Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONNECTING A LOAD TO A DIRECT CURRENT NETWORK
Document Type and Number:
WIPO Patent Application WO/2020/156688
Kind Code:
A1
Abstract:
The invention relates to a switching module (M) and to a method for connecting a load (L) to a direct current network (N). The switching module (M) comprises: a first module terminal (1); a second module terminal (2); a third module terminal (3); a first electronic switch (T1), which is connected between the first module terminal (1) and the second module terminal (2); and a second electronic switch (T2), which is connected between the second module terminal (2) and the third module terminal (3). The two electronic switches (T1, T2) are connected antiserially between the first module terminal (1) and the third module terminal (3).

Inventors:
HANDT KARSTEN (DE)
Application Number:
PCT/EP2019/061668
Publication Date:
August 06, 2020
Filing Date:
May 07, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
International Classes:
H02H3/087; H02J1/00; H03K17/62; H03K17/66; H03K17/687; H03K17/693
Foreign References:
DE10212164A12002-10-02
DE102014225431A12016-06-16
EP2814157A22014-12-17
DE102016204400A12017-09-21
US9065326B22015-06-23
US20160365854A12016-12-15
Download PDF:
Claims:
Patentansprüche

1. Schaltmodul (M) zum Verbinden einer Last (L) mit einem Gleichstromnetz (N) , das Schaltmodul (M) umfassend

- einen ersten Modulanschluss (1),

- einen zweiten Modulanschluss (2),

- einen dritten Modulanschluss (3) ,

- einen ersten elektronischen Schalter (TI), der zwischen den ersten Modulanschluss (1) und den zweiten Modulanschluss (2) geschaltet ist, und

- einen zweiten elektronischen Schalter (T2), der zwischen den zweiten Modulanschluss (2) und den dritten Modulan schluss (3) geschaltet ist, wobei

- die beiden elektronischen Schalter (TI, T2) antiseriell zwischen den ersten Modulanschluss (1) und den dritten Modu lanschluss (3) geschaltet sind.

2. Schaltmodul (M) nach Anspruch 1, wobei jeder elektronische Schalter (TI, T2) ein Bipolartransistor mit isolierter Gate- Elektrode ist, der einen Kollektor-Anschluss (C) , einen Emit ter-Anschluss (E) und einen Gate-Anschluss (G) aufweist.

3. Schaltmodul (M) nach Anspruch 2, wobei der Kollektor- Anschluss (C) des ersten elektronischen Schalters (TI) mit dem ersten Modulanschluss (1) verbunden ist, der Kollektor- Anschluss (C) des zweiten elektronischen Schalters (T2) mit dem dritten Modulanschluss (3) verbunden ist und die Emitter- Anschlüsse (E) der elektronischen Schalter (TI, T2) miteinan der und jeweils mit dem zweiten Modulanschluss (2) verbunden sind .

4. Schaltmodul (M) nach Anspruch 2, wobei der Emitter- Anschluss (E) des ersten elektronischen Schalters (TI) mit dem ersten Modulanschluss (1) verbunden ist, der Emitter- Anschluss (E) des zweiten elektronischen Schalters (T2) mit dem dritten Modulanschluss (3) verbunden ist und die Kollek tor-Anschlüsse (C) der elektronischen Schalter (TI, T2) mit- einander und jeweils mit dem zweiten Modulanschluss (2) ver bunden sind.

5. Schaltmodul (M) nach Anspruch 1, wobei jeder elektronische Schalter (TI, T2) ein Metall-Oxid-Halbleiter-

Feldeffekttransistor ist, der einen Drain-Anschluss (D) , ei nen Source-Anschluss (S) und einen Gate-Anschluss (G) auf weist.

6. Schaltmodul (M) nach Anspruch 5, wobei der Drain- Anschluss (D) des ersten elektronischen Schalters (TI) mit dem ersten Modulanschluss (1) verbunden ist, der Drain- Anschluss (D) des zweiten elektronischen Schalters (T2) mit dem dritten Modulanschluss (3) verbunden ist und die Source- Anschlüsse (S) der elektronischen Schalter (TI, T2) miteinan der und jeweils mit dem zweiten Modulanschluss (2) verbunden sind .

