Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPREHENSIVE UTILISATION METHOD FOR HIGH-TEMPERATURE SLAG BALLS EXITING ROTARY KILN IN KILN PROCESS FOR PRODUCTION OF PHOSPHORIC ACID, AND PROCESS SYSTEM THEREOF
Document Type and Number:
WIPO Patent Application WO/2014/194568
Kind Code:
A1
Abstract:
Disclosed is a comprehensive utilisation method for high-temperature slag balls exiting a rotary kiln in a kiln process for the production of phosphoric acid, comprising a rotary kiln, a cooling device and a drier for composite green pellets in a kiln process for the production of phosphoric acid, wherein the cooling device comprises at least two cooling stages, the hot air outlet of the first cooling stage is connected to the cavity of the rotary kiln via a conveying pipeline, and the hot air outlet of the second cooling stage is connected to the cavity of the drier via a conveying pipeline; the high-temperature slag balls are first conveyed to the cooling device, then the cooling device carries the slag balls successively to multiple cooling stages by the movement of a trolley, each cooling stage introduces cold air for cooling, a part of the hot air after cooling is sent to the cavity of the rotary kiln, and the other part thereof is sent to the drier for composite green pellets in a kiln process for the production of phosphoric acid for drying. A system using the method is also disclosed.

Inventors:
HOU, Yonghe (SICHUAN KO CHANG TECHNOLOGY CO, LTDTower 1, Triunph Plaza,No.118, Jitai 5th Road, High-Tech Zon, Chengdu Sichuan 1, 610041, CN)
WANG, Jiabin (SICHUAN KO CHANG TECHNOLOGY CO, LTDTower 1, Triunph Plaza,No.118, Jitai 5th Road, High-Tech Zon, Chengdu Sichuan 1, 610041, CN)
LEI, Shenghui (SICHUAN KO CHANG TECHNOLOGY CO, LTDTower 1, Triunph Plaza,No.118, Jitai 5th Road, High-Tech Zon, Chengdu Sichuan 1, 610041, CN)
LI, Jing (SICHUAN KO CHANG TECHNOLOGY CO, LTDTower 1, Triunph Plaza,No.118, Jitai 5th Road, High-Tech Zon, Chengdu Sichuan 1, 610041, CN)
Application Number:
CN2013/081185
Publication Date:
December 11, 2014
Filing Date:
August 09, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SICHUAN KO CHANG TECHNOLOGY CO., LTD (Tower 1, Triunph PlazaNo.118, Jitai 5th Road, High-Tech Zon, Chengdu Sichuan 1, 610041, CN)
International Classes:
C22B1/02; F27B7/38; F27D15/02; F27D17/00
Domestic Patent References:
WO2011056343A12011-05-12
Foreign References:
CN101624647A2010-01-13
CN201397051Y2010-02-03
CN102235820A2011-11-09
CN1584477A2005-02-23
Other References:
ZHANG, YIMIN ET AL., PELLET PRODUCTION TECHNOLOGY, August 2005 (2005-08-01), pages 87 - 89
Attorney, Agent or Firm:
HUNAN ZHAOHONG PATENT LAW OFFICE (ZHAO, Hong2701, Shuntian Building, No.185, Middle Furong Road, Furong Distric, Changsha Hunan 1, 410011, CN)
Download PDF:
Claims:
权 利 要 求

1、 一种窑法磷酸工艺中出回转窑高温渣球的综合利用方法, 包括以下步骤: ( 1 ) 将窑法磷酸工艺中出回转窑高温渣球输送至一冷却设备的进料区, 所述冷却设 备包括支撑装置、 台车和罩壳, 所述台车位于支撑装置上, 所述罩壳架设于台车上方, 所 述冷却设备的进料区、卸料区均与所述台车相通,所述高温渣球被送进冷却设备的台车上; 所述冷却设备被划分成至少两个相互连接的冷却段, 各冷却段分别设置有冷空气进风口和 与之对应的热风出口; 所述冷空气进风口与热风出口之间的气流通道穿过所述台车; 所述 台车的运动轨迹依次经过所述进料区、 多个冷空气进风口和卸料区;

( 2 ) 所述台车通过转动将高温渣球带入第一冷却段, 第一冷却段利用台车下部的鼓 风机将冷空气从所述冷空气进风口引入, 所述冷空气穿过位于第一冷却段的台车, 与台车 上的热渣球进行热交换, 同时将高温渣球中残余的未反应完的碳燃烧完毕, 经过第一冷却 段的热交换后, 从第一冷却段对应的第一热风出口排出的热空气通过第一热风输送管道输 送至回转窑腔体中, 作为回转窑中燃烧还原反应产物的热空气来源;

( 3 ) 所述台车通过转动将高温渣球继续从第一冷却段带入第二冷却段, 第二冷却段 利用台车下部的鼓风机将冷空气从所述冷空气进风口引入, 所述冷空气穿过位于第二冷却 段的台车, 与台车上的热渣球进行热交换, 经过第二冷却段的热交换后, 从第二冷却段对 应的第二热风出口排出的热空气通过第二热风输送管道输送至窑法磷酸工艺复合生球干 燥机中, 作为复合生球干燥的热空气来源;

( 4 ) 所述台车通过转动将高温渣球继续从第二冷却段带入后续的其余各冷却段, 其 余各冷却段利用其台车下部的鼓风机将冷空气从所述冷空气进风口引入, 所述冷空气穿过 位于其余各冷却段的台车,与台车上的热渣球进行热交换,经过其余各冷却段的热交换后, 从其余各热风出口排出的热空气经除尘后可直接排放或送到上述复合生球干燥机中作为 干燥的热空气来源; 冷却后的渣球从所述卸料区排出即可。

2、 根据权利要求 1 所述的方法, 其特征在于: 从所述第一热风出口排出的热空气的 温度控制在 600°C以上, 从所述第二热风出口排出的热空气的温度控制在 350°C以上。

3、 根据权利要求 2所述的方法, 其特征在于: 所述干燥机为鳞板干燥机, 该鳞板干 燥机沿复合生球的输送方向共分为低温、 中温和高温三个干燥段; 所述第二热风出口排出 的热空气通过第二热风输送管道输送至所述中温干燥段和 /或高温干燥段;

进入中温干燥段的热空气经补入的冷空气调温后成为 150°C〜250°C的中温热风,通过 由上至下进行抽风或由下至上进行鼓风, 便甲温热风垂直穿过料层, 并对复合生球进行穿 流干燥;

进入高温干燥段的热空气经补入的冷空气调温后成为 200°C〜350°C的高温热风,通过 由上至下进行抽风或由下至上进行鼓风, 使高温热风垂直穿过料层, 并对复合生球进行穿 流干燥;

