Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONVECTION OVEN HAVING REMOVABLE AIR PLEUNUMS
Document Type and Number:
WIPO Patent Application WO/2016/200511
Kind Code:
A1
Abstract:
A convection oven is disclosed. The convection oven comprises a housing having an oven cavity and an oven door for access to the oven cavity, at least one air blower for generating heated air, one or more air channels for directing the heated air from the air blower toward the oven cavity, and one or more removable air plenums, wherein each removable air plenum is connected to one of the one or more air channels, comprises an air intake edge for receiving the heated air from the air channel, defines the top or the bottom of a cooking chamber within the oven cavity, and comprises a plurality of air vents for directing the heated air into the cooking chamber. The convection oven may further comprise a control panel for separately and independently controlling each of the cooking chambers defined by the removable air plenums.

Inventors:
MCKEE, Philip, R. (6 Windsor Ridge, Frisco, TX, 75034, US)
VANLANEN, Lee, Thomas (1820 Creekview Circle, McKinney, TX, 75069, US)
COLEMAN, Todd (11601 Lago Vista West, Apt 1135Farmers Branch, TX, 75243, US)
Application Number:
US2016/030718
Publication Date:
December 15, 2016
Filing Date:
May 04, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
APPLIANCE INNOVATION, INC. (10500 Metric Drive, Suite 128Dallas, TX, 75243, US)
International Classes:
A47J37/04; A21B1/26; A21B3/04; F27B9/10
Attorney, Agent or Firm:
EBENSTEIN, Daniel et al. (Amster, Rothstein & Ebenstein LLP90 Park Avenu, New York NY, 10016, US)
Download PDF:
Claims:
What is claimed is:

1. A convection oven comprising:

a housing having an oven cavity and an oven door for access to the oven cavity;

at least one air blower for generating heated air;

one or more air channels for directing the heated air from the air blower toward the oven cavity;

one or more removable air plenums, wherein each of the one or more removable air plenums is configured to be removably connected to one of the one or more air channels;

comprises an air intake edge for receiving the heated air from the one of the one or more air channels; defines the top or the bottom of a cooking chamber within the oven cavity when the removable air plenum is connected to the air channel; and comprises, on its top or bottom surface, a plurality of air vents for directing the heated air into the cooking chamber; and

one or more flaps, wherein each of the one or more air channels is associated with one of the one or more flaps and is configured to be covered by the associated flap if the air channel is not connected to one of the one or more removable air plenums.

2. The convection oven of Claim 1, wherein each of the one or more removable air plenums comprises a tab configured to open the flap associated with one of the one or more air channels when the removable air plenum is connected to the air channel.

3. The convection oven of Claim 1, further comprising a sensor for detecting the oven door being kept opened during a cook cycle.

4. The convection oven of Claim 3, further comprising a controller for re-adjusting a cooking parameter for at least one of the cooking chambers defined by the one or more removable air plenums based on the amount of time the oven door is kept opened during the cook cycle.

5. The convection oven of Claim 1, wherein at least one of the one or more removable air plenums is configured to direct the heated air upward.

6. The convection oven of Claim 1, wherein at least one of the one or more removable air plenums is configured to direct the heated air downward.

7. The convection oven of Claim 1, wherein at least one of the one or more removable air plenums is configured to support a food rack within the corresponding cooking chamber.

8. The convection oven of Claim 1, wherein the one or more air channels are located on a rear wall of the oven cavity.

9. The convection oven of Claim 1, further comprising one or more pairs of parallel rails located on left and right side walls of the oven cavity to support the one or more removable air plenums.

10. The convection oven of Claim 1, further comprising return air openings located on both left and right sides of the cooking chamber.

11. A convection oven comprising:

a housing having an oven cavity and an oven door for access to the oven cavity;

at least one air blower for generating heated air;

one or more air channels for directing the heated air from the air blower toward the oven cavity; one or more removable air plenums, wherein each of the one or more removable air plenums is configured to be removably connected to one of the one or more air channels;

comprises an air intake edge for receiving the heated air from the one of the one or more air channels; defines the top or the bottom of a cooking chamber within the oven cavity when the removable air plenum is connected to the air channel; and comprises, on its top or bottom surface, a plurality of air vents for directing the heated air into the cooking chamber; and

a control panel for separately and independently controlling each of the cooking chambers defined by the one or more removable air plenums.

