Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONTROL METHOD FOR A ROBOT VEHICLE, AND ROBOT VEHICLE
Document Type and Number:
WIPO Patent Application WO/2009/138140
Kind Code:
A2
Abstract:
The invention relates to a method for controlling driving means which are designed to steer and move a robot vehicle (3) that is particularly designed as a lawn mowing vehicle. In said control method, the driving means are controlled in such a way that the robot vehicle (3) travels through several sections (2) of a working area (8) in a specific movement pattern according to a section travel strategy with the help of dead reckoning such that two adjoining course sections (5) overlap with a predefined probability transversely to the direction of travel of the robot vehicle (3). The invention further relates to a robot vehicle (3).

Inventors:
BIBER PETER (DE)
ALBERT AMOS (DE)
Application Number:
PCT/EP2008/067112
Publication Date:
November 19, 2009
Filing Date:
December 09, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
BIBER PETER (DE)
ALBERT AMOS (DE)
International Classes:
G05D1/02
Foreign References:
US5696675A1997-12-09
GB2277152A1994-10-19
Attorney, Agent or Firm:
ROBERT BOSCH GMBH (DE)
Download PDF:
Claims:

Ansprüche

1. Ansteuerverfahren zum Ansteuern von zum Lenken und Fortbewegen eines, insbesondere als Rasenmäherfahrzeug ausgebildeten, Roboterfahrzeugs (3) ausgebildeten Antriebsmitteln, wobei die Antriebsmittel derart angesteuert werden, dass mit dem Roboterfahrzeug (3) mehrere Teilstücke (2) einer Arbeitsfläche (8) unter Zuhilfenahme von Koppelnavigation jeweils in einem be- stimmten Bewegungsmuster gemäß einer Teilstück- Abfahrstrategie abgefahren werden, derart dass sich jeweils zwei benachbarte Bahnabschnitte (5) quer zur Fahrtrichtung des Roboterfahrzeugs (3) mit einer vorgegebenen Wahrscheinlichkeit überlappen.

2. Ansteuerverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Position der Teilstücke (2) auf der Arbeitsfläche (8) mit Hilfe einer ü- bergeordneten Abfahrstrategie festgelegt wird.

3. Ansteuerverfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass gemäß der Teilstück- Abfahrstrategie die Antriebsmittel derart angesteuert werden, dass ein Richtungswechsel des Roboterfahrzeugs (3) erfolgt, sobald sich ein im Moment vom Roboterfahrzeug (3) befahrener Bahnabschnitt (5) und ein davor abgefahrener Bahnabschnitt (5) sich nicht mehr mit der vorgegebenen Wahrscheinlichkeit überlappen.

4. Ansteuerverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass gemäß der Teilstück-Abfahrstrategie die Antriebsmittel derart angesteuert werden, dass ein Richtungswechsel des Roboter-

fahrzeugs (3) erfolgt, wenn ein Positionsschätzfehler quer zu Fahrrichtung des Roboterfahrzeugs (3) nicht mehr mit einer vorgegebenen Wahrscheinlichkeit unter einem Grenzwert (G) liegt.

5. Ansteuerverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass gemäß der Teilstück-Abfahrstrategie die Antriebsmittel derart angesteuert werden, dass ein Richtungswechsel dann er- folgt, wenn die Standardabweichung einen Grenzwert (G) erreicht .

6. Ansteuerverfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Grenzwert (G) auf der Basis einer vorgegebenen Wahrscheinlichkeit und einer vorgegeben überlappung der benachbarten Bahnabschnitte (5) sowie unter Berücksichtigung der Summe der Positionsschätzfehler der benachbarten Bahnabschnitte (5) berechnet wird.

7. Ansteuerverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bewegungsmuster (4) gemäß der Teilstück-Abfahrstrategie mäan- derförmig ist und dass der Richtungswechsel als 180°- Wende durchgeführt wird.

8. Ansteuerverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Abfahren ei- nes Teilstücks (2) beendet wird, wenn eine vorgegebene Wegstrecke zurückgelegt wurde und/oder wenn eine vorgegebene Abfahrzeit abgelaufen ist und/oder wenn eine Grenze der Arbeitsfläche (8) erreicht wird und/oder

wenn ein bereits abgefahrenes, insbesondere bearbeitetes, Teilstück (2) erreicht wird.

9. Ansteuerverfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die übergeordnete Abfahrstrategie eine Zufallsnavigationsstrategie, insbesondere unter Berücksichtigung des Bearbeitungszustandes des Arbeitsbereichs, ist.

10. Ansteuerverfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die übergeordnete Abfahrstrategie eine satellitennavigationsgestützte Abfahrstrategie ist.

11. Ansteuerverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die übergeordnete Abfahrstrategie eine visuelle Navigationsstrategie, vorzugsweise unter Einsatz mindestens einer Panoramakamera ist.

12. Ansteuerverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teilstücke (2), vorzugsweise mit einer pessimistisch geschätzten Flächenerstreckung, in eine digitale Karte (7) einge- tragen werden.

13. Ansteuerverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine digitale probabilistische Bedeckungskarte der Arbeitsfläche (8) erstellt wird, aus der ersichtlich ist, welche Bereiche der Arbeitsfläche (8) mit welcher Wahrscheinlichkeit abgefahren wurden.

14. Roboterfahrzeug, insbesondere Rasenmäherfahrzeug, mit, vorzugsweise zum Durchführen eines Verfahrens nach einem der vorhergehenden Ansprüche ausgebildeten, Ansteuermitteln zum Ansteuern von zum Lenken und Fortbe- wegen des Roboterfahrzeugs (3) ausgebildeten Antriebsmitteln, wobei die Ansteuermittel derart ausgebildet sind, dass sie die Antriebsmittel derart ansteuern, dass mit dem Roboterfahrzeug (3) mehrere Teilstücke (2) einer Arbeitsfläche (8) unter Zuhilfenahme von Koppelnavigation jeweils in einem bestimmten Bewegungsmuster (4) gemäß einer Teilstück-Abfahrstrategie abgefahren werden, derart dass sich jeweils zwei benachbarte Bahnabschnitte (5) quer zur Fahrtrichtung des Roboterfahrzeugs (3) mit einer Mindestwahrschein- lichkeit überlappen.

Description:

Beschreibung

Titel

Ansteuerverfahren für ein Roboterfahrzeug sowie Roboter- fahrzeug

Stand der Technik

Die Erfindung betrifft ein Ansteuerverfahren zum Ansteuern von, zum Lenken und Fortbewegen eines Roboterfahrzeugs auf einer Arbeitsfläche ausgebildeten, Antriebsmitteln gemäß Anspruch 1 sowie ein Roboterfahrzeug, insbesondere ein Rasenmäherfahrzeug, gemäß Anspruch 14.

Aktuell auf dem Markt erhältliche autonome Rasenmäher navigieren mittels Zufallsnavigation. Dies ist mit einigen Nachteilen behaftet. So gibt es keine Garantie für eine vollständige Abdeckung der Arbeitsfläche; es kommt zu häufigen Mehrfachüberfahrungen und es resultiert ein unschönes Schnittbild. Eine günstige globale Ortung des Roboterfahrzeugs mit einer Genauigkeit von unter 5 cm könnte eine optimale Abfahrstrategie ermöglichen. Eine derartig genaue Ortung stellt jedoch heutzutage eine technische Barriere dar. So sind Standard-GPS-Empfänger deutlich ungenauer und andere Technologien zu kostenintensiv und zu anfällig oder erfordern eine aufwändige Installation, wie beispielsweise den Einsatz von aus der GB 2 277 152 Al bekannten Landmarken .

Bekannt ist es, autonome Roboterfahrzeuge durch Koppelnavigation, also odometriedatenunterstützt, anzusteuern. Nachteilig hierbei ist jedoch, dass der Positionsschätzfehler quer zur Fahrtrichtung des Roboterfahrzeugs ohne

Schranken mit zunehmender Wegstrecke wächst, sodass das Abfahren der gesamten Arbeitsfläche ausschließlich gestützt auf Koppelnavigation einer Zufallsnavigation gleich kommt.

