Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONVERTIBLE MOTORIZED RUNNING CYCLE
Document Type and Number:
WIPO Patent Application WO/2016/040796
Kind Code:
A1
Abstract:
A convertible running bike capable of selectively converting from a non-motorized configuration to a motorized configuration may include a front fork rotatably engaged with a front wheel, a handle bar rotatably engaged with the front fork for steering the bike, a frame and a seat connected to the frame.

Inventors:
RAGLAND, Robert Ryan (4019 Emery Drive, Temecula, California, 92591, US)
JOHNSON, Eric (42043 Pradera Way, Temecula, California, 92590, US)
BURKE, Phillip Charles (12651 Rancho Heights Road, Pala, California, 92059, US)
Application Number:
US2015/049679
Publication Date:
March 17, 2016
Filing Date:
September 11, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
REP CONCEPTS, INC. (41693 Date Street, Murrieta, California, 92562, US)
International Classes:
B62M6/40
Foreign References:
US20130231810A12013-09-05
US20110284303A12011-11-24
US20050087379A12005-04-28
US20020046891A12002-04-25
Other References:
See also references of EP 3191361A4
Attorney, Agent or Firm:
PETTIT, Jonathan L. (Duckor Spradling Metzger & Wynne, A Law Corporation3043 4th Avenu, San Diego California, 92103, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1 . A convertible running bike capable of selectively converting from a non- motorized configuration to a motorized configuration, comprising: a front fork rotatably engaged with a front wheel; a handle bar rotatably engaged with the front fork for steering the bike; a frame including: a down tube portion connected to the front fork; a rear fork rotatably engaged with a rear wheel; a drivetrain receiving region for selectively receiving a drivetrain assembly; a battery mount for selectively receiving a battery; and a seat connected to the frame.

2. The convertible running bike according to claim 1 , further including: a drivetrain assembly disposed within the drivetrain receiving region and having a first sprocket; an electronic controller disposed within an electronic control housing receiving region and coupled to the drivetrain assembly; a battery disposed within the battery mount; a throttle sensor coupled to the electronic controller; a second sprocket connected to the rear wheel; a chain connected to the first sprocket and the second sprocket; wherein in response to an input to the throttle sensor, the electronic controller causes the drivetrain assembly to rotate the first sprocket, the first sprocket driving the chain, and the chain rotating the second sprocket and the rear wheel; and wherein the convertible running bike operates in the motorized configuration.

3. The convertible running bike according to claim 1 , wherein the bike further includes a footrest.

4. The convertible running bike according to claim 1 , wherein the drivetrain assembly includes a brush motor.

5. The convertible running bike according to claim 1 , wherein the drivetrain assembly includes a brushless motor.

6. The convertible running bike according to claim 1 , wherein the frame further comprises a left portion and a right portion.

7. A running bike capable of selectively converting from a non-motorized configuration to a motorized configuration, comprising: a front fork rotatably engaged with a front wheel; a handle bar rotatably engaged with the front fork for steering the bike; a frame including: a down tube portion connected to the front fork; a rear fork rotatably engaged with a rear wheel; a drivetrain receiving region for selectively receiving a drivetrain assembly; a battery mount for selectively receiving a battery; and a seat connected to the frame; and wherein the running bike operates in the non-motorized configuration.

8. The convertible running bike according to claim 7, wherein the bike further includes a footrest.

9. The convertible running bike according to claim 7, wherein the frame further comprises a left portion and a right portion.

10. A method of selectively converting a convertible running bike from a non- motorized configuration to a motorized configuration, wherein the convertible running bike includes a front fork rotatably engaged with a front wheel, a handle bar rotatably engaged with the front fork for steering the bike, a frame including a down tube portion connected to the front fork, a rear fork rotatably engaged with a rear wheel, a drivetrain receiving region for selectively receiving a drivetrain assembly, a battery mount for selectively receiving a battery; and a seat connected to the frame, comprising: disposing a drivetrain assembly having a first sprocket within the drivetrain receiving region; disposing an electronic controller within an electronic control housing receiving region and coupling to the drivetrain assembly; disposing a battery within the battery mount; coupling a throttle sensor to the electronic controller; connecting a second sprocket to the rear wheel; connecting a chain to the first sprocket and the second sprocket; wherein in response to an input to the throttle sensor, the electronic controller causes the drivetrain assembly to rotate the first sprocket, the first sprocket driving the chain, and the chain rotating the second sprocket and the rear wheel; and wherein the convertible running bike operates in the motorized

configuration.