12. The convection oven of Claim 11, further comprising a sensor for detecting the oven door being kept opened during a cook cycle.

13. The convection oven of Claim 12, further comprising a controller for re-adjusting a cooking parameter for at least one of the cooking chambers defined by the one or more removable air plenums based on the amount of time the oven door is kept opened during the cook cycle.

14. The convection oven of Claim 11, wherein at least one of the one or more removable air plenums is configured to direct the heated air upward.

15. The convection oven of Claim 11, wherein at least one of the one or more removable air plenums is configured to direct the heated air downward.

16. The convection oven of Claim 11, wherein at least one of the one or more removable air plenums is configured to support a food rack within the corresponding cooking chamber.

17. The convection oven of Claim 11, wherein the one or more air channels are located on a rear wall of the oven cavity.

18. The convection oven of Claim 11, further comprising one or more pairs of parallel rails located on left and right side walls of the oven cavity to support the one or more removable air plenums.

19. The convection oven of Claim 11, further comprising return air openings located on both left and right sides of the cooking chamber.

20. A convection oven comprising:

a housing having an oven cavity and an oven door for access to the oven cavity;

at least one air blower for generating heated air;

one or more air channels for directing the heated air from the air blower toward the oven cavity; and

one or more removable air plenums, wherein each of the one or more removable air plenums is configured to be removably connected to one of the one or more air channels;

comprises an air intake edge for receiving the heated air from the one of the one or more air channels; defines the top or the bottom of a cooking chamber within the oven cavity when the removable air plenum is connected to the air channel; and comprises, on its top or bottom surface, a plurality of air vents for directing the heated air into the cooking chamber,

wherein:

the one or more air channels comprise a top air channel and a bottom air channel;

the one or more removable air plenums comprise an upper removable air plenum removably connected to the top air channel and a lower removable air plenum removably connected to the bottom air channel; the upper removable air plenum defining the top of the cooking chamber within the oven cavity and comprising a plurality of air vents on its bottom surface to direct the heated air downward into the cooking chamber; and

the lower removable air plenum defining the bottom of the cooking chamber within the oven cavity and comprising a plurality of air vents on its top surface to direct the heated air upward into the cooking chamber.

21. The convection oven of Claim 20, further comprising a diverter to separate the heated air exiting from the air blower into a top airstream directed to the top air channel and a bottom air stream directed to the bottom air channel.

22. The convection oven of Claim 20, further comprising a sensor for detecting the oven door being kept opened during a cook cycle.

23. The convection oven of Claim 22, further comprising a controller for re-adjusting a cooking parameter for at least one of the cooking chambers defined by the one or more removable air plenums based on the amount of time the oven door is kept opened during the cook cycle.

24. The convection oven of Claim 20, wherein the lower removable air plenum is configured to support a food rack within the corresponding cooking chamber.

25. The convection oven of Claim 20, wherein the one or more air channels are located on a rear wall of the oven cavity.

26. The convection oven of Claim 20, further comprising one or more pairs of parallel rails located on left and right side walls of the oven cavity to support the one or more removable air plenums.

27. The convection oven of Claim 20, further comprising retum air openings located on both left and right sides of the cooking chamber.

Description:
CONVECTION OVEN HAVING REMOVABLE AIR PLENUMS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Patent Application No. 14/733,533, filed on June 8, 2015, the contents of which are incorporated by reference herein in their entirety.

FIELD OF INVENTION

[0002] The present invention relates to cooking ovens in general, and in particular to a convection oven having removable air plenums.

BACKGROUND OF THE INVENTION

[0003] An oven generally includes an oven cavity configured to receive food articles for cooking. The oven also includes a heating element, which can be an electric resistance element or a gas burner, for generating heat energy to cook any food items placed within an oven cavity. Some ovens may include a fan for forcing movement of heated air within the oven cavity, and those ovens are commonly referred to as convection ovens.

