Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONNECTION OF ELEMENTS OF AERONAUTICAL STRUCTURES WITH OTHER THERMOPLASTIC ELEMENTS
Document Type and Number:
WIPO Patent Application WO/2011/064436
Kind Code:
A1
Abstract:
Joining of elements (1) that are part of aeronautical structures, said elements (1) being made of composite material, with other thermoplastic or reinforced thermoplastic elements (2) also belonging to aeronautical structures, said element (1) having at least one part of its structure made of thermoplastic material, said thermoplastic material part being placed in the structure of the most superficial layer of the element (1) of composite material, with respect to the thermoplastic or reinforced thermoplastic element (2) with which it is going to be joined, such that the join between the elements (1, 2) is made by ultrasonic welding without fusion, pressure and heat being applied through the friction of the surfaces of the elements to be joined (1, 2), thereby creating a permanent join between the elements (1, 2), it being nonetheless possible to remove them.

Inventors:
SANCHEZ BLAZQUEZ ANGELES (ES)
Application Number:
PCT/ES2010/070776
Publication Date:
June 03, 2011
Filing Date:
November 25, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AIRBUS OPERATIONS SL (ES)
SANCHEZ BLAZQUEZ ANGELES (ES)
International Classes:
B29C65/08; B64C1/00
Foreign References:
EP2047983A12009-04-15
GB2044172A1980-10-15
EP0261850A21988-03-30
Other References:
None
Attorney, Agent or Firm:
ELZABURU, ALBERTO DE (ES)
Download PDF:
Claims:
REIVINDICACIONES

Unión de elementos (1 ) que forman parte de estructuras aeronáuticas, estando dichos elementos (1 ) realizados en material compuesto, con otros elementos termoplásticos o termoplásticos reforzados (2) pertenecientes también a estructuras aeronáuticas, caracterizada porque dicho elemento (1 ) comprende al menos una parte de su estructura realizada en material termoplástico, estando dispuesta dicha parte de material termoplástico en la estructura de la capa más superficial del elemento (1 ) de material compuesto, con respecto al elemento termoplástico o termoplástico reforzado (2) con el que va a unirse, de tal modo que la unión entre los elementos (1 , 2) se realiza por medio de soldadura ultrasónica sin fusión, aplicándose presión y calor a través de la fricción de las superficies de los elementos a unir (1 , 2), consiguiéndose de este modo una unión permanente de los elementos (1 , 2), siendo al mismo tiempo posible su extracción.

Unión de elementos (1 ) según la reivindicación 1 , en la cual el elemento (1 ) de material compuesto comprende una capa (3) de material termoplástico en forma de malla de tejido entrelazado, estando dicha capa (3) embebida en el seno de la estructura de la capa más superficial del elemento (1 ) con respecto al elemento termoplástico o termoplástico reforzado (2).

Unión de elementos (1 ) según la reivindicación 2, en la cual la capa (3) de material termoplástico en forma de malla de tejido entrelazado tiene una luz (10) de un tamaño tal que permita a la resina fluir a través de dicha capa (3), de tal modo que dicha capa (3) quede perfectamente embebida en el seno de la estructura del elemento (1 ).

Unión de elementos (1 ) según la reivindicación 3, en la cual la luz (10) de la malla que conforma la capa (3) tiene un valor comprendido entre 0,20 y 0,25 mm. Unión de elementos (1 ) según cualquiera de las reivindicaciones 3 ó 4, en la cual la malla que conforma la capa (3) comprende unos nodos que sirven de puntos de unión para conseguir una perfecta unión de la capa (3) en el seno de la estructura del elemento (1 ).

Unión de elementos (1 ) según cualquiera de las reivindicaciones anteriores, en la cual el elemento (1 ) es de material termoestable, o de una mezcla de material termoestable y material termoplástico.