Description:
CONVERTIBLE MOTORIZED RUNNING CYCLE

Related Applications

This application claims priority to United States Utility Patent Application No. 14/850,738 filed September 10, 2015 and entitled "Convertible Motorized Running Cycle", which is related and claims priority to United States Provisional Patent

Application No. 62/048,834 filed September 1 1 , 2014 and entitled "Motorized Running Cycle", and which are incorporated in their entirety herewith.

Field of the Invention

This invention relates generally to devices used to train children to properly learn how to balance and control a two wheeled vehicle such as a bicycle or a motorcycle. Secondarily, the invention relates to devices for training children how to use a throttle and brake to control a motor driven vehicle such as a small motorcycle. The invention allows for the growth of the child's skills from initial balance, to the more complex task of combining balance, throttle control, and braking, enabled by a lightweight form, low seat height and narrow foot platform.

Background of the Invention

This section describes the background art of the disclosed embodiments of the present invention. There is no intention, either express or implied, that the background art discussed in this section legally constitutes prior art. There have been a number of recent advancements in the techniques and devices to use to teach children how to ride a bicycle. One example has been the use of a balance bike, also called a running bike, similar to that referenced in U.S. Patent Publication No. US2010/0052287 to Mcfarland ("McFarland"). The McFarland vehicle is primarily a bicycle with a low seat height, but does not include pedals or cranks to propel the vehicle. This arrangement allows for a child to use the child's feet and legs to propel and balance the bike by walking or running, until the skill level of the user increases and the child can push and coast the bike.

Further reference may be made to the following patents; U.S. Patent No.

8,414,007; U.S. Patent Publication No. US2014/0077470; and U.S. Patent No.

8,794,654.

While this concept has been great at teaching very young children how to balance, the youngest age groups still lack the ability, strength and dexterity to advance to riding a standard bicycle with pedals and cranks. Thus, actually pedaling the bicycle becomes the next skill that needs to be conquered. During this transition from running bike to bicycle, often parents must simply wait for the child's motor skills to develop to the point where the child can keep their feet on the pedals while pedaling in a circular motion.

In addition to learning the basic skill of balancing on two wheels, for motorcycle riding, a child must learn the basic throttle control system through the use of twisting the throttle on the handlebar. This technique is difficult to teach, and somewhat dangerous if there is not constant adult supervision. There have been previous attempts to aid children by putting training wheels on small motorcycles, which can allow training of some balancing skills to be separated from throttle control skills. While this technique may reduce anxiety and allow earlier development, training wheels still fail to provide a completely realistic training tool for learning balance and throttle control. Further, the weight and size of the bike are concerns for smaller and younger children. Another potential problem occurs when a motorcycle may be ridden too fast before the child has a chance to acquire the skills needed to modulate the throttle, thus becoming more dangerous than necessary. Another problem arises when attempting to provide a vehicle that has a low enough seat height so that a small child can straddle the vehicle or sit on the seat and still keep both feet on the ground. For bicycles, this problem arises because of the space required to provide the pedals and gears, while for motorcycles, the problem relates to providing a relatively large engine and other components. As a result, for both bicycles and motorcycles, the seat height must be raised to accommodate these components, thus resulting in seat heights that are too high for a child to keep both feet on the ground.

Brief Description of the Drawings

In order to better understand the invention and to see how the same may be carried out in practice, non-limiting preferred embodiments of the invention will now be described with reference to the accompanying drawings, in which:

FIG. 1 shows a perspective view of a convertible running bike in a non-motorized configuration, which is constructed according to an embodiment;

FIG. 2 is a top view of the convertible running bike (non-motorized configuration) of FIG 1 ;

FIG. 3 is a side view of the convertible running bike (non-motorized configuration) of FIG 1 ; FIG. 4 is another side view of the convertible running bike (non-motorized configuration) of FIG 1 ;

