Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CRYSTALLINE MINOCYCLINE BASE AND PROCESSES FOR ITS PREPARATION
Document Type and Number:
WIPO Patent Application WO/2008/102161
Kind Code:
A2
Abstract:
The invention provides crystalline minocycline base. In particular, three crystalline polymorphic forms, designated Form I, Form Il and Form III, of minocycline base are provided. These are characterised by XRD and IR data. Processes for preparing the new polymorphic forms are also provided. For example, Form I is prepared by dissolving and/or suspending amorphous minocycline base in an organic solvent chosen from ethers followed by crystallisation from the mixture.

Inventors:
MENDES ZITA (PT)
ANTUNES JOSE RAFAEL (PT)
MARTO SUSANA (PT)
HEGGIE WILLIAM (PT)
Application Number:
PCT/GB2008/000625
Publication Date:
August 28, 2008
Filing Date:
February 22, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HOVIONE INT LTD (CH)
MENDES ZITA (PT)
ANTUNES JOSE RAFAEL (PT)
MARTO SUSANA (PT)
HEGGIE WILLIAM (PT)
International Classes:
C07C237/26
Domestic Patent References:
WO2007014154A22007-02-01
Other References:
BERNARDI L ET AL: "Tetracycline derivatives" FARMACO, EDIZIONE SCIENTIFICA, SOCIETA CHIMICA ITALIANA, PAVIA, vol. 30, no. 9, 1 January 1975 (1975-01-01), pages 736-741, XP009101407 ISSN: 0430-0920
CHURCH ET AL.: "Synthesis of 7-Dimethylamino-6-demethyl-6-deoxytetracyc line (Minocycline) via 9-nitro-6-demethyl-6-deoxytetracycline." J. ORG. CHEM., vol. 36, no. 5, 1971, pages 723-725, XP002485261
CAIRA M R: "CRYSTALLINE POLYMORPHISM OF ORGANIC COMPOUNDS" TOPICS IN CURRENT CHEMISTRY, SPRINGER, BERLIN, DE, vol. 198, 1 January 1998 (1998-01-01), pages 163-208, XP001156954 ISSN: 0340-1022
YU L: "AMORPHOUS PHARMACEUTICAL SOLIDS: PREPARATION, CHARACTERIZATION AND STABILIZATION" ADVANCED DRUG DELIVERY REVIEWS, ELSEVIER BV, AMSTERDAM, NL, vol. 48, no. 1, 16 May 2001 (2001-05-16), pages 27-42, XP009065056 ISSN: 0169-409X
Attorney, Agent or Firm:
TURNER, Craig, R. et al. (235 High Holborn, London WC1V 7LE, GB)
Download PDF:
Claims:

CLAIMS

1. Minocycline base characterized by being crystalline.

2. Crystalline minocycline base, Form I, characterised by an X-ray diffraction pattern having peaks at 5.2, 7.6, 8.8, 12.8, 14.5, 15.0, 15.3, 15.9, 16.4, 17.8, 19.3, 19.5, 20.7, 21.3, 21.8, 22.3, 23.1 , 24.0, 25.3, 25.7 and 26.5 ± 0.2° 2θ, as given in Fig.1.

3. Crystalline minocycline base, Form I, according to claim 2 further characterized by an infrared spectrum having peaks at 1646,1602, 1581 , 1470, 1397, 1364, 1286,

1218, 1182, 1134, 1072, 1061 , 1023, 1001 , 969, 950, 874, 850, 716, 636, 620 and 545 ± 4 cm "1 as given in Fig. 2.

4. A process for preparing crystalline minocycline base, Form I, which process comprises dissolving and/or suspending amorphous minocycline base in an organic solvent chosen from ethers followed by crystallization from the mixture.

5. A process according to claim 4, wherein the organic solvent is methyl tert-butyl ether.

6. Crystalline minocycline base, Form II, characterised by an X-ray diffraction pattern having peaks at 3.4, 6.8, 8.0, 10.0, 13.0, 13.8, 14.6, 14.9, 15.5, 16.1, 17.6, 17.8, 18.6, 19.5, 20.2, 20.6, 21.9, 22.6, 23.9, 24.2, 25.4, 26.3, 27.1 , 27.5, 28.0 and 29.1 ± 0.2° 2θ, as given in Fig.3.

7. Crystalline minocycline base, Form II, according to claim 6 further characterised by an infrared spectrum having peaks at 1644, 1607, 1582, 1469, 1453, 1413, 1396, 1358, 1287, 1251 , 1217, 1186, 1 166, 1136, 1061 , 999, 970, 874, 716, 621 and 585 ± 4 cm "1 , as given in Fig. 4.