Método para realizar la unión de elementos (1 ) que forman parte de estructuras aeronáuticas, estando dichos elementos (1 ) realizados en material compuesto, con otros elementos termoplásticos o termoplásticos reforzados (2) pertenecientes también a estructuras aeronáuticas, caracterizado porque dicho método comprende las siguientes etapas: a) preparación de la superficie exterior del elemento (1 ) de material compuesto, que comprende una parte de la estructura de su superficie exterior realizada en material termoplástico;

b) unión mediante soldadura por ultrasonidos sin fusión de la superficie exterior del elemento (1 ) con la superficie exterior del otro elemento termoplástico o termoplástico reforzado (2).

Método para realizar la unión de elementos (1 ) según la reivindicación 7 que comprende además una etapa previa a la etapa a), en la cual tiene lugar el posicionamiento de una capa (3) de material termoplástico sobre la superficie exterior del elemento (1 ) de material compuesto, previamente al proceso de fabricación de dicho elemento (1 ), de tal forma que, tras un proceso de curado, dicha capa (3) quede embebida en el elemento (1 ). Método para realizar la unión de elementos (1 ) según cualquiera de las reivindicaciones 7-8, el cual, en la etapa b), la unión mediante soldadura por ultrasonidos del elemento (1 ) de la estructura aeronáutica con el otro elemento termoplástico o termoplástico reforzado (2), se realiza aplicando una vibración en una dirección (5) de alta frecuencia por medio de un dispositivo que comprende un transductor que a su vez convierte la energía eléctrica en un movimiento vibratorio de alta frecuencia, aplicado en la dirección (5) mediante un adaptador (4).

10. Método para realizar la unión de elementos (1 ) según cualquiera de las reivindicaciones 5-7, que comprende además, después de la etapa b), una etapa en la cual se realiza la extracción del elemento termoplástico o termoplástico reforzado (2), realizándose posteriormente la unión de dicho elemento (2) mediante soldeo por ultrasonidos en una nueva posición.

Description:
UNIÓN DE ELEMENTOS DE ESTRUCTURAS AERONÁUTICAS CON OTROS

ELEMENTOS TERMOPLÁSTICOS CAMPO DE LA INVENCION

La presente invención se refiere a la unión mediante soldadura de elementos que forman parte de estructuras aeronáuticas, estando dichos elementos realizados en material compuesto, con otros elementos termoplásticos pertenecientes también a estructuras aeronáuticas.

ANTECEDENTES DE LA INVENCION

A lo largo de la historia, tanto en la industria aeronáutica como en otros sectores industriales, se han utilizado básicamente tres tipos de uniones para ensamblar componentes: el ensamblaje mecánico, como tipo de unión permanente o no permanente; las uniones soldadas y las uniones adhesivas, como tipos de uniones permanentes.

El ensamblaje de tipo mecánico implica el uso de diferentes métodos de sujeción para mantener unidas de forma mecánica dos (o más) elementos. En la mayoría de los casos, los métodos de sujeción implican el uso de elementos adicionales, llamados sujetadores, que se agregan a los elementos que van a ensamblarse durante la citada operación de ensamblado. En otros casos, el mecanismo de sujeción implica un conformado especial sobre uno de los elementos que se van a ensamblar, con lo que no son necesarios sujetadores adicionales. Los métodos de sujeción mecánica se dividen en dos clases principales: los métodos que permiten el desensamblaje y los métodos que crean una unión permanente. Los sujetadores roscados como tornillos, pernos y tuercas son ejemplos del primer método de sujeción mecánica, mientras que los remaches ilustran el segundo.

En el caso particular de la industria aeronáutica, los materiales más empleados en la actualidad, debido a sus propiedades de resistencia y bajo peso son los materiales compuestos, también denominados composites. Así, existen muchos elementos, de material compuesto, que conforman estructuras aeronáuticas y que comprenden distintas partes o piezas que deben ser montadas unas con otras, de tal modo que sean ensambladas de forma no permanente, para permitir así posteriores reparaciones o sustituciones. Sin embargo, existen también elementos de material compuesto que conforman estructuras aeronáuticas y que comprenden distintas partes o piezas, siendo muy complejo el fabricar de una sola pieza dichos elementos, por lo que se opta por fabricar diversas piezas, que posteriormente se unirán de forma permanente para conformar los citados elementos. En este último caso, las uniones permanentes de las distintas partes o piezas que conforman estos elementos se pueden realizar por soldadura o bien mediante el empleo de adhesivos.

