Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONVEYOR ROLL ASSEMBLY, USE THEREOF AND END CAP FOR A CONVEYOR ROLL
Document Type and Number:
WIPO Patent Application WO/2017/167920
Kind Code:
A1
Abstract:
The present invention relates to conveyor roll assembly suitable for use in an environment subject to important temperature variation and to an integral end cap. The integral end cap ensures an efficient torque transfer to the ceramic spool thanks to its resilience due to the end cap deformation during the assembly of the end cap on the ceramic spool.

Inventors:
DUBOIS LAURENT (FR)
SCHABAILLIE ETIENNE (FR)
Application Number:
EP2017/057609
Publication Date:
October 05, 2017
Filing Date:
March 30, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VESUVIUS FRANCE SA (FR)
International Classes:
C03B35/18; B65G39/00; B65G39/02; F27B9/24; F27D3/02
Foreign References:
GB2051034A1981-01-14
DE102011084218A12012-12-13
US3867748A1975-02-25
US4242782A1981-01-06
US5316129A1994-05-31
US4404011A1983-09-13
US5906567A1999-05-25
US5370596A1994-12-06
EP1853866B12008-07-09
DE102011084218A12012-12-13
GB2051034A1981-01-14
Attorney, Agent or Firm:
BROHEZ, Veronique (7011 Ghlin, 7011 Ghlin, BE)
Download PDF:
Claims:
Claims.

1 . Conveyor roll (1 ) assembly suitable for use in an environment subject to important temperature variations comprising

a) a ceramic spool (2) having a longitudinal axis;

b) at least at one end of the ceramic spool, a metal end cap (3) comprising a first end (4) connectable to rotary means and a second end (5) comprising

an integral body having two ends, an internal diameter D adapted to fit over the end of the ceramic spool and a length L > 0.3 D or preferably >0.5D,

said integral body comprising at least three consecutive portions along the longitudinal axis of the integral body, the two end portions of the integral body comprising a substantially continuous surface and between those portions, one torque transmission portion

said torque transmission portion comprising a plurality of openings (6) of a length Lb < L in the direction of the longitudinal axis of the body, defining between the openings a plurality of strips (7) extending inwardly and being mechanically and resiliency deformed so as to transmit the torque to the spool.

2. Conveyor roll (1 ) assembly according to claim 2 wherein the openings (6) are oblong.

3. Conveyor roll (1 ) assembly according to any one of claims 1 to 2 wherein the openings are longitudinal, have the same length and are parallel to the longitudinal axis of the ceramic spool.

4. Conveyor roll (1 ) assembly according to any one of claims 2 to 3 wherein the

longitudinal openings are distributed uniformly over the whole circumference of the second end (5) of the end cap.

5. Conveyor roll (1 ) assembly according to any one of claims 2 to 4 wherein the strips extending inwardly comprise a thicker portion (8).

6. Conveyor roll (1 ) assembly according to claim 5 wherein the thicker portion (8) of the strip is in the middle of the strip.

7. Conveyor roll (1 ) assembly according to any one of claims 1 to 6 wherein the ceramic spool (2) comprises fused silica, mullite or sillimanite.

8. Use of a conveyor roll (1 ) assembly according to any one of the claims 1 to 7 for

transporting flat bottom articles in an environment subject to important temperature variations.

9. An integral metal end cap (3) for use in a conveyor roll assembly according to any one of the claims 1 to 7 having a longitudinal axis and comprising

an first end (4) connectable to rotary means, and an second end (5) comprising an integral body having two ends, an internal diameter D adapted to fit over an end of a ceramic spool and a length L > 0.3 D, or preferably > 0.5D ,said integral body comprising at least three consecutive portions along the longitudinal axis of the integral body, the two end portions of the integral body comprising substantially continuous surface and between those portions, one torque transmission portion, said torque transmission portion comprising a plurality of openings (6) of a length Lb < L in the direction of the longitudinal axis, defining between the openings a plurality of strips (7) extending inwardly and being mechanically and resiliency deformable so as to transmit the torque to the spool.

