Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CRYSTALLINE FORMS OF TROFINETIDE
Document Type and Number:
WIPO Patent Application WO/2023/287750
Kind Code:
A1
Abstract:
This disclosure provides crystalline forms of trofinetide and trofinetide hydrate, pharmaceutical compositions comprising crystalline forms of trofinetide and trofinetide hydrate, methods of making crystalline forms of trofinetide or trofinetide hydrate, and methods of treating a disease, condition, or disorder in a subject comprising administering a composition comprising crystalline forms of trofinetide or trofinetide hydrate to the subject.

Inventors:
PETERSON MATTHEW (US)
CARLOS MARLON (US)
BOUSMANNE MARTIN BERNARD CATHERINE (BE)
BETTI CECILIA (BE)
JONAITIS DAVID T (US)
MCCRACKEN LISA M (US)
GROVE LISA M (US)
Application Number:
PCT/US2022/036768
Publication Date:
January 19, 2023
Filing Date:
July 12, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ACADIA PHARM INC (US)
International Classes:
A01N43/64; A61K31/33; A61K31/395; A61K45/06; A61P25/00; A61K38/04; A61P25/28
Domestic Patent References:
WO2021026066A12021-02-11
WO2021086892A12021-05-06
Foreign References:
US20200093848A12020-03-26
US9708366B22017-07-18
Attorney, Agent or Firm:
GROSS III, Michael F. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. Crystalline trofmetide · XH2O, wherein x is about 2 to about 4, characterized as having:

(i) a powder x-ray diffraction pattern with a peak in the range of 6.6-6.8, a peak in the range of 11.3-11.6, a peak in the range of 12.5-12.7, and a peak in the range of 13.6-13.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q; or

(ii) a powder x-ray diffraction pattern with d-spacings at 13.1, 7.7, 7.0, 6.4, and 5.3 A using Cu Ka radiation; or

(iii) a FT-Raman spectrum with peaks at 2989, 2934, 2883, 1685, 1637, 1459, and 930 cm-1, wherein the cm-1 values are ± 4 cm-1; or

(iv) a low frequency (LF) Raman spectrum with peaks at 13, 24, 67, and 77 cm-1, wherein the cm-1 values are ± 4 cm-1; or

(v) a 13C solid-state nuclear magnetic resonance spectrum with peaks at 179.7, 177.9, 177.5, 177.2, 177.0, 165.3, 164.9, 164.8, 67.8, 67.4, 58.6, 58.2, 46.8, 40.3, 33.3, 25.3, 23.5, and 21.1 ppm, wherein the ppm values are ± 3 pm; or

(vi) a 13C solid-state nuclear magnetic resonance spectrum with 18 peaks, wherein the D from the furthest downfield peak to: (i) the second furthest downfield peak is 1.8 ppm; (ii) the third furthest downfield peak is 2.2 ppm; (iii) the fourth furthest downfield peak is 2.5 ppm; (iv) the fifth furthest downfield peak is 2.7 ppm (v) the sixth furthest downfield peak is 14.4 ppm; (vi) the seventh furthest downfield peak is 14.8 ppm; (vii) the eight furthest downfield peak is 14.9 ppm; (viii) the ninth furthest downfield peak is 111.9 ppm; (ix) the tenth furthest downfield peak is 112.3 ppm; (x) the eleventh furthest downfield peak is 121.1 ppm; (xi) the twelvth furthest downfield peak is 121.5 ppm; (xii) the thirteenth furthest downfield peak is 133.1 ppm; (xiii) the fourteenth furthest downfield peak is 139.4 ppm; (xiv) the fifteenth furthest downfield peak is 146.3 ppm; (xv) the sixteenth furthest downfield peak is 154.6 ppm; (xvi) the seventeenth furthest downfield peak is 156.2 ppm; and/or (xvii) the D from the furthest downfield peak to the furthest upfield peak is 158.6 ppm, or any combination thereof; or

(vii) a melting point with an onset temperature of 71.71 °C and a peak temperature of 72.06 °C based on differential scanning calorimetry; or

(viii) an infrared (IR) spectrum with peaks at 1678, 1636, 1589, 1525, 1214, and 1196 cm-1, wherein the cm-1 values are ± 4 cm-1; or (ix) a near-infrared (NIR) spectrum with peaks at 5145, 4630, and 4423 cm-1, wherein the cm-1 values are ± 4 cm-1; or a combination thereof.

2. Crystalline trofmetide · XH2O, wherein x is about 2 to about 4, characterized as having:

(i) a powder x-ray diffraction pattern with peaks at 6.8, 11.5, 12.6, 13.8, and 16.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q; and/or

(ii) a powder x-ray diffraction pattern with d-spacings at 13.1, 7.7, 7.0, 6.4, and 5.3 A using Cu Ka radiation; and/or

(iii) a FT-Raman spectrum with peaks at 2989, 2934, 2883, 1685, 1637, 1459, and 930 cm 1, wherein the cm 1 values are ± 4 cm 1; and/or

(iv) a low frequency (LF) Raman spectrum with peaks at 13, 24, 67, and 77 cm 1, wherein the cm 1 values are ± 4 cm 1; and/or

(v) a 13C solid-state nuclear magnetic resonance spectrum with peaks at 179.7, 177.9, 177.5, 177.2, 177.0, 165.3, 164.9, 164.8, 67.8, 67.4, 58.6, 58.2, 46.8, 40.3, 33.3, 25.3, 23.5, and 21.1 ppm, wherein the ppm values are ± 3 pm; and/or

(vi) a 13C solid-state nuclear magnetic resonance spectrum with 18 peaks, wherein the D from the furthest downfield peak to: (i) the second furthest downfield peak is 1.8 ppm; (ii) the third furthest downfield peak is 2.2 ppm; (iii) the fourth furthest downfield peak is 2.5 ppm; (iv) the fifth furthest downfield peak is 2.7 ppm (v) the sixth furthest downfield peak is 14.4 ppm; (vi) the seventh furthest downfield peak is 14.8 ppm; (vii) the eight furthest downfield peak is 14.9 ppm; (viii) the ninth furthest downfield peak is 111.9 ppm; (ix) the tenth furthest downfield peak is 112.3 ppm; (x) the eleventh furthest downfield peak is 121.1 ppm; (xi) the twelvth furthest downfield peak is 121.5 ppm; (xii) the thirteenth furthest downfield peak is 133.1 ppm; (xiii) the fourteenth furthest downfield peak is 139.4 ppm; (xiv) the fifteenth furthest downfield peak is 146.3 ppm; (xv) the sixteenth furthest downfield peak is 154.6 ppm; (xvi) the seventeenth furthest downfield peak is 156.2 ppm; and/or (xvii) the D from the furthest downfield peak to the furthest upfield peak is 158.6 ppm, or any combination thereof; and/or

(vii) a melting point with an onset temperature of 71.71 °C and a peak temperature of 72.06 °C based on differential scanning calorimetry; and/or (viii) an infrared (IR) spectrum with peaks at 1678, 1636, 1589, 1525, 1214, and 1196 cm 1, wherein the cm 1 values are ± 4 cm 1; and/or

(ix) a near-infrared (NIR) spectrum with peaks at 5145, 4630, and 4423 cm 1, wherein the cm 1 values are ± 4 cm 1; and/or a combination thereof.

3. The crystalline trofmetide · xThO of claims 1 or 2, characterized as having a powder x-ray diffraction pattern with peaks at 6.8, 11.5, 12.6, 13.8, and 16.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

4. The crystalline trofmetide · xThO of claim 3 further characterized as having a powder x- ray diffraction pattern with peaks at 22.3, 23.6, 25.3 and/or 28.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

5. The crystalline trofmetide · xThO of claims 1 or 2, characterized as having a powder x-ray diffraction pattern with peaks at 6.7 or 6.8, 11.4 or 11.5, 12.6, and 13.7 or 13.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

6. The crystalline trofmetide · xThO of claims 1 or 2, characterized as having a powder x-ray diffraction pattern with peaks at 6.7 or 6.8, 11.4 or 11.5, 12.6, and 13.7 or 13.8 degrees 2Q using Cu Ka radiation.

7. The crystalline trofmetide · xThO of claims 5 or 6 further characterized as having a powder x-ray diffraction pattern with peaks at 22.3, 23.6, 25.3 and/or 28.1 degrees 2Q ± 0.2 degrees 2Q using Cu Ka radiation.

8. The crystalline trofmetide · xThO of claim 7, characterized as having a powder x-ray diffraction pattern with peaks at 6.7, 11.4, 12.6, 13.7, 22.3, 23.6, 25.3 and 28.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q. 9. The crystalline trofmetide · xFhO of claims 1 or 2, characterized as having a powder x-ray diffraction pattern with d-spacings at 13.1, 7.7, 7.0, 6.4, and 5.3 A using Cu Ka radiation.

10. The crystalline trofmetide · xFhO of claims 1 or 2, characterized as having an FT-Raman spectrum with peaks at 2989, 2934, 2883, 1685, 1637, 1459, and 930 cm 1, wherein the cm 1 values are ± 4 cm 1.

11. The crystalline trofmetide · xFhO of claims 1 or 2, characterized as having a low frequency (LF) Raman spectrum with peaks at 13, 24, 67, and 77 cm 1, wherein the cm 1 values are ± 4 cm 1.