所述低温干燥段通入 100°C〜200°C的低温热风由上至下进行抽风或由下至上进行鼓 风, 使低温热风垂直穿过料层, 并对复合生球进行穿流干燥; 所述低温热风是源自所述高 温干燥段的高温热风出口处排出的废气。

4、 根据权利要求 1、 2或 3所述的方法, 其特征在于: 所述冷却后的渣球从卸料区排 出后用作人造陶粒, 直接作为建筑材料或花草栽培土使用; 或者将冷却后的渣球细磨到至 少过 100目 80%以上, 然后作为制造混凝土的活性料或作为制造水泥的混合材。

5、 根据权利要求 1、 2或 3所述的方法, 其特征在于: 所述冷却设备为一环冷机或带 式冷却机, 所述冷空气进风口设于台车下方, 所述热风出口设于台车上方; 所述环冷机沿 周长方向被划分成 2〜5 个相互连接的冷却段; 各冷却段之间通过隔板分隔开; 所述带式 冷却机沿长度方向被划分成 2〜5个相互连接的冷却段; 各冷却段之间通过隔板分隔开。

6、 一种用于对窑法磷酸工艺中出回转窑高温渣球进行综合利用的工艺系统, 其特征 在于: 所述工艺系统包括回转窑、 冷却设备和窑法磷酸工艺复合生球的干燥机;

所述冷却设备包括支撑装置、 台车、 罩壳, 所述台车位于支撑装置上, 所述罩壳架设 于台车上方, 所述冷却设备的进料区、 卸料区均与所述台车相通, 所述冷却设备被划分成 至少两个相互连接的冷却段, 各冷却段分别设置有冷空气进风口和与之对应的热风出口; 所述冷空气进风口与热风出口之间的气流通道穿过所述台车; 所述台车的运动轨迹依次经 过所述进料区、 多个冷空气进风口和卸料区;

所述各冷却段包括紧邻进料区的第一冷却段以及紧邻第一冷却段的第二冷却段, 第一 冷却段中对应设置的第一热风出口通过第一热风输送管道连接至所述回转窑的腔体中; 第 二冷却段中对应设置的第二热风出口通过第二热风输送管道连接至所述干燥机的腔体中。

7、 根据权利要求 6所述的工艺系统, 其特征在于: 所述干燥机为鳞板干燥机, 该鳞 板干燥机沿复合生球的输送方向共分为低温、 中温和高温三个干燥段; 所述第二热风输送 管道连接至所述中温干燥段和 /或高温干燥段;所述低温干燥段的进风口通过输送管道与所 述高温干燥段的高温热风出口连通。

8、 根据权利要求 6或 7所述的工艺系统, 其特征在于: 所述回转窑包括窑体、 窑头 箱、 窑尾箱和驱动窑体转动的驱动装置, 在¾?1卒的窑头处设有燃料烧嘴, 在窑尾箱处设有 进料管和一连接至外部水化塔的出口烟道, 所述窑体的上部不设置风管, 所述出口烟道设 于以回转窑轴线为中心的窑体半径范围内, 且出口烟道中的烟气输送方向与回转窑的轴线 方向基本平行或呈小于 45 ° 的夹角。

9、 根据权利要求 6或 7所述的工艺系统, 其特征在于: 所述窑体包括外部的筒体壳 和设于筒体壳内侧的窑衬, 所述窑体沿回转窑长度方向被划分包括还原带和预热带, 还原 带靠近窑头箱, 预热带靠近窑尾箱, 还原带长度占窑体长度的 1/3〜3/5, 预热带长度占窑 体长度的 2/5〜2/3; 所述窑衬主要由复合耐火砖或复合耐火浇注料构成, 位于还原带的窑 衬包括靠近筒体壳的黏土材料层和靠近回转窑内腔的高铝材料层; 位于预热带的窑衬则包 括靠近筒体壳的黏土材料层和靠近回转窑内腔的碳化硅材料层。

10、根据权利要求 8所述的工艺系统, 其特征在于: 所述窑尾箱外配套设有一清窑机, 清窑机中设有一可渐进式伸入回转窑窑尾箱内并可与其腔体内壁保持相对刮蹭的刮刀。

Description:
窑法磷酸工艺中出回转窑高温渣球的综合利用 方法及其工艺系统

【技术领域】

本发明涉及还原磷矿石工艺中渣球资源的回收 利用, 尤其涉及一种窑法磷酸工艺中出回 转窑渣球的冷却及综合利用方法。

【背景技术】

目前世界上工业生产磷酸的方法主要有两种。 (1 ) 湿法制磷酸: 即利用硫酸分解磷矿石 得到稀磷酸和以 CaS0 4 · η¾0为主体的固体废渣(简称磷石膏),将稀 酸浓縮得到含磷酸 54% 左右的湿法磷酸。 这种工艺的主要缺点: 一是要耗用大量的硫酸; 二是废渣磷石膏无法得到 有效的利用, 其中夹带的硫酸、 磷酸和可溶性氟化物均溶于水, 自然堆放后被雨水冲刷, 容 易对环境造成严重污染; 三是产品磷酸的杂质含量较高, 一般只用于生产肥料; 四是为保证 产品的经济性, 必须使用高品位磷矿。 (2 ) 热法制磷酸: 即首先将磷矿石、 硅石、 碳质固体 还原剂置于一台矿热电炉中, 用电短路形成电弧的能量, 将炉内温度加热到 130CTC以上, 将 磷矿石中的磷以 形式还原出来, 同时碳质固体还原剂被转化为 C0, 将排出矿热炉的 和 CO为主的气体用水洗涤降温, P 4 被冷却成固体与气相分离, 得到产品黄磷, 含 CO的废气在烟 囱出口点火燃烧后排入大气; 将得到的 加热到 80°C左右, 使其变为液相, 将其在水化塔中 与通入的空气发生氧化燃烧反应, 得到磷酸酐 P 2 0 5 , 再用水吸收得到磷酸。 热法制磷酸的主 要缺点: 一是要耗费大量的电能; 二是排出矿热炉后分离了 的气体还夹带有大量的氟化物 (以 SiF^B HF存在) 和少量未沉淀的气体 P 4 , 这将对大气环境造成严重污染; 三是含大量 CO的气体直接燃烧排空, 能源浪费很大; 四是为了保证生产的经济性, 同样需要使用高品位 磷矿石。

