Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONDENSER WITH INTEGRATED DEAERATOR
Document Type and Number:
WIPO Patent Application WO/2001/090665
Kind Code:
A2
Abstract:
In cooling plants which work with water as both primary and secondary coolant. An evaporator chamber is connected to the suction side of a steam compressor, which compresses the sucked-off steam in a condenser chamber in which the steam is condensed by imnmediate heat exchange with through-flowing water. Deaerator units for feed water to both the evaporator chamber and the condenser chamber are connected to a suction equipment to promoted the deaeration at lowered pressure.The condenser is configured with an upper distribution chamber for receiving the feed water. The distribution chamber is limited down towards the condenser chamber by a sieve plate/nozzle plate with a large number of perforations in the form of narrow holes or slots, and a deaerator/pre-deaerator unit is placed at a short distance above the condenser chamber.

Inventors:
JENSEN CHRISTIAN SVARREGAARD (DK)
HATTMANN LARS (DK)
Application Number:
PCT/DK2001/000363
Publication Date:
November 29, 2001
Filing Date:
May 25, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
YORK REFRIGERATION APS (DK)
JENSEN CHRISTIAN SVARREGAARD (DK)
HATTMANN LARS (DK)
International Classes:
B01D1/28; F28B3/04; B01D3/06; B01D5/00; B01D19/00; C02F1/20; F25B1/00; F25B43/04; F28B3/00; F28B9/10; F25D31/00; (IPC1-7): F25B43/04
Foreign References:
US5111670A1992-05-12
Other References:
DATABASE WPI Section PQ, Week 199723 Derwent Publications Ltd., London, GB; Class Q75, AN 1997-248489 XP002901944 & JP 09 079708 A (HITACHI ZOSEN CORP), 28 March 1997 (1997-03-28)
Attorney, Agent or Firm:
Patrade, A/s (Fredens Torv 3A Århus C, DK)
Download PDF:
Claims:
C L A I M S
1. Cooling plant of the kind which works with water as both primary and secondary coolant, with an evaporator chamber connected to the suction side of a steam compressor, which compresses the suckedoff steam in a condenser chamber in which the steam is condensed by immediate heat exchange with throughflowing water, and with deaerator units for feed water to both the evaporator chamber and the condenser cham ber, said deaerator units being connected to suction equip ment to promote the deaeration at lowered pressure, c h a r a c t e r i s e d in that the condenser is configured with an upper distribution chamber for receiving the feed water, said distribution chamber being limited down towards the con denser chamber by a sieve plate/nozzle plate with a large number of perforations in the form of narrow holes or slots, and in that a deaerator/predeaerator unit is placed at a short distance above the condenser chamber.
2. Plant according to claim 1, c h a r a c t e r i s e d in that both the distribution chamber and one or more overlying predeaerator chambers are arranged in a fully in tegrated manner in the vacuum container which houses the con denser chamber, namely limited between sieve plates mounted therein.
3. Plant according to claim 1 or 2, c h a r a c t e r i s e d in that the evaporator is also configured in a corresponding manner.
4. Plant according to claim 1, c h a r a c t e r i s e d in that in the condenser chamber, respectively the evaporator chamber, there is mounted an intermediate plate of dropbreaking material, preferably a net material, for disin tegration of the water falling down towards said plate.
5. Plant according to claim 1, c h a r a c t e r i s e d in that the dropbreaking plate is placed at a level slightly below that level at which the falling jets of water change to drop form.
6. Plant according to claim 1, c h a r a c t e r i s e d in that two or more deaerator/predeaerator units are connected to respective air concentration units working with successively increasing pressure levels based on progressive steam condensation by the injection of cold water and subse quent compression.
7. Plant according to claim 1, c h a r a c t e r i s e d in that said distribution chamber is used as a pre deaeration chamber.
8. Plant according to claim 7, c h a r a c t e r i s e d in that the sucking of air/steam from the distribution chamber leads to the same source of suction as the suction from the condenser chamber, preferably by a suction connec tion arranged in series.
9. Plant according to claim 6 and 8, c h a r a c t e r i s e d in that the sucking of the product from both the distribution chamber and the condenser chamber leads to one and the same air concentration unit, while a predeaeration unit arranged over the distribution chamber is connected to a successivelycoupled air concentration unit which works at a higher pressure, and where the vacuum pump associated here with compresses the residual steam and air up to atmospheric pressure.
10. Plant according to claim 6, c h a r a c t e r i s e d in that the watercooled air concentration units (34,36) have inlet connections for the supply of cold water from the cold water outlet of the evaporator unit.
Description:
Integrated deaerator and condenser.