Offenbarung der Erfindung Technische Aufgabe

Der Erfindung liegt die Aufgabe zugrunde, ein Ansteuerverfahren für autonome Roboterfahrzeuge, insbesondere für Ra- senmäherfahrzeuge, vorzuschlagen, welches zum einen kostengünstig realisierbar ist und trotzdem Mehrfachüberfahrungen im Vergleich mit einer reinen Zufallsnavigation minimiert. Bevorzugt soll sich durch den Einsatz des optimierten Ansteuerverfahrens im Falle der Ausbildung des Roboterfahr- zeugs als Rasenmäherfahrzeug ein ansprechenderes Schnittbild ergeben. Ferner besteht die Aufgabe darin, ein entsprechend optimiertes Roboterfahrzeug, insbesondere ein Rasenmäherfahrzeug, vorzuschlagen.

Technische Lösung

Diese Aufgabe wird hinsichtlich des Ansteuerverfahrens mit den Merkmalen des Anspruchs 1 und hinsichtlich des Roboterfahrzeugs mit den Merkmalen des Anspruchs 14 gelöst. Vor- teilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen. Zur Vermeidung von Wiederholungen sollen verfah- rensgemäß offenbarte Merkmale auch als vorrichtungsgemäß offenbart gelten und beanspruchbar sein. Ebenso sollen vorrichtungsgemäß offenbarte Merkmale als verfahrensgemäß offenbart gelten und beanspruchbar sein.

Der Erfindung liegt der Gedanke zugrunde, die gesamte Mähaufgabe, also das Abarbeiten der Arbeitsfläche (Arbeitsbereich) in Teilschritten zu erledigen. Anders ausgedrückt wird die Arbeitsfläche (Arbeitsbereich) in mehrere Teilstücke (Flächenabschnitte) zerlegt, wobei jedes Teilstück so bemessen wird, dass es unter Zuhilfenahme von Koppelnavigation, also unter Zuhilfenahme von Odometriedaten, derart abgefahren werden kann, dass sich zwei benachbarte Bahnab- schnitte (Spuren) quer zur Fahrtrichtung des Roboterfahrzeugs mit einer, insbesondere vorgegebenen oder vorgebbaren, Wahrscheinlichkeit überlappen. Der Erfindung liegt die Erkenntnis zugrunde, dass die Koppelnavigation über kurze Strecken sehr viel genauer ist, als eine übergeordnete glo- bale satellitengestützte Navigation, beispielsweise unter Zuhilfenahme von GPS-Signalen . Die Antriebsmittel des Roboterfahrzeugs werden also derart angesteuert, dass mit dem Roboterfahrzeug nacheinander mehrere Teilstücke der Arbeitsfläche abgearbeitet werden, wobei das Abarbeiten bzw. Abfahren eines jeden Teilstücks unter Zuhilfenahme von Koppelnavigation erfolgt. Dabei ist es Bestandteil einer Teilstück-Abfahrstrategie, nach der die einzelnen Teilstücke befahren werden, dass sich jeweils zwei, vorzugsweise idealerweise parallel zueinander verlaufende, Bahnabschnitte quer zur Fahrtrichtung des Roboterfahrzeugs überlappen. Der wesentliche Vorteil der Erfindung ist darin zu sehen, dass eine effizientere Abdeckung der Arbeitsfläche mit weniger Mehrfachüberfahrungen im Vergleich zur reinen Zufallsnavigation erzielt werden kann. Darüber hinaus ist dann, wenn das Roboterfahrzeug als Rasenmäherfahrzeug mit einem Mähwerkzeug ausgebildet ist, das Mähmuster im Vergleich zur Zufallsnavigation regelmäßiger, da jedes Teilstück nach einem vorgegebenen, insbesondere regelmäßigen Bewegungsmus-

ter, vorzugsweise aufweisend mehrere parallele Bahnabschnitte, abgefahren wird. Aufgrund der Reduzierung der Mehrfachüberfahrungen sinkt die Gesamtbearbeitungszeit . Darüber hinaus wird der Energieverbrauch minimiert, was insbesondere dann von Vorteil ist, wenn die Antriebsmittel akkumulatorbetrieben ausgebildet sind. Unter Koppelnavigation wird im einfachsten Fall eine Navigation auf Basis von Odometriedaten verstanden. Besonders bevorzugt wird die reine Odometriedatennavigation unter Zuhilfenahme von Ini- tialsensorik, wie Beschleunigungssensoren oder Drehratensensoren und/oder den Einsatz mindestens eines Kompasses unterstützt .