1 0. An integral metal end cap according to the previous claim wherein the openings are oblong.

1 1 . An integral metal end cap according to any one of claims 9 to 1 0 wherein the openings are longitudinal, have the same length and are parallel to the longitudinal axis of the ceramic spool.

12. An integral metal end cap according to any one of claims 9 to 1 1 wherein the openings are distributed uniformly on the roll.

13. An integral metal end cap according to any one of claims 9 to 12 wherein the strips extending inwardly comprise a thicker portion (8).

14. An integral metal end cap according to claim 13 wherein the thicker portion of the strip is in the middle of the strip.

15. An integral metal end cap according to any one of claims 9 to 14 wherein the integral body has a thickness of 1 to 5 mm.

Description:
Conveyor roll assembly, use thereof and end cap for a conveyor roll.

[0001 ] The present invention relates to a conveyor roll assembly suitable for use in an environment subject to important temperature variations, to the use of such assembly as well as to an improved end cap that can be used in such assembly.

[0002] A conveyor roll assembly suitable for use in an environment subject to important temperature variations may comprise a ceramic spool having metal end caps. Typically, the ceramic spool comprises fused silica. The end caps permit an easy mounting to a bearing or drive wheel. For example, in glass tempering applications, a series of ceramic spools support glass sheets, and the end caps permit mechanical coupling therefore to a drive mechanism. The end caps should securely adhere to the spool, thereby permitting the spool to rotate at the desired speed.

[0003] The different thermal expansions of the ceramic spool and the metal end caps makes securely fastening the end caps to the spool difficult and can create eccentric rotations or breakages when heated or on cooling. Eccentric rotation is generally undesirable, as this would create an uneven support surface for the glass sheet or speed variations leading to scratches. Various methods have been proposed to overcome this difficulty. U.S. Pat. No. 3,867,748 teaches fastening end caps to a spool using an adhesive. U.S. Pat. No. 4,242,782 proposes fastening end caps using rubber O-rings. Adhesives and O-rings can become pliable and lose holding power at elevated temperatures causing eccentric rotation of the spool and slippage between the end caps and the spool. If, by accident, the adhesive and O-ring have been subjected to such elevated temperatures, they lose definitely their holding power so that even when the temperature returns to its normal value, slippage is still observed. For this reason, the fastening of end caps to a spool using adhesive or O-ring is limited to applications at low temperature (lower than 250°C).

[0004] Metallic connectors have also been used to secure an end cap to a spool. U.S. Pat. No. 5,316, 129 or U.S. Pat. No. 4,404,01 1 describes the use of a helically wound coil between the spool and the end cap. The coil includes bent portions and straight portions that permit continuous contact between the end cap and the spool despite disparate thermal expansion coefficients. The flat sided spring coil of this document consists in a succession of relatively long portions which are relatively thin. In these conditions, a significant flexibility of the coil elements is observed. Consequently, to obtain a torque sufficient to secure the end cap to the spool, it is necessary to pre-stress the coil very significantly. If the temperature increases accidentally (temporary overheat), the torque and consequently the fastening of the end cap to the spool are lost. Moreover, when the system cools down, the torque is not recovered. U.S. Pat. Nos.

5,906,567 and 5,370,596 describe curved bimetallic shims for securing the end cap to the spool. The curvature of the bimetallic shims changes with temperature thereby retaining a secure attachment between the spool and the end cap. Assembling and repairing a coil spring or bimetallic system can, however, be difficult. In addition, such metallic connectors are particularly adapted to specific temperature ranges (generally 400°C and higher). Outside of this range, eccentric rotation can be observed.

[0005] Another problem which is often observed with the conveyor rolls of the prior art is that of jamming. For example, in case the conveyed article is blocked or in case of mechanical seizing, the drive mechanism will continue to operate and will transmit a moment of torsion to the end cap. In these conditions, either the ceramic spool or the fastening means will break.