FIG. 5 is an exploded, perspective view of the convertible running bike (non- motorized configuration) of FIG 1 ; FIG. 6 shows a perspective view of the convertible running bike of FIG. 1 in a motorized configuration;

FIG. 7 is a top view of the convertible running bike (motorized configuration) of

FIG 6;

FIG. 8 is a side view of the convertible running bike (motorized configuration) of FIG 6;

FIG. 9 is another side view of the convertible running bike (motorized

configuration) of FIG 6;

FIG. 10 is an exploded perspective view of the convertible running bike

(motorized configuration) of FIG 6; FIG. 1 1 shows a perspective view of an embodiment of a mainframe assembly of the convertible running bike of FIGS. 1 and 6;

FIG. 12 shows a perspective pictorial view of various components that are installed on the convertible running bike (non-motorized configuration) of FIG. 1 to the convertible running bike (motorized configuration) of FIG.6; FIG. 13 shows a block diagram of electrical components for the convertible running bike (motorized configuration) of FIG. 6;

FIG. 14 shows a perspective view of another embodiment of a mainframe assembly of the convertible running bike; FIG. 15 shows an exploded perspective view of the various mainframe assembly components of FIG. 14;

FIG. 16 shows a perspective view of another embodiment of a mainframe assembly of the convertible running bike;

FIG. 17 shows an exploded perspective view of the various mainframe assembly components of FIG. 16;

FIG. 18 is a side view of a convertible running bike (motorized configuration) including the mainframe assembly of FIGS. 14 and 15, and an electronic control/battery mount assembly according to an embodiment;

FIG. 19 is a close-up partial side view of a section of the convertible running bike (motorized configuration) of FIG. 18;

FIG. 20 is a top view of the electronic control/battery mount assembly of FIGS. 14 and 15 according to an embodiment;

FIG. 21 is a bottom view of the electronic control/battery mount assembly of FIGS. 14 and 15 according to an embodiment; and FIG. 22 is an exploded view of the electronic control/battery mount assembly of FIGS. 14 and 15 according to an embodiment.

Detailed Description of Certain Embodiments of the Invention

Certain embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all, embodiments of the invention are shown. Indeed, these embodiments of the invention may be in many different forms and thus the invention should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided as illustrative examples only so that this disclosure will satisfy applicable legal

requirements. Like numbers refer to like elements throughout.

It will be readily understood that the components of the embodiments as generally described and illustrated in the drawings herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the certain ones of the embodiments of the system, components and method of the present invention, as represented in the drawings, is not intended to limit the scope of the invention, as claimed, but is merely representative of the embodiment of the invention.

Therefore, the present invention provides a convertible running bike with a small, electronically controlled motor in order to solve training problems found in conventional solutions. As with the logic of a simple running bike, the convertible running bike allows a child to learn to use their feet and legs to balance, propel and stop before having to learn to drive the feet in a circular pedaling motion, without being able to easily touch the ground while sitting on the seat. Further, the motorized running bike of the present invention provides a controlled way for a child to propel the bike using their hand on a throttle in a similar manner used with motorcycles. The learning process for the convertible running bike may be controlled and adapted to each child's ability by an adult. This process can be further controlled by features included in the electronic capability such as maximum rates of speed. Because a child will remain interested with these new functions, the child can enjoy the motorized running bike without becoming frustrated with the complex task of driving their legs in a circular motion before they are physically capable. The convertible motorized running bike of the present invention is designed to be both a toy, and also a training device for both a bicycle and motorcycle. The invention has a frame that acts in a similar function to one of today's current balance bikes, with no crank set or pedals, and has a slender profile that aids with walking/balancing leg movements. In this configuration, the frame is lightweight so that a young child can have confidence in handling, controlling and lifting the bike.

Once a child has mastered the basics and is able to coast, turn, and slow down for obstacles, the frame may be fitted with a motorized propulsion system. The frame is adapted to support the addition of the motorized system components, so that the motorized version of the present invention may be controlled in manners similar to an ATV or motorcycle. The motor may be easily attached to the frame in a prefabricated motor location, and a chain may then be installed to provide propulsion to the rear wheel. The motorized version may be controlled with either a thumb throttle or twist throttle. In various embodiments, the motor is an electrical type motor that may be modulated and controlled via the throttle by the rider. In other embodiments, the motor speed and bike acceleration may be preset by an adult through a smart device application, a wireless transmitter, or a directly connected cable, mechanism or programmable key to provide an extra level of safety for the child until they acquire the appropriate skill level to control the vehicle.