7. Schaltmodul (M) nach Anspruch 5, wobei der Source- Anschluss (S) des ersten elektronischen Schalters (TI) mit dem ersten Modulanschluss (1) verbunden ist, der Source- Anschluss (S) des zweiten elektronischen Schalters (T2) mit dem dritten Modulanschluss (3) verbunden ist und die Drain- Anschlüsse (D) der elektronischen Schalter (TI, T2) miteinan der und jeweils mit dem zweiten Modulanschluss (2) verbunden sind .

8. Schaltmodul (M) nach einem der vorhergehenden Ansprüche, wobei antiparallel zu jedem elektronischen Schalter (TI, T2) eine Diode (Dl, D2) geschaltet ist.

9. Schaltmodul (M) nach einem der vorhergehenden Ansprüche mit Anschlussbezeichnungen für die Modulanschlüsse (1, 2, 3), die den ersten Modulanschluss (1) als einen unidirektionalen und bidirektionalen Eingangsanschluss, den zweiten Modulan schluss (2) als einen unidirektionalen Ausgangsanschluss und den dritten Modulanschluss (3) als einen unidirektionalen Eingangsanschluss und bidirektionalen Ausgangsanschluss aus- weisen .

10. Schaltmodul (M) nach einem der vorhergehenden Ansprüche mit einem Schalter (4), über den der erste Modulanschluss (1) und der dritte Modulanschluss (3) miteinander verbindbar sind .

11. Verfahren zum Verbinden einer Last (L) mit einem Gleich stromnetz (N) mittels eines Schaltmoduls (M) nach einem der vorhergehenden Ansprüche, wobei

- wenn zwischen der Last (L) und dem Gleichstromnetz (N) ein bidirektionaler Überstromschutz vor Überströmen in beiden Stromrichtungen benötigt wird, eine Netzleitung (5) des

Gleichstromnetzes (N) mit dem ersten Modulanschluss (1) des Schaltmoduls (M) verbunden wird und eine Lastleitung (6) der Last (L) mit dem dritten Modulanschluss (3) des Schaltmo duls (M) verbunden wird, und

- wenn zwischen der Last (L) und dem Gleichstromnetz (N) nur ein unidirektionaler Überstromschutz vor Überströmen mit ei ner Stromrichtung benötigt wird, eine Netzleitung (5) des Gleichstromnetzes (N) mit dem ersten Modulanschluss (1) und/oder dem dritten Modulanschluss (3) des Schaltmoduls (M) verbunden wird und eine Lastleitung (6) der Last (L) mit dem zweiten Modulanschluss (2) des Schaltmoduls (M) verbunden wird .

12. Gleichstromnetz (N) mit einem Schaltmodul (M) nach einem der Ansprüche 1 bis 10.

Description:
Beschreibung

Verbinden einer Last mit einem Gleichstromnetz

Die Erfindung betrifft ein Schaltmodul und ein Verfahren zum Verbinden einer Last mit einem Gleichstromnetz.

In einem Gleichstromnetz kann zwischen zwei Typen von mit dem Gleichstromnetz verbundenen Lasten unterschieden werden. Zum einen gibt es Lasten eines ersten Typs, bei dem ein elektri scher Strom immer in derselben Stromrichtung durch eine Ver bindungsleitung zwischen dem Gleichstromnetz und der Last fließt. Derartige Lasten sind beispielsweise reine Verbrau cher, denen durch das Gleichstromnetz Energie zugeführt wird. Zum anderen gibt es Lasten eines zweiten Typs, bei dem ein elektrischer Strom in beiden Stromrichtungen durch eine Ver bindungsleitung zwischen dem Gleichstromnetz und der Last fließen kann. Derartige Lasten können mit Energie aus dem Gleichstromnetz versorgt werden und Energie an das Gleich stromnetz abgeben. Ein Beispiel für eine Last des zweiten Typs ist eine rotierende elektrische Maschine, die sowohl als Elektromotor als auch als Generator betrieben werden oder wirken kann. Während Lasten des ersten Typs vor Überströmen nur einer Stromrichtung geschützt werden müssen, müssen Las ten des zweiten Typs vor Überströmen beider Stromrichtungen geschützt werden. Häufig ist es erforderlich, Überströme, die beispielsweise durch Überlastungen oder Kurzschlüsse verur sacht werden, sehr schnell abschalten zu können, um Schäden zu vermeiden oder zu reduzieren. Dazu werden in der Regel elektronische Schalter verwendet.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren anzugeben, mit denen Verbindungen von Las ten beider oben genannter Typen mit einem Gleichstromnetz ge eignet vor Überströmen geschützt werden können.