12. The crystalline trofmetide · xFhO of claims 1 or 2, characterized as having a 13C solid-state nuclear magnetic resonance spectrum with peaks at 179.7, 177.9, 177.5, 177.2, 177.0, 165.3, 164.9, 164.8, 67.8, 67.4, 58.6, 58.2, 46.8, 40.3, 33.3, 25.3, 23.5, and 21.1 ppm, wherein the ppm values are ± 3 pm.

13. The crystalline trofmetide · xFhO of claims 1 or 2, characterized as having a 13C solid-state nuclear magnetic resonance spectrum with 18 peaks, wherein the D from the furthest downfield peak to: (i) the second furthest downfield peak is 1.8 ppm; (ii) the third furthest downfield peak is 2.2 ppm; (iii) the fourth furthest downfield peak is 2.5 ppm; (iv) the fifth furthest downfield peak is 2.7 ppm (v) the sixth furthest downfield peak is 14.4 ppm; (vi) the seventh furthest downfield peak is 14.8 ppm; (vii) the eight furthest downfield peak is 14.9 ppm; (viii) the ninth furthest downfield peak is 111.9 ppm; (ix) the tenth furthest downfield peak is 112.3 ppm; (x) the eleventh furthest downfield peak is 121.1 ppm; (xi) the twelvth furthest downfield peak is 121.5 ppm; (xii) the thirteenth furthest downfield peak is 133.1 ppm; (xiii) the fourteenth furthest downfield peak is 139.4 ppm; (xiv) the fifteenth furthest downfield peak is 146.3 ppm; (xv) the sixteenth furthest downfield peak is 154.6 ppm; (xvi) the seventeenth furthest downfield peak is 156.2 ppm; and/or (xvii) the D from the furthest downfield peak to the furthest upfield peak is 158.6 ppm, or any combination thereof. 14. The crystalline trofmetide · xThO of claims 1 or 2, characterized as having a melting point with an onset temperature of 71.71 °C and a peak temperature of 72.06 °C based on differential scanning calorimetry.

15. The crystalline trofmetide · xThO of claims 1 or 2, characterized as having an infrared (IR) spectrum with peaks at 1678, 1636, 1589, 1525, 1214, and 1196 cm 1, wherein the cm 1 values are ± 4 cm 1.

16. The crystalline trofmetide · xThO of claims 1 or 2, characterized as having having a near-infrared (NIR) spectrum with peaks at 5145, 4630, and 4423 cm 1, wherein the cm 1 values are ± 4 cm 1.

17. The crystalline trofmetide · xThO of any one of claims 1-16 having average particle size distribution of about 10 pm to about 500 pm.

18. The crystalline trofmetide · xThO of any one of claims 1-17, wherein x is about 2.5 to about 3.5.

19. The crystalline trofmetide · xThO of any one of claims 1-17, wherein x is about 2.

20. The crystalline trofmetide · xThO of any one of claims 1-17, wherein x is about 2.5.

21. The crystalline trofmetide · xThO of any one of claims 1-17, wherein x is about 3.

22. The crystalline trofmetide · xThO of any one of claims 1-17, wherein x is about 3.5.

23. The crystalline trofmetide · xThO of any one of claims 1-17, wherein x is about 4.

24. A pharmaceutical composition comprising the crystalline trofmetide · xThO of any one of claims 1-23 and a pharmaceutically acceptable excipient. 25. The pharmaceutical composition of claim 24 in granular form.

26. An aqueous pharmaceutical formulation comprising the crystalline trofmetide · xFhO of any one of claims 1-23 dissolved in water.

27. The aqueous pharmaceutical formulation of claim 26, wherein about 1 gram of crystalline trofmetide · xFhOis dissolved in each 5 mL of the water.

28. A method of making the aqueous pharmaceutical formulation of claims 26 or 27, the method comprising admixing the crystalline trofmetide · xFhO and water.

29. A kit comprising the crystalline trofmetide · xFhO of any one of claims 1-23 and instructions for dissolving crystalline trofmetide · xFhO in a water to provide an aqueous pharmaceutical formulation.

30. The kit of claim 29 further comprising instructions for administering the aqueous pharmaceutical formulation to a subject having a disease, disorder or condition.

31. The kit of claim 30, wherein the disease, disorder or condition is traumatic brain injury.

32. The kit of claim 30, wherein the disease, disorder or condition is a neurodevelopmental disorder.

33. The kit of claim 32, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

34. A method of treating a disease, disorder or condition in a subj ect in need thereof, the method comprising administering the pharmaceutical composition of claims 24 or 25, or the aqueous pharmaceutical formulation of claims 26 or 27 to the subject.

35. The method of claim 34, wherein the disease, disorder or condition is traumatic brain injury. 36. The method of claim 34, wherein the disease, disorder or condition is a neurodevelopmental disorder.

37. The method of claim 36, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

38. The method of claim 34, wherein the disease, disorder or condition is Rett Syndrome.

39. The pharmaceutical composition of claims 24 or 25, or the aqueous pharmaceutical formulation of claims 26 or 27 for use in treating a disease, disorder or condition in a subj ect in need thereof.

40. The composition or formulation of claim 39, wherein the disease, disorder or condition is traumatic brain injury.

41. The composition or formulation of claim 39, wherein the disease, disorder or condition is a neurodevelopmental disorder.

42. The composition or formulation of claim 41, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

43. The composition or formulation of claim 42, wherein the disease, disorder or condition is Rett Syndrome.

44. Use of the pharmaceutical composition of claims 24 or 25, or the aqueous pharmaceutical formulation of claims 26 or 27 in the manufacture of a medicament for a disease, disorder or condition in a subject in need thereof.

45. The use of claim 44, wherein the disease, disorder or condition is traumatic brain injury. 46. The use of claim 44, wherein the disease, disorder or condition is a neurodevelopmental disorder.

47. The use of claim 46, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

48. The use of claim 44, wherein the disease, disorder or condition is Rett Syndrome.

49. A method of making the crystalline trofmetide · xFhO of any one of claims 1-23, the method comprising i) adding ethanol to an aqueous solution of trofmetide at about 25 °C; ii) cooling the solution to about 0 °C; and iii) isolating the solid thus obtained to give crystalline trofmetide · xFhO.

50. The method of claim 49, wherein the watenethanol ratio is about 3:7 w/w.

Description:
CRYSTALLINE FORMS OF TROFINETIDE

BACKGROUND OF THE INVENTION

Field of Invention

[0001] This disclosure provides crystalline forms of trofmetide and trofmetide hydrate, pharmaceutical compositions comprising crystalline forms of trofmetide and trofmetide hydrate, methods of making crystalline forms of trofmetide or trofmetide hydrate, and methods of treating a disease, condition, or disorder in a subject comprising administering a composition comprising crystalline forms of trofmetide or trofmetide hydrate to the subject.

Background

[0002] Glycyl-L-2-methylprolyl-L-glutamic acid (also known as trofmetide) is a synthetic analog of glycine-proline-glutamate (also known as glypromate or GPE). GPE occurs naturally in the brain. It is the N-terminal tripeptide of the insulin-like growth factor 1 (IGF-1) protein.

[0003] US 7,041,314 discloses trofmetide, methods of making trofmetide, and methods of using trofmetide to treat a disease, disorder, or condition, e.g., neural degeneration caused by hypoxia-ischemia or toxic injury. US 7,605,177 discloses methods of using trofmetide to treat disease, e.g., neurodegeneration and chronic neurodegenerative disorders, e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, diabetic neuropathies caused by type I or type II diabetes, autoimmune disorders of the brain, or multiple sclerosis. US 7,714,020 discloses methods of using trofmetide to treat a disease, disorder, or condition, e.g., brain injuries caused by traumatic brain injury, stroke, hypoxia/ischemia and toxic injury. US 7,863,304 discloses methods of using trofmetide to treat a disease, disorder, or condition, e.g., chronic neurodegenerative disorders such as Parkinson's disease. US 8,637,567 discloses methods of using trofmetide to treat a disease, disorder, or condition, e.g., a cognitive disorder or memory disorder. US 7,887,839, US 8,178,125, and US 8,496,963 disclose oral formulations of trofmetide to treat a variety of diseases, disorders, or conditions. US 9,708,366 and US 9,212,204 disclose methods of using trofmetide to treat a disease, disorder, or condition, e.g., Autism Spectrum Disorders, e.g., autism, autistic disorder Asperger syndrome, childhood disintegrative disorder, pervasive developmental disorder-not otherwise specified (PDD-NOS), Fragile X syndrome, or Rett syndrome.

BRIEF SUMMARY OF THE INVENTION

[0004] There exists a need for chemically stable solid forms of trofmetide for use in treating

Rett Syndrome, Fragile X Syndrome, traumatic brain injury, and other diseases, disorders, and conditions in a subject.

[0005] In one aspect, the present disclosure provides a crystalline polymorphic form of trofmetide or trofmetide hydrate.

[0006] In another aspect, the present disclosure provides methods of making a crystalline polymorphic form of trofmetide.

[0007] In another aspect, the present disclosure provides compositions comprising a crystalline polymorphic form of trofmetide or trofmetide hydrate, and one or more excipients.

[0008] In another aspect, the present disclosure provides a method of making a composition comprising a crystalline polymorphic form of trofmetide or trofmetide hydrate, and one or more excipients.

[0009] In another aspect, the present disclosure provides a method of using a crystalline polymorphic form of trofmetide or trofmetide hydrate to treat a disease, disorder, or condition, e.g., traumatic brain injury or a neurodevelopmental disorder, in a subject.