The present invention concerns a cooling plant of the type in which water is used as coolant, which can hereby be used either as cooled process water or as both primary and secondary coolant in closed cooling systems. Other applica- tion possibilities will be found in connection with heat-pump installations and the production of ice, which can be gener- ated directly in the evaporator part of the plant. In such plants there is no need for separation surfaces in the evapo- rator and condenser units so that these units can be both in- expensive and highly effective. The plants can with advantage be used in cases where cold water at temperatures a few de- grees above zero is required, e. g. at 5-10°C for cooling of e. g. processes and for air conditioning.

The plants work in accordance with the basic prin- ciple that the supply water, e. g. at a temperature of 10-20°, is introduced into an. evaporation chamber which is connected to the suction side of a steam compressor, which creates a strong vacuum in the chamber, e. g. in the order of 5-15 mBar, whereby the water expands while giving off a certain amount of steam which, despite a modest percentage of water, never- theless represents such a high measure of evaporation heat that the residual water is significantly cooled, and it is therefore possible to achieve that the outlet water can be discharged at a temperature which is only approx. 0.5-1°C higher than the evaporation temperature.

As is the case with other coolants, there is ef- fected a condensation of the coolant steam in a condenser which is cooled from outside, but with the present plant it also applies that work can be effected on the condenser side with immediate heat exchanging, i. e. condensation of the steam directly by means of water, so that both steam and wa-

ter are introduced into one and the same condensation cham- ber. The steam is condensed in the cooling water so that this is heated, but again here it applies that the outlet water can be discharged with a temperature which is only approx.

0.1-1°C lower than the condensation temperature. The cooling water for the condenser is connected to an external cooling circuit via a cooling tower for cooling, for example from 25° to 20°. The amount of water added from the condensate will thus be introduced directly into the circulating water from which, however, water will disappear by evaporation from the free surface in the cooling tower. Consequently, it must be noted that water must be operatively removed or added from or to this cooling circuit.

In principle, all this quite corresponds to more ordinary cooling plants with separate circuits for coolant and working medium. However, a considerable difference arises hereby-in that there will constantly appear a content of non-condensable gas in the water, namely atmospheric air, which in a quite necessary manner must be removed to a degree which is sufficient to ensure that it does not interfere with the function of the plant. Air will arise in the supply water to the evaporation unit, but to an even greater degree in the supply water from the cooling tower to the condenser unit, where the water will be literally saturated with air. A re- lated build-up of a distinct partial air pressure in the con- denser will have a directly detrimental effect on the overall efficiency of the plant, primarily by increasing the conden- sation pressure against which the steam compressor must work, which results in a distinct increase in the consumption of energy.

It is in light of this that it is absolutely neces- sary and quite normal to arrange an effective separation of the air on the condenser side. This can naturally be effected

directly via the associated vacuum pump, but because of a considerable content of steam in the air/steam mixture, this will demand an unrealistically large pump and a relatively great amount of energy. It is therefore well-known to insert a so-called NCG condenser (Non Condensable Gas) between the vacuum pump and the condenser chamber, into which NCG con- densers there is constantly injected a certain smaller amount of the supply water to the main condenser, whereby there is brought about a part-condensation of that steam which is hereby sucked from the main condenser. The condensate is pumped out parallel with the discharge water from the main condenser, and the air/steam mixture, which via the vacuum pump must be compressed to atmospheric pressure, thus con- tains a reduced amount of steam.