[0006] EP-B1 -1853866 solves these problems by providing a conveyor roll assembly comprising an end cap with a tolerance ring interposed between the end cap and the end of the ceramic spool that fixedly and centrally secures the end caps to a ceramic spool within a wide range of application temperatures. As the transmitted torque value might decrease at high temperature with time, these end caps provide a transmission torque range up to several hundred N.m. and resist a temporary overheat. However, these end caps system are most of the time oversized.

[0007] Other drawbacks of the end cap comprising a tolerance ring, are that they are made of at least two separate parts requiring an assembly step and are relatively expensive due to the size and design of the end caps.

[0008] DE-A1 -1 0,201 1 ,084,218 discloses an end cap for carrier roll having ceramic roller body. The end cap comprises a shaft end for rotatable support and a receptacle for the roll body. The receptacle is formed by at least two segments separated by a hole and are integral with a connection plate. The segments having a conical contact surface to collaborate to an adjustable actuating element which has also a conical contact surface. The segments have inwardly projecting extensions fitting in roller body recesses and blocking the relative rotation between the roll body and the endcap. The torque is transmitted by using a cone ring which tights the endcap to the spool. The torque transmission is done by contact pressure and not by friction. The drawbacks of this end cap are the following: the end cap is made of at least 3 pieces (endcap, nut, cone ring), a specific tightening must be done for each roll at both ends. In addition, the thickness of the end caps is important to ensure a good tightening. The end caps must then be installed outside the walls of the oven leading to a longer total length of the spool.

[0009] GB-A-2,051 ,034 describes an assembly of a spool and a resilient sleeve put in rotation by laying on an endless belt. The entire surface of the sleeve is used to transmit the torque while a pin is required to prevent lateral movement of the spool. The length of the spool must be longer to cross the furnace wall as the sleeve must be located outside the furnace walls. The resiliency of the sleeve is indeed not sufficient to tolerate important temperature variations. The installation is also cumbersome.

[0010] A new end cap was developed solving the cited problems and has the advantage to be simpler and less expensive to assemble than the end cap described in EP-B1 -1 853866 and in DE-A1 -1 0,201 1 ,084,218. This new end cap indeed ensures an efficient torque transfer from a rotary drive means to a ceramic spool thanks to its resilience due to the end cap deformation during the assembly of the end cap on the ceramic spool. It has been indeed established by the inventors that a minimum of transmission torque value is sufficient to bring the rolls in rotation for the application and the assembly according to the invention is able to provide it.

[001 1 ] Thanks to the symmetry of the end cap, the contacts of the end cap with the ceramic spool are uniformly distributed even at higher temperature. The ceramic spool remains perfectly coaxially with the end cap.

[0012] Another advantage of this new end cap is its weak thickness. A thickness of only 1 to 5 mm can be used. The end caps can then be installed in the wall of the oven leading to a shorter required length of the ceramic spool.

[0013] The present invention concerns a conveyor roll (1 ) assembly suitable for use in an environment subject to important temperature variations comprising

a) a ceramic spool (2) having a longitudinal axis; b) at least at one end of the ceramic spool, a metal end cap (3) comprising a first end (4) connectable to rotary means and a second end comprising

an integral body having two ends, an internal diameter D adapted to fit over the end of the ceramic spool and a length L > 0.3 D or preferably >0.5D,

said integral body comprising at least three consecutive portions along the longitudinal axis of the integral body, the two end portions of the integral body comprising a substantially continuous surface and between those portions, one torque transmission portion

said torque transmission portion comprising a plurality of openings (6) of a length Lb < L in the direction of the longitudinal axis of the body, defining between the openings a plurality of strips (7) extending inwardly and being mechanically and resiliency deformed so as to transmit the torque to the spool.

[0014] The openings are required to obtain a resiliency deformable portion so as to transmit a torque to the spool. Longitudinal openings are preferred.

The length (L) of the second end of the end cap is at least > 0.3 D preferably at least > 0.5 D; D being the internal diameter measured at the end of the metal end cap receiving the ceramic spool. The end cap must indeed guide correctly the spool even during a temporary overheat and must maintain the spool coaxially with the end cap. A too short length also decreases the resilient behaviour expected for the end cap.