[0010] In another aspect, the present disclosure provides a kit comprising a crystalline polymorphic form of trofmetide or trofmetide hydrate.

BRIEF DESCRIPTION OF DRAWINGS

[0011] Fig. 1 is a XRPD diffractogram of Form A.

[0012] Fig. 2 is a Raman spectrum of Form A.

[0013] Fig. 3 is a LF-Raman spectrum of Form A.

[0014] Fig. 4 is ssNMR spectrum of Form A.

[0015] Fig. 5 is a DSC thermogram of Form A.

[0016] Fig. 6 is an IR spectrum of Form A. [0017] Fig. 7 is NIR spectrum of Form A.

[0018] Fig. 8 is a single crystal X-ray diffraction asymmetric unit of Form A. Hydrogen atoms are omitted for clarity.

[0019] Fig. 9 is a line graph showing the dynamic vapor sorption/desorption data of Form

A.

[0020] Fig. 10 is a series of three XRPD diffractograms of Form A containing different amounts of water.

[0021] Fig. 11 is a series of five XRPD diffractograms of Form A stored at different humidity conditions.

[0022] Fig. 12 is a TGA/DCS thermogram of Form A.

DETAILED DESCRIPTION OF THE INVENTION

I. Crystalline Trofmetide or Trofmetide Hydrate

[0023] In one embodiment, the present disclosure provides a crystalline polymorphic form of trofmetide or a crystalline polymorphic form of trofmetide hydrate, collectively referred to as a "trofmetide polymorph."

[0024] In another embodiment, the trofmetide polymorph is a crystalline trofmetide hydrate represented by the formula: trofmetide · XH2O, wherein x is about 2 to about 4. In another embodiment, the trofmetide polymorph is trofmetide · XH2O, wherein x is about 2.5 to about 3.5. In another embodiment, the trofmetide polymorph is trofmetide · XH2O, wherein x is about 2. In another embodiment, the trofmetide polymorph is trofmetide · XH2O, wherein x is about 2.5. In another embodiment, the trofmetide polymorph is trofmetide · XH2O, wherein x is about 3. In another embodiment, the trofmetide polymorph is trofmetide · XH2O, wherein x is about 3.5. In another embodiment, the trofmetide polymorph is trofmetide · XH2O, wherein x is about 4. These crystalline trofmetide · XH2O polymorphs are collectively referred to as "Form A".

[0025] In another embodiment, Form A is characterized as having a PXRD pattern a powder x-ray diffraction pattern with a peak in the range of 6.6-6.8, a peak in the range of

II.3-11.6, a peak in the range of 12.5-12.7, and a peak in the range of 13.6-13.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q; and optionally peaks at 16.8, 22.3, 23.6, 25.3 and/or 28.1 degrees 2Q ± 0.2 degrees 2Q using Cu Ka radiation. [0026] In another embodiment, Form A is characterized as having a PXRD pattern with peaks at 6.7 or 6.8, 11.4 or 11.5, 12.6, and 13.7 or 13.8 degrees 2Q, and optionally peaks at 16.8, 22.3, 23.6, 25.3 and/or 28.1 degrees 2Q ± 0.2 degrees 2Q using Cu Ka radiation.

[0027] In another embodiment, Form A is characterized as having a PXRD pattern with peaks at 6.7, 11.4, 12.6, 13.7, 22.3, 23.6, 25.3 and 28.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0028] In another embodiment, Form A is characterized as having a PXRD pattern with peaks at 6.7, 11.4, 12.6, 13.7, 22.3, 23.6, 25.3 and 28.1 degrees 2Q using Cu Ka radiation.

[0029] In another embodiment, Form A is characterized as having a PXRD pattern with peaks at 6.8, 11.5, 12.6, 13.8, and 16.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0030] In another embodiment, Form A is characterized as having a PXRD pattern with peaks at 11.5, 12.6, and 13.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0031] In another embodiment, Form A is characterized as having a PXRD pattern with peaks at 6.8, 11.5, and 12.6 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0032] In another embodiment, Form A is characterized as having a PXRD pattern with at least three peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7,

19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0033] In another embodiment, Form A is characterized as having a PXRD pattern with at least four peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7,

19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0034] In another embodiment, Form A is characterized as having a PXRD pattern with at least five peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7, 19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q. [0035] In another embodiment, Form A is characterized as having a PXRD pattern with at least six peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7,

19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0036] In another embodiment, Form A is characterized as having a PXRD pattern with at least seven peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7,

19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0037] In another embodiment, Form A is characterized as having a PXRD pattern with at least eight peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7,

19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0038] In another embodiment, Form A is characterized as having a PXRD pattern with at least nine peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7,

19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0039] In another embodiment, Form A is characterized as having a PXRD pattern with at least ten peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.7, 16.3, 16.8, 18.2, 18.7, 19.0, 19.2, 19.8, 20.4, 20.8, 21.2, 21.5, 22.3, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9,

33.7, 35.4, and/or 39.1 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0040] In another embodiment, Form A is characterized as having a PXRD pattern with peaks at 6.8, 9.9, 11.5, 12.6, 13.5, 13.8, 13.9, 15.4, 15.8, 16.3, 16.8, 18.2, 18.7, 19.0, 19.270,

19.8, 20.4, 20.8, 21.2, 21.5, 22.380, 22.8, 23.3, 23.6, 25.4, 26.4, 28.1, 30.2, 32.9, 33.7, 35.4, and 39.120 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0041] In another embodiment, Form A is characterized as having a PXRD pattern with d- spacings at 13.1, 7.7, 7.0, 6.4, and 5.3 A using Cu Ka radiation. [0042] In another embodiment, Form A is characterized as having a PXRD pattern with d- spacings at 13.1, 7.7, and 7.0 A using Cu Ka radiation.

[0043] In another embodiment, Form A is characterized as having a PXRD pattern with d- spacings at 7.7, 7.0, and 6.4 A using Cu Ka radiation.

[0044] In another embodiment, Form A is characterized as having a PXRD pattern with at least three d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7,

4.6, 4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or

2.3 A using Cu Ka radiation.

[0045] In another embodiment, Form A is characterized as having a PXRD pattern with at least four d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7,

4.6, 4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or

2.3 A using Cu Ka radiation.

[0046] In another embodiment, Form A is characterized as having a PXRD pattern with at least five d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7,

4.6, 4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or

2.3 A using Cu Ka radiation.

[0047] In another embodiment, Form A is characterized as having a PXRD pattern with at least six d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7, 4.6,

4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or 2.3 A using Cu Ka radiation.

[0048] In another embodiment, Form A is characterized as having a PXRD pattern with at least seven d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7,

4.6, 4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or

2.3 A using Cu Ka radiation.

[0049] In another embodiment, Form A is characterized as having a PXRD pattern with at least eight d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7,

4.6, 4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or

2.3 A using Cu Ka radiation.

[0050] In another embodiment, Form A is characterized as having a PXRD pattern with at least nine d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7,

4.6, 4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or

2.3 A using Cu Ka radiation. [0051] In another embodiment, Form A is characterized as having a PXRD pattern with at least ten d-spacings at 13.1, 8.9, 7.7, 7.0, 6.6, 6.43, 6.36, 5.8, 5.6, 5.4, 5.3, 4.9, 4.8, 4.7, 4.6, 4.5, 4.34, 4.27, 4.2, 4.1, 4.0, 3.9, 3.81, 3.76, 3.5, 3.4, 3.2, 3.0, 2.72, 2.66, 2.5, and/or 2.3 A using Cu Ka radiation.

[0052] In another embodiment, Form A is characterized as having a PXRD difractogram that is essentially the same as the one depicted in Fig. 1.

[0053] In another embodiment, Form A is characterized as having an FT-Raman spectrum with peaks at 2989, 2934, 2883, 1685, 1637, 1459, and 930 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0054] In another embodiment, Form A, characterized as having an FT-Raman spectrum with peaks at 2989, 2960, 2934, 2883, 1685, 1637, 1459, 1417, 1346, 1272, 1199, 1058, 1023, 967, 930, 782, 552, 496, 425, and 342 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0055] In another embodiment, Form A is characterized as having a FT-Raman spectrum that is essentially the same as the one depicted in Fig. 2.

[0056] In another embodiment, Form A is characterized as having a low frequency (LF)

Raman spectrum with peaks at 13, 24, 67, and 77 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0057] In another embodiment, Form A is characterized as having a LF-Raman spectrum with peaks at 13, 24, 34, 67, 77, 208, 283, 348, 422, 495, and 552 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0058] In another embodiment, Form A is characterized as having a LF-Raman spectrum that is essentially the same as the one depicted in Fig. 3.

[0059] In another embodiment, Form A is characterized as having a 13 C solid-state nuclear magnetic resonance (ssNMR) spectrum with peaks at 179.7, 177.9, 177.5, 177.2, 177.0, 165.3, 164.9, 164.8, 67.8, 67.4, 58.6, 58.2, 46.8, 40.3, 33.3, 25.3, 23.5, and 21.1 ppm, wherein the ppm values are ± 3 ppm.