为了克服电能紧张、 硫铁矿资源不足和高品位磷矿石逐年减少对磷 酸生产的影响, 八十 年代初美国 Occidental Research Corporation ( 0RC) 提出采用 KPA法, 即用回转窑生产 磷酸的方法(简称窑法磷酸工艺) (参见 Frederic Ledar and Won C. Park等, New Process for Technical-Grade Phosphoric Acid, Ind. Eng. Chem. Process Des. Devl985, 24, 688-697), 并进行了 0. 84m (内) X 9. 14m回转窑中试装置的中间试验 (参见 US4389384号美国专利文 献)。 该方法是将磷矿石、 硅石和碳质还原剂(焦粉或煤粉)细磨到 50%〜85%— 325目, 配加 1%的膨润土造球, 经链式干燥机干燥预热后送入窑头燃烧天然气 的回转窑中, 球团在窑内还 原, 控制最高固体温度为 1400°C〜1500°C, 调整球团 Ca0/Si0 2 摩尔比为 0. 26〜0. 55, 使球团 熔点高于球团中磷矿石的碳热还原温度, 磷以磷蒸气的形式从球团中还原挥发出来, 然后在 窑的中部空间被通入的空气氧化成五氧化二磷 , 氧化放出来的热反过来又供给还原反应, 最 后将含有五氧化二磷的窑气水化吸收即制得磷 酸。

上述的窑法磷酸工艺思路显示了一种良好的工 业应用前景, 因其原理是利用磷矿的碳热 还原形成 气体, 将磷矿石中的磷转移到回转窑的气相当中, 并利用气固分离原理使磷与料 球中的其余固体物质很好的进行分离, 转移到回转窑气相中的 P 4 气体可与回转窑气相中的氧 发生氧化放热反应生成 P 2 0 5 , 放出的热则供给料球中磷矿石的碳热还原 (吸热反应), 最后将 出回转窑的含 P 2 0 5 的窑气水化吸收, 可获得洁净度远高于湿法磷酸的工业磷酸。 由于回转窑 维持磷矿碳热还原温度使用的是初级能源,同 时磷矿碳热还原产生的可燃物质 与 CO在回转 窑内部即可进行燃烧放热反应, 补充提供给维持回转窑磷矿碳热还原温度所需 能量, 这与传 统的热法制磷酸工艺相比, 其能耗得到大幅度降低。

然而, 我们的研究表明, 上述的窑法磷酸工艺在规模化的工业应用及实 践中很难实现, 其主要缺陷在于:

1、 回转窑是窑体以一定速度(0. 5r/min〜3r/min)运转的设备, 其优点是可以连续对送 入窑内的固体物料进行机械翻转、 混合, 保证窑内固体物料各处受热的均匀性, 但反过来窑 内固体物料亦须承受物料运动的机械摩擦力, 如果物料强度小于受到的机械摩擦力将很容易 被破坏。 美国 0RC公司提出的 KPA工艺基本原理是将磷矿石、 硅石和碳质还原剂 (焦粉或煤 粉) 细磨到 50%〜85%— 325 目后制成球团, 这三种物质必须紧密地共聚一体, 才能在混合物 中 Ca0/Si0 2 摩尔比为 0. 26〜0. 55 的条件下, 实现混合物料在磷矿石的碳热还原温度下不熔 化, 同时, 磷矿的碳还原才能得以顺利进行。 但工艺使用的物料球团中配入了还原剂碳, 碳 在大于 35CTC温度下会与空气中的氧发生快速的氧化反 转变成 C0 2 , 如果采用传统冶金工业 球团在链篦机上高温固结的方法 ( 900°C ), 则球团中的还原碳会被全部氧化, 入回转窑球 团则流失了还原剂, 磷的碳热还原反应自然也无法进行, 导致工艺失败。 如果仅通过添加膨 润土作球团粘结剂在 30CTC以下进行干燥脱水, 则球团抗压强度仅为 10KN/个球左右, 落下强 度 1次 /米; 因为膨润土的作用机理主要是利用其物质结构 中的层间水来调节球团干燥过程 中的水分释放速率, 提高球团在干燥过程中的爆裂温度, 其本身对提高球团强度并无显著作 用。 将这种球团送入回转窑后、 且在回转窑温度值达到 900°C温度前, 由于承受不住回转窑 内料球运动所受到的机械摩擦力, 入窑的球团将大量粉化, 粉化后组成球团的磷矿粉、 硅石 粉和碳质还原剂等将分离, 粉化后的磷矿粉由于不能与碳质还原剂紧密接 触, 将导致磷不能 被还原。 更为严重的是, 磷矿粉一旦与硅石粉分开, 其熔点将急剧降低到 125CTC以下, 这种 粉状磷矿通过回转窑的高温还原区 (料层温度为 130CTC左右) 时, 将全部由固相变成液相, 进而粘附在回转窑窑衬上形成回转窑的高温结 圈, 阻碍物料在回转窑内的正常运动, 使加入 回转窑的大部分物料从回转窑加料端溢出回转 窑, 无法实现磷的高温还原, 导致工艺失败。 可见, 由于入窑原料存在固有缺陷, 至今未见上述的 KPA技术进行过任何工业化、 规模化或 商业化的应用。

2、对于上述配碳磷矿球团的 KPA工艺而言, 在回转窑内料层下部的固体料层区属于还原 带, 料层上部则是回转窑的气流区, 属于氧化带, 进料球团从回转窑窑尾加入, 依靠其自身 重力和回转窑旋转的摩擦力从回转窑的窑头区 排出, 回转窑燃烧燃料的烧嘴安装在回转窑窑 头, 产生的燃烧烟气则由窑尾的风机引出, 回转窑内维持微负压, 气流与物料的运动方向相 反。 由于在回转窑的还原带 (固体料层区) 和氧化带 (回转窑固体料层上部的气流区) 无机 械隔离区, 因此, 暴露在固体料层区表面的料球将与氧化带气流 中的 0 2 、 C0 2 发生对流传质; 这一方面会使料球中的还原剂碳在料球被气流 传热加热到磷矿石碳还原温度前被部分氧化 掉, 致使料球在回转窑还原带由于碳质还原剂的缺 乏, 而得不到充分还原; 更为严重的是, 在回转窑高温区暴露于料层表面的料球, 会与窑气中已经还原生成的 P 2 0 5 发生进一步的化学 反应, 生成偏磷酸钙、 磷酸钙及其他的偏磷酸盐或磷酸盐, 进而导致已被还原到气相中的磷 又重新返回料球,并在料球表面形成一层富含 P 2 0 5 的白壳,壳层厚度一般在 300 μ m〜1000 μ m, 壳层中 P 2 0 5 含量可高达 30%以上; 这样会致使料球转移到气相中的 P 2 0 5 不超过 60%, 造成磷矿 中 P 2 0 5 的收率偏低, 进而造成矿产资源的浪费及磷酸生产成本的大 幅度上升, 使上述的 KPA 工艺丧失商业应用和工业推广价值。 有研究人员寄望通过料层中挥发出的气体来隔 离回转窑 中的还原带与氧化带, 但在内径 2m的回转窑中进行的工业试验表明, 球团表面出现富含 P 2 0 5 的白壳现象仍是不可避免的。