In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass der Teilstück-Abfahrstrategie, mit der die einzelnen Teilstücke in, vorzugsweise zumindest näherungsweise parallelen, Bahnabschnitten abgefahren werden eine die Teilstücke koordinierende (globale) Abfahrstrategie übergeordnet ist. Die übergeordnete Abfahrstrategie verknüpft dabei die einzelnen Teilstücke untereinander, vorzugsweise derart, dass sich die Teilstücke nicht oder nur geringfügig überlappen. Im einfachsten Fall handelt es sich bei der übergeordneten Abfahrstrategie, wie später noch erläutert werden wird, um eine Zufallsstrategie (Zufallsnavigation) . Selbst bei der Ausbildung der übergeordneten Abfahrstrategie als Zufallsnavigationsstrategie wird durch das Abfahren der Arbeitsfläche in mehreren Teilstücken jeweils mit sich in quer zur Fahrtrichtung des Roboterfahrzeugs überlappenden Bahnabschnitten, im Vergleich zu einer vollständigen Zu- fallsnavigation ein verbessertes Schnittbild erreicht und Mehrfachüberfahrungen werden minimiert.

Besonders bevorzugt ist eine Ausführungsform, bei der die Teilstück-Abfahrstrategie derart ausgebildet ist, dass die Antriebsmittel derart angesteuert werden, dass ein Richtungswechsel des Roboterfahrzeugs immer dann erfolgt, so- bald ein gerade von dem Roboterfahrzeug befahrener Bahnabschnitt einen zuvor abgefahrenen Bahnabschnitt nicht mehr mit der vorgegebenen Wahrscheinlichkeit überlappt. Anders ausgedrückt wird ein Teilstück in Fahrtrichtung dadurch begrenzt, dass zu einem definierten Zeitpunkt, bzw. nach ei- ner definierten Wegstrecke, ein Richtungswechsel des Roboterfahrzeugs eingeleitet wird, nämlich immer dann, wenn eine überdeckung, im Idealfall bevorzugt paralleler Bahnabschnitte, nicht mehr mit einer gewissen Wahrscheinlichkeit garantiert ist. Dabei handelt es sich im einfachsten Falle bei der definierten Wegstrecke um eine Konstante, die abhängig vom Fehlermodell der Koppelnavigation ist. Besonders bevorzugt wird ein Richtungswechsel bereits dann eingeleitet, wenn eine Mindestüberlappung mit einer vorgegebenen Wahrscheinlichkeit nicht mehr garantiert ist. Anders ausge- drückt ist in Weiterbildung der Erfindung mit Vorteil vorgesehen, dass das Roboterfahrzeug so lange geradeaus fährt, solange sich zwei benachbarte Bahnabschnitte mit einer vorgegebenen Wahrscheinlichkeit, vorzugsweise mit einer Mindestüberlappung, quer zur Fahrtrichtung überlappen. Um die Genauigkeit der Teilstücknavigation zu erhöhen, ist es möglich, ein oder mehrmals pro Teilstück, insbesondere über einen längeren Zeitraum, im Stillstand die Positionsschätzung einzelner Positionen durch Mittlung über mehrere Satellitenortungsergebnisse zu verbessern, wenn als später noch zu erläuternde übergeordnete Abfahrstrategie eine satellitengestützte Navigation eingesetzt wird. Insgesamt kann im Zusammenspiel mit den Odometriedaten und/oder den Inertialsensorikwerten über bekannte Techniken, wie bei-

spielsweise eine Least-Square-Optimierung eine verbesserte Vernetzung der Dimensionen des Teilstücks erzielt werden.