In other connections it is known that alternatively there can be arranged a separate, preceding de-aeration of the water before this is injected into the condenser, namely. by arranging a deaeration container above the condenser, the upper chamber of said container being connected with the nec- essary vacuum pump, and which during operation serves to re- ceive the supply water for delivery to the condenser while maintaining the upper chamber in a state in which it is not filled with water. By the prevailing low pressure, there can occur a quite effective deaeration of the water from the widespread surface of the water in the container, so that the water introduced into to the condenser can be almost without any content of air. The sucking of the steam and residual air from the condenser can be effected via a connection from the condenser directly to the said upper chamber, in which a cer- tain condensation of the steam will take place. Such pre- deaeration systems can be quite effective, but in this con- nection the known systems have a distinct disadvantage which will be discussed in the following.

In order to explain the invention, it is first re- quired that the condenser itself is described in more detail.

This traditionally involves a vacuum container which in prin- ciple is of simple construction and provided with a bottom outlet for water, and with one or more injection nozzles for the supply water, which must exchange energy with the steam from the, steam compressor, in that the container also has an inlet opening for this steam. The container also has a dis- charge opening for the sucking out of the residual air and steam mixture via the already mentioned vacuum pump for main- taining a desired partial air pressure in the container. The injection nozzle (s) are configured with the object of provid- ing a strong, spray-like jet of water, i. e. with fine drop- lets, which ensures a good exchange of heat with the gener- ated steam, but also an almost total expulsion of the con- tent of air in the water. Ideally, the air should remain in the water, so that they could be discharged together, but un- der the given conditions this will be a physical impossibil- ity.

For the necessary comminution of the water through the use of the injection nozzles, a certain external over- pressure is required, for example of 0.6-0.9 bar. This is ap- propriate in that the supply water can be introduced at at- mospheric pressure, e. g. from a cooling tower circuit, in that the necessary pressure difference will thus be brought about by the under pressure which prevails in the condenser chamber.

With the invention, the main object is to establish a cooling plant of the type in which work is effected with pre-aeration of the water, in that this potentially provides the best economy of the plant. However, there will hereby arise the aforementioned disadvantage with the pre-aerated systems, namely that work in the pre-aeration container must be effected at such a low pressure that the resulting over-

pressure for the injection of water through the condenser's nozzle system becomes completely inadequate. By a relevant known technique, though in another connection, this problem is solved by the pre-aeration container being physically placed at such a distinct height above the condenser that, in the connection down to this, there will arise a water column of such a height, typically in the order of 5-10 m, that de- spite the low pressure in the aeration unit there can still be established the necessary overpressure for an effective injection of water through the condenser's injection noz- zle (s).

However, this involves a highly inconvenient demand for a large overall construction height of the plant, and re- spectively considerable extra plant expenditure and signifi- cant constructional disadvantages. Use could be made of a separate pump for the building-up of the necessary injection pressure, but this would also involve extra installation and operational costs.

With the invention it has surprisingly proved that there is a possibility of working with a pre-aeration by us- ing a pre-aeration container placed immediately above the condenser, namely by the condenser itself being-modified in such a manner that the said injection nozzles can be dis- pensed with, while instead configuring the condenser with an upper distribution chamber which, down towards the condenser chamber, is limited by a sieve plate with a large number of perforations in the form of narrow holes or slots. Regardless of the water level, e. g. 25-200 mm, in the distribution cham- ber, by force of gravity the. water will fall down into the condenser chamber in a large number of thin streams, which together have a very large surface area, and furthermore which are dissolved into small droplets after a quite modest fall height. In this way, the comminution of the water can be sufficient to achieve a quite effective exchange of heat in

the condenser chamber, without the water having to be sup- plied at a high overpressure, and precisely therefore the pre-aeration container can be arranged directly over the con- denser, i. e. with low total construction height.