As a result, a child will be able to more easily learn the mechanics and skills of motorcycle riding on a lightweight vehicle, instead of heavier and more powerful vehicle, such as a gas powered motorcycle. By having the ability to continue learning motorcycle riding skills after learning balance skills, a child can maintain fun and interest during the time period before they begin to develop the leg skill to pedal a normal bicycle. In addition, a child can gain a tremendous amount of throttle control skill and vehicle awareness before they begin to ride a heavier and faster motorcycle.

In other embodiments, the convertible running bike may have the motorized components installed and in place, but not used, thus allowing a child to learn to balance the slightly heavier bike before activating the motorized system to provide propulsion to the bike.

A convertible running bike capable of selectively converting from a non-motorized configuration to a motorized configuration may include a front fork rotatably engaged with a front wheel, a handle bar rotatably engaged with the front fork for steering the bike, a frame and a seat connected to the frame. The frame may include a down tube portion connected to the front fork, a rear fork rotatably engaged with a rear wheel, a drivetrain receiving region for selectively receiving a drivetrain assembly, and a battery mount for selectively receiving a battery. .The convertible running bike may also include a drivetrain assembly disposed within the drivetrain receiving region and having a first sprocket, an electronic controller disposed within an electronic control housing receiving region and coupled to the drivetrain assembly, a battery disposed within the battery mount, a throttle sensor coupled to the electronic controller, a second sprocket connected to the rear wheel, a chain connected to the first sprocket and the second sprocket. In response to an input to the throttle sensor, the electronic controller causes the drivetrain assembly to rotate the first sprocket, the first sprocket driving the chain, and the chain rotating the second sprocket and the rear wheel and the convertible running bike operates in the motorized configuration.

In an embodiment, the bike may include a footrest. The drivetrain assembly may include a brush motor or a brushless motor. The frame may include a left portion and a right portion.

In another embodiment, a running bike capable of selectively converting from a non-motorized configuration to a motorized configuration may include a front fork rotatably engaged with a front wheel, a handle bar rotatably engaged with the front fork for steering the bike, a frame and a seat connected to the frame. The frame may include a down tube portion connected to the front fork, a rear fork rotatably engaged with a rear wheel, a drivetrain receiving region for selectively receiving a drivetrain assembly, a battery mount for selectively receiving a battery, such that the convertible running bike operates in the non-motorized configuration. In an embodiment, the bike may include a footrest. The frame may include a left portion and a right portion. In a further embodiment, a method of selectively converting a convertible running bike from a non-motorized configuration to a motorized configuration where the convertible running bike includes a front fork rotatably engaged with a front wheel, a handle bar rotatably engaged with the front fork for steering the bike, a frame including a down tube portion connected to the front fork, a rear fork rotatably engaged with a rear wheel, a drivetrain receiving region for selectively receiving a drivetrain assembly, a battery mount for selectively receiving a battery; and a seat connected to the frame. The method may include disposing a drivetrain assembly having a first sprocket within the drivetrain receiving region, disposing an electronic controller within an electronic control housing receiving region and coupling to the drivetrain assembly, disposing a battery within the battery mount, coupling a throttle sensor to the electronic controller, connecting a second sprocket to the rear wheel, connecting a chain to the first sprocket and the second sprocket. In response to an input to the throttle sensor, the electronic controller causes the drivetrain assembly to rotate the first sprocket, the first sprocket driving the chain, and the chain rotating the second sprocket and the rear wheel, and the convertible running bike operates in the motorized configuration.