[0015] The openings can have different shapes among which the oblong shape is preferred because this shape is easy to be manufactured. The resulting strips have a rectangular shape which makes the end cap is easier to size. For each different ceramic spool, calculations of stress and deformation occurring in the end cap are indeed carried out to determine the size of the openings. The openings have preferably the same length and are parallel to the longitudinal axis of the ceramic spool. They are also preferably distributed uniformly over the whole circumference of the second end of the end cap. The combination of these features with the features of the strips optimise the distribution of stress due to the deformation during the assembly of the end cap on the ceramic spool and during the temperature variations.

[0016] The shape of the strips is defined by the shape of the openings.

[0017] The strips extend inwardly in the direction of the ceramic spool. In one embodiment, at least one strip has a thicker portion. In a preferred embodiment all the strips have a thicker portion to increase the transmitted torque value. The internal diameter of the end cap is thereby decreased on a local area, tensioning the strips and enhancing the contact with the ceramic spool. The thicker portions are preferably located in the middle of the strips. The sizing of the cap is made easier as explained above. Moreover, the ratio stress on deformation is optimized. With an increase of temperature, the end cap thermally expands while the dimensions of the ceramic spool do not significantly change. Thereby, the fastening power of the end cap decreases and the spool starts slipping in the end cap. When the temperature returns back to normal, the end cap returns to its "normal" dimensions and the holding power is integrally recovered without causing eccentric rotation.

[0018] The conveyor roll according to the invention can be used for conveying an article, a foil or sheet (for example of glass or metal) for any kind of thermal treatment of the foil or sheet or of a coating applied thereon. This conveyor roll is particularly suitable for transporting flat bottom articles in an environment subject to important temperature variations.

[0019] The ceramic spool (2) generally comprises material suitable material for high temperature application, preferably fused silica, mullite or sillimanite.

[0020] The present invention also relates to an integral metal end cap for use in a conveyor roll assembly in an environment subject to important temperature variations, having a longitudinal axis and comprising a first end connectable to rotary means and a second end comprising an integral body having two ends, an internal diameter D adapted to fit over an end of a ceramic spool and a length L > 0.3 D, or preferably > 0.5D ,said integral body comprising at least three consecutive portions along the longitudinal axis of the integral body, the two end portions of the integral body comprising substantially continuous surface and between those portions, one torque transmission portion, said torque transmission portion comprising a plurality of openings of a length Lb < L in the direction of the longitudinal axis, defining between the openings a plurality of strips extending inwardly and being mechanically and resiliency deformable so as to transmit the torque to the spool.

[0021 ] The first end of the end cap is connected to the driving system by, for instance belt or gear wheel. The openings are made by conventional machining means or laser. The strips resulting from the openings have a thicker portion which are also made by conventional machining means. The thicker portion extends inwardly and has preferably the shape of a raised surface between two inclined surfaces.

[0022] The metal end cap is lighter than the end cap of EP-B1 -1 853866 and is cheaper even though a strip machining step is required.

[0023] The invention will be better understood from reading the description which will follow, given solely by way of examples and made with reference to the drawings in which

- Figure 1 is a perspective view of an assembly of a conveyor roll according to one embodiment of the invention,

- Figure 2 is a perspective view of the end cap of the assembly according to one embodiment of the invention,

- Figure 3 is a cross-sectional view of the end cap of Figure 2.

Figure 1 depicts an assembly (1 ) according the present invention of a conveyor roll comprising a ceramic spool (2) and two metallic end caps (3). The length L represents the length of the second end (5) of the end cap as showed in Figure 2. Figure 3 depicts the internal view of the end cap. The thicker portion (8) is a portion with two slopes leading to a raised floor.

[0024] List of references

1 . Conveyor roll assembly

2. Ceramic spool

3. Metal end cap

4. First end of metal end cap

5. Second end of metal end cap

6. Longitudinal openings

7. Strip

8. Thicker portion of strip