8. A process for preparing crystalline minocycline, base Form II, which process comprises dissolving and/ or suspending amorphous minocycline base in an organic solvent chosen from esters followed by crystallization from the mixture.

9. A process according to claim 8, wherein the organic solvent is ethyl acetate.

10. Crystalline minocycline base, Form III, characterised by an X-ray diffraction 5 pattern having peaks at 6.5, 10.0, 13.2, 15.1 , 16.5, 17.9, 19.6, 20.2, 21.1 , 22.3, 23.7,

24.8, 26.4, 28.1 and 30.5 ± 0.2° 2θ, as given in Fig. 5.

11. Crystalline minocycline base, Form III, according to claim 10 further characterised by an infrared spectrum having peaks at 1647, 1605, 1581 , 1470, 1399,

10 1307, 1286, 1251 , 1216, 1195, 1179, 1136, 1094, 1058, 1024, 1000, 973, 950, 870, 825, 806, 716, 680, 634, 615, 584, 515, 496 and 413 ± 4 crrϊ 1 , as given in Fig. 6.

12. A process for preparing crystalline minocycline base, Form III, which process comprises dissolving and/ or suspending amorphous minocycline base in an organic

15 solvent chosen from alcohols followed by crystallization from the mixture.

13. A process according to claim 12, wherein the organic solvent is ethanol.

14. A process for preparing amorphous minocycline base, which process comprises 20 spray drying a solution of minocycline in an organic solvent.

15. A process according to claim 14, wherein the solvent is methyl tert-butyl ether, dichloromethane or isopropyl acetate.

25 16. A process according to any one of claims 4-5, 8-9 or 12-13, wherein the content of 4-epi minocycline is below 1 .2% w/w.

17. Crystalline minocycline base substantially free of 4-epi minocycline.

30 18. Crystalline minocycline base according to claim 16 comprising less than 1.2% w/w of 4-epi minocycline.

Description:

CRYSTALLINE MINOCYCLINE BASE AND PROCESSES FOR ITS PREPARATION

The present invention provides crystalline minocycline base including three new polymorphic forms thereof, and also describes a process to obtain pure minocycline base in a crystalline form wherein all the impurities are controlled, especially the impurity 4-epi minocycline, to very low levels.

Background of the Invention

Minocycline is a member of the broad spectrum tetracycline antibiotics, which has a broader spectrum than the other members of this group of compounds.

Minocycline is widely used in therapy, primarily to treat acne and rosacea at a once daily dose of 100mg.

The preparation of minocycline is disclosed in US 3 148 212; US 3 226 436 and US 4 849 136.

Minocycline may be used as base per se or as non-toxic acid addition salts of organic or inorganic acids, e.g. sulfonic, trichloroacetic or hydrochloric acid.

Minocycline base, previously known before this invention only in the amorphous form, is not as stable as the corresponding acid addition salts and hence, methods to provide a stable form of minocycline base which makes its use promising as an active ingredient have been examined.

Detailed Description

The present invention describes crystalline minocycline base, including new polymorphic forms of crystalline minocycline base and novel processes for their preparation.

The present inventors have now found that, surprisingly, minocycline base can in fact be provided in a stable crystalline form. They have also found three new polymorphic forms of crystalline minocycline base.

Accordingly, in its broadest aspect, the invention provides crystalline minocycline base.

In one aspect, polymorphic Form I of crystalline minocycline base is provided. That this is a crystalline form of minocycline base, which up until now has only been known in its amorphous form, is demonstrated by physical attributes whose application in this area is well known to those skilled in the art.

Crystalline Form I of minocycline base has a characteristic X-ray diffraction pattern shown in Fig.1 and an infrared spectrum of Fig.2.

Crystalline Form 1 is characterised by an X-ray diffraction pattern having peaks at 5.2, 7.6, 8.8, 12.8, 14.5, 15.0, 15.3, 15.9, 16.4, 17.8, 19.3, 19.5, 20.7, 21.3, 21.8, 22.3, 23.1 , 24.0, 25.3, 25.7 and 26.5 ± 0.2° 2θ, as given in Fig.1. It is further characterised by an infrared spectrum having peaks at 1646,1602, 1581 , 1470, 1397, 1364, 1286, 1218, 1182, 1134, 1072, 1061 , 1023, 1001 , 969, 950, 874, 850, 716, 636, 620 and 545 ± 4 cm "1 as given in Fig. 2.

In another aspect, the invention provides a process for the preparation of polymorphic Form I of crystalline minocycline base, which process comprises dissolving and/or suspending amorphous minocycline base in an organic solvent chosen from ethers followed by crystallization from the mixture.