Referring now to FIGS. 1-5 of the drawings, a convertible running bike 1 may be constructed according to a non-motorized embodiment and includes a mainframe assembly 84 having a steering tube 2 connected to a down tube 4. The down tube 4 is connected to a mainframe right portion 9 and a mainframe left portion 5. The mainframe right portion 9 is connected to a rear fork right 3 and the mainframe left portion 5 is connected to rear fork left 6. A rear wheel 1 1 is rotatably connected to the rear fork left 6 and rear fork right 3 by conventional bicycle axle hardware such as nuts, bolts and bearings that will not be described in detail. A conventional brake, such as disc brake 95, may be attached to the rear wheel 1 1. Other brake mechanisms may be employed such as a drum brake. Similarly, a front wheel 12 is connected to a front fork assembly 14, which passes through a steering tube 2 and connects to the handlebars 15 having a left grip 18 and a right grip 19. A seat 20 is connected to the mainframe left portion 5 and the mainframe right portion 9 through an adjustable seat tube 10. The seat 20 is adjustable for children of different ages and heights. The seat height is adjustable to account for both comfort considerations for the child, but also to provide an optimum height where the child may be able to straddle the bike, either sitting in the seat or standing, and still keep both feet on the ground. In an embodiment, the steering tube 2, the handlebars 15, the grips 18 and 19, the seat 20 and the adjustable seat tube may comprise conventional bicycle components, thus providing a more inexpensive manufacturing process.

FIG. 2 illustrates the slim nature of the convertible running bike (non-motorized configuration), which is designed to allow for a young child to straddle the running bike and perform an easy running motion of the legs. The orientation of the grips 18 and 19, and in embodiments of the convertible running bike (motorized configuration), either grip 18 and 19 may function as a throttle input from the child rider. As shown in FIG. 6, the right grip 19 to may be integrated with a throttle sensor 45. In an embodiment for the convertible running bike (motorized configuration), the throttle sensor 45 may be set in a mode where a child could twist the throttle around its longitudinal circumference in order to adjust the amount of power provided to an electric motor, or other type of propulsion system. In another embodiment for the convertible running bike (non-motorized configuration), the throttle sensor 45 may be locked in a stationary mode to provide a stationary grip when not being used to modulate the electric motor. Also shown is footrest 46 attached to a plate 150 disposed on the bottom of the mainframe left portion 5 and the mainframe right portion 9 to provide a location for a child to rest their feet during coasting or propulsion. Further, the footrest 46 is shaped narrow enough with gentle angles to provide non-traumatic surfaces to the legs while the child balances and runs with the bike. More specifically, the footrest 46 includes an angled front portion 80 and an angled rear portion 81 that provide a gentle slope such that if a child is straddling the convertible running bike 1 and is standing either directly in front of or behind the footrest 46, if the bike moves in the direction of child's feet, the angled front portion 80 or the angled rear portion 81 cause the child's feet and/or legs to be pushed outwardly away from the bike. Therefore, unlike a conventional bicycle with pedals or motorcycle with footpegs, the footrest 46 will not tend to strike and potentially injure the child's feet and/or legs.

FIG. 5 shows the convertible running bike (non-motorized configuration) with an exploded view of the interior space of the mainframe assembly 84 provided by the rear fork left 6, the rear fork right 3, the mainframe left portion 5, the mainframe right portion 9 and the down tube 4. In an embodiment, an electronic control housing receiving region 49 defines an area designed to receive, selectively attach and protect electrical components for the convertible running bike (motorized configuration), such as the electronic control assembly 41 shown in FIG. 10. In an embodiment, a drivetrain receiving region 50 defines an area to receive, selectively attach and protect a drivetrain assembly 36, such as shown in FIGS. 10 and 12. The drivetrain assembly 36 consists of an electrical motor and transmission 102 that is controlled by the electrical control system 41 illustrated in FIG. 12. In an embodiment, the electrical motor 102 may be a brush motor or a brushless motor, or other motor of similar function. In an embodiment, an external battery mount 27 is connected to the down tube 4 and is designed to selectively receive a battery 25. Also shown is an internal battery receiving region 51 for receiving a battery inside the mainframe assembly 84 in another embodiment.

FIGS. 6-10 and FIG. 12 illustrate the components of the electrical drive system of the convertible running bike (motorized configuration). In a motorized configuration, the convertible running bike can perform in a similar manner and maintain all the functions of a running bike as when the convertible running bike is in non-motorized configuration, whether or not the propulsion is engaged. In various embodiments, some or all of the components described may be included by a user for use as a running bike, but not including other components, such as not including the battery 25, for example. In an embodiment, a shut-off switch may be provided to allow the running bike with some or all of the drivetrain components to operate as a running bike in a freewheel status.