Bevorzugt werden die Antriebsmittel derart angesteuert, dass ein Richtungswechsel des Roboterfahrzeugs immer dann initiiert wird, wenn ein Positionsschätzfehler quer zur Fahrtrichtung des Roboterfahrzeugs nicht mehr mit einer vorgegebenen Wahrscheinlichkeit, beispielsweise 95 %, unter einem Grenzwert liegt. Bei dem Positionsschätzfehler han- delt es sich dabei um die Differenz aus einem von der Koppelnavigation ermittelten Positionsschätzwert (geschätzter Versatz) und der nicht bekannten, tatsächlichen Position (tatsächlicher Versatz) quer zur Fahrtrichtung.

Algorithmisch wird die Teilstück-Abfahrstrategie bevorzugt derart realisiert, dass mit der Standardabweichung des Positionsschätzfehlers, die bevorzugt laufend von einer Koppelnavigation ermittelt wird, operiert wird. Mit dem Begriff Standardabweichung ist in Weiterbildung der Erfindung auch die entsprechende Ausgabe eines Kaimanfilters gemeint, der neben den Odometriedaten auch Daten zusätzlicher Sensoren, wie z. B. Kompass und/oder Drehratensensor verarbeitet. Sobald diese Standardabweichung einen Grenzwert erreicht, wird ein Richtungswechsel, insbesondere eine Wende des Roboterfahrzeugs initiiert. Hierbei wird die maximal in eine Richtung in einem Teilstück zurückzulegende Entfernung, bis eine Wende eingeleitet wird, so gewählt, dass mit dem als bekannt vorrausgesetzten Fehlermodell der Koppelnavigation eine überlappung mit wählbarer Wahrscheinlichkeit gewährleistet ist. Im einfachsten Fall handelt es sich bei der Strecke, nach der eine Wende vollführt wird, um eine Konstante, die vom, insbesondere bekannten Fehlermodell der Koppelnavigation abhängt.

Besonders bevorzugt ist eine Ausführungsform, bei der der Grenzwert, unter dem die Standardabweichung des Positionsschätzfehlers eines Bahnabschnittes bleiben muss, damit das Roboterfahrzeug weiter geradeaus fährt, unter Berücksichtigung der Positionsschätzfehler zweier benachbarter, sich überlappenden Bahnabschnitten (bei einem mäanderförmigen Bewegungsmuster: Hin- und Rückfahrt) berechnet wird. Unter Zugrundelegung einer Normalverteilung für den Positions- schätzfehler und einer vorgegebenen Wahrscheinlichkeit von 95 % bei einem mäanderförmigen Bewegungsmuster ergibt sich beispielsweise für den Grenzwert, den die Standardabweichung des Positionsschätzfehlers erreichen muss, folgender Zusammenhang :

Grenzwert = überlappung/ (2* sqrt(2)) .

Sobald ein Teilstück abgearbeitet wurde wird ein neues Teilstück begonnen. Zur Wahl und Anfahrt des neuen Teil- Stücks dient dabei die eingangs erwähnte übergeordnete Abfahrstrategie .

Besonders bevorzugt ist eine Ausführungsform, bei der das Bewegungsmuster gemäß der Teilstück-Abfahrstrategie ein mä- anderförmiges Muster ist, bei dem eine Vielzahl von im Idealfall parallelen Bewegungsbahnen realisiert sind. Zum Anfahren von jeweils benachbarten Bahnabschnitten muss das Roboterfahrzeug nach jedem Bahnabschnitt dabei eine 180°- Wende durchführen.

Als Entscheidungsgrundlage dafür, wann das Abfahren bzw. Abarbeiten eines Teilstücks beendet wird, gibt es mehrere Möglichkeiten. So kann die Bearbeitung eines Teilstücks

beispielsweise nach einer vorgegebenen Zeit abgebrochen werden. Alternativ ist es möglich, die Bearbeitung eines Teilstücks nach einer bestimmten, abgefahrenen Gesamtstrecke zu beenden. Besonders bevorzugt ist es, wenn das Abfah- ren eines Teilstücks dann beendet wird, wenn mittels geeigneter Sensorik erkannt wird, dass eine Grenze der Arbeitsfläche erreicht wird und/oder wenn durch eine geeignete Sensorik erkannt wird, dass ein bereits abgefahrenes Teilstück erreicht wird. Hierzu wird beispielsweise mit einer geeigneten Sensorik, insbesondere optisch, überwacht, ob der im Moment überfahrene oder der demnächst zu überfahrende Untergrund bereits gemäht ist oder noch nicht. Sobald ein bereits gemähter Untergrund detektiert wird, kann die Bearbeitung eines Teilstücks abgebrochen und ein Startpunkt eines weiteren Teilstücks mit Hilfe der übergeordneten Abfahrstrategie angefahren werden.