Preferably, the process comprises suspending amorphous minocycline base in an organic solvent chosen from ethers, cooling the heterogeneous mixture to a temperature of from O 0 C tO 3O 0 C, the preferred range being from 10 0 C to 15 0 C and isolating Form I from the reaction mixture.

Any suitable ether solvent may be used, but is preferred to use methyl tert-butyl ether.

In another aspect, polymorphic Form Il of crystalline minocycline base is provided. That this is a crystalline form of minocycline base, which up until now has only been known in its amorphous form, is demonstrated by physical attributes whose application in this area is well known to those skilled in the art.

Crystalline Form Il of minocycline base has a characteristic X-ray diffraction pattern shown in Fig.3 and an infrared spectrum of Fig.4.

Crystalline Form Il is characterised by an X-ray diffraction pattern having peaks at 3.4, 6.8, 8.0, 10.0, 13.0, 13.8, 14.6, 14.9, 15.5, 16.1 , 17.6, 17.8, 18.6, 19.5, 20.2, 20.6, 21.9, 22.6, 23.9, 24.2, 25.4, 26.3, 27.1 , 27.5, 28.0 and 29.1 ± 0.2° 2θ, as given in Fig.3. It is further characterised by an infrared spectrum having peaks at 1644, 1607, 1582, 1469, 1453, 1413, 1396, 1358, 1287, 1251 , 1217, 1186, 1166, 1136, 1061 , 999, 970, 874, 716, 621 and 585 ± 4 cm "1 , as given in Fig. 4.

In another aspect, a process for the preparation of polymorphic Form Il of crystalline minocycline base comprises dissolving and/or suspending amorphous minocycline base in an organic solvent chosen from esters followed by crystallization from the mixture.

Preferably, the process comprises suspending amorphous minocycline base in an organic solvent chosen from esters, cooling the heterogeneous mixture to a temperature of from O 0 C to 3O 0 C, the preferred range being from 10 0 C to 15 0 C and isolating the Form Il from the reaction mixture.

Any suitable ester may be used as solvent, but it is preferred to use ethyl acetate.

In another aspect, polymorphic Form III of crystalline minocycline base is provided. That this is a crystalline form of minocycline base, which up until now has only been known in its amorphous form, is demonstrated by physical attributes whose application in this area is well known to those skilled in the art.

Crystalline Form III of minocycline base has a characteristic X-ray diffraction pattern shown in Fig.5 and an infrared spectrum of Fig.6.

Crystalline Form III is characterised by an X-ray diffraction pattern having peaks at 6.5, 10.0, 13.2, 15.1 , 16.5, 17.9, 19.6, 20.2, 21.1 , 22.3, 23.7, 24.8, 26.4, 28.1 and 30.5 ± 0.2° 2θ, as given in Fig. 5. It is further characterised by an infrared spectrum having peaks at 1647, 1605, 1581 , 1470, 1399, 1307, 1286, 1251 , 1216, 1195, 1179, 1136, 1094, 1058, 1024, 1000, 973, 950, 870, 825, 806, 716, 680, 634, 615, 584, 515, 496 and 413 ± 4 cm "1 , as given in Fig. 6.

In another aspect, a process for the preparation of polymorphic Form III of crystalline minocycline base comprises dissolving and/or suspending amorphous minocycline base in an organic solvent chosen from alcohols followed by crystallization from the mixture.

Preferably, the process comprises suspending amorphous minocycline base in an organic solvent chosen from alcohols, cooling the heterogeneous mixture to a temperature of from O 0 C to 3O 0 C, the preferred range being from 1O 0 C to 15 0 C and isolating the Form III from the reaction mixture.

Any suitable alcohol may be used a solvent, but it is preferred to use ethanol.

The crystalline minocycline bases in Forms I, Il and III obtained by the processes described above have a high purity with all the impurities controlled, especially 4-epi minocycline, which is typically below 1. 2% w/w (ie by weight of the base).

In another aspect, therefore, the invention provides crystalline minocycline base substantially free of 4-epi minocycline. By substantially free, we mean that no more than about 1. 2% impurity by weight of the polymorph (w/w) is present. Preferably the impurity level is less than 1. 2% w/w.

In a further aspect, therefore, the invention provides crystalline minocycline base comprising less than 1.2% w/w (by weight of the base) of 4-epi minocycline.

Another aspect of the invention provides processes for preparing amorphous minocycline base on an industrial scale, wherein the minocycline base is obtained in high purity, especially maintaining low levels of the content of 4-epi-minocycline.

