide. Example 78 was obtained in the form of a white solid using general method E. Yield = 39 %; C 25 H 2 iClF 6 N 2 O 2 ; MS [M+H] = 531; [M+Na] = 553.

Synthesis of Example 79: Propynoic acid [(3-chlorophenyl) cyclohexylcarbamoylmethyl]-(3-trifluoromethylphenyl)amide. Example 79 was obtained in the form of a white solid using general method E. Yield = 50 %; C 24 H 22 ClF 3 N 2 O 2 ; MS [M+H] = 463; [M+Na] = 485.

Synthesis of Example 80: Propynoic acid [cyclohexylcarbamoyl-(4- trifluoromethoxyphenyl)methyl]-(3-trifluoromethylphenyl)amid e. Example 80 was obtained in the form of a white solid using general method E. Yield = 50 %; C 25 H 22 F 6 N 2 O 3 ; MS [M+H] = 513. Synthesis of Example 81: Propynoic acid [(4-cyanophenyl)cyclohexyl carbamoylmethyl] -(3 -trifluoromethylphenyl)amide .

Example 81 was obtained in the form of a white solid using general method E. Yield = 66 %; C 25 H 22 F 3 N 3 O 2 ; MS [M+H] = 454; [M+Na] = 476.

Synthesis of Example 82: Propynoic acid [cyclohexylcarbamoyl-(4- methoxyphenyl)methyl] -(3 -trifluoromethylphenyl)amide.

Example 82 was obtained in the form of a white solid using general method E.

Yield = 62 %; C 25 H 25 F 3 N 2 O 3 ; MS [M+H] = 459.

Synthesis of Example 83: Propynoic acid [cyclohexylcarbamoyl-(4- nitrophenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 83 was obtained in the form of a white solid using general method E. Yield = 70 %; C 24 H 22 F 3 N 3 O 4 ; MS [M+H] = 474; [M+Na] = 496.

Synthesis of Example 84: Propynoic acid (benzo[l,3]dioxol-4-yl- cyclohexylcarbamoylmethyl)-(3-trifluoromethylphenyl)amide. Example 84 was obtained in the form of a white solid using general method E. Yield = 33 %; C 25 H 23 F 3 N 2 O 4 ; MS [M+H] = 473; [M+Na] = 495. Synthesis of Example 85: Propynoic acid [cyclohexylcarbamoyl-(2- nitrophenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 85 was obtained in the form of a white solid using general method E. Yield = 87 %; C 24 H 22 F 3 N 3 O 4 ; MS [M+H] = 474; [M+Na] = 496.

Synthesis of Example 86: Propynoic acid [cyclohexylcarbamoyl-(2,4- dichlorophenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 86 was obtained in the form of a pink solid using general method E. Yield = 62 %; C 24 H 2I Cl 2 F 3 N 2 O 2 ; MS [M+H] = 497.

Synthesis of Example 87: Propynoic acid [(4-chloro-3-fluorophenyl) cyclohexylcarbamoylmethyl] -(3 -trifluoromethylphenyl) . Example 87 was obtained in the form of a white solid using general method E. Yield = 52 %; C 24 H 2I ClF 4 N 2 O 2 ; MS [M+H] = 481; [M+Na] = 503.

Synthesis of Example 88: Propynoic acid [cyclohexylcarbamoyl-(4- methylsulphanylphenyl)methyl]-(3-trifluoromethylphenyl)amide . Example 88 was obtained in the form of a white solid using general method E. Yield = 73 %; C 25 H 25 F 3 N 2 O 2 S; MS [M+H] = 475; [M+Na] = 497.

Synthesis of Example 89: Propynoic acid [cyclohexylcarbamoyl-(4- isopropylphenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 89 was obtained in the form of a white solid using general method E. Yield = 32 %; C 27 H 29 F 3 N 2 O 2 ; MS [M+H] = 471; [M+Na] = 493. Synthesis of Example 90: Propynoic acid [cyclohexylcarbamoyl-(3- phenoxyphenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 90 was obtained in the form of a yellow solid using general method E. Yield = 32 %; C 30 H 27 F 3 N 2 O 3 ; MS [M+H] = 521; [M+Na] = 543.

Synthesis of Example 91: Propynoic acid [cyclohexylcarbamoyl-(2,3- dihydrobenzo [ 1 ,4] dioxin-6-yl)-methyl] -(3 -trifluoromethylphenyl)amide. Example 91 was obtained in the form of a white solid using general method E. Yield = 47 %; C 26 H 25 F 3 N 2 O 4 ; MS [M+H] = 487; [M+Na] = 509.

Synthesis of Example 92: Propynoic acid [cyclohexylcarbamoyl-(2,6- dichlorophenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 92 was obtained in the form of a yellow solid using general method E. Yield = 46 %; C 24 H 2 ICl 2 F 3 N 2 O 2 ; MS [M+H] = 497.

Synthesis of Example 93: Propynoic acid [cyclohexylcarbamoyl-(2,4- difluorophenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 93 was obtained in the form of a white solid using general method E. Yield = 72 %; C 24 H 2 IF 5 N 2 O 2 ; MS [M+H] = 465; [M+Na] = 487. Synthesis of Example 94: Propynoic acid (cyclohexylcarbamoyl-m- tolylmethyl)-(3-trifluoromethylphenyl)amide.

Example 94 was obtained in the form of a white solid using general method E. Yield = 26 %; C 25 H 25 F 3 N 2 O 2 ; MS [M+H] = 443; [M+Na] = 465.

Synthesis of Example 95: Propynoic acid [(3-cyanophenyl)-cyclohexyl carbamoylmethyl] -(3 -trifluoromethylphenyl)amide .

Example 95 was obtained in the form of a pink solid using general method E. Yield = 89 %; C 25 H 22 F 3 N 3 O 2 ; MS [M+H] = 454; [M+Na] = 476.

Synthesis of Example 96: Propynoic acid [cyclohexylcarbamoyl-(2- methoxyphenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 96 was obtained in the form of a white solid using general method E. Yield = 73 %; C 25 H 25 F 3 N 2 O 3 ; MS [M+H] = 459; [M+Na] = 481.

Synthesis of Example 97: Propynoic acid [cyclohexylcarbamoyl-(3- methoxyphenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 97 was obtained in the form of a white solid using general method E. Yield = 85 %; C 25 H 25 F 3 N 2 O 3 ; MS [M+H] = 459; [M+Na] = 481.

Synthesis of Example 98: Propynoic acid [cyclohexylcarbamoyl-(4-boronic acid-phenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 98 was obtained in the form of a yellow solid using general method E. Yield = 72 %; C 24 H 24 BF 3 N 2 O 4 ; MS [M+H] = 473. Synthesis of Example 99: Propynoic acid [cyclohexylcarbamoyl-(3-boronic acid-phenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 99 was obtained in the form of a yellow solid using general method E. Yield = 73 %; C 24 H 24 BF 3 N 2 O 4 ; MS [M+H] = 473; [M+Na] = 495.

Synthesis of Example 100: Propynoic acid [cyclohexylcarbamoyl-(2,4- dimethylphenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 100 was obtained in the form of a white solid using general method E. Yield = 82 %; C 26 H 27 F 3 N 2 O 2 ; MS [M+H] = 457; [M+Na] = 480.

Synthesis of Example 101: Propynoic acid [cyclohexylcarbamoyl-(4- pyrrolidin- 1 -yl-phenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 101 was obtained in the form of a pink solid using general method E. Yield = 83 %; C 28 H 30 F 3 N 3 O 2 ; MS [M+H] = 498.

Synthesis of Example 102: Propynoic acid [cyclohexylcarbamoyl-(3,4- dichlorophenyl)methyl]-(3-trifluoromethylphenyl)amide. Example 102 was obtained in the form of a pink solid using general method E. Yield = 74 %; C 24 H 2I Cl 2 F 3 N 2 O 2 ; MS [M+H] = 497; [M+Na] = 520.

Synthesis of Example 103: Propynoic acid [cyclohexylcarbamoyl-(4- trifluoromethylphenyl)methyl]-(3-trifluoromethylphenyl)amide . Example 103 was obtained in the form of a white solid using general method E. Yield = 32 %; C 25 H 22 F 6 N 2 O 2 ; MS [M+H] = 497. Synthesis of Example 104: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)-[3-(lH-tetrazol-5-yl)-phenyl]amide.

Example 104 was obtained in the form of a pink solid using general method E. Yield = 90 %; C 22 H 22 N 6 O 2 S; MS [M+H] = 435.

Synthesis of Example 105: Propynoic acid (lH-benzotriazol-5-yl)- (cyclohexylcarbamoylthiophen-2-yl-methyl)amide.

Example 105 was obtained in the form of a pink solid using general method E.

Yield = 74 %; C 2 IH 2 IN 5 O 2 S; MS [M+H] = 408; [M+Na] = 430.

Synthesis of Example 106: Propynoic acid [cyclohexylcarbamoyl-(2,3- difluorophenyl)methyl]-(3-trifluoromethylphenyl)amide.

Example 106 was obtained in the form of a white solid using general method E. Yield = 69 %; C 24 H 2 IF 5 N 2 O 2 ; MS [M+H] = 465; [M+Na] = 487.

Synthesis of Example 107: 2- [(2-Bromoacetyl)-(3 -trifluoromethylphenyl) amino]-λ/-cyclohexyl-2-thiophen-2-yl-acetamide.

Example 107 was obtained in the form of a white solid using general method E.

Yield = 80 %; C 2 IH 22 BrF 3 N 2 O 2 S; MS [M+H] = 503. Synthesis of Example 108: 2-[(2-bromoacetyl)-(4-methoxyphenyl)amino]-

JV-cyclohexyl-2-thiophen-2-yl-acetamide.

Example 108 was obtained in the form of a white solid using general method E.

Yield = 77 %; C 2 IH 25 BrN 2 O 3 S; MS [M+H] = 466.

NMR H 1 (CDCl 3 , 300): δ = 1.10-1.25 (m, 3H, CH 2 ), 1.25-1.45 (m, 2H, CH 2 ), 1.55-1.77 (m, 3 H, CH 2 ), 1.85-2.07 (m, 2H, CH 2 ), 3.65 (s, 2H, CH 2 ), 3.78 (s, 2H,

CH 2 ), 3.80 (m, IH, CH), 6.02 (d, IH, J = 7.8 Hz, NH), 6.19 (s, IH, CH), 6.50-7.50

(1, 4H, CH), 6.88 (dd, IH, J = 5.1 3.6 Hz, CH), 6.95 (m, IH, CH), 7.25 (dd, IH, J

= 5.1 1.2 Hz, CH).