Bei Erkennen der Grenze der Arbeitsfläche oder eines bereits bearbeiteten Teilstücks muss nicht zwangsläufig die Bearbeitung des momentan bearbeiteten Teilstücks unterbrochen werden - es reicht aus, wenn ein Richtungswechsel innerhalb des momentan bearbeiteten Teilstücks vollführt wird.

Besonders bevorzugt ist eine Ausführungsform, bei der, insbesondere nach der Bearbeitung eines Teilstücks die Dimensionen (Flächenerstreckung) des bearbeiteten Teilstücks, insbesondere mit assoziierten Genauigkeiten, abgespeichert werden. Bevorzugt werden diese abgespeicherten Daten in ei- ner übergeordneten Abfahrstrategie berücksichtigt, insbesondere derart, dass sich zwei unterschiedliche Teilstücke nicht oder nur bis zu einem maximalen Wert überlappen, um Mehrfachüberfahrungen so weit wie möglich zu minimieren.

Zusätzlich oder alternativ dienen die gespeicherten Informationen zur Bestimmung eines Startpunktes für ein neues Teilstück.

Im Hinblick auf die konkrete Ausgestaltung der übergeordneten Abfahrstrategie gibt es unterschiedlichste Möglichkeiten. Im einfachsten Fall handelt es sich bei der übergeordneten Abfahrstrategie, wie zuvor erwähnt, um eine Zufallsnavigationsstrategie - anders ausgedrückt wird nach der Vollendung eines Teilstücks der Startpunkt des nächsten Teilstückes zufällig ausgewählt. Bevorzugt wird bei dieser Zufallsnavigationsstrategie der Bearbeitungszustand der Arbeitsfläche gemäß der Teilstück-Abfahrstrategie berücksichtigt. Anders ausgedrückt wird die Bearbeitung eines Teil- Stücks dann abgebrochen, sobald festgestellt wird, dass das gerade abgefahrene Teilstück ein weiteres Teilstück, zumindest zum Großteil, überlappt.

Besonders bevorzugt ist eine Ausführungsform, bei der die übergeordnete Abfahrstrategie eine satellitennavigationsge- stützte Abfahrstrategie ist. Dabei können selbst mit einer Low-Cost-Ortung Genauigkeiten unter 3 Metern und unter Zuhilfenahme von differentiellen Korrektursignalen wie WAAS/EGNOS oder einem stationären zweiten Empfänger, der beispielsweise in einer Basisstation eingebaut sein kann, teilweise auch Submetergenauigkeiten realisiert werden. Besonders bevorzugt ist dabei eine Ausführungsform, bei der die bereits bearbeiteten Teilstücke, insbesondere mit pessimistisch geschätzten Flächendimensionen, in eine digitale Karte der Arbeitsfläche eingezeichnet (berücksichtigt) werden. Dabei ist unter einer digitalen Karte nicht zwangsweise eine grafische Ausgestaltung zu verstehen - vielmehr kann es sich dabei in einer einfachsten Ausführungsform um,

insbesondere in Tabellen gespeicherte Koordinaten der Arbeitsfläche handeln. Wird also beispielsweise der Fehler bei der Abarbeitung eines Teilstückes auf 1 Meter Randabstand geschätzt, so wird aus einer Rechteckfläche des Teil- Stückes mit den Koordinaten (0,0) zu (10,6) ein Rechteck von (1, 1) zu (9, 5) .