[0060] In another embodiment, Form A is characterized as having a ssNMR spectrum with

18 peaks, wherein the D from the most downfield peak to (i) the second most downfield peak is 1.8 ppm; (ii) the third most downfield peak is 2.2 ppm; (iii) the fourth most downfield peak is 2.5 ppm; (iv) the fifth most downfield peak is 2.7 ppm (v) the sixth most downfield peak is 14.4 ppm; (vi) the seventh most downfield peak is 14.8 ppm; (vii) the eight most downfield peak is 14.9 ppm; (viii) the ninth most downfield peak is 111.9 ppm; (ix) the tenth most downfield peak is 112.3 ppm; (x) the eleventh most downfield peak is 121.1 ppm; (xi) the twelvth most downfield peak is 121.5 ppm; (xii) the thirteenth most downfield peak is 133.1 ppm; (xiii) the fourteenth most downfield peak is 139.4 ppm; (xiv) the fifteenth most downfield peak is 146.3 ppm; (xv) the sixteenth most downfield peak is 154.4 ppm; (xvi) the seventeenth most downfield peak is 156.2 ppm; and/or (xvii) the D from the most downfield peak to the most upfield peak is 158.6 ppm, or any combination thereof. See, e.g ., Tables 5 and 6.

[0061] In another embodiment, Form A is characterized as having a ssNMR spectrum that is essentially the same as the one depicted in Fig. 4.

[0062] In another embodiment, Form A is characterized as having a melting point with an onset temperature of 71.71 °C and a peak temperature of 72.06 °C based on differential scanning calorimetry (DSC).

[0063] In another embodiment, Form A is characterized as having a DSC thermogram that is essentially the same as the one depicted in Fig. 5

[0064] In another embodiment, Form A is characterized as having an infrared (IR) spectrum with peaks at 1678, 1636, 1589, 1525, 1214, and 1196 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0065] In another embodiment, Form A is characterized as having an IR spectrum with peaks at 3560, 3400, 3343, 3296, 2881-3012, 1678, 1636, 1589, 1525, 1458, 1435, 1413, 1376, 1352, 1292, 1255, 1214, 1196, 1142, 1120, 1015, 964, 924, 898, 827, 843, 777, 649, 599, 576, 551, 502, and 426 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0066] In another embodiment, Form A is characterized as having an IR spectrum that is essentially the same as the one depicted in Fig. 6.

[0067] In another embodiment, Form A is characterized as having a near-infrared (NIR) spectrum with peaks at 5145, 4630, and 4423 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0068] In another embodiment, Form A is characterized as having a NIR spectrum with peaks at 5908, 5796, 5145, 4875, 4630, 4423, and 4298 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0069] In another embodiment, Form A is characterized as having a NIR spectrum that is essentially the same as the one depicted in Fig. 7.

[0070] In another embodiment, the trofmetide polymorph, e.g., Form A, is characterized as comprising about 1% to about 10%, e.g., about 10%, about 9%, about 8%, about 7%, about 6%, about 5%, about 4%, about 3%, about 2%, or about 1%, by weight, of any other physical forms, e.g., crystalline or amorphous forms, of trofmetide or trofmetide hydrate.

[0071] In another embodiment, the trofmetide polymorph, e.g., Form A, is characterized as comprising about 0.1% to about 1%, e.g., about 1%, about 0.9%, about 0.8%, about 0.7%, about 0.6%, about 0.5%, about 0.4%, about 0.3%, about 0.2%, or about 0.1%, by weight, of any other physical forms of trofmetide or trofmetide hydrate.

[0072] In another embodiment, the trofmetide polymorph is characterized as comprising no PXRD-detectable amount of any other physical forms of trofmetide or trofmetide hydrate. In another embodiment, the trofmetide polymorph is Form A.

[0073] In another embodiment, the trofmetide polymorph has an average particle size distribution of about 10 pm to about 500 pm e.g., about 500 pm, about 400 pm, about 300 pm, about 200 pm, about 100 pm, about 90 pm, about 80 pm, about 70 pm, about 60 pm, about 50 pm, about 40 pm, about 30 pm, about 20 pm, or about 10 pm. In another embodiment, the trofmetide polymorph is Form A.

[0074] In another embodiment, the trofmetide polymorph has average particle size distribution is about 1 pm to about 10 pm, e.g., about 10 pm, about 9 pm, about 8 pm, about 7 pm, about 6 pm, or about 5 pm, about 4 pm, about 3 pm, about 2 pm, or about 1 pm. In another embodiment, the trofmetide polymorph is Form A.

[0075] In another embodiment, the trofmetide polymorph has an average particle size distribution is about 1 pm or less, e.g., about 0.9 pm, about 0.8 pm, about 0.7 pm, about 0.6 pm, about 0.5 pm, about 0.4 pm, about 0.3 pm, about 0.2 pm, about 0.1 pm, about 0.09 pm, about 0.08 pm, about 0.07 pm, about 0.06 pm, about 0.05 pm, about 0.04 pm, about 0.03 pm, about 0.02 pm, or about 0.01 pm or less. In another embodiment, the trofmetide polymorph is Form A.

[0076] In another embodiment, the trofmetide polymorph is chemically stable for 3 months of storage at temperature of about 25 °C and a relative humidity of about 60%. In another embodiment, the trofmetide polymorph is Form A.

[0077] In another embodiment, the trofmetide polymorph is chemically stable for 6 months of storage at temperature of about 25 °C and a relative humidity of about 60%. In another embodiment, the trofmetide polymorph is Form A. [0078] In another embodiment, the trofmetide polymorph is chemically stable for

12 months or more of storage at temperature of about 25 °C and a relative humidity of about 60%. In another embodiment, the trofmetide polymorph is Form A.

II. Pharmaceutical Compositions and Formulations

[0079] In another embodiment, the present disclosure provides a pharmaceutical composition comprising a trofmetide polymorph and one or more pharmaceutically acceptable excipients.

[0080] In another embodiment, the present disclosure provides a pharmaceutical formulation comprising a trofmetide polymorph in granular form, wherein the granule optionally comprises one or more pharmaceutically acceptable binders or fillers or a combination thereof. Binders may be used in a total amount of about 1% to about 30% by weight of the granules, e.g., in a total amount of about 5% to about 15% by weight of the granules, e.g., in a total amount of about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20% by weight of the granules. Fillers may be used in a total about of about 5% to about 80% by weight of the granules, e.g., in a total amount of about 10% to about 60% by weight of the granules, e.g., in a total amount of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, or about 80% by weight of the granules.

[0081] In another embodiment, the binder is acacia, gelatin, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, polyethylene glycol (PEG), povidone (polyvinyl pyrrolidone, PVP), sucrose, or starch, or a combination thereof.

[0082] In another embodiment, the filler is microcrystalline cellulose.

[0083] In another embodiment, the present disclosure provides an aqueous pharmaceutical formulation comprising a trofmetide polymorph dissolved in water and, optionally, one or more additional excipients.

[0084] In another embodiment, the water is purified water.

[0085] In another embodiment, about 1 gram of the trofmetide polymorph is dissolved in each 5 mL of the water.

[0086] In another embodiment, the trofmetide polymorph is Form A. [0087] In another embodiment, pharmaceutical formulation contains from 1 % to 99% by weight of the trofmetide polymorph, e.g., about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. The amount in any particular formulation will depend upon the effective dose of trofmetide, that is, the dose required to elicit the desired level of therapeutic activity. In one embodiment, the pharmaceutical formulation comprises Form A dissolved in water.

III. Methods of Making Pharmaceutical Formulations

[0088] In another embodiment, the present disclosure provides methods of making an aqueous pharmaceutical formulation comprising trofmetide, the method comprising dissolving a trofmetide polymorph in water.

[0089] In another embodiment, the water is purified water.

[0090] In another embodiment, about 1 gram of the trofmetide polymorph is dissolved in each 5 mL of the water.

[0091] In another embodiment, the trofmetide polymorph is Form A.

IV. Kits

[0092] In another embodiment, the present disclosure provides a kit comprising a trofmetide polymorph packaged in a manner that facilitates its use to practice methods of the present disclosure.

[0093] In another embodiment, the kit includes a trofmetide polymorph packaged in a container, such as a sealed bottle or vessel, with a label affixed to the container or and insert included in the kit that describes the use of the trofmetide polymorph to practice a method of the disclosure for treating a disease, disorder, or condition in a subject. In another embodiment, the trofmetide polymorph is packaged in a unit dosage form.

[0094] In another embodiment, the kit further comprises instructions for dissolving the trofmetide polymorph in a water to provide an aqueous pharmaceutical formulation.

[0095] In another embodiment, the kit further comprises an insert, e.g., instructions for administering the trofmetide polymorph or aqueous pharmaceutical formulation to a subject having a disease, disorder or condition. In another embodiment, the disease, disorder or condition is traumatic brain injury. In another embodiment, the disease, disorder or condition is a neurodevelopmental disorder. In another embodiment, the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

[0096] In another embodiment, the trofmetide polymorph is Form A.

V. Methods of Treating a Disease, Disorder, or Condition

[0097] In another embodiment, the present disclosure provides a method of treating a disease, disorder or condition in a subject in need thereof, the method comprising administering a aqueous pharmaceutical formulation comprising a trofmetide polymorph dissolved in water to the subject. In another embodiment, the disease, disorder or condition is traumatic brain injury. In another embodiment, the disease, disorder or condition is a neurodevelopmental disorder. In another embodiment, the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

[0098] In another embodiment, the aqueous pharmaceutical formulation is a solution for oral administration.