NMR C 13 (CDCl 3 , 300): δ = 167.2 159,7 154.8 135.3 131.3 130.7 129.8 128.1 126.2 114.3 60.4 55.4 48.8 32.7 27.5 25.4 24.7.

Synthesis of Example 109: 2-[(2-Chloroacetyl)-(4-methoxyphenyl)amino]-

JV-cyclohexyl-2-thiophen-2-yl-acetamide.

Thiophene-2-carbaldehyde, 4-methoxyphenylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example 109 was obtained in the form of a grey solid.

Yield = 38 %; C 2 IH 25 ClN 2 O 3 S; MS [M+H] = 421

NMR H 1 (DMSO D 6 , 300): δ = 0.96-1.29 (m, 5H) ; 1.50-1.78 (m, 5H) ; 3.5 -3.61

(m, IH) ; 3.69 (s, 3H) ; 3.90 (sys AB, 2H) ; 6.23 (s, IH) ; 6.75-7.36 (m, 7H) ; 8.06

(d, J = 7.8 Hz, IH)

Synthesis of Example 110: 2- [(2-Chloroacetyl)-(3 -trifluoromethylphenyl) amino]-λ/-cyclohexyl-2-thiophen-2-yl-acetamide.

Thiophene-2-carbaldehyde, 3-trifluoromethylphenylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example 110 was obtained in the form of a white solid.

Yield = 52 %; C 2I H 22 ClF 3 N 2 O 2 S; MS [M+H] = 559 ; [M-H] =

557.

NMR H 1 (acetone D 6 , 300): δ = 1.08-1.42 (m, 5H) ; 1.56-1.92 (m, 5H) ; 3.67-3.79

(m, IH) ; 3.96 (s, 2H) ; 6.40 (s, IH) ; 6.83 (dd, J = 3.6 Hz, J = 5.1 Hz, IH), 6.91- 6.92 (m, IH, ) ; 7.31-7.90 (m, 5H.

Synthesis of Example 111: 2-[(2-Chloroacetyl)isobutylamino]-iV- cyclohexyl-2-thiophen-2-yl-acetamide.

Thiophene-2-carbaldehyde, isobutylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example 111 was obtained in the form of an orange solid.

Yield = 48 %; Ci 8 H 27 ClN 2 O 2 S; MS [M+H] = 371; [M-H] = 399.

NMR H 1 (CDCl 3 , 300): δ = 0.75-084 (m, 6H) ; 1.12-1.39 (m, 5H) ; 1.51-1.83 (m,

6H) ; 3.08-3.35 (m, 2H) ; 3.65-3.75 (m, IH) ; 4.10-4.35 (m, 2H) ; 5.84 (s, IH) ;

6.82-6.84 (m, IH) ; 7.20-7.21 (m, IH) ; 7.49 (d, J = 4.5 Hz, IH). Synthesis of Example 112: Propynoic acid [(2-benzyloxyphenylcarbamoyl) thiophen-2-yl-methyl]-(3-trifluoromethylphenyl)amide.

Example 112 was obtained in the form of a white solid using general method E.

Yield = 30 %; C 29 H 2I F 3 N 2 O 3 S; MS [M+H] = 535; [M+Na] = 557;

[M+K] = 573. NMR H 1 (CDCl 3 , 300): δ = 2.86 (s, IH, ≡CH), 5.00 (s, 2H, CH 2 ), 6.37 (s, IH,

CH), 6.76 (dd, J = 5.2 3.6 Hz, IH, CH); 6.89-7.10 (m, 4H, CH), 7.20 (dd, J = 5.2

1.0 Hz, IH, CH); 7.22-7.27 (m, 2H, CH), 7.30-7.50 (m, 5H, CH), 7.54-7.63 (m,

2H, CH), 8.27 (s, IH, NH), 8.39 (dd, J = 7.8 1.8 Hz, IH, CH).

NMR C 13 (CDCl 3 , 300): δ = 165.2 153.0 147.4 139.8 136.1 134.1 133.8 131.6 130.6 129.5 128,7 128.5 128.2 127.7 127.4 126.8 125.7 124.4 121.4 120.9 120.1

111.6 81.4 70.7 61.1.

Synthesis of Example 113: N-Cyclohexyl-2-[(2-fluoroacetyl)-(3- trifluoromethylphenyl)amino]-2-thiophen-2-yl-acetamide.

Example 113 was obtained in the form of a white solid using general method E.

Yield = 60 %; C 2 IH 22 F 4 N 2 O 2 S; MS [M+H] = 443. NMR H 1 (CDCl 3 , 300): δ = 1.03-1.27 (m, 3H, CH 2 ); 1.27-1.48 (m, 2H, CH 2 );

1.53-1.78 (m, 3H, CH 2 ); 1.82-2.05 (m, 2H, CH 2 ); 3.73-3.90 (m, IH, CH-NH);

4.59 (d, J = 46.6 Hz, 2H, CH 2 ), 5.87 (d, J = 7.0 Hz, IH, NH), 6.25 (s, IH, CH),

6.83-6.97 (m, 2H, CH); 7.20-7.31 (m, 2H, CH), 7.37-7.66 (m, 3H, CH).

Synthesis o£_ Example 114: N-Cyclohexyl-2-[(2- fluoroacetyl)isobutylamino]-2-thiophen-2-yl-acetamide.

Example 114 was obtained in the form of a white solid using general method E.

Yield = 25 %; Ci 8 H 27 FN 2 O 2 S; MS [M+H] = 355.

NMR H 1 (CDCl 3 , 300): δ = 0.81 (d, J = 6.7 Hz, 3H, CH 3 ); 0.88 (d, J = 6.7 Hz,

3H, CH 3 ); 1.04-1.24 (m, 3H, CH 2 ); 1.25-1.44 (m, 2H, CH 2 ); 1.51-1.75 (m, 3H, CH 2 ); 1.78-2.00 (m, 3H, CH+CH 2 ); 2.89-3.09 (m, 2H, CH 2 ); 3.69-3.88 (m, IH,

CH-NH); 5.03 (d, J = 46.6 Hz, 2H, CH 2 ), 5.63 (s, IH, CH); 6.16-6.35 (1, IH, NH),

7.03 (dd, J = 5.2 3.6 Hz, IH, CH), 7.18 (d, J = 3.2 Hz, IH, CH), 7.38 (dd, J = 5.2

1.2 Hz, IH, CH).

Synthesis of Example 115: N-Cyclohexyl-2-[(2-fluoroacetyl)-(4- methoxyphenyl)amino]-2-thiophen-2-yl-acetamide.

Example 115 was obtained in the form of a white solid using general method E.

Yield = 74 %; C 2 IH 25 FN 2 O 3 S; MS [M+H] = 405.

NMR H 1 (CDCl 3 , 300): δ = 1.02-1.50 (m, 5H, CH 2 ); 1.50-1.82 (m, 3H, CH 2 );

1.83-2.05 (m, 2H, CH 2 ); 3.71-3.91 (m, IH, CH-NH); 3.79 (s, 3H,CH 3 ), 4.59 (d, J = 46.9 Hz, 2H, CH 2 ), 5.96 (d, J = 7.5 Hz, IH, NH), 6.25 (s, IH, CH); 6.66-6.84

(m, 2H, CH), 6.88 (dd, J = 5.2 3.6 Hz, IH, CH), 6.92-6.97 (m, IH, CH), 7.25 (dd,

J = 5.1 1.1 Hz, IH, CH), 5.90-7.65 (m, 2H, CH).

Synthesis of Example 116: Propynoic acid (cyclohexylcarbamoylthiophen-

2-yl-methyl)methylamide.

Thiophene-2-carbaldehyde, methylamine, propargylic acid and isocyanocyclohexane were reacted as described in general method E. Example 116 was obtained in the form of a white solid.

Yield = 20 %; Ci 6 H 20 N 2 O 2 S; MS [M+H] = 305; [M-H] = 303.

NMR H 1 (CDCl 3 , 300): δ = 1.09-1.40 (m, 5H) ; 1.55-1.71 (m, 3H) ; 1.86-1.92 (m,

2H) ; 2.90 and 3.14 (2s, 3H) ; 3.20 and 3.26 (2s, IH) ; 3.70-3.75 (m, IH) ; 65.95-

6.12 (m, IH) ; 6.34 and 6.36 (2s, IH) ; 7.00-7.03 (m, IH, CH) ; 7.11-7.16 (m, IH) ; 7.34-7.37 (m, IH).

Synthesis of Example 117: Propynoic acid (cyclohexylcarbamoylmethyl-

(3 -trifluoromethy lpheny l)amide) .

Formaldehyde, 3-trifluoromethylphenylamine, propargylic acid and isocyanocyclohexane were reacted as described in general method E. Example 117 was obtained in the form of a white solid.

Yield = 26 %; Ci 8 Hi 9 F 3 N 2 O 2 ; MS [M+H] = 353.

NMR H 1 (CDCl 3 , 300): δ = 1.02-1.25 (m, 5H) ; 1.49-1.66 (m, 5H) ; 3.40-3.44 (m,

IH) ; 4.29 and 4.32 (2s, 2H) ; 4.51 and 4.69 (2s, IH) ; 7.59-8.11 (m, 5H).

Synthesis of Example 118: Propynoic acid (carbamoylthiophen-2-yl- methyl)-(3-trifluoromethylphenyl)amide.

Example 118 was obtained in the form of a white solid using general method E.

Yield = 52 %; Ci 6 HnF 3 N 2 O 2 S; [M+Na] = 375.

NMR H 1 (CDCl 3 , 300): δ = 2.87 (s, IH, ≡CH), 5.85-6.22 (1, 2H, NH 2 ); 6.32 (s,

IH, CH), 6.88 (dd, J = 5.1 1.2 Hz, IH, CH), 6.92-6.98 (m, IH, CH); 7.25-7.60 (m, 5H, CH), 7.17-7.70 (1, IH, CH).

Synthesis of Example 119: Propynoic acid cyclohexylcarbamoylmethyl methylamide.

Example 119 was obtained in the form of a white solid using general method E.

Yield = 32 %; Ci 2 Hi 8 N 2 O 2 MS [M+H] = 223; [M+Na] = 245. NMR H 1 (CDCl 3 , 300): δ = 1.05-1.26 (m, 3H, CH 2 ), 1.26-1.48 (m, 2H, CH 2 );

1.53-1.80 (m, 3H, CH 2 ); 1.82-1.99 (m, 2H, CH 2 ); 3.03 (s, 1.04 H, CH 3 form 1),

3.16 (s, 0.33 H, ≡CH form 1), 3.22 (s, 0.59 H, ≡CH form 2), 3.33 (s, 1.88 H, CH 3 form 2), 3.64-3.92 (m, IH, CH-NH); 4.00 (s, 1.26 H, CH 2 form 2), 4.23 (s, 0.71 H, CH 2 form 1), 5.60-5.80 (1, 0.32 H, NH form 1), 5.85-6.08 (1, 0.57 H, NH form

2). Synthesis of Example 120: 2-[(2-Chloroacetyl)-(2-cyanophenyl)amino]-iV- cyclohexyl-2-thiophen-2-yl-acetamide.