According to the invention, this can be utilised with great advantage in that the pre-aerator is integrated directly with the condenser, namely merely in the form of one or more chambers formed in between sieve plates at the top of the vacuum container, which otherwise constitutes the con- denser. Seen as a whole, this will be able to be configured as an integrated unit without any appreciable increase in construction height.

In that the said distribution chamber can stand un- der the same pressure as the condenser chamber, work can be effected with a common steam/air induction from both of these chambers, whereby the distribution chamber will appear as a functionally integrated part of the condenser, i. e. as a com- bined distribution and de-aeration chamber. It is possible, however, by a serial suction from the condenser chamber to the distribution chamber, and from here to the vacuum pump, to achieve a certain part-condensation of the steam fraction in the distribution chamber, whereby this chamber can work with a real pre-aeration effect.

An additional pre-aeration chamber can, however, be established in a very simple manner as an immediately overly- ing chamber between a sieve plate which forms the top in the distribution chamber, and an overlying sieve plate which forms the bottom in an upper distribution chamber. In the up- per pre-aeration chamber there will thus also be supplied wa- ter in a large number of down-falling, thin streams, from which despite a modest fall height there can still be ex- tracted a very large part of the air content, and here there can thus be effected a considerable air separation at a higher pressure level than by the condenser pressure, i. e. a

real pre-aeration at a pressure from which distinctly less energy is required to compress the air fraction to atmos- pheric pressure.

There can hereby with advantage be arranged a bene- ficial two-or multi-stage aeration of the water. The suction from. the individual de-aeration stages can be connected via an air-concentration unit and a pump to the next, physically overlying pre-de-aeration stage, so that a stepwise concen- tration and compression of the air is achieved. The pump from the last stage compresses the air up to atmospheric pressure.

For effective concentration of air in the individual air- concentration units, it has been found especially advanta- geous and simple to take a quite small part-stream of rela- tively cold water, preferably from the evaporator outlet, which by spraying-out in the air concentration units some of the steam is condensed from the sucked-off mixture of air and steam, i. e. a lowering of the steam's partial pressure.

It is hereby possible to work with absolutely mini- mised pump equipment for de-aeration of the water.

As far as the effect of the actual condenser. is concerned, with the invention it. has been ascertained that a significant improvement can be achieved by mounting a jet/droplet-breaking insert, e. g. in the form of a simple net material, in the condenser chamber. When the net mesh is of the same size as the thickness of the water jets/droplets, there will hereby arise such a decomposition of these that they are shattered by the otherwise unhindered passage through the net, so that under the net there is formed a spray-like cloud of fine droplets, which even with a rela- tively short fall height can effect a distinct extra contri- bution to the exchange of heat. It has been found that this effect is best achieved when the net is arranged at the level where the jets of water have just changed to droplet form. In that the heat exchange can already be good enough, the addi-

tion of the net instead can be used to reduce the fall height of the droplets, so that an effective/compact condenser with a further reduced construction height can be achieved.

Also where the evaporator is concerned, though to a lesser degree, it is relevant to arrange a deaeration of the supply water, and also here work can with advantage be ef- fected in accordance with quite the same principles, so that the evaporator with associated pre-deaeration chamber can also be configured in a fully integrated manner.

The invention will thus make it possible to build a cooling machine of the type discussed in a very compact con- figuration with low construction height, and rendered cheaper both by the beneficial integration of air separators in the evaporator-and condenser-containers themselves, and by the simplified pump equipment for effecting the necessary air separation.

In the following, the invention is explained in more detail with reference to the drawing, in which fig. 1 schematically shows a cooling plant accord- ing to the invention, and fig. 2 shows an example of the practical construc- tion of such a plant.