[0099] In another embodiment, the water is purified water.

[0100] In another embodiment, about 1 gram of the trofmetide polymorph is dissolved in each 5 mL of the water.

[0101] In another embodiment, the trofmetide polymorph is Form A.

VI. Methods of Making Crystalline Trofmetide or Trofmetide Hydrate

[0102] In another embodiment, the present disclosure provides methods of making a trofmetide polymorph.

[0103] In another embodiment, the present disclosure provides a method of making

Form A.

[0104] In another embodiment, the present disclosure provides a method of making

Form A, the method comprising i) adding ethanol to an aqueous solution of trofmetide at about 25 °C; and ii) cooling the solution to about 0 °C. In another embodiment, the watenethanol ratio is approximately 3:7 w/w. In another embodiment, the solution concentration of trofmetide is about 15% w/w.

[0105] In another embodiment, the method of making Form A further comprises adding

Form A to seed the solution to give a slurry. [0106] In another embodiment, the method of making Form A further comprises isolating, e.g., by filtration, the solid thus obtained to give a wet cake comprising Form A.

[0107] In another embodiment, the method of making Form A further comprises washing the wet cake comprising Form A with precooled ethanol at about 0 °C.

[0108] In another embodiment, the method of making Form A further comprises drying the wet cake comprising Form A under vacuum.

VII. Definitions

[0109] The term "trofmetide" as used herein refers to glycyl-L-2-methylprolyl-L-glutamic acid of Formula I: wherein each stereocenter is in the S configuration. The IUPAC name of trofmetide is (2S)- 2-[[(2S)-l-(2-aminoacetyl)-2-methylpyrrolidine-2-carbonyl]am ino]pentanedioic acid. Trofmetide is also referred to as "G-2-MePE," "H-Gly-MePro-Glu-OH," or "Gly-MePro- Glu-OH."

[0110] Trofmetide may form crystalline solids that incorporate solvates, e.g., water or methanol, into the crystal lattice without chemical alteration of the trofmetide molecule. The term "trofmetide hydrate" is represented by the formula: trofmetide . xFhO, wherein x is the ratio of FhO moles per mole of trofmetide. Trofmetide hydrate does not have to contain water in stoichiometric amounts, e.g., x can be about 2.5. In one embodiment, x is about 1 to about 5. In another embodiment, x is about 2 to about 4. In another embodiment, x is about 2.5 to about 3.5. In another embodiment, x is about 2. In another embodiment x is about 2.5. In another embodiment x is about 3. In another embodiment, x is about 3.5. In another embodiment, x is about 4. In another embodiment, x is about 4.5.

[0111] As used herein, the term "substantially pure" with reference to a trofmetide polymorph means that the crystalline material comprises about 10% or less, e.g., about 1% to about 10%, e.g., about 9%, about 8%, about 7%, about 6%, about 5%, about 4%, about 3%, about 2%, or about 1%, by weight of any other crystalline or amorphous form(s) of trofmetide or trofmetide hydrate. In another embodiment, the trofmetide polymorph is substantially pure Form A.

[0112] As used herein, the term "pure" with reference to a trofmetide polymorph means that the crystalline material comprises about 1% or less, e.g., about 0.1% to about 1%, e.g., about 1%, about 0.9%, about 0.8%, about 0.7%, about 0.6%, about 0.5%, about 0.4%, about 0.3%, about 0.2%, or about 0.1%, or less, by weight of any other crystalline or amorphous form(s) of trofmetide. In one embodiment, the crystalline trofmetide polymorph e.g., Form A, contains no PXRD-detectable amount of any other crystalline or amorphous form(s) of trofmetide or trofmetide hydrate. In another embodiment, the trofmetide polymorph is pure Form A.

[0113] As used herein, the term "amorphous" refers to a solid form of trofmetide or trofmetide hydrate that lacks the long-range order characteristic of a crystal, i.e., the solid is non-crystalline.

[0114] As used herein, the term "essentially the same" with reference to PXRD peak positions and/or relative intensities means that peak position and/or intensity variabilities are taken into account when comparing PXRD diffractograms. Likewise, term "essentially the same" with reference to Raman or IR peak positions means that peak position variabilities are taken into account when comparing Raman or IR spectra. For example, PXRD peak positions can show, e.g., inter-apparatus variability, e.g., as much as 0.2° 2Q, i.e., ± 0.2 degrees 2Q; Raman and IR peak positions can show, e.g., inter-apparatus variability, e.g., as much 4 cm 1 , i.e., ± 4 cm 1 . Relative peak intensities, for example, in a PXRD diffractogram, can also show inter-apparatus variability due to degree of crystallinity, orientation, prepared sample surface, and other factors known to those skilled in the art, and should be taken as qualitative measures only.

[0115] As used herein, the term "micronization" refers to a process or method by which the size of a population of particles is reduced, typically to the micron scale.

[0116] As used herein, the term "micron" or "pm" refer to "micrometer," which is 1 x 10 6 meter.

[0117] As used herein, the term "therapeutically effective amount," refers to the amount of trofmetide sufficient to treat one or more symptoms of a disease, condition, injury, or disorder, or prevent advancement of disease, condition, injury, or disorder, or cause regression of the disease, condition, injury, or disorder. [0118] As used herein, the term "chemically stable" and the like with reference to a trofmetide polymorph means that the trofmetide crystalline solid shows less than 0.5% chemical degradation, e.g., less than 0.4%, less than 0.3%, less than 0.2%, less than 0.1%, or less than 0.05% chemical degradation, after storage at temperature of about 25 °C and a relative humidity of about 60% for at least 3 months In determining the amount of degradation, the appearance of one or more chemical impurities can be measured and/or the disappearance of trofmetide can be measured using methods, e.g., HPLC, known in the art.

[0119] The terms "a" and "an" refer to one or more than one.

[0120] The term "about" as used herein, includes the recited number ± 10%. Thus, "about

10" means 9 to 11.

[0121] As used herein, the term "average particle size distribution" or "Dso" is the diameter where 50 mass-% of the particles have a larger equivalent diameter, and the other 50 mass- % have a smaller equivalent diameter as determined by laser diffraction, e.g., in Malvern Master Sizer Microplus equipment or its equivalent.

[0122] As used herein, the term "excipient" refers to any ingredient in or added to give a pharmaceutical formulation suitable for administration to a subject, e.g., a solution for oral administration, other than the trofmetide polymorph. An excipient is typically an inert substance, e.g., water, added to a composition to facilitate processing, handling, dissolution, administration, etc. of the trofmetide polymorph. Useful excipients include, but are not limited to, adjuvants, antiadherents, binders, carriers, disintegrants, fillers, flavors, colors, diluents, lubricants, glidants, preservatives, sorbents, solvents, surfactants, and sweeteners.

[0123] Conventional pharmaceutical excipients are well known to those skilled in the art.

A wide variety of pharmaceutical excipients can be used in admixture with a trofmetide polymorph, including water, and others listed in the Handbook of Pharmaceutical Excipients , Pharmaceutical Press 4th Ed. (2003), and Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, 21st ed. (2005). In one embodiment, the composition comprises Form A dissolved in water.

[0124] As used herein, the term "subject" refers to an animal, e.g., human or veterinary animal, e.g., cow, sheep, pig, horse, dog, or cat. In one embodiment, the subject is a human. [0125] As used herein, the term "container" means any receptacle and closure therefore suitable for storing, shipping, dispensing, and/or handling a pharmaceutical product or excipient.

[0126] The term "insert" means information accompanying a pharmaceutical product that provides a description of how to administer the product, along with the safety and efficacy data required to allow the physician, pharmacist, and patient to make an informed decision regarding use of the product. The package insert generally is regarded as the "label" for a pharmaceutical product.

[0127] As used herein, the term "and/or" is to be taken as specific disclosure of each of the two specified features or components with or without the other. Thus, the term "and/or" as used in a phrase such as "A and/or B" herein is intended to include "A and B," "A or B," "A" (alone), and "B" (alone). Likewise, the term "and/or" as used in a phrase such as "A, B, and/or C" is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).

VII. Particular Embodiments

[0128] The disclosure provides the following particular embodiments.