Thiophene-2-carbaldehyde, 2-aminobenzonitrile, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example

120 was obtained in the form of a white solid. Yield = 5 %; C 2 IH 22 ClN 3 O 2 S MS [M+H] = 416.

NMR H 1 (CDCl 3 , 300): δ = 1.08-2.05 (m, 10H) ; 3.75-3.93 (m, 3H) ; 5.86 (dl, IH) ; 6.42 (s, IH) ; 6.85 (dd, J = 3.6 Hz, J = 5.4 Hz, IH) ; 7.07 (dd, J = 3.6 Hz, J = 0.6 Hz, IH) ; 7.018 (dd, J = 0.6 Hz, J = 5.4 Hz, IH) ; 7.35-7.73 (m, 3H) ; 8.08 (d, J = 7.8 Hz, IH). Synthesis of Example 121: 2-[(2-Chloroacetyl)-(3-cyanophenyl)amino]-iV- cyclohexyl-2-thiophen-2-yl-acetamide.

Thiophene-2-carbaldehyde, 3-aminobenzonitrile, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example

121 was obtained in the form of a beige solid. Yield = 67 %; C 2 IH 22 ClN 3 O 2 S; MS [M+H] = 416; [M-H] = 414.

NMR H 1 (CDCl 3 , 300): δ = 1.08-1.24 (m, 3H) ; 1.29-1.42 (m, 2H) ; 1.58-1.72 (m, 3H) ; 1.87-1.98 (m, 2H) ; 3.78-3.86 (m, 3H) ; 5.81 (dl, J = 6.6 Hz, IH) ; 6.21 (s, IH) ; 6.87-6.91 (m, 2H) ; 7.10-7.90 (m, 5H).

Synthesis of Example 122: 2-[(2-Chloroacetyl)-(4-cyanophenyl)amino]-iV- cyclohexyl-2-thiophen-2-yl-acetamide.

Thiophene-2-carbaldehyde, 4-aminobenzonitrile, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example

122 was obtained in the form of a beige solid.

Yield = 41 %; C 2 IH 22 ClN 3 O 2 S MS [M+H] = 416; [M-H] = 414.

NMR H 1 (CDCl 3 , 300): δ = 1.05-1.21 (m, 3H) ; 1.29-1.42 (m, 2H) ; 1.57-1.72 (m,

3H) ; 1.85-1.98 (m, 2H) ; 3.77-3.85 (m, 3H) ; 5.82 (dl, J = 8.1 Hz, IH) ; 6.21 (s,

IH) ; 6.87-6.91 (m, 2H) ; 7.10-7.90 (m, 5H).

Synthesis of Example 123: 2-[l,3-Benzodioxol-5-yl-methyl-(2- chloroacetyl)amino]-λ/-benzyl-2-(2-fluorophenyl)acetamide.

2-Fluorobenzaldehyde, C-l,3-benzodioxol-5-yl-methylamine, chloroacetic acid and isocyanomethylbenzene were reacted as described in general method E.

Example 123 was obtained in the form of a white solid.

Yield = 70 %; C 25 H 22 ClFN 2 O 4 MS [M+Na] = 491; [M-H] = 467. NMR H 1 (CDCl 3 , 300): δ = 3.98-4.13 (m, 2H) ; 4.50-4.74 (m, 4H) ; 5.89 (s, 2H) ;

6.21 (si, 2H) ; 6.51-6.64 (m, 3H) ; 6.97 (t, J = 9.3 Hz, IH) ; 7.10 (t, J = 7.5 Hz,

IH) ; 7.25-7.32 (m, 6H) ; 7.54 (tl, IH).

Synthesis of Example 124: 2-[(2-Chloroacetyl)-(2-methoxyphenyl)amino]-

JV-cyclohexyl-2-thiophen-2-yl-acetamide. Example 124 was obtained in the form of a white solid using general method E.

Yield = 69 %; C 2I H 25 ClN 2 O 3 S; MS [M+H] = 421.

Synthesis of Example 125: 2- [(2-Chloroacetyl)-(3 -methoxyphenyl)amino] -

λ/-cyclohexyl-2-thiophen-2-yl-acetamide.

Example 125 was obtained in the form of a white solid using general method E. Yield = 57 %; C 2 iH 25 ClN 2 O 3 S; MS [M+H] = 421.

Synthesis of Example 126: 2-[(2-Chloroacetyl)phenylamino]-iV- cyclohexyl-2-thiophen-2-yl-acetamide.

Example 126 was obtained in the form of a white solid using general method E.

Yield = 80 %; C 20 H 23 ClN 2 O 2 S; MS [M+H] = 391; [M+Na] = 413. Synthesis of Example 127: 2-[(2-Chloroacetyl)-(4-diethylaminophenyl) amino]-λ/-cyclohexyl-2-thiophen-2-yl-acetamide.

Example 127 was obtained in the form of a white solid using general method E.

Yield = 39 %; C 24 H 32 ClN 3 O 2 S; MS [M+H] = 462.

Synthesis of Example 128: 2-[(2-Chloroacetyl)-(4-hydroxyphenyl)amino]- λ/-cyclohexyl-2-thiophen-2-yl-acetamide.

Example 128 was obtained in the form of a white solid using general method E.

Yield = 27 %; C 20 H 23 ClN 2 O 3 S; MS [M+H] = 407; [M+Na] = 429.

Synthesis of Example 129: 2- [(2-Chloroacetyl)-(4-trifluoromethylphenyl) amino]-λ/-cyclohexyl-2-thiophen-2-yl-acetamide.

Example 129 was obtained in the form of a white solid using general method E. Yield = 65 %; C 2 IH 22 ClF 3 N 2 O 2 S; MS [M+H] = 459; [M+Na] = 481.

Synthesis of Example 130: 2-Chloro-λ/-cyclohexylcarbamoylmethyl-iV-(3- trifluoromethylphenyl)acetamide.

Formaldehyde (37 % in water), 4-trifluoromethylphenylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example 130 was obtained in the form of a white solid.

Yield = 31 %; Ci 7 H 20 ClF 3 N 2 O 2 ; MS [M+H] = 377; [M-H+HC0 2 H] = 421.

NMR H 1 (CDCl 3 , 300): δ = 1.11-1.45 (m, 5H) ; 1.69-1.76 (m, 3H) ; 1.89-1.96 (m,

2H) ; 3.72-3.84 (m, IH) ; 3.88 (s, 2H) ; 4.26 (s, 2H) ; 5.92 (d, J = 7.8 Hz, IH) ;

7.58-7.68 (m, 4H). Synthesis of Example 131: 2-[(2-Chloroacetyl)-(3-trifluoromethylphenyl) amino]-jV-cyclohexyl-2-phenylacetamide.

Benzaldehyde, 4-trifluoromethylphenylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example

131 was obtained in the form of a white solid. Yield = 74 %; C 23 H 24 ClF 3 N 2 O 2 ; MS [M+H] = 453; [M-H] = 451.

NMR H 1 (CDCl 3 , 300): δ = 0.90-1.99 (m, 10H) ; 3.75-3.87 (m, 3H) ; 5.49 (d, J =

7.8 Hz, IH) ; 6.08 (s, IH) ; 7.04-7.50 (m, 9H).

Synthesis of Example 132: 2- [(2-Chloroacetyl)-(3 -trifluoromethylphenyl) amino]-λ/-cyclohexyl-3-methylbutyramide. Isobutyraldehyde, 4-trifluoromethylphenylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example

132 was obtained in the form of a white solid.

Yield = 62 %; C 20 H 26 ClF 3 N 2 O 2 ; MS [M+H] = 419; [M-H+HC0 2 H] = 463. NMR H 1 (CDCl 3 , 300): δ = 0.93 (d, J = 8.1 Hz, 3H) ; 1.1 (d, J = 8.1 Hz, 3H) ; 1.15-1.55 (m, 5H) ; 1.49-1.75 (m, 3H) ; 1.89-1.94 (m, 2H) ; 2.10-2.21 (m, IH) ;

3.72-3.83 (m, 3H) ; 4.34 (d, J = 11.1 Hz, IH) ; 6.46 (d, J = 6.6 Hz, IH) ; 7.58-7.71

(m, 4H).

Synthesis of Example 133: 2-[(2-Chloroacetyl)-(3-trifluoromethylphenyl) amino]-4,4-dimethylpentanoic acid cyclohexylamide. 3,3-dimethylbutyraldehyde, 4-trifluoromethylphenylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example

133 was obtained in the form of a beige solid.

Yield = 41 %; C 22 H 30 ClF 3 N 2 O 2 ; MS [M+H] = 447.

NMR H 1 (CDCl 3 , 300): δ = 0.89 (s, 9H) ; 1.09-1.91 (m, 12H) ; 3.67-3.80 (m, 3H) ; 5.09 (dd, J = 3 Hz, J = 9.3 Hz, IH) ; 6.45 (d, J = 7.8 Hz, IH) ; 7.48-7.61 (m, 3H)

; 7.68-7.71 (m, IH).

Synthesis of Example 134: 2-[(2-Chloroacetyl)naphthalen- 1 -yl-amino]-iV- cyclohexyl-2-thiophen-2-yl-acetamide.

Example 134 was obtained in the form of a white solid using general method E. Yield = 75 %; C 24 H 25 ClN 2 O 2 S; MS [M+H] = 441.

Synthesis of Example 135: 2-[l,3-Benzodioxol-5-yl-(2- chloroacetyl)amino]-λ/-cyclohexyl-2-thiophen-2-yl-acetamide .

Example 135 was obtained in the form of a white solid using general method E.

Yield = 57 %; C 2I H 23 ClN 2 O 4 S; MS [M+H] = 435; [M+Na] = 457. Synthesis of Example 136: 2-[(2-Chloroacetyl)-(3-trifluoromethylphenyl) amino]-jV-cyclohex- 1 -enyl-2-thiophen-2-yl-acetamide.

Example 136 was obtained in the form of a white solid using general method E.

Yield = 43 %; C 2I H 20 ClF 3 N 2 O 2 S; MS [M+Na] = 479.