Die Aufgabe wird erfindungsgemäß durch ein Schaltmodul mit den Merkmalen des Anspruchs 1, ein Verfahren mit den Merkma- len des Anspruchs 11 und ein Gleichstromnetz mit den Merkma len des Anspruchs 12 gelöst.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.

Ein erfindungsgemäßes Schaltmodul zum Verbinden einer Last mit einem Gleichstromnetz umfasst einen ersten Modulan schluss, einen zweiten Modulanschluss, einen dritten Modulan schluss, einen ersten elektronischen Schalter und einen zwei ten elektronischen Schalter. Der erste elektronische Schalter ist zwischen den ersten Modulanschluss und den zweiten Modu lanschluss geschaltet. Der zweite elektronische Schalter ist zwischen den zweiten Modulanschluss und den dritten Modulan schluss geschaltet. Ferner sind die beiden elektronischen Schalter antiseriell, das heißt mit einander entgegengesetz ten Durchlassrichtungen, zwischen den ersten Modulanschluss und den dritten Modulanschluss geschaltet. Unter den Begriff einer Last wird hier und im Folgenden auch eine Lastzone mit mehreren Geräten gefasst.

Ein erfindungsgemäßes Schaltmodul ermöglicht es, eine Last mit einem Gleichstromnetz auf verschiedene Weisen in Abhän gigkeit davon zu verbinden, ob zwischen der Last und dem Gleichstromnetz ein bidirektionaler Überstromschutz vor Über strömen in beiden Stromrichtungen oder nur ein unidirektiona- ler Überstromschutz vor Überströmen mit einer Stromrichtung benötigt wird.

Für den bidirektionalen Überstromschutz weist das Schaltmodul den ersten Modulanschluss und den dritten Modulanschluss auf. Die antiserielle Verschaltung der beiden elektronischen

Schalter zwischen diesen beiden Modulanschlüssen ermöglicht einen Überstromschutz in beiden Stromrichtungen durch Öffnen des elektronischen Schalters, dessen Durchlassrichtung der jeweiligen Stromrichtung des Überstroms entspricht. Eine bidirektional vor Überströmen zu schützende Last wird daher über den ersten Modulanschluss und den dritten Modulanschluss mit dem Gleichstromnetz verbunden, wobei beispielsweise der erste Modulanschluss mit dem Gleichstromnetz verbunden wird und der dritte Modulanschluss mit der Last verbunden wird.

Für den unidirektionalen Überstromschutz weist das Schaltmo dul den zweiten Modulanschluss auf, der über den ersten elektronischen Schalter mit dem ersten Modulanschluss und über den zweiten elektronischen Schalter mit dem dritten Mo dulanschluss verbunden ist. Dies ermöglicht, eine nur unidi- rektional vor Überströmen zu schützende Last beispielsweise über den zweiten Modulanschluss als lastseitigen Anschluss und über den ersten oder den dritten Modulanschluss als netz seitigen Anschluss mit dem Gleichstromnetz zu verbinden.

Dadurch muss der Strom zwischen der Last und dem Gleichstrom netz nur über einen der beiden elektronischen Schalter flie ßen, wodurch die Verluste gegenüber einer Stromführung über beide in Reihe geschaltete Schalter vorteilhaft halbiert wer den. Ferner können auch der erste Modulanschluss und der dritte Modulanschluss zusammengeschaltet und mit dem Gleich stromnetz verbunden werden, während der zweite Modulanschluss mit der Last verbunden wird. Dann sind die beiden elektroni schen Schalter parallelgeschaltet und die Verluste werden noch einmal reduziert.