Para realizar la citada unión de elementos de material compuesto que conforman estructuras aeronáuticas que comprenden distintas partes o piezas unidas de forma permanente, se puede emplear una técnica de soldadura, lo cual se consigue habitualmente fundiendo parte de las piezas a unir o bien fundiendo un material de aporte intermedio de tal forma que se obtenga una única pieza final en la que no exista discontinuidad física, realizándose esta unión mediante un incremento de temperatura de las superficies de las piezas a soldar, colocadas en contacto. También es posible, según se ha comentado anteriormente, realizar esta unión mediante el empleo de adhesivos, utilizándose en este caso un polímero que se adhiere a las piezas que se van a unir.

Generalmente, no hay un método simple de unión permanente que constituya la mejor elección para los elementos de material compuesto que conforman estructuras aeronáuticas. Sin embargo, la unión mediante adhesivos suele ser un buen método cuando se trata de unir piezas de materiales físicamente disimilares o metalúrgicamente incompatibles, polímeros termoestables, cerámicos, elastomeros, materiales muy delgados o sustratos de tamaño muy pequeño. El problema que plantean estas uniones con adhesivos está en que son necesarios elevados tiempos de fabricación para realizarlas, mermándose así sustancialmente su viabilidad industrial. La problemática asociada con las uniones de tipo mecánico se basa en el elevado peso que añaden las piezas adicionales (sujetadores) necesarias para realizar estas uniones, generalmente realizadas en metal, y por tanto con una elevada densidad, lo cual es contraproducente en el ámbito de la industria aeronáutica, en el que la prioridad de los nuevos desarrollos pasa por la reducción en peso.

De los métodos anteriormente citados, el de uniones de tipo mecánico lleva asociados los inconvenientes de necesitar de elementos roscados que precisan además de modificaciones en las piezas que se van a ensamblar (taladrado o roscado, por ejemplo), así como un mayor número de piezas (tornillos, remaches, etc.), lo cual siempre contribuye a no cumplir con la mencionada prioridad de reducción en peso.

Por otro lado, el método de unión mediante adhesivos no alcanza suficiente resistencia en la unión como alcanzan las uniones soldadas.

Por las razones anteriormente mencionadas, el método más económico

(en términos de materiales y costes de fabricación) y fiable para realizar la unión de este tipo de elementos es el de la soldadura.

Se conoce el uso de soldadura por ultrasonidos de uniones encoladas de elementos de material compuesto de matriz termoplástica que conforman estructuras aeronáuticas que comprenden distintas partes o piezas. Sin embargo, la unión por soldadura ultrasónica de forma directa, no es factible cuando se emplea para unir elementos de material compuesto de matriz termoestable o con un cierto porcentaje de termoestable en su composición.

Se conoce en la técnica el uso de filmes de material termoplástico que se sitúan sobre el material compuesto previamente al proceso de fabricación del mismo, de tal forma que, tras un proceso de curado, queden embebidas en dicho material compuesto, para realizar mediante ellas la unión con otros elementos termoplásticos empleando la soldadura por ultrasonidos. Sin embargo, estas capas o filmes presentaban el problema de que podían llegar a despegarse a lo largo de la vida útil del material compuesto sobre el que se adherían. Por otro lado, la unión conseguida presentaba deficiencias de resistencia y fiabilidad, máxime cuando dichas uniones iban a ser empleadas en el campo de la aeronáutica.

La presente invención está orientada a solucionar la problemática anteriormente mencionada.

SUMARIO DE LA INVENCION

Así, la presente invención, según un primer aspecto, se refiere a la unión mediante soldadura por ultrasonidos de elementos que forman parte de estructuras aeronáuticas, estando dichos elementos realizados en material compuesto, con otros elementos termoplásticos pertenecientes también a estructuras aeronáuticas.