NMR H 1 (CDCl 3 , 300): δ = 1.52-1.63 (m, 2H, CH 2 ), 1.64-1.74 (m, 2H, CH 2 ); 1.79-1.92 (m, IH, CH 2 ); 2.07-2.17 (m, 3H, CH 2 ); 3.82 (s, 2H, ClCH 2 ), 6.05-6.13

(m, IH, CH); 6.22 (s, IH, CH), 6.78-6.99 (m, 3H, NH+CH); 7.27 (dd, J = 5.1 1.1

Hz, IH, CH), 7.40-7.53 (m, IH, CH); 7.59 (d, J = 7.6 Hz, IH, CH), 7.05-7.90 (1,

2H, CH).

NMR C 13 (CDCl 3 , 300): δ = 166.4 166.1 138.8 134.3 133.8 132.3 130.4 129,9 128.5 127.2 126.8 125.9 114.5 61.0 42.1 27.8 24.0 22.4 21.8.

Synthesis of Example 137: 2- [(2-Chloroacetyl)-(3 -trifluoromethylphenyl) amino]-2-thiophen-2-yl-acetamide.

Example 137 had been generated from Example 136 (390 mg, 0.902 mmol) dissolved in 5 mL of a 5 % v / v THF-HCl mixture. The reaction medium was stirred for 1 hour then was extracted in dichloromethane. The organic phase was washed in water then dried on MgSO 4 . After evaporation, the white solid recovered was washed in a little diisopropyl ether and was recovered by filtration.

Example 137 was obtained in the form of a white solid.

Yield = 79 %; Ci 5 Hi 2 ClF 3 N 2 O 2 S; MS [M+Na] = 399. NMR H 1 (CDCl 3 , 300): δ = 3.82 (s, 2H, ClCH 2 ), 5.73 (1, IH, NH); 6.00 (1, IH,

NH); 6.28 (s, IH, CH), 6.84-6.94 (m, 2H, CH); 7.28 (dd, J = 5.1 1.2 Hz, IH, CH),

7.40-7.65 (m, 3H, CH), 7.17-7.70 (1, IH, CH).

Synthesis of Example 138: (S)-2-Chloro-iV-(cyclohexylcarbamoylthiophen-

2-yl-methyl)-λ/-(3-trifluoromethylphenyl)propionamide. Thiophenecarboxaldehyde, 4-trifluoromethylphenylamine, (S)-2-chloropropanoic acid and isocyanocyclohexane were reacted as described in general method E.

Example 138 was obtained in the form of a white solid.

Yield = 47 %; C 22 H 24 ClF 3 N 2 O 2 S; MS [M+H] = 473; [M+Na] = 471.

NMR H 1 (CDCl 3 , 300): δ = 1.06-1.39 (m, 5H) ; 1.58 (d, J = 6.6 Hz, 3H) ; 1.59- 1.70 (m, 3H) ; 1.85-1.96 (m, 2H) ; 3.77-3.91 (m, IH) ; 4.03-4.12 (m, IH) ; 6.00-

6.33 (m, 2H) ; 6.81-8.00 (m, 7H).

Synthesis of Example 139: 3-{2-[(2-Chloroacetyl)-(3- trifluoromethylphenyl) amino] -2-thiophen-2-yl-acetylamino } propionic acid methyl ester. Thiophenecarboxaldehyde, 4-trifluoromethylphenylamine, chloroacetic acid and methyl 3-isocyanopropanoate were reacted as described in general method E.

Example 139 was obtained in the form of a yellow solid.

Yield = 55 % Ci 9 Hi 8 ClF 3 N 2 O 4 S; MS [M+H] = 463; [M+Na] = 461.

NMR H 1 (CDCl 3 , 300): δ = 2.58 (t, J = 6.0 Hz, 2H) ; 3.58 (quint, J = 6.1 Hz, 2H) ; 3.66 (s, 3H) ; 3.82 (s, 2H) ;6.15 (s, IH) ; 4.50 (tl, IH) ; 6.87-6.89 (m, 2H) ; 7.26-

7.28 (m, 2H) ; 7.51-7.61 (m, 3H).

Synthesis of Example 14Qi . (R)-2-Chloro-N-

(cyclohexylcarbamoylthiophen-2-yl-methyl)-λ/-(3- trifluoromethylphenyl)propionamide.

Thiophenecarboxaldehyde, 4-trifluoromethylphenylamine, (R)-2-chloropropanoic acid and isocyanocyclohexane were reacted as described in general method E.

Example 140 was obtained in the form of a beige solid.

Yield = 77 %; C 22 H 24 ClF 3 N 2 O 2 S; MS [M+H] = 473; [M+Na] = 471.

NMR H 1 (CDCl 3 , 300): δ = 1.09-1.99 (m, 13H) ; 3.74-3.89 (m, IH) ; 4.05-4.17

(m, IH) ; 5.77-6.31 (m, 2H) ; 6.83-6.98 (m, 2H) ; 7.26 (m, IH) ; 7.35 (m, 5H). Synthesis of Example 141: 2-Chloro-jV-(2-cyanophenyl)-JV-cyclohexyl carbamoylmethylacetamide.

Formaldehyde (37 % in water), 2-cyanophenylamine, chloroacetic acid and isocyanocyclohexane were reacted as described in general method E. Example

141 was obtained in the form of a white solid. Yield = 70 %;

Ci 7 H 20 ClN 3 O 2 ; MS [M+H] = 334; [M-H+HC0 2 H] = 378.

NMR H 1 (CDCl 3 , 300): δ = 1.11-1.99 (m, 10H) ; 3.70-3.81 (m, IH) ; 3.83-3.97

(m, 3H) ; 4.71 (d de AB, IH) ; 5.99 (dl, IH) ; 7.53-7.62 (m, IH) ; 7.73-7.81 (m,

3H). Synthesis of Example 142: (4-{2-[(2-Chloroacetyl)-(3- trifluoromethylphenyl) amino]-2-thiophen-2-yl-acetylamino}cyclohexyl)carbamic acid tert-bvXyl ester.

Example 142 was obtained in the form of a white solid using general method E.

Yield = 83 %; C 26 H 3I ClF 3 N 3 O 4 S; [M+Na] = 596. NMR H 1 (CDCl 3 , 300): δ = 1.14-1.32 (m, 4H, CH 2 ), 1.44 (s, 9H, CH 3 ), 1.92-2.13

(m, 4H, CH 2 ), 3.28-3.50 (m, IH, CH), 3.71-3.87 (m, IH, CH), 4.29-4.48 (m, IH,

NH), 5.79 (d, IH, J = 8.0 Hz, NH), 6.15 (s, IH, CH), 6.84-6.94 (m, 2H, CH),

7.03-7.93 (m, 5H, CH).

Synthesis of Example 143: λ/-(4-Aminocyclohexyl)-2-[(2-chloroacetyl)-(3- trifluoromethylphenyl)amino]-2-thiophen-2-yl-acetamide hydrochloride.

Example 143 had been generated from Example 142 using the method described for Example 125.

Example 143 was obtained in the form of a white solid.

Yield = 65 %; C 2 IH 24 Cl 2 F 3 N 3 O 2 S; [M-H] = 472. NMR H 1 (DMSO, 300): δ = 1.02-1.49 (m, 4H), 1.71-2.05 (m, 4H), 2.87-3.02 (m,

IH), 3.43-3.62 (m, IH), 3.88-4.10 (m, 2H), 6.28 (s, IH), 6.78-6.86 (m, 2H), 7.37

(dd, J = 5.0 1.3 Hz, IH), 7.43-7.51 (m, IH), 7.60 (d, J = 7.6 Hz, IH), 7.90-8.10 (1,

3H), 8.30 (d, J = 7.1 Hz, IH).

Synthesis of Example 144: 2- [(2-Chloroacetyl)-(3 -trifluoromethylphenyl) amino]-λ/-cyclohexyl-2-pyridin-3-yl-acetamide.

Example 144 was obtained in the form of a white solid using general method E.

Yield = 82 %; C 22 H 23 ClF 3 N 3 O 2 ; [M+H] = 454.

NMR H 1 (CDCl 3 , 300): δ = 0.96-1.45 (m, 5H, CH 2 ), 1.52-2.04 (m, 5H, CH 2 ),

3.69-3.88 (m, IH, CH), 3.81 (s, 2H, ClCH 2 ), 6.21 (s, IH, CH), 6.30 (d, J = 7.0 Hz, IH, NH), 6.65-8.40 (m, 2H, CH), 7.18 (d, J = 7.7 5.0 Hz, IH, CH), 7.32-7.63

(m, 3H, CH), 8.51 (d, J =4.2 Hz, IH, CH), 8.55-8.68 (1, IH, CH).

Synthesis of example 185: 2-[(2-Chloroacetyl)-(4-fluoro-phenyl)-amino]-

λ/-(4-fluoro-benzyl)-2-methyl-propionamide.

Example 185 was obtained in the form of a white solid using general method E. Yield = 71%; Ci 9 Hi 9 ClF 2 N 2 O 2 ; [M+H] = 381.

NMR H 1 (CDCl 3 , 300): δ = 1.45 (s, 3H), 1.61 (s, 3H), 3.72 (s, 2H), 4.51 (s, 2H),

6.12 (m, IH), 7.06 (t, J = 6.7 Hz, 2H), 7.16 (t, J = 6.7 Hz, 2H), 7.34 (d, J = 6.7

Hz, IH), 7.36 (d, J = 6.7 Hz, IH), 7.43 (d, J = 6.7 Hz, IH), 7.45 (d, J = 6, 7 Hz,

IH). Synthesis of example 186: 2-[(2-Chloro-acetyl)-(4-fluoro-phenyl)-amino]-

λ/-(4-methoxy-benzyl)-2-methyl-propionamide.

Example 186 was obtained in the form of a colourless gum using general method E.

Yield = 31% ; C 20 H 22 ClFN 2 O 3 ; [M+H] = 393. NMR H 1 (CDCl 3 , 300): δ = 1.40 (s, 6H), 3.72 (s, 2H), 3.82 (s, 3H), 4.46 (m, 2H),

6.04 (m, IH), 6.90 (m, 2H), 7.16 (m, 2H), 7.28 (m, 2H), 7.42 (m, 2H).

Synthesis of example 187: 2-[(2-Chloro-acetyl)-(2-methyl-4-phenoxy- phenyl)-amino]-λ/-(4-methoxy-benzyl)-2-methyl-propionamide. Example 187 was obtained in the form of a colourless gum using general method E. Yield = 37% ; C 27 H 29 ClN 2 O 4 ; [M+H] = 481.