In one aspect, there is provided a process for preparing amorphous minocycline base, which process comprises spray drying a solution or suspension of minocycline, in an organic solvent, preferably chosen from methyl tert-butyl ether, dichloromethane or isopropyl acetate

A preferred process for preparing amorphous minocycline base comprises:

1) dissolving minocycline base in one or more organic solvents to form a solution or a suspension

2) spray drying the solution or suspension obtained in step 1 )

3) optionally drying the amorphous minocycline base so obtained , if necessary under vacuum, at a temperature of from 25 0 C to 45 0 C, preferably from 35 0 C to 45 0 C.

Any suitable solvent may be used, and preferred solvents include methyl tert-butyl ether, dichloromethane or isopropyl acetate.

Any suitable technique for the spray drying may be used. For example, conventional spray drying techniques (as will be clear to those skilled in the art) may be employed.

EXAMPLES

The following examples are provided to illustrate the present invention and do not in any way limit its scope.

EXAMPLE 1 : Preparation of Form I of crystalline minocycline base

Amorphous minocycline base (0.5g) is suspended in methyl tert-butyl ether (4ml) and the resulting heterogeneous mixture stirred for about 2 hours at a temperature between O 0 C and 3O 0 C, preferably between 1O 0 C and 15 0 C.

The product is filtered, washed with methyl tert-butyl ether (1 ml) and dried under vacuum at about 45°C-50°C to yield crystalline minocycline base.

Yield: 0.38g

The XRPD pattern and infrared are presented in Fig 1 and Fig .2. 4-epi minocycline: 0.06% in area (HPLC)

Melting point: 113 0 C

EXAMPLE 2: Preparation of Form I of crystalline minocycline base

Amorphous minocycline base (0.5g) is dissolved in methyl tert-butyl ether (6ml) and the resulting solution stirred at a temperature between O 0 C and 3O 0 C, preferably between 1O 0 C and 15 0 C.

After about 5 minutes Form I of crystalline minocycline base precipitates from the solution.

The resulting suspension is filtered, washed with methyl tert-butyl ether (1 ml) and dried under vacuum at about 45°C-50°C to yield Form I of crystalline minocycline base.

Yield: 0.45g.

Melting point: 113 0 C

EXAMPLE 3: Preparation of Form Il of crystalline minocycline base

Amorphous minocycline base (2Og) is suspended in ethyl acetate (160ml) and the resulting heterogeneous mixture stirred for about 3 hours at a temperature between O 0 C and 3O 0 C, preferably between 1O 0 C and 15 0 C.

The product is filtered, washed with ethyl acetate (10ml) and dried under vacuum at about 45°C-50°C to yield crystalline minocycline base.

Yield: 17. 4g

HPLC purity: 99.5% in area 4-epi minocycline: 0.11% in area.

Melting point: 187 0 C

The XRPD pattern and infrared are presented in Fig.3 and Fig.4.

EXAMPLE 4: Preparation of Form Il of crystalline minocycline base

Amorphous minocycline base (5 g) is dissolved in ethyl acetate (40ml) and the resulting solution stirred for about 3 hours at a temperature between O 0 C and 3O 0 C, preferably between 1O 0 C and 15 0 C whereupon Form Il of crystalline minocycline base precipitated.

The product is filtered, washed with ethyl acetate (5ml) and dried under vacuum at about 45°C-50°C to yield Form Il of crystalline minocycline base.

Yield: 3.2g

Melting point: 187 0 C.

EXAMPLE 5: Preparation of Form III of minocycline base

Amorphous minocycline base (0.5g) is suspended in ethyl alcohol (2.5ml) and the resulting heterogeneous mixture stirred for at least 10 hours at a temperature between O 0 C and 3O 0 C preferably between 1O 0 C and 15 0 C.

The product is filtered, washed with ethyl alcohol (0.5ml) and dried under vacuum at about 45°C-50°C to yield Form III of crystalline minocycline base.

Yield: 0.44g The XRPD pattern and infrared are presented in Fig.5 and Fig.6. 4-epi minocycline: 0.12% in area (HPLC) Melting point: 193°.

EXAMPLE 6: Preparation of amorphous minocycline base

A solution of minocycline base in dichloromethane, isopropyl acetate or methyl tert- butyl ether was isolated by spray drying in conventional spray drying equipment using an inlet temperature between 45 0 C and 105 0 C, and an outlet temperature between 3O 0 C and 75 0 C.

The isolated product can be used directly to obtain any of the Forms of crystalline minocycline base or can be subjected to a post drying step under vacuum at about 45 0 C to yield pure amorphous minocycline base.

Yield: 24.5 g

HPLC purity: 98.6% in area

The XRPD pattern and infra red are presented in Fig 7 and Fig 8.