A freewheel sprocket 44 is rotatably attached in a conventional technique to the rear wheel 1 1. In an embodiment, the freewheel sprocket 44 may comprise a BMX freewheel sprocket. For the convertible running bike 1 in the motorized configuration, a chain 21 is selectively connected between the sprocket 44 and a sprocket 100 disposed on the drivetrain assembly 36. The purpose of the chain 21 is to transfer force from the sprocket 100 to the sprocket 44, which in turn forces the rear wheel 1 1 to rotate and move the bike 1 . Because of the gear reduction of the motor and transmission 102, combined with the freewheel sprocket 44, rearward motion is limited. In an

embodiment, the sprocket 44 and the sprocket 100 may comprise conventional parts, such as bicycle sprockets. Further, the drivetrain assembly 36 is not limited to a chain drive system, but may also comprise a belt drive, shaft drive or other drive mechanism. FIGS. 6-10 illustrate the convertible running bike 1 in a motorized configuration. FIG. 10 shows the internal placement of the electrical and mechanical drive system of the bike in the motorized configuration. In an embodiment, an electronic control assembly 41 is selectively and electronically coupled on top of and adjacent to the drivetrain assembly 36. In an embodiment, the battery 25 may be selectively engaged with the battery mount 27 on the exterior of the mainframe assembly 84 and electrically coupled to electronic control assembly 41. The electronic control assembly 41 , the drivetrain assembly 36, the battery mount 27 and the external battery 25 may be connected to the mainframe assembly 84 and/or each other using conventional attachment devices, such as nut and bolt assemblies, so that these components may be easily installed or uninstalled by an adult by using conventional household tools.

FIG. 1 1 shows a close-up perspective view of an embodiment of a frame assembly 84 of the convertible running bike 1 as shown in FIGS. 1-10. The frame assembly 84 provides a compact protective shield for the various electrical and mechanical components that may be installed within the assembly 84.

FIG. 12 provides an exploded view of the various components that may be installed in order to convert the convertible running bike 1 from a non-motorized configuration to a motorized configuration. In an embodiment, electric cable 90 selectively couples the throttle sensor 45 with the electronic the electronic control assembly 41 ; electric cables 92 and 94 selectively couple the battery 25 through the external battery mount 27 to the electronic control assembly 41 ; and electric cables 96 and 98 selectively couple the drivetrain 36 to the electronic control assembly 41. In an embodiment, the throttle sensor 45 is coupled to the electronic control assembly 41 , which in an embodiment comprises a central processing unit/receiver (CPU) 104 coupled to an electronic speed control (ESC) 106. Also shown is the chain 21 selectively connected between the sprocket 100 and the sprocket 44.

FIG. 14 and FIG. 15 show an exploded view and a perspective view respectively of another embodiment of a mainframe assembly 1 10 of the convertible running bike. While this embodiment is similar to the mainframe assembly 84, the mainframe portions and rear forks have been combined into a mainframe/rear fork left portion 1 12 and a mainframe/rear fork right portion 1 14 in order to provide a more efficient mainframe and ease of manufacturing. The mainframe assembly 1 10 further comprises a steering tube 1 16 connected to a down tube 1 18, which is connected to the mainframe/rear fork left portion 1 12 and the mainframe/rear fork right portion 1 14. Steering tube 1 16 and down tube 1 18 are substantially similar to steering tube 2 and downtube 4 discussed above. In an embodiment, plate 120 and seat tube 122 are attached to drivetrain assembly mount 124. The plate 120 is used to attach a footrest similar to footrest 46, the seat tube 122 is used to attach a seat similar to seat 20 and the drivetrain assembly mount 124 is used to attach a drivetrain assembly similar to drivetrain assembly 36.