鉴于上述提及的技术缺陷, 按照 0RC公司所提出的 KPA工艺来生产磷酸, 这在规模化的 工业应用及实践中还存在很大困难。

Joseph A. Megy对 KPA工艺提出过一些改进的技术方法 (参见 US7910080B号美国专利文 献), 即在维持 KPA基本工艺方法不变的前提下, 通过在回转窑筒体的窑头泄料端设置挡料圈 以提高回转窑的固体物料填充率, 与此同时, 通过增大回转窑的直径以减小回转窑内料层的 表面积-体积比, 降低料层物料暴露在固体料层表面的几率, 以縮短料球中还原剂碳被回转窑 窑气中的 0 2 氧化的时间, 减少料球到达回转窑还原带前的还原剂碳的烧 损, 同时减少回转窑 高温区中料球表面磷酸盐或偏磷酸盐的生成。 另外, 该工艺还通过在入回转窑的物料中加入 部分石油焦, 以希望利用石油焦中挥发分受热挥发产生的还 原性气体, 使其覆盖在料层与回 转窑气流氧化区之间, 以进一步阻止回转窑气流中 0 2 、 P 2 0 5 与料球反应的几率, 以保证工艺的 正常进行。 然而, 提高回转窑的填充率将使料球在回转窑内承受 更大的机械摩擦力, 进而将 造成料球在回转窑内更大比例的粉化, 形成更多的小于磷矿碳热还原温度的低熔点物 质, 使 回转窑高温结圈更加迅速和严重, 从而更早造成工艺的失败。 而添加少量的石油焦产生的挥 发分不足以产生足够的气体, 难以在回转窑固体料层与回转窑内气流区之间 形成有效的隔离 层, 若加入量过大, 则出回转窑物料中将夹带有大量的燃料, 这会导致在后续工艺的渣球冷 却机中, 剩余燃料将与冷却渣球的空气相遇并迅速燃烧 , 燃烧放出的大量热量不仅增加了出 回转窑高温渣球冷却的难度, 而且又大大提高了工艺的生产成本, 使工艺的商业化、 规模化 运用变得不可实现。

鉴于上述问题, 我们经过反复研究, 曾提出过一种克服上述问题的解决方案 (参见 CN1026403C, CN1040199C 号中国专利文献), 即采用一种双层复合球团直接还原磷矿石生产 磷酸的工艺, 具体技术解决方案是: 先将磷矿石与配入物料制成球团, 在回转窑内, 球团中 的 P 2 O 5 被还原成磷蒸气并挥发, 在料层上方, 磷蒸气被引入炉内的空气氧化成 P 2 O 5 气体, 然 后在水化装置中被吸收制得磷酸。 该技术方案的最大特点在于: 配入的物料球团采用双层复 合结构, 其内层是由磷矿石、 硅石 (或石灰、 石灰石等) 和碳质还原剂经磨碎、 混匀后造球 而成, 其外层是在内层球团上再裹上一层含碳量大于 20%的固体燃料, 球团的内、 外层配料 时添加粘结剂, 球团采用干燥固结。 球团内层(¾0/810 2 摩尔比可以小于 0. 6或大于 6. 5, 碳 质还原剂为还原磷矿石理论量的 1〜3倍,球团外层固体燃料配量可以为内层球 质量的 5%〜 25%; 球团内、 外层添加的粘结剂可以是沥青、 腐植酸钠、 腐植酸铵、 水玻璃、 亚硫酸盐纸浆 废液、糖浆、木质素磺酸盐中的一种或多种的 组合,其添加量为被添加物料重量的 0. 2%〜15% (干基)。 该球团可以采用干燥固结, 固结温度为 80°C〜600°C, 固结时间为 3min〜120min。

我们提出的上述方法采用在球团上裹一层含固 体碳的耐高温包裹料,包裹时添加粘结剂, 以使外层包裹料能良好地附着在内层球团上。 将这种双层复合球团经干燥固结后送入回转窑 中, 在回转窑高温带 ( 1300 °C〜 1400 °C左右) 可以很好地实现磷矿石的碳热还原。 由于在料 球表面人为包覆了一层含固体还原剂 (碳质物料) 的包裹层, 该包裹层可将其内层球团与回 转窑料层上部的含 0 2 和 P 2 0 5 的气流氧化区进行有效地物理隔离。 当这种复合球团在回转窑固 体料层中随回转窑的旋转运动上升到回转窑固 体料层表面, 并与回转窑固体料层上部的含 0 2 和 P 2 0 5 的气流氧化区接触发生对流传质时, 包裹层中的碳便可与氧化区中的 0 2 发生有限的氧 化反应 (因在工业大型回转窑中料球暴露在回转窑料 层表面的时间较短, 反应不完全), 使 0 2 不能传递到内层球团, 保证了内层球团中的还原剂碳不被回转窑气流 中的氧所氧化, 使磷 矿石中 P 2 0 5 的还原过程能进行彻底, 实现了工艺过程中磷矿 P 2 0 5 的高还原率。 另一方面, 回 转窑料层上部气流氧化区中的 P 2 0 5 也不可能与复合球团表层包裹层中的碳反 应, 因而阻止了 在复合球团上形成磷酸盐或偏磷酸盐化合物, 消除了原有 KPA工艺料球上富含 P 2 0 5 白壳的生 成, 确保了工艺可获得较高的 P 2 0 5 收率。 与此同时, 该方法中以固体燃料取代或部分取代了 气体或液体燃料, 这可进一步降低磷酸的生产成本。

此外, 我们提出的上述方法中在造球时还加入了有机 粘结剂, 这可使复合球团在干燥脱 水后 (低于球团中碳氧化温度), 仍可以达到 200kN/个球以上的抗压强度和 10次 /米以上的 落下强度, 因此, 该复合球团可以抵抗在回转窑内受到的机械摩 擦力而不被粉碎, 克服了原 有 KPA工艺存在的球团强度差等缺陷, 也克服了球团中碳在回转窑预热带过早氧化的 现象, 使复合球团在窑内不出现粉化, 进而避免了粉料造成的回转窑高温结圈致使工 艺失败, 保证 了工艺能在设定的条件下顺利进行。