NMR H 1 (CDCl 3 , 300): δ = 1.38 (s, 3H), 1.51 (s, 3H), 2.42 (s, 3H), 3.73 (q, J = 10.4 Hz, 2H), 3.82 (s, 3H), 4.48 (d, J = 4.3 Hz, 2H), 6.13 (m, IH), 6.84-6.97 (m, 4H), 7.08 (d, J = 6.7 Hz, 2H), 7.20 (t, J = 5.0 Hz, IH), 7.31 (d, J = 6.7 Hz, 2H), 7.38-7.47 (m, 3H). Synthesis of example 188: 2-[(2-Chloro-acetyl)-(3-chloro-2-methyl- phenyl)-amino]-λ/-(4-fluoro-benzyl)-2-methyl-propionamide. Example 188 was obtained in the form of a colourless gum using general method E. Yield = 18% ; C 20 H 2 ICl 2 FN 2 O 2 ; [M+H] = 411. NMR H 1 (CDCl 3 , 300): δ = 1.38 (s, 3H), 1.51 (s, 3H), 2.55 (s, 3H), 3.68 (m, 2H), 4.52 (d, J = 4.3 Hz, 2H), 6.24 (m, IH), 7.07 (t, J = 6.7 Hz, 2H), 7.21-7.32 (m, IH), 7.37 (dd, J = 6.7 Hz et J = 4.8 Hz, 2H), 7.49 (t, J = 5.2 Hz, 2H).

Synthesis of example 789: 2-[(3-te/t-Butyl-phenyl)-(2-chloro-acetyl)- amino]-N-cyclohexyl-2- {4-[3-(4-methyl-piperazin- 1 -yl)-propoxy]-phenyl} - acetamide.

Example 189 was obtained using general method E for implementatioan of the sythesis. After reaction, the reaction medium is simply concentrated to then obtain an oil, directly purifried by semi-preparative HPLC usng a binary water- acetonitrile mixture buffered to a pH of 9.2 with ammonium formiate. Example 189 is recovered following lyophilisation in the form of white powder. Yield = 42% ; C 34 H 49 ClN 4 O 3 ; MS [M+H] = 598.

NMR 1 H (CDCl 3 , 300): δ = 0.85-2.44 (m, 21H, 6CH 2 +3CH 3 ); 2.31 (s, 3H, NCH 3 ); 2.36-2.84 (m, 1OH, NCH 2 ); 3.74-3.90 (m, 3H, CH-NH+CH 2 C1); 3.91 (t, 2H, J = 6.3 Hz, OCH 2 ); 5.53 (d, IH, J = 8.0 Hz, NH); 5.79-6.16 (1, IH, CH); 6.24-6.77 (m, 3H, CH); 6.79-7.81 (m, 5H, CH).

Synthesis of example 190: 2-[(4-Butyl-2-methyl-phenyl)-(2-chloro-acetyl)- amino]-iV-cyclohexyl-2- {4-[3-(4-methyl-piperazin- 1 -yl)-propoxy] -phenyl} - acetamide.

Example 190 was obtained in the form of a white powder using general method E. Yield = 46% ; C 34 H 49 ClN 4 O 3 ; MS [M+H] = 612.

NMR 1 H (CDCl 3 , 300): δ = 0.78-2.10 (m, 21H, 9CH 2 +1CH 3 ); 2.29 (s, 3H, NCH 3 );

2.17-2.83 (m, 13H, 5NCH 2 +1CH 3 ); 3.61-4.10 (m, 5H, CH-NH+CH 2 C1+CH 2 O);

5.63 (d, IH, J = 8.0 Hz, NH); 5.83 (s, IH, CH); 6.50-7.15 (m, 6H, CH); 7.20-7.58

(m, IH, CH). Synthesis of example 191: 2-[(2-Chloro-acetyl)-(2-methyl-3- trifluoromthyl-phenyl)-amino]-λ/-cyclohexyl-2-{4-[3-(4-meth yl-piperazin-l-yl)- propoxy]-phenyl} -acetamide.

Example 191 was obtained in the form of a white powder using general method E.

Yield = 30% ; C 32 H 42 ClF 3 N 4 O 3 ; MS [M+H] = 624. NMR 1 H (CDCl 3 , 300): δ = 0.91-1.22 (m, 3H, CH 2 ); 1.23-1.47 (m, 2H, CH 2 );

1.50-1.75 (m, 3H, CH 2 ); 1.76-2.06 (m, 8H, CH 2 +CH 3 ); 2.32 (s, 3H, NCH 3 ); 2.38-

2.75 (m, 1OH, NCH 2 ); 3.63-4.08 (m, 5H, CH-NH+CH 2 C1+CH 2 O); 5.45 (d, IH, J

= 8.1 Hz, NH); 5.90 (s, IH, CH); 6.65 (d, 2H, J = 8.7 Hz, CH); 6.93 (d, 2H, J =

8.7 Hz, CH);6.28-6.68 (m, 2H, CH); 8.00 (d, IH, J = 7.8 Hz, CH). Synthesis of example 192: 2-[(2-Chloro-acetyl)-(2-fluoro-4-isopropyl- phenyl)-amino]-iV-cyclohexyl-2- {4-[3-(4-methyl-piperazin- 1 -yl)-propoxy]- phenyl} -acetamide.

Example 192 was obtained in the form of a white powder using general method E.

Yield = 22% ; C 33 H 46 ClFN 4 O 3 ; MS [M+H] = 621. NMR 1 H (CDCl 3 , 300): δ = 1.00-1.05 (m, 18H, CH 2 +CH 3 ); 2.31 (s, 3H, NCH 3 );

2.37-2.70 (m, 1OH, NCH 2 ); 2.72-2.95 (m, IH, CH); 3.70-4.03 (m, 5H, CH-

NH+CH 2 C1+CH 2 O); 5.50 (d, IH, J = 8.0 Hz, NH); 5.65-6.05 (m, IH, CH); 6.55-

7.07 (m, 6H, CH); 7.20-7.84 (m, IH, CH).

Synthesis of example 193: 2-[(2-Chloro-acetyl)-(2-ethyl-4-isopropyl- phenyl)-amino]-iV-cyclohexyl-2- {4-[3-(4-methyl-piperazin- 1 -yl)-propoxy]- phenyl} -acetamide.

Example 193 was obtained in the form of a white powder using general method E.

Yield = 61% ; C 35 H 5 IClN 4 O 3 ; MS [M+H] = 612.

NMR 1 H (CDCl 3 , 300): δ = 0.69-1.39 (m, 14H, CH 2 +CH 3 ); 1.43-1.66 (m, 3H,

CH 2 ); 1.68-2.11 (m, 6H, CH 2 ); 2.22 (s, 3H, NCH 3 ); 2.19-2.63 (m, 1OH, NCH 2 ); 2.78 (sep, IH, J = 6.7 Hz, CH); 3.60-4.00 (m, 5H, CH-NH+CH 2 C1+CH 2 O); 5.55

(d, IH, J = 7.7 Hz, NH); 5.61 (s, IH, CH); 6.52-6.80 (m, 2H, CH); 6.83-7.39 (m,

5H, CH).

Synthesis of example 194: 2-[(2-Chloro-acetyl)-(3-isopropyl-2-methoxy- phenyl)-amino]-iV-cyclohexyl-2- {4-[3-(4-methyl-piperazin- 1 -yl)-propoxy]- phenyl} -acetamide.

Example 194 was obtained in the form of a white powder using the method described for Example 149.

Yield = 52% ; C 34 H 49 ClN 4 O 4 ; MS [M+H] = 614.

NMR 1 H (CDCl 3 , 300): δ = 0.90-1.30 (m, 9H, CH 2 +CH 3 ); 1.30-1.50 (m, 2H, CH 2 ); 1.54-1.77 (m, 3H, CH 2 ); 1.78-2.01 (m, 4H, CH 2 ); 2.30 (s, 3H, NCH 3 ); 2.36-

2.70 (m, 1OH, NCH 2 ); 3.00-3.37 (m, IH, CH); 3.45-3.63 (m, 3H, CH 3 O); 3.70-

3.87 (m, 4H, CH 2 C1+CH 2 O); 5.68 (s, IH, CH); 5.79 (d, IH, J = 8.3 Hz, NH);

6.63-6.82 (m, 2H, CH); 6.91-7.40 (m, 5H, CH).

Synthesis of example 195: 2-[(2-Chloro-acetyl)-(2-cyclopropyl-4- isopropyl-phenyl)-amino]-iV-cyclohexyl-2- {4-[3-(4-methyl-piperazin- 1 -yl)- propoxy]-phenyl} -acetamide.

Example 195 was obtained in the form of a white powder using general method E.

Yield = 38% ; C 36 H 5 1 ClN 4 O 3 ; MS [M+H] = 624.

NMR 1 H (CDCl 3 , 300): δ = 0.34-0.76 (m, 4H, CH 2 ); 0.76-2.04 (m, 19H, CH 2 +CH 3 ); 2.30 (s, 3H, NCH 3 ); 2.35-2.70 (m, 1OH, NCH 2 ); 2.78 (sep, IH, J =

6.9 Hz, CH); 3.71-4.04 (m, 5H, CH-NH+CH 2 C1+CH 2 O); 5.60 (d, IH, J = 8.1 Hz,

NH); 5.69 (s, IH, CH); 6.28-6.54 (m, IH, CH); 6.61-6.85 (m, 2H, CH); 6.87-7.00

(m, IH, CH); 7.00-7.17 (m, 2H, CH); 7.28-7.42 (m, IH, CH).

Synthesis of example 196: 2-[(2-Chloro-acetyl)-(2-methyl-3- trifluoromethyl-phenyl)-amino]-λ/-cyclohexyl-2- {3-[3-(4-methyl-piperazin- 1 -yl)- propoxy] -phenyl} -acetamide.

Example 196 was obtained in the form of a white powder using general method E. Yield = 20% ; C 32 H 42 ClF 3 N 4 O 3 ; MS [M+H] = 624.

NMR 1 H (CDCl 3 , 300): δ = 0.92-1.21 (m, 3H, CH 2 ); 1.22-1.46 (m, 2H, CH 2 ); 1.50-1.75 (m, 3H, CH 2 ); 1.77-2.16 (m, 7H, CH 2 +CH 3 ); 2.33 (s, 3H, NCH 3 ); 2.36- 2.74 (m, 1OH, NCH 2 ); 3.64-3.99 (m, 5H, CH-NH+CH 2 C1+CH 2 O); 5.50 (d, IH, J = 8.1 Hz, NH); 5.88 (s, IH, CH); 6.48-6.57 (m, IH, CH); 6.64 (d, IH, J = 7.6 Hz, CH); 6.72-6.89 (m, IH, CH); 7.06 (t, IH, J = 8.0 Hz, CH); 7.33 (t, IH, J = 8.0 Hz, CH); 7.53-7.67 (m, IH, CH); 8.00 (d, IH, J = 7.8 Hz, CH).

Compounds 145 to 184 were similarly prepared using general method E.