Según la invención, el elemento de material compuesto (denominado sustrato) comprende una capa de material termoplástico, en forma de malla de tejido entrelazado y con una luz muy pequeña, denominado carrier, estando esta capa de material termoplástico (carrier) embebida en el seno de la estructura de la capa más superficial del material compuesto (sustrato) con respecto al elemento termoplástico (denominado fitting) sobre el que va a unirse dicho elemento (sustrato). Asimismo, según la invención, dicho fitting también puede estar constituido por material termoplástico que contenga algún tipo de refuerzo, como por ejemplo ocurre con los fittings de material compuesto de matriz termoplástica reforzada con fibra de vidrio.

En el caso particular de que el elemento de la estructura aeronáutica (fitting) que va a unirse con el otro elemento termoplástico (carrier) sea de tipo metálico, dicho elemento deberá comprender, según la invención, una capa de material termoplástico, estando dicha capa adherida sobre la superficie exterior del citado elemento (fitting) con respecto al elemento termoplástico (carrier) sobre el que va a unirse dicho elemento (sustrato), con lo que se vuelve a estar en un caso similar al descrito previamente.

Posteriormente, el elemento de material compuesto (sustrato) con la capa de material termoplástico (carrier) embebida en su estructura se une con el otro elemento termoplástico o termoplástico reforzado (fitting) mediante un proceso de soldadura por ultrasonidos, quedando realizada una unión estable y de tipo permanente pero al mismo tiempo extraíble, y obteniéndose una pieza de tipo unitario.

El hecho de que el elemento (sustrato) comprenda, según la invención, una capa de material termoplástico (carrier), hace posible que se pueda emplear la soldadura por ultrasonidos para unirlo con otro elemento termoplástico o termoplástico reforzado (fitting), al ser los elementos a unir de la misma naturaleza.

Por otro lado, para el caso de elementos de material compuesto, al ir la capa de material termoplástico embebida en el seno de la estructura de dicho elemento, se evita el problema de despegado y de poca fiabilidad de la unión al emplearse soldadura por ultrasonidos.

Además, la malla de material termoplástico (carrier) hace posible que el elemento de la estructura aeronáutica (sustrato) que se va a unir con otro elemento (fitting) pueda ser termoestable, termoplástico, o bien una mezcla de material termoplástico y de material termoestable.

Según un segundo aspecto, la invención se refiere a un método para realizar la unión de elementos que forman parte de estructuras aeronáuticas, estando dichos elementos realizados en material compuesto, con otros elementos termoplásticos o termoplásticos reforzados pertenecientes también a estructuras aeronáuticas. Este método comprende las siguientes etapas:

a) posicionamiento de una capa de material termoplástico (carrier) sobre la superficie exterior del elemento de material compuesto (sustrato) previamente al proceso de fabricación del elemento de material compuesto (sustrato) de tal forma que, tras un proceso de curado, quede embebida dicha capa (carrier) en el material compuesto (sustrato);

b) preparación de la superficie exterior del elemento de material compuesto (sustrato);

c) unión mediante soldadura por ultrasonidos de la capa de material termoplástico del elemento de la estructura aeronáutica (carrier) con el otro elemento (fitting), aplicando vibración de alta frecuencia con ayuda de un transductor;

d) en caso necesario, extracción del mencionado fitting y soldeo por ultrasonidos de dicho elemento en una nueva posición.

Otras características y ventajas de la presente invención se desprenderán de la descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que se acompañan. DESCRIPCION DE LAS FIGURAS

La Figura 1 muestra en esquema la unión de elementos que forman parte de estructuras aeronáuticas con otros elementos termoplásticos o termoplásticos reforzados pertenecientes también a estructuras aeronáuticas, según la presente invención.

La Figura 2 muestra una sección transversal en detalle de la capa de material termoplástico embebida en la superficie externa del elemento de material compuesto, según la presente invención.

La Figura 3 muestra en esquema el método para realizar la unión de elementos que forman parte de estructuras aeronáuticas con otros elementos termoplásticos o termoplásticos reforzados pertenecientes también a estructuras aeronáuticas, según la presente invención.