[0129] Embodiment 1. Crystalline trofmetide · xFhO, wherein x is about 2 to about 4, characterized as having:

[0130] (i) a powder x-ray diffraction pattern with peaks at 6.8, 11.5, 12.6, 13.8, and 16.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q; or

[0131] (ii) a powder x-ray diffraction pattern with d-spacings at 13.1, 7.7, 7.0, 6.4, and 5.3

A using Cu Ka radiation; or

[0132] (iii) a FT-Raman spectrum with peaks at 2989, 2934, 2883, 1685, 1637, 1459, and

930 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; or

[0133] (iv) a low frequency (LF) Raman spectrum with peaks at 13, 24, 67, and 77 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; or

[0134] (v) a 13 C solid-state nuclear magnetic resonance spectrum with peaks at 179.7,

177.9, 177.5, 177.2, 177.0, 165.3, 164.9, 164.8, 67.8, 67.4, 58.6, 58.2, 46.8, 40.3, 33.3, 25.3, 23.5, and 21.1 ppm, wherein the ppm values are ± 3 pm; or

[0135] (vi) a 13 C solid-state nuclear magnetic resonance spectrum with 18 peaks, wherein the D from the furthest downfield peak to: (i) the second furthest downfield peak is 1.8 ppm; (ii) the third furthest downfield peak is 2.2 ppm; (iii) the fourth furthest downfield peak is 2.5 ppm; (iv) the fifth furthest downfield peak is 2.7 ppm (v) the sixth furthest downfield peak is 14.4 ppm; (vi) the seventh furthest downfield peak is 14.8 ppm; (vii) the eight furthest downfield peak is 14.9 ppm; (viii) the ninth furthest downfield peak is 111.9 ppm; (ix) the tenth furthest downfield peak is 112.3 ppm; (x) the eleventh furthest downfield peak is 121.1 ppm; (xi) the twelvth furthest downfield peak is 121.5 ppm; (xii) the thirteenth furthest downfield peak is 133.1 ppm; (xiii) the fourteenth furthest downfield peak is 139.4 ppm; (xiv) the fifteenth furthest downfield peak is 146.3 ppm; (xv) the sixteenth furthest downfield peak is 154.6 ppm; (xvi) the seventeenth furthest downfield peak is 156.2 ppm; and/or (xvii) the D from the furthest downfield peak to the furthest upfield peak is 158.6 ppm, or any combination thereof; or [0136] (vii) a melting point with an onset temperature of 71.71 °C and a peak temperature of 72.06 °C based on differential scanning calorimetry; or [0137] (viii) an infrared (IR) spectrum with peaks at 1678, 1636, 1589, 1525, 1214, and

1196 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; or [0138] (ix) a near-infrared (NIR) spectrum with peaks at 5145, 4630, and 4423 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; or [0139] a combination thereof.

[0140] Embodiment 2. Crystalline trofmetide · xFhO, wherein x is about 2 to about 4, characterized as having:

[0141] (i) a powder x-ray diffraction pattern with peaks at 6.8, 11.5, 12.6, 13.8, and 16.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q; and/or [0142] (ii) a powder x-ray diffraction pattern with d-spacings at 13.1, 7.7, 7.0, 6.4, and 5.3

A using Cu Ka radiation; and/or

[0143] (iii) a FT-Raman spectrum with peaks at 2989, 2934, 2883, 1685, 1637, 1459, and

930 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; and/or [0144] (iv) a low frequency (LF) Raman spectrum with peaks at 13, 24, 67, and 77 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; and/or

[0145] (v) a 13 C solid-state nuclear magnetic resonance spectrum with peaks at 179.7,

177.9, 177.5, 177.2, 177.0, 165.3, 164.9, 164.8, 67.8, 67.4, 58.6, 58.2, 46.8, 40.3, 33.3, 25.3, 23.5, and 21.1 ppm, wherein the ppm values are ± 3 pm; and/or [0146] (vi) a 13 C solid-state nuclear magnetic resonance spectrum with 18 peaks, wherein the D from the furthest downfield peak to: (i) the second furthest downfield peak is 1.8 ppm; (ii) the third furthest downfield peak is 2.2 ppm; (iii) the fourth furthest downfield peak is 2.5 ppm; (iv) the fifth furthest downfield peak is 2.7 ppm (v) the sixth furthest downfield peak is 14.4 ppm; (vi) the seventh furthest downfield peak is 14.8 ppm; (vii) the eight furthest downfield peak is 14.9 ppm; (viii) the ninth furthest downfield peak is 111.9 ppm; (ix) the tenth furthest downfield peak is 112.3 ppm; (x) the eleventh furthest downfield peak is 121.1 ppm; (xi) the twelvth furthest downfield peak is 121.5 ppm; (xii) the thirteenth furthest downfield peak is 133.1 ppm; (xiii) the fourteenth furthest downfield peak is 139.4 ppm; (xiv) the fifteenth furthest downfield peak is 146.3 ppm; (xv) the sixteenth furthest downfield peak is 154.6 ppm; (xvi) the seventeenth furthest downfield peak is 156.2 ppm; and/or (xvii) the D from the furthest downfield peak to the furthest upfield peak is 158.6 ppm, or any combination thereof; and/or [0147] (vii) a melting point with an onset temperature of 71.71 °C and a peak temperature of 72.06 °C based on differential scanning calorimetry; and/or [0148] (viii) an infrared (IR) spectrum with peaks at 1678, 1636, 1589, 1525, 1214, and

1196 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; and/or [0149] (ix) a near-infrared (NIR) spectrum with peaks at 5145, 4630, and 4423 cm 1 , wherein the cm 1 values are ± 4 cm 1 ; and/or [0150] a combination thereof.

[0151] Embodiment 3. The crystalline trofmetide · xFbO of Embodiments 1 or 2, characterized as having a powder x-ray diffraction pattern with peaks at 6.8, 11.5, 12.6, 13.8, and 16.8 degrees 2Q using Cu Ka radiation, wherein the 2Q values are ± 0.2 degrees 2Q.

[0152] Embodiment 4. The crystalline trofmetide · xFbO of any one of Embodiments 1 -

3, characterized as having a powder x-ray diffraction pattern with d-spacings at 13.1, 7.7, 7.0, 6.4, and 5.3 A using Cu Ka radiation.

[0153] Embodiment 5. The crystalline trofmetide · xEbO of any one of Embodiments 1 -

4, characterized as having an FT-Raman spectrum with peaks at 2989, 2934, 2883, 1685, 1637, 1459, and 930 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0154] Embodiment 6. The crystalline trofmetide · xEbO of any one of Embodiments 1 -

5, characterized as having a low frequency (LF) Raman spectrum with peaks at 13, 24, 67, and 77 cm 1 , wherein the cm 1 values are ± 4 cm 1 . [0155] Embodiment 7. The crystalline trofmetide · xEbO of any one of Embodiments 1 -

6, characterized as having a 13 C solid-state nuclear magnetic resonance spectrum with peaks at 179.7, 177.9, 177.5, 177.2, 177.0, 165.3, 164.9, 164.8, 67.8, 67.4, 58.6, 58.2, 46.8, 40.3, 33.3, 25.3, 23.5, and 21.1 ppm, wherein the ppm values are ± 3 pm.

[0156] Embodiment 8. The crystalline trofmetide · xEbO of any one of Embodiments 1 -

7, characterized as having a 13 C solid-state nuclear magnetic resonance spectrum with 18 peaks, wherein the D from the furthest downfield peak to: (i) the second furthest downfield peak is 1.8 ppm; (ii) the third furthest downfield peak is 2.2 ppm; (iii) the fourth furthest downfield peak is 2.5 ppm; (iv) the fifth furthest downfield peak is 2.7 ppm (v) the sixth furthest downfield peak is 14.4 ppm; (vi) the seventh furthest downfield peak is 14.8 ppm; (vii) the eight furthest downfield peak is 14.9 ppm; (viii) the ninth furthest downfield peak is 111.9 ppm; (ix) the tenth furthest downfield peak is 112.3 ppm; (x) the eleventh furthest downfield peak is 121.1 ppm; (xi) the twelvth furthest downfield peak is 121.5 ppm; (xii) the thirteenth furthest downfield peak is 133.1 ppm; (xiii) the fourteenth furthest downfield peak is 139.4 ppm; (xiv) the fifteenth furthest downfield peak is 146.3 ppm; (xv) the sixteenth furthest downfield peak is 154.6 ppm; (xvi) the seventeenth furthest downfield peak is 156.2 ppm; and/or (xvii) the D from the furthest downfield peak to the furthest upfield peak is 158.6 ppm, or any combination thereof.

[0157] Embodiment 9. The crystalline trofmetide · xEbO of any one of Embodiments 1 -

8, characterized as having a melting point with an onset temperature of 71.71 °C and a peak temperature of 72.06 °C based on differential scanning calorimetry.

[0158] Embodiment 10. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 8, characterized as having an infrared (IR) spectrum with peaks at 1678, 1636, 1589, 1525, 1214, and 1196 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0159] Embodiment 11. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 10, characterized as having having a near-infrared (NIR) spectrum with peaks at 5145, 4630, and 4423 cm 1 , wherein the cm 1 values are ± 4 cm 1 .

[0160] Embodiment 12. The crystalline trofmetide · xEbO of any one of Embodiments 1

-11 having average particle size distribution of about 10 pm to about 500 pm.

[0161] Embodiment 13. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 12, wherein x is about 2.5 to about 3.5. [0162] Embodiment 14. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 12, wherein x is about 2.

[0163] Embodiment 15. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 12, wherein x is about 2.5.

[0164] Embodiment 16. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 12, wherein x is about 3.

[0165] Embodiment 17. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 12, wherein x is about 3.5.

[0166] Embodiment 18. The crystalline trofmetide · xEbO of any one of Embodiments 1

- 12, wherein x is about 4.

[0167] Embodiment 19. A pharmaceutical composition comprising the crystalline trofmetide · xEbO of any one of Embodiments 1- 18 and a pharmaceutically acceptable excipient.

[0168] Embodiment 20. The pharmaceutical composition of Embodiment 19 in granular form.

[0169] Embodiment 21. An aqueous pharmaceutical formulation comprising the crystalline trofmetide · xEbO of any one of Embodiments 1- 18 dissolved in water.

[0170] Embodiment 22. The aqueous pharmaceutical formulation of Embodiment 15, wherein about 1 gram of crystalline trofmetide · xEbO is dissolved in each 5 mL of the water.

[0171] Embodiment 23. A method of making the aqueous pharmaceutical formulation of

Embodiments 21 or 22, the method comprising admixing the crystalline trofmetide · xEbO and water.