[0004] Convection ovens have been the workhorse in commercial kitchens for many decades. Commercial convection ovens generally come in two sizes, namely, full-size and half-size. Full-sized commercial convection ovens are designed to fit within the space of an industry standard footprint, which is approximately 40 inches wide by 40 inches deep, made available for full-sized convection ovens in most commercial kitchens. The oven cavity of full-sized commercial ovens are also dimensioned to accept industry standard full-sized cooking trays, which are approximately 26 inches wide by 18 inches deep. The height of the cook cavity is typically about 20 inches, which is capable of being configured to allow for multiple rack heights, such as 11 possible rack heights, to accommodate the height of various foods that can be cooked in a convection oven. For example, only 2 racks may be placed in a commercial convection oven if 9-inch tall turkeys are being cooked, but 4 to 5 racks may be evenly spaced from top to bottom when that many racks of 2-inch tall lasagna are being cooked. Half-sized commercial convection ovens are similarly configured and dimensioned to fit into industry standard half-sized spaces in commercial kitchens and to receive industry standard half-sized sheet pans.

[0005] When cooking in a typical convection oven, heated air within the oven cavity is circulated by a fan. The fan initiates a flow of heated air by pulling air from the oven cavity through multiple openings on a back wall of the oven cavity. The heated air then exits other openings on the side walls of the oven cavity. The heated air moves through the oven cavity to help distribute heat energy to food articles placed within the oven cavity. An example of the heating system of a typical convection oven can be found in U.S. Patent No. 4,395,233 to Smith et al.

[0006] One problem with the heating system of a conventional convection oven is that it can generate regions of high and low speed air flow in the oven cavity such that the heated air is not uniformly distributed within the oven cavity. As a result, food items placed in the oven cavity may be cooked unevenly. For example, food items placed on different racks at different heights within the convection oven may be cooked at different rates. In addition, food items placed on the same rack may not receive uniform heating either. This unevenness of cooking can result in food waste, as food items located in the higher heat portions of the oven cavity can be unacceptably overdone as compared to the food items located in the lower heat portions. Unevenness of cooking can be partially overcome by rotating cook trays within the oven cavity, as well as utilizing reduced cooking temperatures and blower speeds, but doing so will increase skilled labor requirements as well as cook times.

[0007] Conventional convection ovens have other problems as well. For example, only one cook temperature and heat transfer profile, such as blower speed, can be delivered in a conventional convection oven at any one time, thereby limiting the types of foods that can be cooked simultaneously. This can be overcome by having multiple convection ovens set at different cook temperatures and heat transfer profiles, but doing so will result in space and energy inefficiency.

[0008] Consequently, it would be desirable to provide an improved convection oven that can eliminate the above-mentioned problems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of illustrative and exemplary embodiments when read in conjunction with the accompanying drawings, wherein:

[0010] Figure 1 is an isometric view of a convection oven, in accordance with an exemplary embodiment of the present invention;

[0011] Figure 2A is a front view of an oven cavity within the convection oven from Figure 1, in accordance with an exemplary embodiment of the present invention;

[0012] Figure IB is an isometric view of the oven cavity from Figure 2A with multiple cooking chambers formed and defined by removable air plenums placed within the oven cavity;

[0013] Figure 3 is a detailed diagram of a removable air plenum from Figure 2B;

[0014] Figure 4A shows a set of blower systems for the convection oven from Figure 1;

[0015] Figure 4B is a cross-sectional side view of the convection oven from Figure 1, depicting the various air paths within the oven cavity; and

[0016] Figure 5 depicts the air paths within the oven cavity when some of the removable air plenums are removed from the oven cavity. SUMMARY OF THE INVENTION

[0017] It has now been found that the above and related objects of the present invention are obtained in the form of several related aspects, including a convection oven having removable air plenums.

[0018] In accordance with an exemplary embodiment of the present invention, a convection oven has one or more removable air plenums that can be placed within the oven cavity to divide the cavity into separate cooking chambers. Removable air plenums are connectable to and engageable with air channels of the oven. Each removable air plenum includes an air intake edge for receiving heated air from the engaged air channel in the oven and a plurality of air vents for directing the heated air into the corresponding cooking chamber for the purpose of heating any food items located within the cooking chamber. When a removable air plenum is disengaged from the oven air channel and removed from the oven cavity, the air channel is covered by a flap.

[0019] By placing, removing, or re-arranging removable air plenums within the oven cavity, one can arrange to have different number of cooking chambers with variable heights in the convection oven to meet multiple cooking needs simultaneously. The oven may be provided with a control panel that can control each cooking chamber independently.