EXAMPLE 2 : Synthesis of the compounds of the invention from a trifluoroacetate derivative

The compounds of formula (I) can also be prepared in accordance with reaction scheme III.

p p Compounds of general c r formula (I)

Reaction scheme III

Starting from the compound of general formula E, the first step consists in releasing the amine by eliminating the trifluoroacetate to obtain the compound of general formula F. The CO-R6 group is subsequently introduced onto this amine. For this step, a person skilled in the art is capable of adapting the method used in order to introduce the CO-R6 group as a function of the nature of R6, which can be for example a peptide coupling, a Mitsunobu reaction, a nucleophilic substitution or else a reductive amination. Similarly, the R6 group can also be functionalised or modified subsequently by any synthesis methods known to a person skilled in the art.

The compounds of formula E which R2 = H can be obtained by an Ugi reaction according to Example 1 using trifluoroacetic acid as carboxylic acid or else can be prepared in accordance with reaction scheme IV.

G H J K E (with R2 = H) Reaction scheme IV

The first step consists in condensing the amine G on the acid chloride H in order to obtain the compound of general formula J. The second step consists in carrying out a nucleophilic substitution of a trifluoroacetamide derivative K on the chlorinated derivative of general formula J in order to obtain the desired compound of general formula F.

Experimental part: 1. Synthesis of the compounds of general formula E

Synthesis of intermediate 1: JV-(Cyclohexylcarbamoylthiophen-2-yl- methyl)-2,2,2-trifluoro-λ/-(3-trifluoromethylphenyl)acetami de. Intermediate 1 was obtained in the form of a white solid using general method E from Example 1.

Yield = 60 % C 2 IH 20 F 6 N 2 O 2 S ; MS [M+H] = 479; [M+Na] = 501. NMR H 1 (CDCl 3 , 300): δ = 1.03-1.24 (m, 3H, CH 2 ); 1.28-1.47 (m, 2H, CH 2 ); 1.55-1.76 (m, 3H, CH 2 ); 1.85-2.02 (m, 2H, CH 2 ); 3.75-3.91 (m, IH, CH-NH); 5.68 (d, IH, J = 6.3 Hz, NH); 5.96-6.21 (1, IH, CH); 6.85-6.94 (m, 2H, CH); 6.96- 7.19 (1, IH, CH); 7.29-7.34 (m, IH, CH); 7.37-7.54 (1, IH, CH); 7.59 (d, IH, J = 7.6 Hz, CH); 7.72-7.99 (1, IH, CH).

Synthesis of intermediate 2: JV-(Cyclohexylcarbamoylthiophen-2-yl- methyl)-2,2,2-trifluoro-λ/-(4-methoxyphenyl)acetamide. 2-Thiophenecarboxaldehyde, 4-methoxyphenylamine, trifluoroacetic acid and isocyanocyclohexane were reacted as described in general method E from Example 1. Intermediate 2 was obtained in the form of a white solid. Yield = 70 %; C 2 IH 23 F 3 N 2 O 3 S; [M+NH] = 441.

Synthesis of intermediate 3: JV-(Cyclohexylcarbamoylthiophen-2-yl- methyl)-2,2,2-trifluoro-iV-isobutylacetamide.

2-Thiophenecarboxaldehyde, isobutylamine, trifluoroacetic acid and isocyanocyclohexane were reacted as described in general method E from Example 2. Intermediate 3 was obtained in the form of a white solid. Yield = 56 %; Ci 8 H 25 F 3 N 2 O 2 S; [M+NH] = 391.

2. Synthesis of the compounds of general formula F General method F: A solution of the compound of general formula E (1 eq.), and Of K 2 CO 3 (1.5 eq.) in ethanol was stirred under reflux until the reaction was completed. The medium was subsequently concentrated under vacuum, taken up with ethyl acetate, and washed with brine. The organic phase was dried on MgSO 4 , then concentrated under vacuum. The compound of general formula F could then be purified on a silica gel column or precipitated.

Synthesis of intermediate 4: JV-Cyclohexyl-2-thiophen-2-yl-2-(3- trifluoromethylphenylamino)acetamide.

Intermediate 4 was generated from intermediate 1 using general method F. The oil obtained was subsequently precipitated with pentane in order to obtain a white powder.

Yield = 81 %; Ci 9 H 2 IF 3 N 2 OS; MS [M+H] = 383

NMR H 1 (CDCl 3 , 300) δ = 0.99-1.22 (m, 3H,); 1.24-1.43 (m, 2H,); 1.53-1.72 (m, 3H,); 1.75-1.94 (m, 2H,); 3.72-3.86 (m, IH,); 5.15-5.23 (m, IH,); 6.45 (d, IH, J = 7.2 Hz,); 6.90-7.07 (m, 3H,); 7.09-7.17 (m, IH,); 7.18-7.20 (m, IH,); 7.25-7.33 (m, 2H,).

Synthesis of intermediate 5: JV-Cyclohexyl-2-thiophen-2-yl-2- isobutylaminoacetamide.

Intermediate 5 was generated from intermediate 2 using general method F. The product was subsequently purified on a silica gel column (EtOAc/cyclohexane, 1/9) and obtained in the form of a white solid. Yield = 85 %; Ci 6 H 26 N 2 OS

NMR H 1 (CDCl 3 , 300) δ = 0.85 (d, J = 3.6 Hz, 3H) ; 0.88 (d, J = 3.6 Hz, 3H) ;

1.17-1.36 (m, 3H) ; 1.61-1.73 (m, 3H) ; 1.81-1.85 (m, 2H) ; 1.80-2.14 (m, 3H) ;

2.83 (dd, J = 6.9 Hz, J = 14.1 Hz, IH) ; 3.32 (dd, J = 8.4 Hz, J = 14.1 Hz, IH) ;

3.93 (tt, J = 12.3 Hz, J = 3.9 Hz, IH) ; 7.00-7.02 (m, 2H) ; 7.35-7.36 (m, IH). Synthesis of intermediate 6: N-Cyclohexyl-2-(4-methoxyphenylamino)-2- thiophen-2-yl-acetamide.

Intermediate 6 was generated from intermediate 3 using general method F. The product was subsequently purified on a silica gel column (EtOAc/cyclohexane,

0.5/9.5) and obtained in the form of a colourless oil. Yield = 81 %; Ci 9 H 24 N 2 O 2 S

NMR H 1 (CDCl 3 , 300) δ = 1.00-1.25 (m, 3H); 1.25-1.44 (m, 2H,); 1.52-1.74 (m,

3H,); 1.76-1.96 (m, 2H,); 3.73-3.96 (m, IH,); 3.75 (s, 3H,); 4.98-5.07 (br, IH,);

6.66-6.90 (m, 4H,); 6.99 (dd, IH, J = 5.2 3.5 Hz,); 7.14-7.18 (m, IH,); 7.28 (dd,

IH, J =cached by CDC13, J = 1.2 Hz,).

EXAMPLE 3 : Synthesis of compounds of the invention from a carboxylic acid derivative

The compounds of formula (I) where R4 = H can similarly be prepared in accordance with reaction scheme V, from a carboxylic acid derivative L, which latter may be prepared in accordance with reaction scheme VI.

■ p Compounds of general formula (I)

Reaction scheme V

M N O Reaction scheme VI

Experimental part:

1. Synthesis of compounds of general formula N General method G:

A solution of the compound of general formula M (1 eq.) and of the amine of general formula R5NH 2 (1.2 eq.) in toluene is subjected to magnetic stirring, under nitrogen, in a three-necked flask fitted with a Dean-Stark. Para- toluenesulphonic acid (PTSA) (2%) is added at ambient temperature and the mixture is heated to 125°C for 48h. The medium is then allowed to return to ambient temperature, and the toluene phase is washed successively with a saturated NaHCO 3 solution, then with brine. After drying on MgSO 4 and filtration, the organic phase is concentrated under vacuum. The compound of general formula M can then be purified on a column of silica gel.

Synthesis of intermediate 7: Thiophen-2-yl-(3 -trifluoromethyl- phenylimino)-acetic acid ethyl ester. Intermediate 7 was generated from ethyl thienylglyoxylate and 3-aminobenzo- trifluoride using general method G. The product was then purified on a column of silica gel (heptane/ diisopropyl ether) and obtained in the form of a yellow oil. Yield = 66% ; Ci 5 Hi 2 F 3 NO 2 S ; MS [M+H] = 328.

2. Synthesis of compounds of general formula O General method H:

Under a nitrogen stream and with magnetic stirring, the compound of general formula formula N (1 eq.) is solubilised in methanol (27 Vol.), in the presence of acetic acid (2.7 Vol.). The solution is cooled to 0 0 C and sodium cyanoborohydride (1.5 eq.) is added portionwise within 5 min. The mixture is allowed to return to ambient temperature. The mixture is then sealed under a nitrogen atmosphere and stirred at ambient temperature for 18h. The medium is then poured on to a mixture of ice/ NaHCO 3 (saturated solution). After decantation, the mixture is extracted with ethyl acetate. The organic phases are washed with a saturated solution of NaHCO 3 , then with brine. After drying on MgSO 4 and filtration, the organic

phases are concentrated. The compound O obtained is used as it is in the following reaction.

Synthesis of intermediate 8: Thiophen-2-yl-(3 -trifluoromethyl- phenylamino)-acetic acid ethyl ester. Intermediate 8 was generated from intermediate 7 using general method H. No purification is necessary and the product is obtained in the form of a colourless oil. Yield = 96% ; Ci 5 Hi 4 F 3 NO 2 S ; MS [M+H] = 330.

3. Synthesis of compounds of general formula L

General method I:

The ethyl ester derivative O (1 eq) is solubilised in tetrahydrofuran (10 Vol.). A sodium hydroxide solution (3 eq.) is then added at 0 0 C and the mixture is allowed to return to ambient temperature with stirring overnight. The aqueous phase is acidified then extracted with ethyl acetate (twice). The organic phases are combined and then washed successively with water, with a saturated solution of

NH 4 Cl , then with brine. After drying on MgSO 4 and filtration, the organic phase is concentrated in a vacuum.

Synthesis of intermediate 9: Thiophen-2-yl-(3 -trifluoromethyl- phenylamino)-acetic acid.

Intermediate 9 was generated from intermediate 8 using General method I. the product was obtained in the form of a yellow solid.

Yield = 96% ; C I3 H I0 F 3 NO 2 S ; MS [M-H] = 300.

4. Synthesis of compounds of general formula F General method J:

The carboxylic acid derivative L (1 eq.) was dissolved in dichloromethane (10 VoI) with the amine R1R2NH (1,5 eq.). 2-(7-aza-lH-benzotriazole-l-yl)-l, 1,3,3- tetramethyluronium hexafluorophosphate (HATU) (2 eq.) was added and the reaction medium was heated to 55°C for 3h. R1R2NH (0.2eq.) amine and HATU (0.3eq.) may be added to render the reaction total.