Bei einer Ausgestaltung der Erfindung ist jeder elektronische Schalter ein Bipolartransistor mit isolierter Gate-Elektrode (IGBT = Insulated-Gate Bipolar Transistor) , der einen Kollek tor-Anschluss, einen Emitter-Anschluss und einen Gate- Anschluss aufweist. Dabei ist beispielsweise der Kollektor- Anschluss des ersten elektronischen Schalters mit dem ersten Modulanschluss verbunden, der Kollektor-Anschluss des zweiten elektronischen Schalters ist mit dem dritten Modulanschluss verbunden, und die Emitter-Anschlüsse der elektronischen Schalter sind miteinander und jeweils mit dem zweiten Modu lanschluss verbunden. Alternativ ist der Emitter-Anschluss des ersten elektronischen Schalters mit dem ersten Modulan schluss verbunden, der Emitter-Anschluss des zweiten elektro nischen Schalters ist mit dem dritten Modulanschluss verbun- den, und die Kollektor-Anschlüsse der elektronischen Schalter sind miteinander und jeweils mit dem zweiten Modulanschluss verbunden. Die Schaltungsvariante, bei der die Emitter- Anschlüsse der elektronischen Schalter miteinander und je weils mit dem zweiten Modulanschluss verbunden sind, hat den Vorteil, dass für beide Gate-Anschlüsse dieselbe Steuerspan nung verwendet und daher ein Gate-Treiber eingespart werden kann. Die Schaltungsvariante, bei der die Kollektor- Anschlüsse der elektronischen Schalter miteinander und je weils mit dem zweiten Modulanschluss verbunden sind, hat den Vorteil einer höheren Stabilität gegenüber netzgeführten elektromagnetischen Störungen. Welcher Vorteil überwiegt und welche Schaltungsvariante daher bevorzugt verwendet wird, hängt von der konkreten Anwendung ab.

Bei einer anderen Ausgestaltung der Erfindung ist jeder elektronische Schalter ein Metall-Oxid-Halbleiter- Feldeffekttransistor (MOSFET = Metal-Oxide-Semiconductor Field-Effect Transistor) mit einem Drain-Anschluss, einem Source-Anschluss und einem Gate-Anschluss. Dabei ist bei spielsweise der Drain-Anschluss des ersten elektronischen Schalters mit dem ersten Modulanschluss verbunden, der Drain- Anschluss des zweiten elektronischen Schalters ist mit dem dritten Modulanschluss verbunden, und die Source-Anschlüsse der elektronischen Schalter sind miteinander und jeweils mit dem zweiten Modulanschluss verbunden. Alternativ ist der Source-Anschluss des ersten elektronischen Schalters mit dem ersten Modulanschluss verbunden, der Source-Anschluss des zweiten elektronischen Schalters ist mit dem dritten Modulan schluss verbunden, und die Drain-Anschlüsse der elektroni schen Schalter sind miteinander und jeweils mit dem zweiten Modulanschluss verbunden. Die vorgenannten Schaltungsvarian ten entsprechen den oben genannten im Fall, dass die elektro nischen Schalter IGBT sind, wobei der Drain-Anschluss eines MOSFET die Rolle des Kollektor-Anschlusses des entsprechenden IGBT und der Source-Anschluss des MOSFET die Rolle des Emit ter-Anschlusses des IGBT übernimmt. Bei einer weiteren Ausgestaltung der Erfindung ist antiparal lel zu jedem elektronischen Schalter eine Diode geschaltet. Dadurch wird beispielsweise im Fall eines als IGBT ausgebil deten elektronischen Schalters eine Stromführung durch die Diode in der Sperrrichtung des IGBT ermöglicht. Auch im Fall eines als MOSFET ausgebildeten elektronischen Schalters kann eine antiparallel zu dem MOSFET geschaltete Diode vorteilhaft sein, beispielsweise wenn eine Flussspannung an der Inversdi ode des MOSFET zu groß wird.

Bei einer weiteren Ausgestaltung der Erfindung weist das Schaltmodul Anschlussbezeichnungen für die Modulanschlüsse auf, die den ersten Modulanschluss als einen unidirektionalen und bidirektionalen Eingangsanschluss, den zweiten Modulan schluss als einen unidirektionalen Ausgangsanschluss und den dritten Modulanschluss als einen unidirektionalen Eingangsan schluss und bidirektionalen Ausgangsanschluss ausweisen. Die se Anschlussbezeichnungen erleichtern vorteilhaft eine dem jeweils erwünschten Überstromschutz (bi- oder unidirektional ) angepasste Beschaltung des Schaltmoduls und reduzieren die Gefahr fehlerhafter oder ungünstiger Beschaltungen.

