Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CORE OF REGENERATIVE COUNTERFLOW HEAT EXCHANGER (VERSIONS)
Document Type and Number:
WIPO Patent Application WO/2018/117909
Kind Code:
A1
Abstract:
The group of inventions relates to heat engineering, and may be used as as part of regenerative counterflow heat exchange apparatuses, such as air conditioners, ventilation systems, as well as air filtration and moisture-removing systems. A core of a regenerative counterflow heat exchanger includes a base, made of heat-insulating material, and a plurality of heat-transmitting rods or gratings threaded through said base, wherein the base having rods or gratings is designed to be displaceable in the body of the heat exchanger, dividing same into two channels for passage of heat carriers in opposite directions. The technical result of the present group of inventions is increased effectiveness of heat exchange as well as broadened technical capabilities and simplified maintenance at the same time.

Inventors:
GRISHAEV ANDREI VALENTINOVICH (RU)
GRISHAEV ALEKSEI ANDREEVICH (RU)
ANTONOV DMITRIY ANDREEVICH (RU)
Application Number:
PCT/RU2017/000947
Publication Date:
June 28, 2018
Filing Date:
December 18, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GRISHAEV ANDREI VALENTINOVICH (RU)
GRISHAEV ALEKSEI ANDREEVICH (RU)
ANTONOV DMITRIY ANDREEVICH (RU)
International Classes:
F28D1/06; F24F7/08; F24F12/00; F24F13/30
Foreign References:
RU46958U12005-08-10
RU2345294C12009-01-27
RU2539668C22015-01-20
Attorney, Agent or Firm:
PANTYUSHINA, Ekaterina Nikolaevna (RU)
Download PDF:
Claims:
Формула изобретения

1. Сердечник рекуперативного противоточного теплообменника, включающий основу, выполненную из теплоизолирующего материала, и множество теплопередающих стержней, продетых через основу, при этом основа со стержнями выполнена с возможностью размещения в корпусе теплообменника, разделяя его на два канала для встречного прохода по ним теплоносителей.

2. Сердечник рекуперативного противоточного теплообменника, включающий основу, выполненную из теплоизолирующего материала, и множество теплопередающих решеток, продетых через основу, при этом основа с решетками выполнена с возможностью размещения в корпусе теплообменника, разделяя его на два канала для встречного прохода по ним теплоносителей.

Description:
Сердечник рекуперативного противоточного теплообменника

(варианты)

Группа изобретений относится к теплотехнике и может быть использована в составе рекуперативных противоточных теплообменных аппаратов, например, кондиционеров, системах вентиляции, а также для фильтрации воздуха и удаления влаги.

Известен теплообменный аппарат [патент на изобретение N° 2009429, F28D7/16, F28F21/06, опубл. 15.03.1994], содержащий корпус с патрубками подвода и отвода теплоносителей и пучок труб, закрепленных в трубных досках, выполненных из скрепленных между собой и трубами отдельных элементов, выполненных в виде колпачков, установленных в контакте друг с другом и трубами и скрепленных посредством полимерного заполнителя, расположенного в зазорах между трубами и колпачками.

Основным недостатком этой конструкции является низкая эффективность теплообмена, обусловленная непосредственной (через теплопроводящий материал, из которого изготовлен теплообменник) теплопроводной связью между элементами теплообмена и входом и выходом тепловых потоков с корпусом теплообменника и с окружающей средой. Возможно также обледенение частей теплообменника за счет конденсации влаги и ее замерзания при резком охлаждении, обусловленным конструктивной теплопроводной связью по теплопроводящему материалу теплообменника.

Техническим результатом настоящей группы изобретений является повышение эффективности теплообмена при одновременном расширении технических возможностей и упрощении обслуживания.

Указанный технический результат по первому варианту достигается за счет того, что сердечник рекуперативного противоточного теплообменника включает основу, выполненную из теплоизолирующего материала, и множество теплопередающих стержней, продетых через основу, при этом основа со стержнями выполнена с возможностью размещения в корпусе теплообменника, разделяя его на два канала для встречного прохода по ним теплоносителей.

Указанный технический результат по второму варианту достигается за счет того, что сердечник рекуперативного противоточного теплообменника включает основу, выполненную из теплоизолирующего материала, и множество теплопередающих решеток, продетых через основу, при этом основа с решетками выполнена с возможностью размещения в корпусе теплообменника, разделяя его на два канала для встречного прохода по ним теплоносителей.

Таким образом, всей совокупностью заявленных существенных признаков по первому и второму вариантам достигается повышение эффективности теплообмена, благодаря созданию условий для последовательно-ступенчатого теплообмена (теплопередачи), поскольку за счет использования в конструкции чередования элементов из теплоизоляционного материала и теплопередающих элементов, выполненных из теплопроводящего материала, на каждом участке теплообмена происходит изменение градиента температуры и образуются участки с разной температурой, что приводит к последовательно- ступенчатому изменению значения температуры теплоносителей, с учетом сопротивлений потоков, направления их движения, их распределения и возможности турбулентности. Т.е. достигается более полное, чем у известных устройств, использование разницы температур между средами при теплообмене и теплопередаче за счет последовательно-ступенчатого изменения градиента температуры участков теплообмена жидких или/и газообразных имеющих возможность движения тел с теплоизоляцией от окружающей среды. Повышение эффективности теплообмена достигается так же за счет повышения эффективной площади теплообмена, так как теплопередающие элементы в виде стержней и решеток, выполненные из теплопроводящего материала, обладают большой площадью поверхности и минимальным сопротивлением для теплоносителя. Таким образом, происходит дискретный теплообмен по поверхности каждого теплопередающего стержня или теплопередающей решетки.