[0172] Embodiment 24. A kit comprising the crystalline trofmetide · xEbO of any one of

Embodiments 1 - 18 and instructions for dissolving the crystalline trofmetide · xEbO in a water to provide an aqueous pharmaceutical formulation.

[0173] Embodiment 25. The kit of Embodiment 24 further comprising instructions for administering the aqueous pharmaceutical formulation to a subject having a disease, disorder or condition.

[0174] Embodiment 26. The kit of Embodiment 25, wherein the disease, disorder or condition is traumatic brain injury. [0175] Embodiment 27. The kit of Embodiment 25, wherein the disease, disorder or condition is a neurodevelopmental disorder.

[0176] Embodiment 28. The kit of Embodiment 27, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

[0177] Embodiment 29. A method of treating a disease, disorder or condition in a subject in need thereof, the method comprising administering the pharmaceutical composition of Embodiments 19 or 20, or the aqueous pharmaceutical formulation of Embodiments 21 or 22 to the subject.

[0178] Embodiment 30. The method of Embodiment 29, wherein the disease, disorder or condition is traumatic brain injury.

[0179] Embodiment 31. The method of Embodiment 29, wherein the disease, disorder or condition is a neurodevelopmental disorder.

[0180] Embodiment 32. The method of Embodiment 31, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

[0181] Embodiment 33. The method of Embodiment 29, wherein the disease, disorder or condition is Rett Syndrome.

[0182] Embodiment 34. The pharmaceutical composition of Embodiments 19 or 20, or the aqueous pharmaceutical formulation of Embodiments 21 or 22 for use in treating a disease, disorder or condition in a subject in need thereof.

[0183] Embodiment 35. The composition or formulation of Embodiment 34, wherein the disease, disorder or condition is traumatic brain injury.

[0184] Embodiment 36. The composition or formulation of Embodiment 34, wherein the disease, disorder or condition is a neurodevelopmental disorder.

[0185] Embodiment 37. The composition or formulation of Embodiment 36, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

[0186] Embodiment 38. The composition or formulation of Embodiment 34, wherein the disease, disorder or condition is Rett Syndrome.

[0187] Embodiment 39. Use of the Trofmetide of any one of Embodiments 1-18, or the pharmaceutical composition of Embodiments 19 or 20, or the aqueous pharmaceutical formulation of Embodiments 21 or 22 in the manufacture of a medicament for a disease, disorder or condition in a subject in need thereof. [0188] Embodiment 40. The use of Embodiment 39, wherein the disease, disorder or condition is traumatic brain injury.

[0189] Embodiment 4E The use of Embodiment 39, wherein the disease, disorder or condition is a neurodevelopmental disorder.

[0190] Embodiment 42. The use of Embodiment 41, wherein the neurodevelopmental disorder is Rett Syndrome, Fragile X Syndrome, or autism spectrum disorder.

[0191] Embodiment 43. The use of Embodiment 39, wherein the disease, disorder or condition is Rett Syndrome.

[0192] Embodiment 44. A method of making the crystalline trofmetide · xFhO of any one of Embodiments 1-18, the method comprising i) adding ethanol to an aqueous solution of trofmetide at about 25 °C; ii) cooling the solution to about 0 °C; and iii) isolating the solid thus obtained to crystalline trofmetide · xFhO.

[0193] Embodiment 45. The method of Embodiment 44, wherein the watenethanol ratio is about 3:7 w/w.

EXAMPLES

Instrumentation

Powder X-ray diffraction (PXRD or XRPD)

[0194] PXRD and XRPD are synonymous terms. The Rigaku Smart-Lab X-ray diffraction system was configured for reflection Bragg-Brentano geometry using a line source X-ray beam. The x-ray source is a Cu Long Fine Focus tube (l = 1.54 A) that was operated at 40 kV and 44 mA. That source provides an incident beam profile at the sample that changes from a narrow line at high angles to a broad rectangle at low angles. Beam conditioning slits are used on the line X-ray source to ensure that the maximum beam size is less than 10 mm both along the line and normal to the line. The Bragg-Brentano geometry is a para- focusing geometry controlled by passive divergence and receiving slits with the sample itself acting as the focusing component for the optics. The inherent resolution of Bragg- Brentano geometry is governed in part by the diffractometer radius and the width of the receiving slit used. Typically, the Rigaku Smart-Lab is operated to give peak widths of 0.1 °2Q or less. The axial divergence of the X-ray beam is controlled by 5.0-degree Soller slits in both the incident and diffracted beam paths. [0195] Powder samples were prepared in a low background Si holder using light manual pressure to keep the sample surfaces flat and level with the reference surface of the sample holder. Each sample was analyzed from 2 to 40 °2Q using a continuous scan of 6 °2Q per minute with an effective step size of 0.02 °2Q.

Differential scanning calorimetry (DSC)

[0196] DSC analysis was carried out using a TA Instruments Q2500 Discovery Series instrument. The instrument temperature calibration was performed using indium. The DSC cell was kept under a nitrogen purge of ~50 mL per minute during the analysis. The sample was placed in a standard, crimped, aluminum pan and was heated from approximately 25 °C to 350 °C at a rate of 10 °C per minute.

Dynamic vapor sorption (DVS) analysis

[0197] DVS analysis was carried out TA Instruments Q5000 Dynamic Vapor Sorption analyzer. The instrument was calibrated with standard weights and a sodium bromide standard for humidity. Samples were analyzed at 25 °C with a maximum equilibration time of 60 minutes in 10% relative humidity (RH) steps from 5 to 95% RH (adsorption cycle) and from 95 to 5% RH (desorption cycle).

Infrared (IR) Spectroscopy

[0198] Infrared spectrum was obtained on a Nicolet 6700 FT-IR system, using a Nicolet

SMART iTR attenuated total reflectance device.

Near Infrared (NIR) Spectroscopy

[0199] Near Infrared spectrum was obtained on a Nicolet iS50 IR system. About 1% w/w of trofmetide Form A in dried KBr was placed in DRIFT (diffuse reflectance infrared Fourier transform spectroscopy) macro cup and analyzed in spectral range of 8000 and 400 wavenumbers.

FT-Raman spectroscopy

[0200] Fourier transform (FT) Raman spectrum was acquired on a Nicolet model 6700 spectrometer interfaced to a Nexus Raman accessory module. This instrument is configured with a Nd:YAG laser operating at 1024 nm, a CaF2 beamsplitter, and a indium gallium arsenide detector. OMNIC 8.1 software was used for control of data acquisition and processing of the spectra. Samples were packed into a 3-inch glass NMR tube for analysis.

Low Frequency (LF) Raman Spectroscopy

[0201] Low frequency Raman spectra were obtained using a Renishaw inVia Raman microscope equipped with an Ondax THz-Raman system (TR-PROBE; excitation laser 853. lnm, notch filter). The sample powder was analyzed in the open air using the probe tip attachment. Spectra were acquired using a static scan centered at 36 cm 1 to collect over the spectral range -575 to 575 cm 1 with 100% power, an exposure time of one second, and 32 accumulations. The wavelength calibration was confirmed using a sulfur reference standard. Data acquisition was performed using WiRE 3.4 software.

Karl Fischer (KF) Analyses

[0202] Karl Fischer analyses were carried out using a Mettler-Toledo C20 Coulometric KF titrator. The instrument was calibrated using a Hydranal water standard containing 1% water. The titrant was a Hydranal methanol solution.

13 C Solid-State Nuclear Magnetic Resonance (NMR) Spectroscopy

[0203] The solid-state 13 C cross polarization magic angle spinning (CPMAS) experiments were carried out on a Bruker Avance II 400 spectrometer equipped with Doty probe (DSI- 1630) 1H(19F)/X double resonance. The sample (109 mg) was packed into a 4-mm 4mm silicon nitride rotor closed with Kel-F end caps for subsequent data acquisition. Adamantane, set to methylene signal of adamantane at 38.48 ppm on the TMS scale, was used as an external standard. Acquisition and processing parameters used are shown in the table below. Line Broadening (Hz)

It is possible to perform the 13 C CPMAS analysis on NMR spectrometers with different magnetic fields, such as 9.4 Tesla (100 MHz for 13 C, 400 MHz for 'H) or higher. Parameters such as acquisition time, dwell time, recycle delay, spin speed, and number of scans can be modified and optimized depending on the NMR spectrometer

Single Crystal Structure Determination

[0204] X-ray diffraction analysis was performed using Cu Ka radiation (l = 1.54 A) at a temperature of 150 K. The monoclinic cell parameters and calculated volume for formula C13H21N3O6 3(H 2 0) are a = 18.8946 (8) A, b = 7.2849 (3) A, c = 27.8601 (12) A, b = 109.8540 (16) °, and V = 3606.9 (3) A 3 . For Z = 8 and a formula weight of 369.37 the calculated density is 1.360 g/cm 3 .

EXAMPLE 1

Synthesis and Characterization of Form A [0205] Form A was prepared according to the following methods.

Method 1

[0206] Charged 19.9 mg of amorphous trofmetide into a mechanical grinding container with one metal ball. Added 7.6 mg of L-asparagine and 10 microliters of water to the grinding container. The container was sealed and milled for about 20 minutes on Retsch Mill at 100% power level. The resulting solid was removed and placed in a vacuum desiccator to dry overnight. The resulting material was a mixture of Form A and crystalline L-aspartic acid by XRPD.