FIG. 16 and FIG. 17 show a perspective view and an exploded perspective view respectively of another embodiment of a mainframe assembly 160 of the convertible running bike. While this embodiment is similar to the mainframe assemblies 84 and 1 10, the mainframe portions, the rear forks and the down tube have been combined into a mainframe/rear fork/down tube left portion 162 and a mainframe/rear fork/down tube right portion 164 in order to provide a more efficient mainframe and ease of

manufacturing. The mainframe assembly 160 further comprises a steering tube 166 connected to the mainframe/rear fork/down tube left portion 162 and the mainframe/rear fork/down tube right portion 164. Steering tube 166 is substantially similar to steering tube 2 discussed above. In an embodiment, plate 172 and seat tube 170 are attached to drivetrain assembly mount components 168 and 169 respectively. The plate 172 is used to attach a footrest similar to footrest 46, the seat tube 170 is used to attach a seat similar to seat 20 and the drivetrain assembly mount components 168 and 169 are used to attach a drivetrain assembly similar to drivetrain assembly 36.

As illustrated in the schematic diagram in FIG. 13, the throttle sensor 45 is coupled to the electronic control assembly 41 , which in an embodiment comprises the central processing unit/receiver (CPU) 104 coupled to the electronic speed control

(ESC) 106. In an embodiment, the CPU 104 receives a signal from the throttle sensor 45 based on an input from a rider. The signal is then transmitted to the ESC 106 which controls the delivery of power from the battery 25 provided to the motor 102. In an embodiment, the ESC 106 includes a microcontroller device. FIGS. 18-22 illustrate a convertible running bike (motorized configuration) including the mainframe assembly 1 10 of FIGS. 14 and 15, and a combined electronic control/battery mount assembly 180 according to an embodiment. The electronic control/battery mount assembly 180 comprises substantially similar components as the electronic control assembly 41 and the external battery mount 27 as discussed above. In an embodiment, a drivetrain assembly 186 is selectively connected to the drivetrain assembly mount 124 and to the electronic control/battery mount assembly 180 via cable 192. Battery 182 is selectively coupled to the electronic control/battery mount assembly 180. In the close-up and exploded views of FIGS. 18-22, the electronic control/battery mount assembly 180 comprises a combined central processing unit/receiver/electronic speed control (CPU/ESC) 183 that performs in a substantially similar fashion to the central processing unit/receiver (CPU) 104 and the electronic speed control (ESC) 106 discussed above. The CPU/ESC 183 is electronically coupled to the battery 182 via cables 188 and 190. The electronic control/battery mount assembly 180 is attached to the down tube 1 18 with fastener(s) such as fastening components 186.

In an embodiment of the convertible running bike 1 in the motorized

configuration, FIG. 13 also includes an optional external direct connect or wireless device 108 that may be used to connect, wired or wirelessly, to an external smart device or computer to allow programming and/or real-time external control of the propulsion system. In this embodiment, the external direct connect or wireless device 108 allows an adult to set the convertible running bike 1 to be safely powered at a speed that is less than the ability of the child. In an embodiment, this speed control function may also be accomplished through direct control on the convertible running bike 1 through methods such as providing a screw setting or knob (not shown) on the bike 1. The CPU 104 may connect to an external wireless transmitter/receiver that can communicate with the CPU 104 via Bluetooth, RF or other wireless protocols. In addition, the convertible running bike 1 may include a function that allows a supervising adult to provide a power limit or cut-off for the bike 1 if it travels out of a specified range, or if the adult feels the child needs to be stopped or slowed down. Embodiments are shown below of the methods of converting the convertible running bike 1 from a non-motorized configuration into a motorized configuration. All of the steps below may be accomplished using conventional tools located in homes.

Conversion Method for Internal Electronic Control Assembly / External Battery Mount

1 . Remove rear wheel 1 1 via standard bicycle procedures.

2. Remove fastener(s) [three bolts in an embodiment] holding the external battery mount 27.

3. Install freewheel sprocket 44 onto rear wheel 1 1 per conventional bicycle procedures.

4. Position the drivetrain assembly 36 into the drivetrain receiving region 50 in the mainframe assembly 84. Install the fastener(s) [four bolts in an

embodiment] to affix the drivetrain assembly 36 to the drivetrain receiving region 50 in the mainframe assembly 84.

5. Connect the electric cables 96 and 98 from the drivetrain assembly 36 to the electronic control assembly 41 through the mainframe assembly 84 while the speed electronic control assembly 41 is positioned aft of its final position in the drivetrain receiving region 50.