然而, 在我们后续的研究过程中, 又发现了一系列新的技术问题。 例如, 出回转窑释放 完 P 2 0 5 后的高温渣球如何更有效地进行冷却, 冷却时的热能如何有效地利用, 以降低窑法磷 酸的工艺能耗; 冷却后的渣球如何处理, 如果直接向外排放, 不仅容易造成对环境的污染, 而且还造成了对有价资源的巨大浪费。 而这些问题的高效解决, 直接影响到整个窑法磷酸工 艺的工业应用价值和经济性。

因此, 为了提高现有窑法磷酸工艺的生产效率, 降低生产成本, 为了更充分地利用窑法 磷酸工艺中的资源和能源, 减轻对环境的污染和破坏, 现有的窑法磷酸工艺还亟待本领域技 术人员进行继续的改进和完善。

【发明内容】

本发明要解决的技术问题是克服现有技术的不 足, 提供一种结构简单、投入小、成本低、 冷却效果好的窑法磷酸工艺中出回转窑高温渣 球的冷却设备, 还提供一种可以降低能耗和资 源消耗、 减少环境污染、 大大提高窑法磷酸工艺经济效益和环保效益的 利用上述的冷却设备 对窑法磷酸工艺中出回转窑高温渣球进行综合 利用的方法。

为解决上述技术问题, 本发明提出的技术方案为一种窑法磷酸工艺中 出回转窑高温渣球 的综合利用方法, 包括以下步骤:

( 1 )将窑法磷酸工艺中出回转窑高温渣球(释放 P 2 0 5 的渣球, 一般温度高达 1000°C〜 1300°C ) 输送至一冷却设备的进料区处, 所述冷却设备包括支撑装置、 台车和罩壳, 所述台 车位于支撑装置上, 所述罩壳架设于台车上方, 台车上设有蓖板, 所述冷却设备的进料区、 卸料区均与所述台车相通, 所述高温渣球被送进冷却设备的台车上; 所述冷却设备被划分成 至少两个相互连接的冷却段, 各冷却段分别设置有冷空气进风口和与之对应 的热风出口; 所 述冷空气进风口与热风出口之间的气流通道穿 过所述台车上的蓖板, 所述台车的运动轨迹依 次经过所述进料区、 多个冷空气进风口和卸料区;

( 2 )所述台车通过转动将高温渣球带入第一冷却 , 第一冷却段利用台车下部的鼓风机 将冷空气从所述冷空气进风口引入, 所述冷空气穿过位于第一冷却段的台车及其篦 板, 与台 车上的热渣球进行热交换, 同时将高温渣球中残余的未反应完的碳燃烧完 毕, 经过第一冷却 段的热交换后, 从第一冷却段对应的第一热风出口排出的热空 气通过第一热风输送管道输送 至回转窑窑头箱再进入回转窑腔体中作为回转 窑中燃烧还原反应产物的热空气来源 (具体作 为燃烧磷和 CO的助燃空气);

( 3 )所述台车通过转动将高温渣球继续从第一冷 段带入所述第二冷却段, 第二冷却段 利用台车下部的鼓风机将冷空气从所述冷空气 进风口引入, 所述冷空气穿过位于第二冷却段 的台车及其篦板, 与台车上的热渣球进行热交换, 经过第二冷却段的热交换后, 从第二冷却 段对应的第二热风出口排出的热空气通过第二 热风输送管道输送至窑法磷酸工艺复合生球干 燥机中作为复合生球干燥的热空气来源;

( 4)所述台车通过转动将高温渣球继续从第二冷 段带入后续的其余各冷却段, 其余各 冷却段利用其台车下部的鼓风机将冷空气从所 述冷空气进风口引入, 所述冷空气穿过位于其 余各冷却段的台车及其篦板, 与台车上的热渣球进行热交换, 经过其余各冷却段的热交换后, 从其余各热风出口排出的热空气经除尘后可直 接排放或送到窑法磷酸工艺复合生球干燥机中 作为复合生球干燥的热空气来源; 冷却后的渣球从所述卸料区排出即可。

上述的方法中, 优选的, 从所述第一热风出口排出的热空气的温度控制 在 60CTC以上, 从所述第二热风出口排出的热空气的温度控制 在 35CTC以上。 一般来说, 经过最后一段冷却 段的冷却, 可将渣球的温度降至 100°C, 最后冷却段的出口热风温度则一般小于 150°C。

上述的方法中, 优选的, 所述干燥机为鳞板干燥机, 该鳞板干燥机沿复合生球的输送方 向共分为低温、 中温和高温三个干燥段; 所述第二热风出口排出的热空气通过第二热风 输送 管道输送至所述中温干燥段和 /或高温干燥段;

进入中温干燥段的热空气经补入的冷空气调温 后成为 150°C〜250°C的中温热风, 通过由 上至下进行抽风或由下至上进行鼓风, 使中温热风垂直穿过料层, 并对复合生球进行穿流干 燥;

进入高温干燥段的热空气经补入的冷空气调温 后成为 200°C〜350°C的高温热风, 通过由 上至下进行抽风或由下至上进行鼓风, 使高温热风垂直穿过料层, 并对复合生球进行穿流干 燥;

所述低温干燥段通入 100°C〜200°C的低温热风由上至下进行抽风或由 下至上进行鼓风, 使低温热风垂直穿过料层, 并对复合生球进行穿流干燥; 由于高温干燥段出口的热废气的温 度还可达到 100°C〜200°C ( 150°C左右), 因此所述低温热风优选是源自所述高温干燥段 的高 温热风出口处排出的废气; 而先经过低温干燥段脱除部分水分, 则可有效减轻后续中温、 高 温干燥段的干燥负荷, 以便尽量降低干燥单位重量复合生球的能耗, 同时提高球团干燥过程 中球团爆裂温度的下限。

上述的方法中, 优选的, 所述冷却后的渣球从卸料区排出后用作人造陶 粒, 可直接作为 建筑材料或花草栽培土使用; 或者将冷却后的渣球细磨到至少过 100 目 80%以上, 然后作为 制造混凝土的活性料或作为制造水泥的混合材 。