Zusätzlich oder alternativ zum Einsatz einer satellitenbasierten übergeordneten Navigation ist es möglich, eine vi- suelle Navigation zur Unterstützung der übergeordneten Abfahrstrategie zu realisieren. Bei dieser Ausführungsvariante ist das Roboterfahrzeug vorzugsweise mit einer Kamera, insbesondere einer Panoramakamera, ausgestattet. Das Roboterfahrzeug kann dann, insbesondere an einer freien Grenze eines Teilstücks, ein Bild aufnehmen und speichern. Das Roboterfahrzeug kann nun einen noch nicht bearbeiteten Bereich, also ein nicht bearbeitetes Teilstück auf der Arbeitsfläche mittels bekannter Methoden des Visual-Homings anfahren. Dies kann beispielsweise dadurch realisiert wer- den, dass die Antriebsmittel des Roboterfahrzeugs so angesteuert werden, dass die Bilddifferenz im Sinne der Summe von Differenzquadraten minimiert wird. Auf diese Weise ist es möglich, innerhalb eines Teilstücks (Bildausschnitts) mit hoher Genauigkeit zu navigieren. Insbesondere dann, wenn die Nachbarschaftsbeziehung zwischen Teilstücken gespeichert wird, ist es möglich, auch zwischen Teilstücken zu navigieren und so sämtliche noch nicht bearbeite Stellen des Arbeitsbereichs anzufahren, bis eine vollständige Abdeckung erreicht ist. Zusätzlich oder alternativ zur Aufnahme eines Bildes kann ein anderer Sensor zum Einsatz kommen, beispielsweise ein Laser- oder ein Ultraschallsensor.

Wie zuvor im Zusammenhang mit der satellitengestützten übergeordneten Abfahrstrategie erläutert, ist es möglich, die bereits abgearbeiteten Teilstücke, vorzugsweise mit einer pessimistisch geschätzten Flächenerstreckung, in eine digitale Karte einzutragen, sodass beispielsweise von der berechneten Teilstückfläche ein umlaufender Rand von einer bestimmten Breite, beispielsweise von 1 m abgezogen wird. Zusätzlich oder alternativ zu einem pessimistisch geschätzten Fehler kann auch eine probabilistische digitale Bede- ckungskarte der Arbeitsfläche angelegt werden, in der eingetragen wird, mit welcher Wahrscheinlichkeit bestimmte Stellen bereits abgefahren wurden. Auf diese Weise lassen sich mit hoher Wahrscheinlichkeit bereits bearbeitete Teilbereiche identifizieren und es ist möglich, nach der Bear- beitung eines Teilstückes ein neues Teilstück zu beginnen, das mit hoher Wahrscheinlichkeit noch nicht bearbeitet wurde. Auch hierzu werden bevorzugt die als frei gekennzeichneten Bereiche zwischen den eingezeichneten Teilstücken als mögliche Anfahrpunkte verwendet, wobei auch diese Anfahr- punkte bevorzugt auf Basis einer pessimistischen Flächenschätzung der bereits bearbeiteten Teilstücke ins Innere der Teilstücke verschoben werden.

Die Erfindung führt auch auf ein autonom arbeitendes Robo- terfahrzeug, insbesondere ein Rasenmäherfahrzeug. Besonders bevorzugt ist dabei eine Ausführungsform, bei der das Roboterfahrzeug derart ausgebildet ist, dass mit diesem ein zuvor beschriebenes Ansteuerverfahren realisierbar ist. Insbesondere weist das Roboterfahrzeug hierzu Ansteuermittel auf, die eine Teilstück-Abfahrstrategie mit einer übergeordneten Abfahrstrategie verknüpfend ausgebildet sind.

Kurze Beschreibung der Zeichnungen

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.

Diese zeigen in:

Fig. Ia in einer schematischen Darstellung ein Bewegungs- muster einer Teilstück-Abfahrstrategie zur Abfahrung eines Teilsstücks einer Arbeitsfläche,

Fig. Ib den Verlauf der Standard-Abweichung des Positionsschätzfehlers für die zumindest näherungsweise parallelen Bahnabschnitte des Bewegungsmusters aus Fig. Ia und

Fig. 2 ein auf einer digitalen Karte der Arbeitsfläche eingetragenes, mit einer Mäanderstrategie abge- fahrenes Teilstück, dessen mit Hilfe von Satellitennavigation ermittelte Flächenerstreckung lediglich als pessimistische Schätzung berücksichtig ist.