Bei einer weiteren Ausgestaltung der Erfindung sind der erste Modulanschluss und der dritte Modulanschluss über einen

Schalter miteinander verbindbar. Dies vereinfacht die oben bereits erwähnte vorteilhafte Parallelschaltung der beiden elektronischen Schalter im Falle einer nur unidirektional vor Überstrom zu schützenden Last, da diese Parallelschaltung durch Schließen des Schalters möglich ist.

Bei dem erfindungsgemäßen Verfahren zum Verbinden einer Last mit einem Gleichstromnetz mittels eines erfindungsgemäßen Schaltmoduls wird, wenn zwischen der Last und dem Gleich stromnetz ein bidirektionaler Überstromschutz vor Überströmen in beiden Stromrichtungen benötigt wird, eine Netzleitung des Gleichstromnetzes mit dem ersten Modulanschluss des Schaltmo duls verbunden und eine Lastleitung der Last wird mit dem dritten Modulanschluss des Schaltmoduls verbunden. Wenn hin- gegen zwischen der Last und dem Gleichstromnetz nur ein un- idirektionaler Überstromschutz vor Überströmen mit einer Stromrichtung benötigt wird, wird eine Netzleitung des

Gleichstromnetzes mit dem ersten Modulanschluss und/oder dem dritten Modulanschluss des Schaltmoduls verbunden und eine Lastleitung der Last wird mit dem zweiten Modulanschluss des Schaltmoduls verbunden. Die Vorteile des erfindungsgemäßen Verfahrens entsprechen den oben bereits genannten Vorteilen eines erfindungsgemäßen Schaltmoduls.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusam menhang mit der folgenden Beschreibung von Ausführungsbei spielen, die im Zusammenhang mit den Zeichnungen näher erläu tert werden. Dabei zeigen:

FIG 1 ernen Schaltplan eines ersten Ausführungsbeispiels eines erfindungsgemäßen Schaltmoduls,

FIG 2 einen Schaltplan eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Schaltmoduls,

FIG 3 einen Schaltplan eines dritten Ausführungsbeispiels ernes erfindungsgemäßen Schaltmoduls,

FIG 4 einen Schaltplan eines vierten Ausführungsbeispiels eines erfindungsgemäßen Schaltmoduls,

FIG 5 einen Schaltplan eines fünften Ausführungsbeispiels ernes erfindungsgemäßen Schaltmoduls,

FIG 6 schematisch eine über ein Schaltmodul mit einem

Gleichstromnetz für bidirektionalen Überstromschutz verbundene Last, FIG 7 schematisch eine über ein Schaltmodul mit einem

Gleichstromnetz für unidirektionalen Überstrom schutz verbundene Last.

Einander entsprechende Teile sind in den Figuren mit densel ben Bezugszeichen versehen.

Figur 1 zeigt einen Schaltplan eines ersten Ausführungsbei spiels eines erfindungsgemäßen Schaltmoduls M. Das Schaltmo dul M umfasst einen ersten Modulanschluss 1, einen zweiten Modulanschluss 2, einen dritten Modulanschluss 3, einen ers ten elektronischen Schalter TI, einen zweiten elektronischen Schalter T2, eine erste Diode Dl und eine zweite Diode D2.

Jeder elektronische Schalter TI, T2 ist ein IGBT mit einem Kollektor-Anschluss C, einem Emitter-Anschluss E und einem Gate-Anschluss G.

Der Kollektor-Anschluss C des ersten elektronischen Schal ters TI ist mit dem ersten Modulanschluss 1 verbunden. Der Kollektor-Anschluss C des zweiten elektronischen Schalters T2 ist mit dem dritten Modulanschluss 3 verbunden. Die Emitter- Anschlüsse E der elektronischen Schalter TI, T2 sind mitei nander und jeweils mit dem zweiten Modulanschluss 2 verbun den. Damit ist der erste elektronische Schalter TI zwischen den ersten Modulanschluss 1 und den zweiten Modulanschluss 2 geschaltet, der zweite elektronische Schalter T2 ist zwischen den zweiten Modulanschluss 2 und den dritten Modulanschluss 3 geschaltet, und die beiden elektronischen Schalter TI, T2 sind antiseriell zwischen den ersten Modulanschluss 1 und den dritten Modulanschluss 3 geschaltet.