The medium is allowed to return to ambient temperature, then taken up in ethyl acetate. The organic phase is washed with a saturated NH 4 Cl solution and then with brine. After drying on MgSO 4 and filtration, the organic phase is concentrated under vacuum. The crude product obtained is purified on silica gel. Synthesis of intermediate 10: l-(4-Cyclohexyl-piperazin-l-yl)-2-thiophen-

2-yl-2-(3-trifluoromethyl-phenylamino)-ethanone.

Intermediate 10 was generated from intermediate 9 and cyclohexylpiperazine using general method J. The product was then purified on a silica gel column (dichloromethane/ methanol) and obtained in the form of a yellow solid. Yield = 53% ; C 23 H 28 F 3 N 3 OS.

Synthesis of intermediate 11: 4-[2-thiophen-2-yl-2-(3-trifluoromethyl- phenylamino)-acetyl]-piperazine-l-carboxylic acid benzyl ester. Intermediate 11 was generated from intermediate 9 and 1-Z-piperazine using general method J. The product was then purified on a silica gel column (heptane/ ethyl acetate) and obtained in the form of a pale yellow solid. Yield = 62% ; C 25 H 24 F 3 N 3 O 3 S ; MS [M-H] = 502

5. Synthesis of compounds of general formula (I) General method K: The compound of general formula F (1 eq.) is dissolved in dichloromethane (10 Vol.). The mixture is cooled to 0 0 C and the NaHCO 3 base (2 eq.) is added along with the chloroacetic acid chloride (2 eq.). After 4h to 1 night of stirring at ambient temperature, the reaction medium is hydrolysed with water. After decantation and extraction with ethyl acetate, the organic phases are washed with a saturated NH 4 Cl solution, dried on MgSO 4 , filtered and concentrated under vacuum. The crude product may be in the form either of a solid or of an oil. The solid is washed with a little organic solvent (usually diisopropyl ether,, also pentane or diethyl ether). If necessary the solid may be recrystallised or else is purified on silica gel. In the absence of precipitation, the oil is similarly purified on silica gel.

Synthesis of example 197: 2-Chloro-λ/-[2-(4-cyclohexyl-piperazin- 1 -yl)-2- oxo-l-thiophen-2-yl-ethyl)]-λ/-(3-trifluoromethyl-phenyl)-a cetamide.

Compound 197 was prepared from intermediate 10 using general method K. It was obtained in the form of a white solid following trituration in a pentane / isopropyl ether mixture, then crystallisation in a dichloromethane / diethyl ether mixture.

Yield = 70% ; C 25 H 29 ClF 3 N 3 O 2 S ; MS [M+H] = 528; [M+Na] = 550.

NMR H 1 (CDCl 3 , 300MHz) δ = 1.10-1.60 (m, 6H); 1,71 (m, 2H); 1,94 (m, 2H);

2.27 (m, 2H); 3,03 (m, 2H); 3.18-3.58 (m, 2H); 3.82 (m, 2H); 4.07 (m, 2H); 4.45- 4.90 (m, IH); 6.62 (s, IH,); 6.68- 6.85 (m, 2H), 6.94 (m, IH), 7.19 (m, IH), 7.54

(m, 2H), 8.09- 8.30 (m, IH).

Synthesis of example 198: 4- {2-[(2-chloro-acetyl)-(3-trifluoromethyl- phenyl)-amino]-2-thiophen-2-yl-acetyl} -piperazine- 1 -carboxylic acid benzyl ester. The compound 198 was generated from intermediate 11 using general method K.

It was obtained in the form of a white solid following purification on a silica column (heptane /ethyl acetate), then taken up several times in a pentane / isopropyl ether mixture.

Yield = 42% ; C 27 H 25 ClF 3 N 3 O 4 S ; [M+Na] = 602. NMR H 1 (CDCl 3 , 300MHz) δ = 3,03 (m, IH); 3,38 (m, 2H); 3,46- 3,90 (m, 7H);

5,11 (s, 2H); 6,65-6,81 (m, 3H); 6,86-6,98 (m, IH); 7,15-7,41 (m, 6H); 7,51 (m,

2H); 8,26 (m, IH).

EXEMPLE 4 : Synthesis of compounds of the invention from an imine derivative

The compounds of formula (I) with R4 = H can be prepared similarly according to reaction scheme VII from an imine derivative P, which latter may be prepared according to reaction scheme VIII.

p Compounds of general formula (I)

Reaction scheme VII

Q p

Reaction scheme VIII

To form the compound Q, the person skilled in the art is capable of adapting the method used to introduce the R1R2NH group as a function of the nature of Rl and R2, such as for example a peptide coupling on a carboxylic acid, or an animation on an ester. Similarly, the Rl and R2 groups can also be subsequently functionalised or modified by any method of synthesis known to the person skilled in the art.

Experimental part:

1. Synthesis of compounds of general formula P General method L:

The compound of general formula P was generated from compound of general formula Q and aniline of general formula R5NH 2 using the general method G.

The difference in synthesis resides in the number of equivalents (1.2 eq.) of

APTS. Synthesis of intermediate 12: l-(4-Cyclohexyl-piperazin-l-yl)-2-[3- isopropyl-phenylimino]-2-thiophen-2-yl-ethanone.

Intermediate 12 was generated from l-(4-cyclohexyl-piperazin-l-yl)-2-thiophen-

2-yl-ethane-l,2-dione and 3-isopropylaniline using general method L.

Following purification on a column of silica (dichloromethane/ methanol eluent), Intermediate 12 is engaged directly in the next reaction.

Synthesis of intermediate 13: 2- [2-Methyl-3 -trifluoromethyl-phenylimino] -

1 -piperazin- 1 -yl^-thiophen^-yl-ethanone.

Intermediate 13 was generated from 1 -piperazin- l-yl-2-thiophen-2-yl-ethane- 1,2- dione and 2-methyl-3-(trifluoromethyl)aniline using general method L. After purification on a silica column (dichloromethane/ methanol eluent),

Intermediate 13 was obtained in the form of a yellow gel.

Yield = 78% ; Ci 8 Hi 8 F 3 N 3 OS ; MS [M+H] = 382.

Synthesis of intermediate 14: 4- [2-(2-methyl-3 -trifluoromethyl- phenylimino)-2-thiophen-2-yl-acetyl]-piperazine- 1 -carboxylic acid tert-bvXy\ ester.

Intermediate 14 was generated from intermediate 13 according to the following protocol :

Intermediate 13 (1 eq.) is dissolved in dichloromethane. Di-tert-butyl dicarbonate

(1.2 eq.) and triethylamine (1.5 eq.) are added to the solution and the reaction medium is subjected to magnetic stirring overnight at ambient temerature. The organic phase is washed with water, and then with brine. After drying on MgSO 4 and filtration, the organic phase is concentrated under vacuum. Intermediate 14 is obtained in the form of a yellow-orange gel.

Yield = quantitative ; C 23 H 26 F 3 N 3 O 3 S ; MS [M+H] = 482.

2. Synthesis of compounds of general formula F

General method M:

The compound of general formula P (1 eq.) is dissolved in tetrahydrofurane, under nitrogen. The mixture is cooled to 0 0 C and a solution of DIBALH in THF (3 eq.) is added dropwise. The medium is allowed to return to ambient temperature.

After lh30 of stirring, the reaction medium is hydrolysed with Glauber salts. The medium is then filtered on Cellite and the solvent evaporated. The raw produuct can be used as it is in the following reaction or purified on silica gel.

Synthesis of intermediate 15: 1 -(4-Cyclohexyl-piperazin- 1 -yl)-2-(3- isopropyl-phenylamino]-2-thiophen-2-yl-ethanone.

Intermediate 15 was prepared from intermediate 12 using general method M. The product was then purified on a silica gel column (dichloromethane / methanol) and obtained in the form of a yellow oil.

Yield = 21% (in 2 stages) ; C 25 H 35 N 3 OS ; MS [M+H] = 426.

Synthesis of intermediate 16: 4- [2-(2-methyl-3 -trifluoromethyl- phenylamino)-2-thiophen-2-yl-acetyl]-piperazine- 1 -carboxylic acid tert-bvXy\ ester. Intermediate 16 was prepared from Intermediate 14 using general method M. The product was obtained without purification in the form of a yellow gel. It is used as it is in the following reaction. C 23 H 28 F 3 N 3 O 3 S ; MS [M+H] = 484.

3. Synthesis of compounds of general formula (I)

Synthesis of example 199: 2-Chloro-iV-[2-(4-cyclohexyl-piperazin- 1 -yl)-2- oxo-l-thiophen-2-yl-ethyl)]-JV-(3-isopropyl-phenyl)-acetamid e.

The compound 199 was obtained from intermediate 15 using general method K.

The product was obtained following purification on a silica gel column (dichloromethane / methanol) in the form of a colourless gum.

Yield = 92% ; C 27 H 36 ClN 3 O 2 S ; MS [M+H] = 502.

NMR H 1 (CDCl 3 , 300MHz) δ = 1,03 (t, J = 5,2 Hz, 3H), 1,07-1,32 (m, 8H); 1,63

(m, 2H); 1,78 (m, 3H); 2,20 (m, 2H); 2,31-2,99 (m, 4H); 3,38 (m, IH); 3,49-3,75

(m, 3H); 3,76-3,99 (m, 2H); 6,40-6,52 (m, IH); 6,65-6,82 (m, 2H), 6,97-7,30 (m, 4H), 7,65-7,80 (m, IH).

Synthesis of example 200: 4- {2-[(2-chloro-acetyl)-(2-methyl-3-trifluoro- methyl-phenyl)-amino]-2-thiophen-2-yl-acetyl} -piperazine- 1 -carboxylic acid tert- butyl ester.

The compound 200 was obtained from intermediate 15 using general method K. The product was obtained following purification on a silica gel column (heptane / ethyl acetate) in the form of a white powder.

Yield = 55% ; C 25 H 29 ClF 3 N 3 O 4 S ; MS [M+H] = 560.

NMR H 1 (CDCl 3 , 300MHz) δ = 1.46 (s, 9H); 2.17 (s, 3H); 2.95 (m, IH); 3.25- 3.71 (m, 7H); 3.76 (q, J = 10.4 Hz, 2H); 6.71 (s, IH); 6.78 (dd, J = 3.8 Hz et J = 2.7 Hz, IH); 6.86 (d, J = 3.8 Hz, IH); 7.17 (d, J = 3.8 Hz, IH); 7.35 (t, J = 5.7 Hz, IH); 7.58 (d, J = 5.7 Hz, IH); 8.32 (d, J = 5.7 Hz, IH).