Ausführungsformen der Erfindung

In den Figuren sind gleiche Elemente und Elemente mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet .

In Fig. Ia ist schematisch in einem kartesischen Teilstückkoordinatensystem 1 (x' , y' ) ein Teilstück 2 dargestellt, das mittels eines Roboterfahrzeugs 3 gemäß einer Teilstück-

Abfahrstrategie mit einem mäanderförmigen Bewegungsmuster 4 abgefahren wird. Das Bewegungsmuster 4 umfasst eine Vielzahl von zueinander im Wesentlichen parallelen Bahnabschnitten 5, wobei jeweils zwei benachbarte Bahnabschnitte 5 über jeweils eine 180°-Wende 6 (Wendebahnabschnitt) miteinander verbunden sind. Die Fahrtrichtung des Roboterfahrzeugs 3 entlang der Bahnabschnitte 5 erfolgt entlang der x' -Achse. Von der Koppelnavigation wird laufend ein Positionsschätzfehler in y' -Richtung, d. h. quer zur Fahrtrich- tung ermittelt - ebenso die zugehörige Standardabweichung std(δy) .

Auf der x' -Achse ist die Strecke d eingezeichnet, an der das Roboterfahrzeug 3 unter Realisierung eines nicht einge- zeichneten Versatzes b zum zuvor befahrenen Bahnabschnitt 5 wendet und den nächsten Bahnabschnitt 5 in die entgegengesetzte Richtung beginnt. Bei der Strecke d handelt es sich im einfachsten Fall um eine Konstante, die vom Fehlermodell der Roboter-Koppelnavigation abhängt. Unter Berücksichti- gung einer vorgegebenen überlappung b ergibt sich die Strecke d aus einer Betrachtung der Standardabweichung std(δy), wie diese in Fig. Ib eingezeichnet ist. Zu erkennen ist, dass die Standardabweichung std(δy) in jedem Bahnabschnitt 5 linear bis zu einem Grenzwert G zunimmt. Bei Erreichen des Grenzwertes G ist die Strecke d zurückgelegt und es wird eine Wende des Roboterfahrzeugs 3 initiiert. Der Grenzwert G wird bei dem gezeigten mäanderförmigen Bewegungsmuster 4 und einer übergebenen überlappung b so berechnet, dass für eine Wahrscheinlichkeit von hier 95 % ei- ne überlappung zweier benachbarter Bahnabschnitte 5 sichergestellt ist. Der Grenzwert G entspricht unter Zugrundelegung einer Normalverteilung:

G = b / ( 2 * sqrt ( 2 ) ) .

Bei Zugrundelegung anderer Wahrscheinlichkeiten ergeben sich entsprechend angepasste Grenzwerte.

In Fig. 2 ist eine digitale Karte 7 einer mit Hilfe des Roboterfahrzeugs 3 abzufahrenden Arbeitsfläche 8 gezeigt. Der digitalen Karte liegt das kartesische Koordinatensystem x,y zugrunde, in dem das Teilstück 2 mit seinem Teilstückkoor- dinatensystem 1 (x' , y' ) aufgezeichnet ist. In der digitalen Karte 7 der Arbeitsfläche 8 ist ein mit Hilfe des Roboterfahrzeugs 3 abgefahrenes Teilstück 2 eingezeichnet. Dabei wird lediglich die mit dem Bezugszeichen 2' gekennzeichnete, pessimistische Flächenerstreckung des Teilstü- ckes 2 gespeichert. Diese pessimistische Flächenerstreckung 2' wird durch Abziehen eines Randstreifens mit vorgegebener Breitenerstreckung ermittelt.

Nach Bearbeitung des Teilstücks 2 wird ein weiteres, nicht gezeigtes Teilstück durch eine übergeordnete Abfahrstrategie angesteuert. Diese basiert beispielsweise auf einer Zufallsnavigation und/oder ist satellitengestützt und/oder basiert auf einer visuellen Navigation, insbesondere unter Berücksichtigung einer dem Roboterfahrzeug 3 integralen Pa- noramakamera .