Die Kathode der ersten Diode Dl ist mit dem Kollektor- Anschluss C des ersten elektronischen Schalters TI verbunden. Die Anode der ersten Diode Dl ist mit dem Emitter-Anschluss E des ersten elektronischen Schalters TI verbunden. Dadurch ist die erste Diode Dl antiparallel zu dem ersten elektronischen Schalter TI geschaltet. Die Kathode der zweiten Diode D2 ist mit dem Kollektor- Anschluss C des zweiten elektronischen Schalters T2 verbun den. Die Anode der zweiten Diode D2 ist mit dem Emitter- Anschluss E des zweiten elektronischen Schalters T2 verbun den. Dadurch ist die zweite Diode D2 antiparallel zu dem zweiten elektronischen Schalter T2 geschaltet.

Figur 2 zeigt einen Schaltplan eines zweiten Ausführungsbei spiels eines erfindungsgemäßen Schaltmoduls M. Dieses Ausfüh rungsbeispiel unterscheidet sich von dem in Figur 1 darge stellten ersten Ausführungsbeispiel lediglich dadurch, dass die Verschaltungen der Kollektor-Anschlüsse C und der Emit ter-Anschlüsse E der elektronischen Schalter TI, T2 gegenüber dem ersten Ausführungsbeispiel vertauscht sind: der Emitter- Anschluss E des ersten elektronischen Schalters TI ist mit dem ersten Modulanschluss 1 verbunden, der Emitter- Anschluss E des zweiten elektronischen Schalters T2 ist mit dem dritten Modulanschluss 3 verbunden, und die Kollektor- Anschlüsse C der elektronischen Schalter TI, T2 sind mitei nander und jeweils mit dem zweiten Modulanschluss 2 verbun den. Wiederum ist die erste Diode Dl antiparallel zu dem ers ten elektronischen Schalter TI geschaltet und die zweite Dio de D2 ist antiparallel zu dem zweiten elektronischen Schal ter T2 geschaltet.

Figur 3 zeigt einen Schaltplan eines dritten Ausführungsbei spiels eines erfindungsgemäßen Schaltmoduls M. Dieses Ausfüh rungsbeispiel unterscheidet sich von dem in Figur 1 darge stellten ersten Ausführungsbeispiel lediglich durch einen zu sätzlichen Schalter 4, der zwischen den ersten Modulan schluss 1 und den dritten Modulanschluss 3 geschaltet ist, so dass durch Schließen des Schalters 4 der erste Modulan schluss 1 und der dritte Modulanschluss 3 miteinander verbun den werden können. Dadurch können die beiden elektronischen Schalter TI, T2 durch Schließen des Schalters 4 parallel zu einander zwischen den ersten Modulanschluss 1 oder den drit- ten Modulanschluss 3 und den zweiten Modulanschluss 2 ge schaltet werden.

Figur 4 zeigt einen Schaltplan eines vierten Ausführungsbei spiels eines erfindungsgemäßen Schaltmoduls M. Dieses Ausfüh rungsbeispiel unterscheidet sich von dem in Figur 2 darge stellten zweiten Ausführungsbeispiel lediglich durch einen zusätzlichen Schalter 4, der zwischen den ersten Modulan schluss 1 und den dritten Modulanschluss 3 geschaltet ist, so dass durch Schließen des Schalters 4 analog zu Figur 3 der erste Modulanschluss 1 und der dritte Modulanschluss 3 mitei nander verbunden werden können.

Figur 5 zeigt einen Schaltplan eines fünften Ausführungsbei spiels eines erfindungsgemäßen Schaltmoduls M. Dieses Ausfüh rungsbeispiel unterscheidet sich von dem in Figur 1 darge stellten ersten Ausführungsbeispiel im Wesentlichen dadurch, dass jeder elektronische Schalter TI, T2 ein MOSFET mit einem Drain-Anschluss D, einem Source-Anschluss S und einem Gate- Anschluss G ist, wobei der Drain-Anschluss D die Rolle des Kollektor-Anschlusses C des entsprechenden IGBT in Figur 1 und der Source-Anschluss S die Rolle des Emitter- Anschlusses E des IGBT übernimmt. Außerdem weist das in Fi gur 5 gezeigte Schaltmodul M keine Dioden Dl, D2 auf, bezie hungsweise die Funktion der in Figur 1 gezeigten Dioden Dl,

D2 wird in dem in Figur 5 gezeigten Ausführungsbeispiel von den (intrinsischen) Inversdioden der als MOSFET ausgebildeten elektronischen Schalter TI, T2 übernommen. Erforderlichen falls, insbesondere wenn Flussspannungen an den Inversdioden zu groß werden, kann das in Figur 5 gezeigte Ausführungsbei spiel jedoch analog zu dem in Figur 1 gezeigten Ausführungs beispiel abgewandelt werden, indem eine Diode Dl, D2 antipa rallel zu jedem elektronischen Schalter TI, T2 geschaltet ist .