[0020] The oven may have one or two oven doors for accessing all of the cooking chambers. In other words, the size of the oven door(s) is not dependent on the height of cooking chambers defined by the removable air plenums.

[0021] The oven may also have a sensor for detecting the opening of oven doors during a cook cycle. To compensate for any disruption to the cook cycle due to the opened oven door, the oven's controller may extend the cooking time(s) or re-adjust cooking parameters for the cooking chamber(s) based on the measured amount of time the oven doors were kept open during their respective cook cycles.

[0022] The present invention also relates to a convection oven comprising a housing having an oven cavity and an oven door for access to the oven cavity, at least one air blower for generating heated air, one or more air channels for directing the heated air from the air blower toward the oven cavity, and one or more removable air plenums, wherein each of the one or more removable air plenums is connected to one of the one or more air channels; comprises an air intake edge for receiving the heated air from the one of the one or more air channels; defines the top or the bottom of a cooking chamber within the oven cavity; and comprises a plurality of air vents for directing the heated air into the cooking chamber.

[0023] In at least one embodiment, at least one of the one or more air channels is coverable by a flap if not connected to one of the one or more removable air plenums.

[0024] In at least one embodiment, at least one of the one or more removable air plenums comprises a tab configured to open the flap when connected to one of the one or more air channels.

[0025] In at least one embodiment, the convection oven further comprises a control panel for separately and independently controlling each of the cooking chambers defined by the one or more removable air plenums.

[0026] In at least one embodiment, the convection oven further comprises a sensor for detecting the oven door being kept opened during a cook cycle.

[0027] In at least one embodiment, the convection oven further comprises a controller for re-adjusting a cooking parameter for at least one of the cooking chambers defined by the one or more removable air plenums based on the amount of time the oven door is kept opened during the cook cycle. [0028] In at least one embodiment, at least one of the one or more removable air plenums is configured to direct the heated air upward.

[0029] In at least one embodiment, at least one of the one or more removable air plenums is configured to direct the heated air downward.

[0030] In at least one embodiment, at least one of the one or more removable air plenums is configured to support a food rack within the corresponding cooking chamber.

[0031] All features and advantages of the present invention will become apparent in the following detailed written description.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0032] Referring now to the drawings and in particular to Figure 1, there is depicted an isometric view of a convection oven, in accordance with an exemplary embodiment of the present invention. As shown, a convection oven 10 includes a housing having a top panel 11, a bottom panel 12, a rear panel 13 and two side panels 14a, 14b.

[0033] A pair of oven doors 15a, 15b may form the front panel of the housing and are pivotally connected with side panels 14a, 14b, respectively, via hinges. Oven doors 15a and 15b may include handles 16a and 16b, respectively, for opening and closing the same, and a latch may be provided to keep doors 15a, 15b in a closed position. Door sensing switches (not shown) may be placed so as to sense when doors 15a, 15b are being opened or closed.

[0034] In alternative embodiments, instead of a pair of oven doors, the oven may include a single oven door which is pivotally connected with one of side panels 14a, 14b, top panel 11, or bottom panel 12 via hinges.

[0035] Convection oven 10 also includes a control panel 18. For example, control panel 18 may be implemented with touchscreen technology. An operator can enter commands or cooking parameters, such as cooking temperature, cooking time, fan speed, etc., via control panel 18 to effectuate cooking controls on any food items placed within convection oven 10.

[0036] With reference now to Figure 2A, there is depicted a front view of the oven cavity 20 within convection oven 10, in accordance with an exemplary embodiment of the present invention. As shown, an oven cavity 20 is defined by a top wall 21, a bottom wall 22, a rear wall 23, and side walls 24a, 24b along with doors 15a, 15b (shown in Figure 2B). Located on side walls 24a, 24b are multiple parallel rails 25 (e.g., four rails shown in Figure 2A) configured to support one or more removable air plenums, which may also serve as food rack supports, to direct heated air flow.

[0037] Located on rear wall 23 are multiple sets of air channel pairs (e.g., four sets shown in Figure 2A) for bringing hot air into oven cavity 20. For example, as shown in Figure 2A, a first set of air channel pairs includes a top air channel 26x and a bottom air channel 26y, a second set of air channel pairs includes a top air channel 27x and a bottom air channel 27y, a third set of air channel pairs includes a top air channel 28x and a bottom air channel 28y, and a fourth set of air channel pairs includes a top air channel 29x and a bottom air channel 29y. Each of the four air channel pairs can separately and independently send heated air into oven cavity 20.