上述的冷却设备中, 优选的, 所述冷却设备为一环冷机或者带式冷却机, 所述冷空气进 风口设于台车下方, 所述热风出口设于台车上方 (当然也可采用上方进风、 下方排出热风的 方式)。 所述环冷机沿周长方向被划分成所述至少两个 相互连接的冷却段 (优选 2〜5个冷却 段, 且每个冷却段的长度优选相等); 各冷却段之间通过隔板分隔开。所述带式冷却 机沿长度 方向被划分成至少两个 (优选 2〜5个) 相互连接的冷却段; 各冷却段之间通过隔板分隔开。 其中, 紧邻进料区的第一冷却段中设置所述第一热风 出口, 紧邻第一冷却段的第二冷却段中 设置所述第二热风出口, 紧邻第二冷却段的后续其余各冷却段中设置相 应的热风出口。

作为一个总的技术构思, 本发明还提供一种用于对窑法磷酸工艺中出回 转窑高温渣球进 行综合利用的工艺系统, 所述工艺系统包括回转窑、 冷却设备和窑法磷酸工艺复合生球的干 燥机;

所述冷却设备包括支撑装置、 台车、 罩壳, 所述台车位于支撑装置上, 所述罩壳架设于 台车上方, 所述冷却设备的进料区、 卸料区均与所述台车相通, 所述冷却设备被划分成至少 两个相互连接的冷却段, 各冷却段分别设置有冷空气进风口和与之对应 的热风出口; 所述冷 空气进风口与热风出口之间的气流通道穿过所 述台车; 所述台车的运动轨迹依次经过所述进 料区、 多个冷空气进风口和卸料区;

所述各冷却段包括紧邻进料区的第一冷却段以 及紧邻第一冷却段的第二冷却段, 第一冷 却段中对应设置的第一热风出口通过第一热风 输送管道连接至所述回转窑的腔体中; 第二冷 却段中对应设置的第二热风出口通过第二热风 输送管道连接至所述干燥机的腔体中。

上述的工艺系统中, 优选的, 所述干燥机为鳞板干燥机, 该鳞板干燥机沿复合生球的输 送方向共分为低温、 中温和高温三个干燥段; 所述第二热风输送管道连接至所述中温干燥段 和 /或高温干燥段;所述低温干燥段的进风口通 输送管道与所述高温干燥段的高温热风出口 连通。

上述的工艺系统中, 优选的, 所述回转窑包括窑体、 窑头箱、 窑尾箱和驱动窑体转动的 驱动装置, 在窑体的窑头处设有燃料烧嘴, 在窑尾箱处设有进料管和一连接至外部水化塔 的 出口烟道, 所述窑体的上部不设置风管, 所述出口烟道设于以回转窑轴线为中心的窑体 半径 范围内, 且出口烟道中的烟气输送方向与回转窑的轴线 方向基本平行或呈小于 45 ° 的夹角。

上述的工艺系统中, 优选的, 所述窑体包括外部的筒体壳和设于筒体壳内侧 的窑衬, 所 述窑体沿回转窑长度方向被划分包括还原带和 预热带, 还原带靠近窑头箱, 预热带靠近窑尾 箱, 还原带长度占窑体长度的 1/3〜3/5, 预热带长度占窑体长度的 2/5〜2/3; 所述窑衬主要 由复合耐火砖或复合耐火浇注料构成, 位于还原带的窑衬包括靠近筒体壳的黏土材料 层和靠 近回转窑内腔的高铝材料层; 位于预热带的窑衬则包括靠近筒体壳的黏土材 料层和靠近回转 窑内腔的碳化硅材料层。

上述的工艺系统中, 优选的, 所述窑尾箱外配套设有一清窑机, 清窑机中设有一可渐进 式伸入回转窑窑尾箱内并可与其腔体内壁保持 相对刮蹭的刮刀。

与现有技术相比, 本发明的优点在于:

( 1 )本发明的工艺系统不仅结构简单、 投入成本低, 而且灵活多变, 对高温渣球具有良 好的冷却效果。

( 2)本发明的工艺系统及综合利用方法充分利用 高温渣球的余热资源, 并将该余热用 作窑法磷酸工艺中还原反应补热, 使回转窑的能耗显著降低; 同时还用作复合生球干燥所需 热源, 这充分利用了不同冷却阶段不同温度热风的热 能资源, 从而使整个窑法磷酸工艺的能 源利用更加充分, 能耗显著降低, 工艺的经济性显著增强。

( 3)本发明优选的方案中, 冷却后的渣球同样得到了高效、 高附加值的利用, 而不是直 接外排。 这不仅减少了固体废物对环境的污染和破坏, 而且废弃资源得到了高效利用, 进一 步提高了窑法磷酸工艺的经济效益。

(4)本发明优选的方案中, 本发明将回转窑窑尾烟气排出管的出口设置在 与回转窑轴线 的同方向上(为了布置至水化塔管道的方便, 也可以有适当偏移), 这样使得回转窑出窑烟气 在进入出口烟道时不会在运动方向上作较大偏 移, 进而防止出窑烟气中偏磷酸与粉尘反应生 成的偏磷酸盐固体在窑尾处产生物理沉降, 使这些偏磷酸等物质成分直接随出窑烟气进入 水 化塔, 然后转入到酸液循环系统中, 生成磷酸和固体渣, 再通过相应的过滤装置排出系统, 以延长窑尾圈的形成周期, 提高回转窑的作业效率。

( 5)本发明优选的方案中, 回转窑窑尾的窑衬主要采用浇注料构成的浇注 体, 在靠近回 转窑筒体壳的部分采用轻质保温浇注料浇筑成 的轻质保温浇筑衬体, 在靠近回转窑内部一侧 则采用碳化硅浇注料浇筑成的碳化硅浇注衬体 , 由于偏磷酸盐与碳化硅材料反应困难, 这进 一步缓解了窑尾结圈的难题。

(6)本发明优选的方案中, 回转窑窑尾箱外装设一由耐热不锈钢制成的刮 刀, 一旦窑尾 圈形成造成料球从窑尾返料, 则可停止加热回转窑的燃料供给并停止向回转 窑内送入料球, 同时可将刮刀逐渐伸入至回转窑内, 利用回转窑自身的旋转, 将窑尾结圈切削刮除掉。

总的来说, 本发明具有结构简单、 投入小、 成本低等优点, 可以降低能耗和资源消耗, 减少环境污染。

【附图说明】

图 1为本发明具体实施方式中回转窑的结构示意 。

图 2为图 1中 A-A处的剖视放大图。

图 3为图 1中 B-B处的剖面放大图。

图 4为图 1中 C-C处的剖面放大图。

图 5为本发明具体实施方式中清窑机的结构示意 。

图 6为图 5中 D-D处的剖视图。

图 7为本发明具体实施方式中清窑机工作时的原 图。

图 8为图 7中 E-E处的剖视图。

图 9为本发明具体实施方式中高温渣球综合利用 法的工艺流程图。

图 10为本发明具体实施方式中高温渣球冷却设备 工作原理图 (俯视)。

图 11为图 10中 B-B处的局部剖视图。

图 12为本发明中带式冷却机的工作原理图。

图 13为图 12中 A-A处的局部剖视图。

图例说明:

1、 窑头箱; 2、 托轮装置; 3、 窑体; 4、 传动小齿轮; 41、 支撑装置; 42、 台车; 43、 罩壳; 44、 冷空气进风口; 45、 第一热风出口; 46、 第二热风出口; 47、 隔板; 48、 烟囱; 49、 高温渣球; 5、 驱动装置; 6、 窑尾箱; 7、 出口烟道; 8、 进料管; 9、 窑尾动密封; 10、 传动大齿轮; 1 1、 窑衬; 12、 筒体壳; 13、 热电偶; 14、 抽气泵; 15、 燃料烧嘴; 16、 碳化 硅材料层; 17、 黏土材料层; 18、 高铝材料层; 19、 窑头动密封; 20、 刮刀; 21、 平台; 22、 车轮; 23、 行走减速电机; 24、 机架; 25、 旋转轴; 26、 支撑桁架; 27、 回转窑门框。

【具体实施方式】

以下结合说明书附图和具体优选的实施例对本 发明作进一步描述, 但并不因此而限制本 发明的保护范围。

实施例:

一种如图 9所示用于对窑法磷酸工艺中出回转窑高温渣 进行综合利用的工艺系统, 包 括回转窑、 冷却设备和窑法磷酸工艺复合生球的干燥机。 如图 10和图 11所示, 冷却设备包 括支撑装置 41、 台车 42和罩壳 43, 台车 42位于支撑装置 41上, 罩壳 43架设于台车 42上 方, 冷却设备的进料区、 卸料区均与台车 42相通。

本实施例的冷却设备为一环冷机(也可采用如 图 12和图 13所示的带式冷却机), 其沿周 长方向被划分成 3个相互连接的冷却段; 各冷却段之间通过隔板 47分隔开。各冷却段分别设 置有冷空气进风口 44和与之对应的热风出口; 冷空气进风口 44设于台车 42下方, 热风出口 设于台车 42上方; 冷空气进风口 44与热风出口之间的气流通道穿过台车 42; 台车 42的运 动轨迹依次经过进料区、多个冷空气进风口 44和卸料区; 各冷却段包括紧邻进料区的第一冷 却段以及依次相接的第二冷却段和第三冷却段 ,第一冷却段中对应设置的第一热风出口 45通 过第一热风输送管道连接至回转窑的腔体中; 第二冷却段中对应设置的第二热风出口 46通过 第二热风输送管道连接至干燥机的腔体中。 第三冷却段中对应设置有第三热风出口。

如图 9所示, 本实施例的干燥机为鳞板干燥机, 该鳞板干燥机沿复合生球的输送方向共 分为低温、 中温和高温三个干燥段; 第二热风输送管道连接至高温干燥段; 低温干燥段的进 风口通过输送管道与高温干燥段的高温热风出 口连通。

如图 1和图 2所示, 本实施例的回转窑包括窑体 3、 窑头箱 1、 窑尾箱 6和驱动窑体 3转 动的驱动装置 5, 驱动装置 5包括电机、 与电机相连的传动小齿轮 4以及与传动小齿轮 4咬 合的传动大齿轮 10, 在窑体 3的中部还设置有托轮装置 2。 窑头箱 1与窑体 3之间采用窑头 动密封 19, 窑尾箱 6与窑体 3之间采用窑尾动密封 9。 在本实施例窑体 3的窑头处设有燃料 烧嘴 15和高温渣球出口,在窑体 3的窑尾箱 6处设有进料管 8和一连接至外部水化塔的出口 烟道 7, 进料管 8连通至回转窑的内腔。 窑体 3的上部不设置风管, 出口烟道 7设于回转窑 轴线上, 且出口烟道 7中的烟气输送方向与回转窑的轴线方向基本 行。 本实施例的窑体 3 包括外部的筒体壳 12和设于筒体壳 12内侧的窑衬 11, 所述窑体 3沿回转窑长度方向被划分 包括还原带和预热带, 还原带靠近窑头箱 1, 预热带靠近窑尾箱 6, 还原带长度占窑体 3长度 的 1/3〜3/5 (本实施例中为 1/2),预热带长度占窑体 3长度的 2/5〜2/3 (本实施例中为 1/2)。 窑衬 11 主要由复合耐火浇注料 (或者复合耐火砖) 构成, 如图 3所示, 位于还原带的窑衬 11包括靠近筒体壳 12的黏土材料层 17和靠近回转窑内腔的高铝材料层 18 (氧化铝 65%); 如图 4所示,位于预热带的窑衬 11则包括靠近筒体壳 12的黏土材料层 17和靠近回转窑内腔 的碳化硅材料层 16。

本实施例中, 窑尾箱 6外配套设有一清窑机, 如图 5〜图 8所示, 清窑机安放于平台 21 上, 清窑机底部设有可在平台 21上滚动的车轮 22, 车轮 22通过行走减速电机 23驱动, 清 窑机的主体为一机架 24, 机架 24上方安装有一电机驱动的旋转轴 25, 旋转轴 25沿大致水平 方向延伸出机架 24外, 伸出部外围套设一支撑桁架 26, 旋转轴 25伸出部分的自由端设有一 可渐进式伸入回转窑窑尾箱 6内并可与其腔体内壁保持相对刮蹭的刮刀 20 (耐热不锈钢制)。 一旦窑尾圈形成造成料球从窑尾返料, 则可停止加热回转窑的燃料供给并停止向回转 窑内送 入料球, 同时可将刮刀 20逐渐伸入至回转窑内, 利用回转窑自身的旋转, 将窑尾结圈切削刮 除掉。

如图 9所示, 一种用上述本实施例的工艺系统对窑法磷酸工 艺中出回转窑高温渣球进行 综合利用的方法, 包括以下步骤:

( 1 )将窑法磷酸工艺中出回转窑高温渣球 49输送至上述环冷机的进料区, 高温渣球 49 被送进环冷机的台车 42上;

( 2 )台车 42通过绕旋转中心转动(台车由电机和减速器 动)将高温渣球 49带入第一 冷却段, 第一冷却段利用台车 42下部的鼓风机将冷空气从冷空气进风口 44引入, 冷空气穿 过位于第一冷却段的台车 42, 与台车 42上的热渣球进行热交换, 同时将高温渣球 49中残余 的未反应完的碳燃烧完毕, 经过第一冷却段的热交换后, 从第一冷却段对应的第一热风出口 45排出的热空气(从所述第一热风出口 45排出的热空气的温度控制在 600°C以上)通过第一 热风输送管道输送至回转窑腔体中, 作为回转窑中燃烧还原反应的热空气来源;