The shown plant comprises an evaporator container 2 with an upper inlet 4 for water, e. g. at a temperature of 12°C, and with a pair of perforated, intermediate-bottoms or distribution nozzle plates 6 from which the water flows down in thin, individual jets, and a lowermost jet/droplet- breaking insert in the form of e. g. a net 8 which shatters the falling jets/droplets, so that the water falls as fine droplets down into a bottom chamber 10 with an effective dis- persion, as indicated by the arrow 12, which results in a further improvement of the effectiveness of the heat ex- change.

The evaporator chamber 10,18 is connected via a suction line 14 to a steam compressor 16 which works with a sufficiently low suction pressure of e. g. 9 mB, whereby an appreciable evaporation from the water jets/drops is ef- fected, and herewith an associated cooling of the remaining water, which can then be pumped out from the bottom of the chamber, e. g. at a temperature of 6°C.

The steam compressor 16 compresses the steam, e. g. with a factor 3.7 to approx. 33 mB at an appreciably in- creased temperature, and this steam is fed via an inlet pipe 26 to a condenser container 28 which, in principle, can be identical to the evaporator container 2, and in which the hot steam must now be cooled and condensed, which can be effected by direct heat exchange with the colder water, preferably wa- ter which is led from/circulates in a cooling tower. This wa- ter can be fed into the upper inlet chamber 24'in the con- tainer 28 at a temperature of, e. g., 20°C, after which in the chamber 18', 10'it is thus brought. into direct contact with the hot steam, and hereby absorb this in condensed form, again without the use of separation surfaces between cooling agent and steam/condensate. The end product in the bottom of the container 28 will be water, which from the above- mentioned approx. 20°C has been heated to e. g. approx. 25°, and which stands under the said low pressure of e. g. 33 mB.

This water can then be pumped out for feeding to said cooling tower circuit for cooling to the said inlet temperature of approx. 20°. The surplus water, which in this circuit is due to the continuous introduction of steam condensate, will be able to be given off to the atmosphere by the evaporation which takes place in the cooling tower.

By use of the drop-shattering insert in the form of net surfaces 8 and 8', the same improvement in effectiveness is achieved as that mentioned for the evaporator.

The upper admission chambers 22,22', 20' in the con- tainers 2 and 28 will function as air separation chambers, from which the air which is separated from the supply water can be sucked out.

The spaces in between the perforated distribution plates/nozzle plates 6 and 6'will be mutually separated from the point of view of pressure, the reason being that the per- forations are held"closed"by being blocked by the down- flowing water, by water impoundment above the perforations.

Work can therefore be effected with decreasing pressure down- wards but, however, also with a sufficiently low pressure in said spaces, so that a quite large part of the content of air in the thin jets of water can be extracted, also even though work is effected with relatively short fall distances. Conse- quently, it will only be a modest part of the air which comes to be released at the quite low pressure in the chambers 10, 18 and 10', 18'respectively.

It now remains to suck off. the separated air and compress it up to atmospheric pressure. With the said pre- deaeration concept, the pressure in the considered pre- deaeration chamber/suction chamber will be far below atmos- pheric pressure, and at this low pressure the separated air will have a relatively high content of steam, which means that despite the improvement made by use of the pre- deaeration concept, use will still have to be made of a vac- uum pump with relatively large capacity, i. e. an expensive pump, in order to bring the air fraction up to atmospheric pressure.

To remedy this, with the invention use is made of an arrangement for concentrating the air fraction in two stages. By means of a pump 30, air/steam is sucked from the condensation chamber 10', 18' (via the space 20') to an exter- nal air concentration unit 34 into which cold water is in- jected, preferably fetched from the outlet of the evaporator,