[0038] In Figure IB, oven cavity 20 is shown to be populated with multiple removable air plenums 126x-129x and 126y-129y. These removable air plenums divide the oven cavity 20 into and define multiple (e.g., four in this case) cooking chambers 126, 127, 128, 129.

[0039] In accordance with an exemplary embodiment of the present invention, the multiple removable air plenums 126x-129x and 126y-129y may be all substantially identical to each other. In alternative embodiments, each or some of them may be configured differently.

[0040] In accordance with an exemplary embodiment shown in Figures 2A and IB, removable air plenum 126x may be directly connected to and engaged with top air channel 26x; removable air plenum 126y may be directly connected to and engaged with bottom air channel 26y; removable air plenum 127x may be directly connected to and engaged with top air channel 27x; removable air plenum 127y may be directly connected to and engaged with bottom air channel 27y; removable air plenum 128x may be directly connected to and engaged with top air channel 28x; removable air plenum 128y may be directly connected to and engaged with bottom air channel 28y; removable air plenum 129x may be directly connected to and engaged with top air channel 29x; and removable air plenum 129y may be directly connected to and engaged with bottom air channel 29y. Removable air plenums 126x-129x and 126y-129y function to direct heated air from the corresponding air channels into the corresponding cooking chambers 126- 129 formed within oven cavity 20 for the purpose of heating any food items located within each cooking chamber.

[0041] Referring now to Figure 3, there is depicted an exemplary embodiment of a removable air plenum 126y. As shown, removable air plenum 126y includes an air intake edge 31, multiple air vents 32 and a tab 33. Air intake edge 31 is configured to connect to an air channel 26y to receive heated air from the air channel. The heated air is then directed upward through air vents 32 into cooking chamber 126 within oven cavity 20 (from Figure 2B). A tab 33 functions to open a flap (not shown) that covers air channel 26y when removable air plenum 126y is not connected to or engaged with air channel 26y.

[0042] With reference now to Figures 4A-4B, there are depicted diagrams of a set of blower systems and the associated airflow path within convection oven 10 in accordance with an exemplary embodiment of the present invention. As shown, four blower systems 41-44 may be located at the rear of convection oven 10. Each of blower systems 41-44 may be equipped with its own heater and controlled independently of the other blower systems with respect to both temperature and/or blower speed. As an example, Figure 4A shows that each of blower systems 41-44 is equipped with two blowers (e.g., 41a and 41c) which are driven by a single motor (e.g., 41b) placed between the two blowers. [0043] In this exemplary embodiment, blower systems 41-44 may be substantially identical to each other in structure and generate similar airflow path. Hence, only blower system 41 will be further described below in details. In alternative embodiments, each or some of the blower systems may be differently configured.

[0044] As shown in Figure 4B, blower system 41 sends heated air through diverters dl and d2 that separate the heated air exiting blower system 41 into a top airstream and a bottom airstream. The top airstream from di verier dl then travels through top air channel 26x and enters removable air plenum 126x where the heated air is channeled and directed to be substantially evenly disbursed in a downward direction into cooking chamber 126. Similarly, the bottom airstream from diverter d2 travels through bottom air channel 26y and enters removable air plenum 126y where the heated air is channeled and directed to be substantially evenly disbursed in an upward direction into cooking chamber 126. Once entering cooking chamber 126, the heated air comes into contact with any food item that is placed on one or more food racks (not shown) within cooking chamber 126. Afterwards, the air within the cooking chamber 126 may be drawn towards return air opening(s) on one or both sides of cooking chamber 126 and travels back to blower system 41.

[0045] Convectional oven 10 having a four-cooking chamber configuration (e.g., having four cooking chambers 126, 127, 128, 129), as shown in Figures 2B and 4B, can be easily transformed into, for example, a three-cooking chamber configuration, a two-cooking chamber configuration, or a one-cooking chamber configuration by simply removing some or all of the removable air plenums from oven cavity 20.