DESCRIPCIÓN DETALLADA DE LA INVENCION

La presente invención desarrolla, en un primer aspecto, la unión mediante soldadura por ultrasonidos de elementos 1 que forman parte de estructuras aeronáuticas (denominados sustratos), estando dichos elementos 1 realizados en material compuesto, con otros elementos termoplásticos 2 (denominados fittings) pertenecientes también a estructuras aeronáuticas. Asimismo, según la invención, dicho elemento 2 (fitting) también puede estar constituido de material termoplástico que contenga algún tipo de refuerzo, como por ejemplo ocurre con los fittings 2 de material compuesto de matriz termoplástica reforzada con fibra de vidrio.

Según la invención, el elemento 1 es de material compuesto y comprende una capa 3 de material termoplástico, en forma de malla de tejido entrelazado y con una luz muy pequeña, denominada carrier, estando esta capa 3 embebida en el seno de la estructura de la capa más superficial del material compuesto 1 con respecto al elemento termoplástico o termoplástico reforzado 2 sobre el que va a unirse dicho elemento 1 . La luz 10 de la malla que conforma la capa 3 de material termoplástico debe ser de un tamaño tal que permita a la resina fluir a través de dicha capa 3 para que quede perfectamente embebida en el seno de la estructura del elemento 1 de material compuesto y, al mismo tiempo, debe proporcionar los puntos de unión necesarios para conseguir una perfecta unión, estando constituidos estos puntos de unión por los nodos de la malla anterior (ver Figura 2). Un ejemplo no limitativo de la magnitud de la mencionada luz 10 de malla podría oscilar entre 0.20 y 0.25 mm.

En la Figura 2 se observa en detalle, en una sección en corte transversal, en que las fibras de material compuesto del elemento 1 están situadas a 90°, cómo está embebida la capa 3 de material termoplástico en dicho elemento 1 .

En el caso particular de que el elemento 2 (fitting) que va a unirse con el otro elemento de la estructura aeronáutica 1 (sustrato) sea de tipo metálico, dicho elemento 2 deberá comprender, según la invención, una capa de material termoplástico, estando dicha capa de material termoplástico adherida sobre la superficie exterior del citado elemento 2 con respecto al elemento 1 con el que va a unirse dicho elemento 2, con lo que se vuelve a estar en un caso similar al descrito previamente.

Posteriormente, este elemento 1 de material compuesto con la capa 3 de material termoplástico embebida en su estructura, se une con el otro elemento termoplástico o termoplástico reforzado 2 mediante un proceso de soldadura por ultrasonidos, quedando realizada una unión estable y de tipo permanente, pero al mismo tiempo extraíble, y obteniéndose una pieza de tipo unitario, como la que se muestra en esquema en la Figura 1 . El hecho de que el elemento 1 comprenda una capa 3 de material termoplástico, hace posible que se pueda emplear la soldadura por ultrasonidos para unirlo con otro elemento termoplástico o termoplástico reforzado 2, al ser los elementos a unir, 2 y 3, de la misma naturaleza.

Por otro lado, para el caso de elementos 1 de material compuesto, al ir la capa 3 de material termoplástico embebida en el seno de la estructura de dicho elemento 1 , se evita el problema de despegado de la unión al emplearse soldadura por ultrasonidos.

La capa 3 de material termoplástico hace posible que el elemento 1 de la estructura aeronáutica que se va a unir con otro elemento 2 pueda ser termoestable, termoplástico, o bien una mezcla de material termoplástico y de material termoestable.

Según se ha comentado, el elemento 1 de material compuesto comprende una capa 3 de material termoplástico en forma de tejido entrelazado, quedando esta capa 3 embebida en la superficie de dicho elemento 1 durante su curado, para posteriormente soldar por ultrasonidos el otro elemento 2 de material termoplástico o termoplástico reforzado con el que va a unirse. Este elemento 2 es de la misma naturaleza química que el mencionado tejido entrelazado que conforma la capa 3 anterior.