6. Remove the right side grip 19 from the handlebar 15 and install the throttle sensor 45 securely to the handlebar 15. 7. Connect the electric cable 90 from the throttle sensor 45 through the downtube 4 via normal bicycle cable routing techniques and connect the electric cable 90 to the electronic control assembly 41 .

8. Connect the electric cables 92 and 94 from the battery mount 27 through the downtube 4 to the electronic control assembly 41 .

9. Reposition the battery mount 27 back onto the downtube 4 and reinstall the fastener(s).

10. Position the electronic control assembly 41 into position in the electronic control housing receiving region 49 in the mainframe assembly 84 and secure with fastener(s).

1 1. Position the rear wheel 1 1 with attached freewheel sprocket 44 onto the rear fork right 3 and the rear fork left 6 and install the chain 21 per conventional bicycle procedures.

12. Position the battery 25 onto the battery mount 27 and the convertible running bike is now operational in a motorized configuration.

Conversion Method for External Electronic Control / Battery Mount Assembly

1 . Remove rear wheel 1 1 via standard bicycle procedures.

2. Remove fastener(s) [three bolts in an embodiment] holding the external battery mount 180. 3. Install freewheel sprocket 44 onto rear wheel 1 1 per conventional bicycle procedures.

4. Position the drivetrain assembly 186 into the drivetrain receiving region in the mainframe assembly 1 10. Install the fastener(s) [four bolts in an

embodiment] to affix the drivetrain assembly 186 to the drivetrain receiving region in the mainframe assembly 1 10.

5. Connect the electric cable 192 from the drivetrain assembly 186 to the electronic control/battery mount assembly 180 through the mainframe assembly 1 10 while the electronic control/battery mount assembly 180 is positioned forward of the downtube 1 18.

6. Remove the right side grip 19 from the handlebar 15 and install the throttle sensor 45 securely to the handlebar 15.

7. Connect the electric cable 90 from the throttle sensor 45 through the downtube 4 via normal bicycle cable routing techniques and connect the electric cable 90 to the electronic control/battery mount assembly 180.

8. Reposition the electronic control/battery mount assembly 180 back onto the downtube 1 18 and reinstall the fastener(s).

9. Position the rear wheel 1 1 with attached freewheel sprocket 44 onto the mainframe/rear fork right portion and the mainframe/rear fork left portion and install the chain 21 per conventional bicycle procedures. 10. Position the battery 182 onto the electronic control/battery mount assembly 180 and the convertible running bike is now operational in a motorized configuration.

Typically, electric cycles utilize a simpler direct motor connection without a large gear reduction. However, in embodiments of the present invention, the motor and transmission 102 employs a small, high rpm motor with a large planetary gear reduction and a 90 degree angle drive output, which allows for a lighter, more compact drivetrain. Additionally, combined with freewheel sprocket 44, this allows for conservation of energy, because the motor and transmission does not have to turn while coasting. This embodiment also limits rearward motion or rollback when a child stops on an upward incline. The small diameter and orientation of the motor and transmission 102 allows its placement in the frame assembly to provide a centralized center of gravity, as well as a narrow profile that provides additional clearance for children's legs for use as a running cycle. In an embodiment, the CPU 104 may be programmed to sense the amp draw and determine whether the rider has "pushed" the bike to start the forward movement. This program feature provides an additional feature to require a rider to push the bike to start rolling, which would reduce the initial amp draw on the motor, and so the CPU 104 can sense that the rider started pushing the bike from zero. This feature may reduce concerns about a child grabbing and twisting the throttle, and possibly advancing forward with only one hand on the handlebars in an unsafe manner. The CPU 104 may also have a sensor to determine orientation and acceleration of the running cycle. This can be utilized to limit or modify motor activity, as well as provide safety shutoff's if conditions warrant.

In an embodiment, the battery mount sytem180 may interface with the battery 182 in a mechanical or electrical manner in order to select preset motor performance.

In various embodiments, the present invention can apply to other motorized transportation devices such as wheelchairs or strollers.

Although the invention has been described with reference to the above examples, it will be understood that many modifications and variations are contemplated within the true spirit and scope of the embodiments of the invention as disclosed herein. Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.

Therefore, it is to be understood that the invention shall not be limited to the specific embodiments disclosed and that modifications and other embodiments are intended and contemplated to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.