EXAMPLE 5 : Synthesis of compounds of the invention from a derivative proteted by a Boc group

The compounds of the invention of formula T may be prepared in accordance with the following reaction scheme IX

Reaction scheme IX

Experimental part:

1. Synthesis of compounds of general formula S

General method N:

To a solution of the compound of general formula R (1 eq.) in dichloromethane

(20 Vol.) is added slowly trifluoroacetic acid (TFA) (15 eq.). After 2h30 of agitation at ambient temperature, the medium is concentrated under vacuum. The medium is taken up again in methyl tert-butyl ether (MTBE) several times in order to obtain the compound of general formula S in crystalline form.

Synthesis of intermediate 17: 2-chloro-λ/-(2-methyl-3-trifluoromethyl- phenyl)-λ/-(2-oxo-2-piperazin- 1 -yl- 1 -thiophen-2-yl-ethyl)-acetamide trifluoroacetic acid salt .

Intermediate 17 was generated from Example 200 using general method N of

Example 5. It was obtained in the form of a white powder.

Yield = quantitatif ; MS [M+H] = 460.

2. Synthesis of the compounds of the invention of general formula T General method O:

Triethylamine (2.5 eq.) was added to a solution of the compound of general formula S (1 eq) in dichloromethane (20 Vol.) at 0 0 C. The compound ofgeneral formula R-Cl (1.3 eq.) was then added slowly at 0 0 C. The reaction medium was subjected to stirring overnight at ambient temperature. The organic phase was washed with water, then with brine. After drying on MgSO 4 and filtration, the orgnic phase was concentrated under vacuum. The product obtained was purified on silica gel. General method P:

Triethylamine (1.1 eq.) is added to a solution of the compound of general formula S (1 eq.) in dichloromethane. The compound of general formula R-CHO (1.1 eq.) and sodium triacetoxyborohydride (1.5 eq.) are then added to the reaction medium. After one night of stirring at ambient temperature, a IN solution of sodium bicarbonate is poured into the mixture and the product is extracted with dichloromethane (twice). The organic phases are combined, dried on MgSO 4 , filtered and concentrated under vacuum. The product ontained is purified on silica gel

Synthesis of example 201: 4- {2-[(2-chloro-acetyl)-(2-methyl-3- trifluoromethyl-phenyl)-amino] -2-thiophen-2-yl-acetyl} -piperazine- 1 -carboxylic acid benzyl ester.

The compound 201 was obtained from intermediate 17 using general method O. The product was obtained following purification on a silica gel column (heptane /ethyl acetate) in the form of a gel which crystallises into a white solid. Yield = 58% ; C 28 H 27 ClF 3 N 3 O 4 S ; MS [M+H] = 594.

NMR H 1 (CDCl 3 , 300MHz) δ = 2.16 (s, 3H); 3.01 (m, IH); 3.42 (m, IH); 3.56- 3.70 (m, 6H); 3.77 (q, J = 10.2 Hz, 2H); 5.13 (s, 2H); 6.70 (s, IH); 6.78 (dd, J = 3.4 Hz and J = 2.8 Hz, IH); 6.86 (m, IH); 7.17 (d, J = 3.4 Hz, IH); 7.31-7.44 (m, 6H); 7.58 (d, J = 5.6 Hz, IH); 8.31 (d, J = 5.6 Hz, IH).

Synthesis of example 202: 2-Chloro-JV- (2-[4-(3,3-dimethyl-butyl)- piperazin- 1 -yl]-2-oxo- l-thiophen-2-yl-ethyl} -λ/-(2-methyl-3-trifluoromethyl- phenyl)-acetamide.

The compound 202 was obtained from intermediate 17 using general method P. The product was obtained following purification on a silica gel column (ethyl acetate) in the form of a white solid.

Yield = 79% ; C 26 H 33 ClF 3 N 3 O 2 S ; MS [M+H] = 544.

NMR H 1 (CDCl 3 , 300MHz) δ = 0.89 (s, 9H); 1.37 (t, J = 6.4 Hz, 2H); 1.66 (m,

IH); 2.01 (m, IH); 2.16 (s, 3H); 2.32 (m, 3H); 2.52 (m, 2H); 3.44 (m, IH); 3.60- 3.72 (m, 2H); 3.77 (q, J = 10.2 Hz, 2H); 6.73 (s, IH); 6.77 (dd, J = 3.6 Hz et J =

2.4 Hz, IH); 6.83 (d, J = 2.4 Hz, IH); 7.17 (d, J = 3.6 Hz, IH); 7.34 (t, J = 5.6

Hz, IH); 7.57 (d, J = 5.6 Hz, IH); 8.34 (d, J = 5.6 Hz, IH).

Synthesis of example 203: 2-Chloro-JV- (2-[4-(3,3-dimethyl-butyl)- piperazin- 1 -yl]-2-oxo- 1 -thiophen-2-yl-ethyl} -λ/-(trifluoromethyl-phenyl)- acetamide.

The compound 203 was obtained from intermediate 17 using general method O.

The product was obtained following purification on a silica gel column

(dichloromethane / ethyl acetatee) in the form of a pale brown gum.

Yield = 82% ; C 25 H 29 ClF 3 N 3 O 3 S ; MS [M+H] = 544. NMR H 1 (CDCl 3 , 300MHz) δ = 1.04 (s, 9H); 2.22 (m, 2H); 3.10-3.30 (m, IH);

3.31-3.50 (m, 2H); 3.51-3.78 (m, 5H); 3.83 (m, 2H); 6.72 (s, IH); 6.78 (m, 2H);

6.92 (m, IH); 7.23 (m, IH); 7.53 (m, 2H); 8.15-8.37 (m, IH).

Synthesis of example 204: 4-{2-[(2-Chloroacetyl)-(3- trifluoromethylphenyl)-amino]-2-thiophen-2-yl-acetyl}piperaz ine-l-carboxylic acid methylphenyl- amide.

The compound 204 was obtained from intermediate 17 using general method O.

The product was obtained after purification on a silica gel column

(dichloromethane / ethyl acetate) in the form of colourless gum.

Yield = 74% ; C 27 H 26 ClF 3 N 4 O 3 S ; MS [M+H] = 579. NMR H 1 (CDCl 3 , 300MHz) δ = 2.83 (m, IH); 3.12 (m, IH); 3.22 (s, 3H); 3.25

(m, 3H); 3.41 (m, 2H); 3.53 (m, IH); 3.79 (m, 2H); 6.63 (s, IH); 6.69 (m, IH);

6.76 (m, IH); 6.85-6.94 (m, IH); 7.09 (d, J = 5.5 Hz, 2H); 7.17 (m, 2H); 7.35 (t, J

= 5.5 Hz, 2H); 7.51 (m, 2H); 8.15-8.31 (m, IH).

Synthesis of example 205: 2-Chloro-iV- {2-oxo- 1 -thiophen-2-yl-2-[4-

(toluene-4-sulfonyl)-piperazin- 1 -yl]-ethyl} -N-(3-trifluoromethyl-phenyl)- acetamide.

The compound 205 was obtained from intermediate 17 using general method O.

The product was obtained after purification on a silica gel column (heptane / ethyl acetate) in the form of a white solid.

Yield = 76% ; C 26 H 25 ClF 3 N 3 O 4 S 2 ; MS [M+H] = 600. NMR H 1 (CDCl 3 , 300MHz) δ = 2.47 (s, 3H); 2.79 (m, IH); 2.95 (m, 2H); 3.10

(m, IH); 3.35 (m, IH); 3.60 (m, IH); 3.65 (m, IH); 3.78 (m, 2H); 3.92 (m, IH);

6.60-6.66 (m, 2H); 6.71 (m, IH); 6.84-6.92 (m, IH); 7.14-7.25 (m, IH); 7.34 (d, J

= 6.2 Hz, 2H); 7.50 (t, J = 6.2 Hz, 2H); 7.59 (d, J = 6.2 Hz, 2H); 8.11-8.28 (m

IH).

EXAMPLE 6 : Biological tests

The effects of the compounds of the invention on the proliferation of cancer cells were studied on various human cancer cell lines of various tissue origins (MCF- 7 : breast cancer, MCF-7/adr : adriamycin-resistant breast cancer, ARH-77 : myeloma, ARH-77/Dox : doxorubicin (other name for adriamycin)-resistant myeloma, HL-60 : acute promyelocyte leukaemia, HL-60/R10 : doxorubicin- resistant acute promyelocytic leukaemia). The cancer cells used for this study were incubated at 37°C in the presence of one of the compounds of the invention added to the culture medium at various concentrations. The cancer cell lines originate from the ATCC (American Type Culture Collection) in the case of MCF-7, ARH-77 and HL-60, from Pharmacell (Paris, France) for HL-60/R10, from Oncodesign (Dijon, France) for ARH-77/Dox and from the Pitie Salpetriere Hospital for MCF-7/adr. They were cultivated in a RPMI 1640 medium containing 2 mM L-glutamine and supplemented with 10 % foetal calf serum. All the cell lines were maintained in culture at 37 0 C in a moist atmosphere containing 5 % CO 2 . Cell proliferation was evaluated using the

"CellTiter 96 ® AQ ueO us " reagent (Promega, WI, USA) while adhering to the manufacturer's instructions. The cells were seeded in 96-well culture plates in a proportion of from 5,000 to 10,000 cells per well in 200 μl of culture medium. After 24 hours of preincubation at 37 0 C, the compounds of the invention dissolved in dimethyl sulphoxide (DMSO) were added individually to each of the wells in a proportion of 2 μl per well. After 72 hours of incubation at 37 0 C in a moist atmosphere containing 5 % CO 2 , 40 μL of a MTS/PMS ([3-(4,5- dimethylthiazo l-2-yl)-5 -(3 -carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H- tetrazolium / phenazine methosulphate) solution were added to each well. After 1 to 4 hours of incubation at 37 0 C, the absorbance was measured at 490 nm with the aid of a plate reader and then the data thus obtained was processed by computer to give the value of the concentration of each of the compounds that induces the death of 50 % of the cells (CI 50 ). The results obtained are presented in the following Tables 1 and 2.

Table 1 : Results obtained with the MCF-7 and MCF-7/adr cell lines

- means that the CI50 was not measured

Table 2 : Result obtained with the ARH-77, ARH-77/Dox, HL-60 and HL-60/R10 cell lines

Moreover, the compound BADLG of the following formula

described in US patent 5 200 426 as potentially having anticancer activity was tested on cell lines MCF7 and MCF7/adr, as well as HL60 and HL60/R10, under the same conditions as described above, without any cytotoxic actaivity being detected for concentrations below 10 μM, clearly demonstrating the importance of substituting R5 for the nitrogen of the compounds of the invention.