Method 2

[0207] Charged 18.6 mg of amorphous trofmetide into a mechanical grinding container with one metal ball. Added 8.0 mg of L-aspartic acid and 10 microliters of water were added to the grinding container. The container was sealed and milled for about 20 minutes on Retsch Mill. The resulting solid was allowed to dry in an open container before transferring the solids. The resulting material was a mixture of Form A and crystalline L- aspartic acid by XRPD. The same experiment was repeated using 20 mg of trofmetide amorphous form and 1 mg of L-aspartic acid. The resulting material was mostly Form A with a trace amount of crystalline L-aspartic acid by XRPD. This material was used as a seed (3 mg) for another repeat experiment using only amoprhous trofmetide (19.7 mg). The resulting solid was Form A by XRPD.

Method 3

[0208] A solution of trofmetide (300 mL, 32% w/w of trofmetide amorphous form in water) was charged to absolute ethanol (1200 mL) at ambient temperature. The resulting solution was cooled to 2 °C with stirring (300 rpm). The solution was re-heated to 25°C (12°C/hr, held for 3 hours), and cooled to 2°C (6°C/hr). The solid precipitated was filtered, washed with cold ethanol (2°C) and dried under nitrogen at 70% RH / ambient temperature for 16 hours to remove residual ethanol. The resulting solid was Form A by XRPD.

Method 4

[0209] The following steps were used to prepare Form A according to Method 4.

[0210] Dissolve 205.7 Kg amorphous trofmetide (KF 5.0%, 195.4 Kg dry basis) in 617 Kg water in a reactor at room temperature.

[0211] Add 2808 Kg of ethanol to the solution in the reactor at room temperature with vigorous mixing.

[0212] Cool the solution to 0 - 2 °C.

[0213] Add 1.0 Kg trofmetide seed to the reactor and age the batch for NLT 6 hours with slow agitation. Crystallization will occur.

[0214] Filter the slurry in the reactor, isolating in a filter dryer.

[0215] Wash the wet cake with 325 Kg of ethanol precooled to 0 - 2 °C twice.

[0216] Vacuum dry the wet cake until the bulk of the residual solvent has been evaporated, then raise the jacket temperature of the filter dryer to room temperature to complete the drying. 170.0 Kg crystalline trofmetide · xFLO (KF 13.5%, 147.0 Kg dry basis) is isolated (75% yield).

Method 5

[0217] The following steps were used to prepare Form A according to Method 5. [0218] Add ethanol (4479 Kg) to an aqueous solution of trofmetide (total weight 1272 Kg,

23.2 w/w % trofmetide, 294.5 Kg trofmetide, 977.5 Kg water) at room temperature with vigorous mixing.

[0219] Cool the solution to 0 - 2 °C.

[0220] Add 2.5 Kg crystalline trofmetide · XH2O seed to the reactor and age the batch for

NLT 6 hours with slow agitation. Crystallization will occur.

[0221] Filter the slurry in the reactor, isolating in a filter dryer.

[0222] Wash the wet cake with 502 Kg of ethanol precooled to 0 - 2 °C two times.

[0223] Vacuum dry the wet cake until the bulk of the residual solvent has been evaporated, then raise the jacket temperature of the filter dryer to room temperature to complete the drying. 292.0 Kg crystalline trofmetide · xFLO (KF 14.3%, 250.2.0 Kg dry basis) is isolated (85% yield).

Method 6

[0224] The following steps were used to prepare Form A according to Method 6.

[0225] Dissolve 58.1 g crystalline trofmetide · xFhO (KF 14.0%, 50. Og dry basis) in 100 g water in reactor 1 at room temperature.

[0226] Add 233 g (296 mL) of ethanol to the solution in reactor 1 at room temperature with vigorous mixing. (The water/ethanol ratio is approximately 3/7 w/w, and the target solution concentration is approximately 15% w/w trofmetide).

[0227] Transfer 128 g of the solution in reactor 1 to reactor 2 (approximately 1/3 of the solution).

[0228] Cool reactor 2 to 0 - 2 °C.

[0229] Slurry 0.5 g of trofmetide seed material in 5 g of ethanol / water (95/5 w/w)

[0230] Add the trofmetide seed slurry to reactor 2 and age the batch for NLT 2 hours with slow agitation. Nucleation will occur to generate a seed bed.

[0231] Transfer the remaining solution from reactor 1 to reactor 2 over NLT two hours, maintaining reactor 2 at 0 - 2 °C with good mixing.

[0232] Charge 334 g (423 mL) ethanol into reactor 1 and cool to 0 - 2 °C.

[0233] Transfer the ethanol from reactor 1 to reactor 2 over NLT 2 hours, maintaining reactor 2 at 0 - 2 °C with good mixing (final water/ethanol ratio is approximately 15/85 w/w).

[0234] Age the slurry in reactor 2 for not less than 2 hours at 0 - 2 °C with good mixing. [0235] Prepare the cake wash solution by mixing 25 g water and 475g EtOH and cooling to 0 - 2 °C.

[0236] Filter the slurry in reactor 2, then wash the wet cake on the filter at 0 - 2 °C.

[0237] Vacuum dry the wet cake at 0 - 2 °C until the bulk of the residual solvent has been evaporated, then raise the batch to room temperature to complete the drying. 53.2 g crystalline trofmetide · xFEO (KF 13.5%, 46.0 g dry basis) is isolated (92% yield).

[0238] The structure of Form A was solved by single crystal X-ray diffraction.

The structure showed three molecules of water per molecule of trofmetide. The asymmetric unit of Form A is shown in Fig. 8. The hydrogen atoms are omitted for clarity. The structure of Form A shows each of the three water molecules is hydrogen bonded to oxygen or nitrogen atoms of trofmetide. Each of the three water molecules are also hydrogen bonded to the adjacent molecule of water.

[0239] The X-ray powder diffraction (XRPD) diffractgram of Form A is shown in Fig. 1.

The XRPD peak list (± 0.2 degrees 2Q) is provided in Table 1.

Table 1

[0240] The Raman spectrum of Form A is shown in Fig. 2. The Raman peak list (± 4 cm provided in Table 2.

Table 2

[0241] The low frequency (LF) Raman spectrum of Form A is shown in Fig. 3. The

LF Raman peak list (± 4 cm 1 ) is provided in Table 3. Table 3

[0242] The 13 C solid-state nuclear magnetic resonance (ssNMR) spectrum of Form A is shown in Fig. 4. The ssNMR peak list is provided in Table 4. Selected peaks (with D ppm) are provided in Tables 5 and 6.

Table 4 Table 5

Table 6

[0243] Form A melts with an onset temperature of 71.71 °C and a peak temperature of

72.06 °C based on DSC analysis. See Fig. 5.

[0244] The infrared (IR) spectrum of Form A is shown in Fig. 6. The IR peak list

(± 4 cm 1 ) is provided in Table 7.

Table 7

[0245] The near-infrared (NIR) spectrum of Form A is shown in Fig. 7 The NIR peak list

(± 4 cm 1 ) is provided in Table 8.

Table 8

[0246] Form A is non-hygroscopic. Dynamic vapor sorption-desorption (DVS) analysis of

Form A showed little moisture uptake when the material was exposed from 5% RH to 95% RH, and little moisture loss when the material was exposed from 95% RH to 5% RH (Fig. 9). The resulting material after DVS remained as trofmetide Form A by XRPD (Fig. 10). [0247] Form A exhibits a weight loss of 12-14% between about 50 and 120 °C. This is likely due to loss of water and matches the 12-14% water content as measured by Karl Fisher analysis. An example TGA scan is presented in Fig. 12. DSC data for Form A consistently shows a sharp endotherm at about 70-72 °C (peak temperature) that corresponds to melting.

[0248] Form A is a trihydrate based on the single crystal X-ray structure that showed three water molecules per molecule of trofmetide (Fig. 8). But Form A has been generated with water content varying from about 12% to about 14%. This suggests that while some of the water is integral to the crystal lattice, at least one of the water molecules may be loosely bound and can be removed without changing the crystal lattice. For this reason, Form A is designated as trofmetide · xFFO, wherein x is about 2 to about 4.

EXAMPLE 2

Stability of Form A

[0249] Form A is stable under a large range of humidity conditions. Form A exposed at

33% RH, 59% RH, 75% RH, and 97% RH for two days showed between 2 and 4 mole equivalents of water. Under extreme dry conditions (open container exposed under 0% RH for two days), Form A lost the water and became disordered. Form A signals are still visible in the XRPD pattern, but the crystalline signals are broad and the XRPD pattern showed some amorphous halo in the baseline indicating formation of disorder and amorphous material (Fig. 11).

[0250] The long-term (6 month) chemical stability of Form A and amorphous trofmetide were tested under the same conditions: 25 ± 2°C / 60 ± 5% relative humidity (RH). Form A is surprisingly more stable than amorphous trofmetide under these conditions (Table 9).

Table 9

PLOQ = Pooled Limit of Quantification; NT = Not Tested; RH = Relative Humidity [0251] The analytical method used in the impurity assay is provided in Table 10.

Table 10

[0252] It is to be understood that the foregoing described embodiments and exemplifications are not intended to be limiting in any respect to the scope of the disclosure, and that the claims presented herein are intended to encompass all embodiments and exemplifications whether or not explicitly presented herein.

[0253] All patents and publications cited herein are fully incorporated by reference in their entirety.