Расширение технических возможностей реализуется за счет заложенной в конструкцию возможности фильтрации воздуха поверхностью теплообменных (теплопередающих) стержней и торцевыми фильтрами (в случае их наличия) и постоянным удалением конденсата по стержням и решеткам.

Упрощение обслуживания достигается за счет возможности легкого (быстрого) вскрытия конструкции с возможностью легкого (быстрого) снятия картриджа и его очистки (промывки), или его заменой, с последующей установкой в корпус.

Заявленная группа изобретений поясняется нижеследующим описанием и чертежами.

На Фиг. 1 представлен вид на сердечник по п. 1 в изометрии. На Фиг. 2 представлен вид сверху сердечника по п.1. На Фиг. 3 представлен вид сбоку сердечника по п.1. На Фиг. 4 представлен вид с торца сердечника по п.1. На Фиг. 5 представлен сердечник, вынесенный из корпуса теплообменника. На Фиг. 6 представлен вид на сердечник по п. 2 в изометрии.

1 - основа;

2 - стержни;

3 - решетки;

4 - корпус;

5 - входные отверстия; з 6 - выходные отверстия;

7 - отверстие для слива конденсата;

8 - крышка;

9 - крепления на корпусе;

10 - крепления на сердечнике;

1 1 - корпус картриджа;

12 - ручка;

13 - фильтры.

По первому варианту сердечник рекуперативного противоточного теплообменника (Фиг. 1 -5) включает основу 1 , выполненную из теплоизолирующего материала, и множество теплопередающих стержней 2, продетых через основу 1 и выполненных из теплопроводящего материала или тепловых труб.

По второму варианту вместо множества стержней 2 применены множество теплопередающих решеток 3 (Фиг. 6), продетых через основу 1 и выполненных из теплопроводящего материала.

При этом основа 1 со стержнями 2 или с решетками 3 выполнена с возможностью размещения в корпусе 4 теплообменника, разделяя его на два канала для встречного прохода по ним теплоносителей. Т.е. размер основы 1 со стержнями 2 или решетками 3 выполнен таким, что они вмещаются в корпус 4 и съемно устанавливаются там.

Теплообменник (Фиг. 5) содержит корпус 4, выполненный из теплоизолирующего материала или из материала с низкой теплопроводностью, в котором образованы входные отверстия 5 и выходные отверстия 6. В корпусе 4, в нижней его части, может быть образовано углубление для сбора конденсата, стекающего по стержням 2 или решеткам 3, и отверстие 7 для слива конденсата в емкость (на чертеже не показано) для сбора конденсата или наружу. Корпус 4 снабжен крышкой 8 и креплениями 9 для установки в нем сердечника. Крышка (дверца) 8 может быть выполнена откидной и с любой стороны корпуса 4 как в его стенке, так и вместо нее, при открывании которой в корпус 4 можно поместить и зафиксировать сердечник.

На сердечнике имеются ответные крепления 10. Это может быть реализовано с помощью любых разъемных и неразъемных креплений, способных обеспечить герметичную установку сердечника внутри корпуса 4. Например, пазовое соединение, соединение типа ласточкин хвост. При этом при установке сердечника в корпус 4 он разделяет его на два параллельных канала, расположенных друг над другом или рядом друг с другом в зависимости от конструкции теплообменника.

Для упрощения эксплуатации и защиты стержней 2 или решеток 3 сердечник может быть помещен в сменный картридж, включающий корпус 1 1 , выполненный из теплоизолирующего материала и состоящий из перфорированных листов, соединенных между собой. При этом стержни 2 или решетки 3 могут быть соединены с верхним и нижним листами корпуса 1 1 для укрепления стержней 2 и решеток 3 и для уменьшения возможности их деформации при очистке картриджа. Основа 1 может быть снабжена ручкой 12 для упрощения процесса установки и снятия картриджа.

Имеются фильтры 13, выполненные, например, съемными или стационарными, в виде решеток или сеток разного или одинакового размера, которые могут быть установлены на сердечник с его торцов, на входные и выходные отверстия 4 и 5 корпуса 3, на сменный картридж, например, вместо торцевых стенок.

Стержни 2 могут представлять собой отрезки проволок или тепловые трубы. Решетки 3 могут быть образованы из отрезков проволок или тепловых труб. Количество и размер стержней 2 или решеток 3 определяются необходимой мощностью теплообмена и габаритами теплообменника.

В качестве теплоизолирующего материала могут быть применены пенопласт, пористый теплоизоляционный материал с замкнутыми порами или волокнистый теплоизолирующий материал с влагостойким (герметичным) покрытием.

В качестве теплопроводящего материала могут быть применены медь или углепластик.

Рекуперативный противоточный теплообменник с применением заявляемого сердечника на примере использования стержней 2 работает следующим образом.

Наружный воздух под действием отрицательного давления поступает через верхнее входное отверстие 5 к торцу сердечника и через сменный фильтр (при его наличии) поступает на верхнее выходное отверстие 6, проходя между верхними частями теплопередающих стержней 2. При этом наружный воздух, проходя между верхними частями разно нагретых стержней 2, очищается и нагревается за счет последовательного контакта с теплопередающими стержнями 2. Синхронно внутренний воздух за счет перепада давлений поступает через нижнее входное отверстие 5 к нижним частям теплопередающих стержней 2. При движении к нижнему выходному отверстию 6 внутренний воздух охлаждается с последовательным нагревом нижних частей теплопередающих стержней 2, при этом на нижних частях теплопередающих стержней 2 образуется конденсат, который стекает по теплопередающим стержням 2 в отверстие 7 и сливается наружу.