La capa 3 mencionada se denomina habitualmente carrier porque suele ser utilizada como "soporte" de productos fluidos de encolado que, por capilaridad a través de sus pequeñas aberturas (luz de la malla que la forma), propicia y facilita una buena extensión de dicho producto fluido en los procesos de encolado. La citada capa 3 (o carrier) es un material termoplástico, ligero y que se encuentra embebido encima de la última de las telas de fibra de carbono a partir de las cuales está formado el material compuesto del elemento 1 , en caso de ser éste de material compuesto. Al material de la capa 3 se le confiere el pertinente proceso de curado junto con el elemento 1 , de modo que se endurezca y quede embebido en el elemento 1 . Un ejemplo no limitativo de una micrografía ilustrativa de la posición de la capa 3 o carrier respecto a las fibras de carbono del elemento 1 se muestra en la Figura 2, según se ha comentado anteriormente. A continuación, una vez que se encuentran solidariamente unidas la capa 3, elemento 1 y el elemento 2, se lleva a cabo el proceso de soldadura por ultrasonidos para que los elementos permanezcan permanentemente unidos y al mismo tiempo sea factible su extracción. En dicho proceso de soldadura no se produce fusión y la soldadura se consigue aplicando presión y calor a través de la fricción de las superficies a unir hasta llegar a la temperatura de forja del material debido al rozamiento y a la presión ejercida. Al no producirse fusión, ésta técnica permite unir materiales disimilares. En la soldadura por ultrasonidos la fricción se consigue por medio de la aplicación de presiones oscilatorias provocadas por ondas de choque que inciden en las superficies a unir con frecuencia ultrasónica. Dicha oscilación provoca un contacto íntimo logrando la unión. El calor generado es muy inferior a las temperaturas de fusión del material y, por lo tanto, no se precisa de ningún tipo de protección para la soldadura. Para aplicar la vibración se utiliza un dispositivo que comprende un transductor que a su vez convierte la energía eléctrica en un movimiento vibratorio de alta frecuencia aplicado en la dirección 5 mediante un adaptador 4, tal y como se representa en esquema en la Figura 3. Las presiones necesarias son bajas y se utilizan para unir pequeños espesores y materiales blandos, como por ejemplo ocurre con los polímeros (materiales termoplásticos), el aluminio o el cobre, de entre los materiales metálicos.

En el caso particular de que el elemento 1 sea de material compuesto, y comprenda una cantidad suficiente de material termoplástico, estando dispuesta dicha parte de material termoplástico en la estructura del elemento 1 de material compuesto, es posible realizar la unión de dicho elemento 1 con el elemento 2 de material termoplástico o termoplástico reforzado de forma directa, empleando soldadura por ultrasonidos, sin necesidad de que el elemento 1 comprenda la capa 3 (carrier) de material termoplástico.

Según un segundo aspecto, la invención se refiere a un método para realizar la unión de elementos 1 que forman parte de estructuras aeronáuticas, estando dichos elementos 1 realizados en material compuesto, con otros elementos 2 termoplásticos o termoplásticos reforzados pertenecientes también a estructuras aeronáuticas. Este método comprende las siguientes etapas:

a) posicionamiento de una capa 3 de material termoplástico sobre la superficie exterior del elemento 1 de material compuesto, previamente al proceso de fabricación de dicho elemento 1 , de tal forma que, tras un proceso de curado, dicha capa 3 quede embebida en el elemento 1 ;

b) preparación de la superficie exterior del elemento 1 de material compuesto;

c) unión mediante soldadura por ultrasonidos a través de la capa 3 de material termoplástico del elemento 1 de la estructura aeronáutica con el otro elemento 2, aplicando una vibración en la dirección 5 de alta frecuencia por medio de un dispositivo que comprende un transductor que a su vez convierte la energía eléctrica en un movimiento vibratorio de alta frecuencia, aplicado en la dirección 5 mediante un adaptador 4; d) extracción en caso necesario del mencionado elemento 2 y soldeo por ultrasonidos de dicho elemento 2 en una nueva posición.

En las realizaciones que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.