[0046] Referring now to Figure 5, there is illustrated the airflow of convection oven 10 in a two-cooking chamber configuration after air plenum 126y, air plenum 127x, air plenum 128y and air plenum 129x have been removed from oven cavity 20. After the removal of air plenums 126y and 127x, flaps 26yc and 27xc are activated (e.g., drop down) to cover air channels 26y and 27x, respectively. Similarly, after the removal of air plenums 128y and 129x, flaps 28yc and 29xc are activated (e.g., drop down) to cover air channels 28y and 29x, respectively. Flaps 26yc, 27xc, 28yc and 29xc may enable more heated air to be delivered through the remaining open air channels while also eliminating air entry from the back of oven cavity 20, which would introduce cooking unevenness between food located in the back and food located in the front of oven cavity 20.

[0047] In accordance with an exemplary embodiment of the present invention, each of flaps 26yc, 27xc, 28yc and 29xc may be automatically engaged when a tab 33 (from Figure 3) is not in contact with a corresponding air channel. In other words, when no removable air plenum is connected to and engaged with an air channel (e.g., via tab 33), a flap automatically covers the air channel.

[0048] As described above, oven cavity 20 can be re-configured to have different numbers of cooking chambers with variable heights simply by re-arranging the location and the number of removable air plenums (such as a four-cooking chamber configuration shown in Figures IB and 4B and a two-cooking chamber configuration shown in Figure 5).

[0049] Whether in a two-cooking chamber configuration or a four-cooking chamber configuration, each of the cooking chambers within oven cavity 20 may be utilized to cook different food items (e.g., food items that require different cook times and/or different cooking temperature). Using a four-cooking chamber configuration as an example, each of the four cooking chambers can be independently managed by a corresponding one of blower systems 41- 44. Specifically, cook times, temperatures, and blower speeds tailored for food items located in each of the four cooking chambers can be separately entered via a control panel, such as control panel 18 in Figure 1, such that heated air directed to each of the four cooking chambers will be independently supplied from one of blower systems 41-44. [0050] For example, biscuits may be placed in a first cooking chamber (e.g., cooking chamber 126) at 7:30 a.m. to cook for 15 minutes at 350 °F at a medium blower speed. Bacon strips may be placed in a second cooking chamber (e.g., cooking chamber 127) at 7:35 a.m. to cook for 5 minutes at 425 °F at a high blower speed. Pies may be placed in a third cooking chamber (e.g., cooking chamber 128) at about the same time as the bacon strips, but will be cooked for a longer time (e.g., 45 minutes) at a lower temperature (e.g., 325 °F) at a low blower speed. And cookies may be placed in a fourth cooking chamber (e.g., cooking chamber 129) at 7:40 a.m. to cook for 10 minutes at 400 °F at a medium blower speed. In this example, the bacon strips will be done at 7:40 a.m, the biscuits will be done at 7:45 a.m, cookies will be done at 7:50 a.m, and the pies will be done at 8:20 a.m, all using the same convection oven.

[0051] In the above example, oven doors (such as oven doors 15a and 15b from Figure 1) are likely to be opened and closed multiple times while the various food items are in the process of being cooked for a predetermined time. Each time the oven doors are opened, the cooking process already in progress for the various cooking chambers will likely be disrupted. In order to compensate for this disruption, convection oven 10 may include a sensor for detecting opening of oven doors 15a and 15b during a cook cycle. The length of time that doors 15a and 15b are kept open may then be recorded and the cooking parameters for the various food items placed within different cooking chambers (e.g., cooking chambers 126, 127, 128, 129) may be re-adjusted based on the amount of time the oven doors are kept open during their respective cook cycles. For example, the cook times for the various food items placed in the various cooking chambers may be extended for an amount of time that is substantially identical or proportional to the amount of time the oven doors are kept open during their respective cook cycles. [0052] As has been described, the present invention provides an improved convection oven providing a more uniform flow of heated air within the cooking chamber and also providing more flexibility for oven configurability.

[0053] While this invention has been described in conjunction with exemplary embodiments outlined above and illustrated in the drawings, it is evident that many alternatives, modifications and variations in form and detail will be apparent to those skilled in the art. Accordingly, the exemplary embodiments of the invention, as set forth above, are intended to be illustrative, not limiting, and the spirit and scope of the present invention is to be construed broadly and limited only by the appended claims, and not by the foregoing specification.