( 3 ) 台车 42通过绕其旋转中心转动将高温渣球 49继续从第一冷却段带入第二冷却段, 第二冷却段利用台车 42下部的鼓风机将冷空气从冷空气进风口 44引入, 冷空气穿过位于第 二冷却段的台车 42, 与台车 42上的热渣球进行热交换, 经过第二冷却段的热交换后, 从第 二冷却段对应的第二热风出口 46排出的热空气 (从第二热风出口 46排出的热空气的温度控 制在 350°C以上) 通过第二热风输送管道输送至窑法磷酸工艺复 合生球干燥机中, 作为复合 生球干燥的热空气来源;

( 4)台车 42通过转动将高温渣球 49继续从第二冷却段带入后续的第三冷却段, 第三冷 却段利用其台车 42下部的鼓风机将冷空气从冷空气进风口 44引入, 冷空气穿过位于第三冷 却段的台车 42, 与台车 42上的热渣球进行热交换, 经过热交换后, 从第三热风出口排出的 热空气经除尘后可由烟囱 48直接排放 (或者也可送入干燥机中); 冷却后的渣球从卸料区排 出即可。 冷却后的渣球从卸料区排出后用作人造陶粒, 并直接作为建筑材料或花草栽培土使 用; 或者将冷却后的渣球细磨到至少过 100 目 80%以上, 然后作为制造混凝土的活性料或作 为制造水泥的混合添加料。

本实施例中的干燥机为鳞板干燥机, 进入中温干燥段的热空气经补入的冷空气调温 后成 为 150°C〜250°C的中温热风, 通过由上至下进行抽风或由下至上进行鼓风, 使中温热风垂直 穿过料层, 并对复合生球进行穿流干燥; 进入高温干燥段的热空气经补入的冷空气调温 后成 为 200°C〜350°C的高温热风, 通过由上至下进行抽风或由下至上进行鼓风, 使高温热风垂直 穿过料层, 并对复合生球进行穿流干燥; 低温干燥段通入 100°C〜200°C的低温热风由上至下 进行抽风或由下至上进行鼓风, 使低温热风垂直穿过料层, 并对复合生球进行穿流干燥; 低 温热风是源自高温干燥段的高温热风出口处排 出的废气。 另外, 采用本实施例工艺系统中的上述回转窑还可有 效解决窑法磷酸工艺窑尾结圈的问 题, 具体操作包括: 采用上述的回转窑进行窑法磷酸工艺, 使窑法磷酸工艺的工艺原料从回 转窑窑尾处的进料管 8处进入回转窑的腔体内, 点燃燃料烧嘴 15, 使回转窑内还原带温度加 热到 1300°C〜1450°C, 回转窑中的磷矿石原料在高温条件下经还原剂 还原后生成出窑烟气, 通过将回转窑窑尾出口烟道 7的出口设置在与回转窑轴线的同方向上 (即平行于回转窑轴线 设置), 使回转窑窑尾的出窑烟气在进入出口烟道 7时不在运动方向上发生较大偏移, 进而阻 止出窑烟气中的偏磷酸在回转窑窑尾处产生离 心物理沉降, 使窑气中偏磷酸直接随出窑烟气 进入到后续的水化塔中, 遇水转变成正磷酸。 更进一步的, 本实施例中将回转窑位于预热带 的窑衬 11制作成双层式的复合耐火浇注料(或复合耐 砖), 在靠近回转窑的筒体壳 12的窑 衬部分采用黏土材料制作成黏土材料层 17, 在靠近回转窑内腔的窑衬部分则采用碳化硅材 料 制作成碳化硅材料层 16, 由于偏磷酸盐与碳化硅材料反应困难, 这使得反应沉积在回转窑预 热带窑衬 11上的偏磷酸盐与回转窑窑衬 11的附着力降低, 这样的窑衬结构可以进一步阻止 偏磷酸盐与窑衬 11的反应结圈, 使其自行掉落, 进一步缓解窑尾结圈的发生。 再有, 通过在 本实施例回转窑的窑尾箱 6外配套的清窑机内装设一耐热不锈钢制刮刀 20, 该刮刀 20为一 可渐进式伸入回转窑窑尾箱 6内并可与腔体内壁保持相对刮蹭的刮刀; 当回转窑窑尾结圈造 成工艺原料的料球从窑尾处往回转窑外返料时 , 先停止加热回转窑的燃料供给, 同时停止向 回转窑内送入料球, 并排空回转窑内料球, 然后将清窑机中的刮刀 20从回转窑门框 27逐渐 伸入至回转窑内, 再利用回转窑自身的旋转, 将窑尾结圈切削刮除。 由上可见, 本实施例的 回转窑通过多重保障措施和技术手段有效缓解 了窑法磷酸工艺中回转窑窑尾结圈的难题。

另外, 本实施例回转窑沿窑体 3的长度方向上安装有多个监控窑内温度的热 偶 13, 热 电偶 13通过导电环或无线发送接收装置与回转窑外 温度控制装置及温度显示器相连。通过 设置热电偶 13, 能够有效保证对内球料 Ca0/Si0 2 摩尔比小于 0. 6的复合球团最高温度不超过 137CTC的反应设定温度要求; 对内球料 Ca0/Si0 2 摩尔比大于 6. 5的复合球团最高温度不超过 145CTC的反应设定温度要求。 在回转窑的窑头则安装有监控回转窑内炉况的 工业电视。

另外, 本实施例回转窑的窑尾箱 6出口的出口烟道 7上安装有抽取气样的抽气泵 14。 通 过抽气泵 14取样,对气样水洗除去粉尘后送入 CO和 0 2 气体分析仪监测回转窑出口烟气的 CO 和 0 2 含量, 以便更好地控制出窑烟气 CO和 0 2 的含量范围 (一般为 0〜5%)。

本实施例中回转窑的轴线与水平面呈 1. 2 ° 〜2. 9° 的夹角 α (本实施例为 2. 3 ° ), 且 窑体 3的长径比为 10〜25 : 1 (本实施例为 15 : 1 ), 回转窑的填充率为 7%〜25% (本实施例 为 13%), 回转窑的转速控制为 0. 6 r/min〜3r/min (本实施例为 lr/min)。 回转窑耐火材料 厚度优选为 200隱〜 280隱 (本实施例为 220隱)。