i. e. water at a temperature of e. g. 6°. In the chamber 10', 18', the condensation temperature will typically be ap- prox. 26°, corresponding to a total pressure of approx. 33 mB, of which the partial pressure of the air will only be ap- prox. 1 mB. In that the temperature inside the air concentra- tion unit 34 is lowered to approx. 10°, the partial pressure of the steam will fall considerably, namely to approx. 12 mB, while the partial pressure of the air at the said approx. 33 mB will thus be approx. 21 mB. Even at this increased level of air concentration it will require a very costly and very energy-consuming pump to compress the air to 1 bar, but then use is made of the fact that it is sufficient for the pump 30 to bring the pressure up to e. g. approx. 80 mB, namely by connection to the admission chamber 22'-in the condenser. 28, where the supply water at approx. 20° will bring about a steam partial pressure of approx. 23 mB, while the air's par- tial pressure thus becomes approx. 57 mB. It is practicable and much less power-demanding for a simple pump 30 to in- crease the total pressure from the said approx. 21 mB to the said approx. 80 mB.

In this stage (22'), suction is effected from the latter pressure level to a second air concentration unit 36 by means of a pump 32 which has an outlet to the atmosphere.

Cold water is also injected into this container, where the steam's partial pressure is reduced to approx. 12 mB, i. e. the air's partial pressure at the said 80 mB will thus be ap- prox. 68 mB, corresponding to a concentration of approx. 70 times up from the original approx. 1 mB in the condensation chamber 10', 18'.

As shown, it has been found expedient to provide a pipe connection 38 from the pre-aeration chamber 20'to the pre-deaeration chamber 22 in the condenser unit 10, in that there will also arise a certain separation of air from the

supply of piped water. The total pressure in the chamber 22 will be slightly higher than in the chamber 20', so that separated air will flow of its own accord to the chamber 20'.

With the effective and compact pre-deaerator con- cept and the sufficiently effective exchange of heat with the many thin jets/droplets with the nozzle-plate concept, even with a limited fall height, the integration of the air sepa- rators in the containers 2 and 28 is made possible for achieving a low construction height and a compact plant, such as illustrated in fig. 2. By use of the jet/droplet-breaking insert in the form of e. g. a net, it is ensured that the wa- ter falling down is dispersed sufficiently for a very effec- tive and immediate heat exchange between the steam and cool- ing water, whereby as discussed above a further reduction in the fall height becomes possible and herewith in the overall construction height.

It shall be mentioned that with the disclosed inte- gration of the deaerator units, it is not only possible to use one and the same vacuum container in the two main units, but also to achieve that the lower chamber 22,20'in the deaerators will in the integrated manner constitute an upper distribution chamber for the water to the evapora- tor/condenser chamber, whereby a separate distribution cham- ber can be completely dispensed with.

The plant shown in fig. 2 has a cooling capacity of 1.6-2 MW. This type will mainly be in the capacity range from 50 kW and above but, however, not necessarily limited hereto.

In the 1.6-2 MW plant shown in fig. 2, the evapo- rator unit with integrated deaerator 2 has a diameter of ap- prox. 2 m and a height of approx. 2 m, and the fall height for the water in the evaporator chamber 18 and 10 is approx.

1 m.

The condenser unit with integrated deaerator has a diameter of approx. 1.5 m and a height of approx. 2 m, and the fall height for the water in the condenser chamber 18' and 10'is approx. 1 m.

All else being equal, it applies to both units that an embodiment without the efficiency-promoting insert 8 will have a fall height of between 2-3 times greater. The effi- ciency-promoting insert 8 can be a net with a mesh size in the order of 2-4 mm and be placed approximately in the cen- tre.

The specific compactness and capacity of the units have been correspondingly improved. To this can be added the improvement of the compactness and capacity by the integra- tion of the deaerator units. The resulting specific capacity including the integrated deaerator thus lies in the range of 2-3.5 m3 per MW.

With the integrated 2-stage deaerator system with associated air concentration units 34 and 36, the pump capac- ity is reduced to 500-700 m3/h for the vacuum pumps 30 and 36 respectively which, all else being equal, corresponds to a reduction factor of 3-4 in comparison with conventional con- figurations. The associated power consumption for the vacuum pumps is correspondingly reduced.