Analog zu der Abwandlung des in Figur 1 gezeigten Ausfüh rungsbeispiels zu dem in Figur 5 gezeigten Ausführungsbei spiel können auch die in den Figuren 2 bis 4 gezeigten Aus- führungsbeispiele abgewandelt werden, indem jeweils jeder als ein IGBT ausgebildete elektronische Schalter TI, T2 durch ei nen als ein MOSFET ausgebildeten elektronischen Schalter TI, T2 ohne oder mit dazu antiparallel geschalteter Diode Dl, D2 ersetzt wird, wobei der Drain-Anschluss D des MOSFET wie der Kollektor-Anschluss C des IGBT verschaltet ist und der

Source-Anschluss S des MOSFET wie der Emitter-Anschluss E des IGBT verschaltet ist.

Entsprechend können die in den Figuren 1 bis 4 gezeigten Aus führungsbeispiele jeweils zu weiteren Ausführungsbeispielen abgewandelt werden, indem jeder als ein IGBT ausgebildete elektronische Schalter TI, T2 durch einen anderen Halbleiter schalter als einen MOSFET ersetzt wird.

Die in den Figuren 1 und 5 gezeigten Schaltmodule M und deren oben beschriebene Abwandlungen sind dazu ausgebildet, eine Last L mit einem Gleichstromnetz N zu verbinden und die Ver bindung vor Überströmen zu schützen, indem im Fall eines Überstroms der jeweilige elektronische Schalter TI, T2, über den der Überstrom fließt, geöffnet wird. Dazu sind die Modu lanschlüsse 1, 2, 3 jeweils aus dem Schaltmodul M herausge führt .

Figur 6 zeigt schematisch den Fall, dass zwischen der Last L und dem Gleichstromnetz N ein bidirektionaler Überstromschutz vor Überströmen in beiden Stromrichtungen benötigt wird. In diesem Fall wird bei allen Ausführungsbeispielen des Schalt moduls M eine Netzleitung 5 des Gleichstromnetzes N mit dem ersten Modulanschluss 1 des Schaltmoduls M verbunden und eine Lastleitung 6 der Last L wird mit dem dritten Modulan

schluss 3 des Schaltmoduls M verbunden.

Figur 7 zeigt schematisch den Fall, dass zwischen der Last L und dem Gleichstromnetz N nur ein unidirektionaler Überstrom schutz vor Überströmen mit einer Stromrichtung benötigt wird. In diesem Fall wird die Lastleitung 6 der Last L mit dem zweiten Modulanschluss 2 des Schaltmoduls M verbunden und die Netzleitung 5 des Gleichstromnetzes N wird mit dem ersten Mo dulanschluss 1 und dem dritten Modulanschluss 3 verbunden. Alternativ kann die Netzleitung 5 des Gleichstromnetzes N in diesem Fall auch nur mit dem ersten Modulanschluss 1 oder dem dritten Modulanschluss 3 verbunden werden. Im Fall der in den Figuren 3 und 4 gezeigten Ausführungsbeispiele kann dabei der Schalter 4 geschlossen werden.

Vorzugsweise weist das Schaltmodul M jeweils Anschlussbe- Z eichnungen für die Modulanschlüsse 1, 2, 3 auf, die den ers ten Modulanschluss 1 als einen unidirektionalen und bidirek tionalen Eingangsanschluss, den zweiten Modulanschluss 2 als einen unidirektionalen Ausgangsanschluss und den dritten Mo dulanschluss 3 als einen unidirektionalen Eingangsanschluss und bidirektionalen Ausgangsanschluss ausweisen.

Obwohl die Erfindung im Detail durch bevorzugte Ausführungs beispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.