Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CURABLE COMPOUND COMPRISING SILYLATED POLYURETHANE
Document Type and Number:
WIPO Patent Application WO/2009/071548
Kind Code:
A1
Abstract:
The present invention relates to a method for producing a silylated polyurethane, comprising: (A) converting (iii) at least one polyol compound A having a molecular weight of 4,000 - 30,000 g/mol and a diisocyanate at a stoichiometric excess of the diisocyanate compound relative to the polyol compound(s) A, followed by adding (iv) one or more polyol compound(s) B having a molecular weight of up to 2,000 g/mol in such an amount that the sum of the polyol compounds A and B are used in stoichiometric excess relative to the diisocyanate compound(s), whereby a hydroxyl-terminated polyurethane prepolymer is formed; and (B) converting the polyurethane prepolymer and one or more isocyanate silane(s) of the formula (I): OCN-R-Si-(R1)m(-OR2)3-m (I), where m is 0, 1 or 2, each R2 is an alkyl radical having 1 to 4 carbon atoms, each R1 is an alkyl radical having 1 to 4 carbon atoms, and R is a difunctional organic group. The invention further relates to compounds comprising the silylated polyurethane that can be so produced, and the use thereof as an adhesive and sealant or coating agent.

Inventors:
KLEIN JOHANN (DE)
GONZALEZ SARA (ES)
ZANDER LARS (DE)
BOLTE ANDREAS (DE)
BOUDET HELENE (DE)
Application Number:
PCT/EP2008/066641
Publication Date:
June 11, 2009
Filing Date:
December 02, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL AG & CO KGAA (DE)
KLEIN JOHANN (DE)
GONZALEZ SARA (ES)
ZANDER LARS (DE)
BOLTE ANDREAS (DE)
BOUDET HELENE (DE)
International Classes:
C08G18/12; C08G18/48; C08G18/76
Domestic Patent References:
WO2005059005A12005-06-30
WO2005047394A12005-05-26
WO2006102603A22006-09-28
WO2002077072A12002-10-03
Foreign References:
EP0070475A21983-01-26
EP0354472A11990-02-14
Download PDF:
Claims:

Patentansprüche

1. Verfahren zur Herstellung eines silylierten Polyurethans, umfassend:

(A) Umsetzen

(i) mindestens einer Polyolverbindung A mit einem Molekulargewicht von 4 000- 30 000 g/mol mit mindestens einem Diisocyanat bei einem stöchiometrischen überschuss der Diisocyanatverbindung(en) gegenüber der Polyolverbindung(en) A, gefolgt von der Zugabe

(ii) einer Polyolmischung enthaltend ein oder mehrere Polyolverbindung(en) B mit einem Molekulargewicht von bis zu 2000 g/mol in einer Menge, dass die Summe der Polyolverbindungen A und B im stöchiometrischen überschuss gegenüber der Diisocyanatverbindung(en) verwendet werden, wodurch ein Polyurethan-Prepolymer gebildet wird, das Hydroxyl-terminiert ist; und

(B) Umsetzen des Polyurethan-Prepolymers mit einem oder mehreren Isocyanatosilan(en) der Formel (I):

OCN-R-Si-(R 1 ) m (-OR 2 ) 3-m (I)

worin m 0, 1 oder 2 ist, jedes R 2 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist, jedes R 1 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist und R eine difunktionelle organische Gruppe ist.

2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Polyolmischung zusätzlich mindestens eine gegenüber Isocyanaten monofunktionelle Verbindung ausgewählt aus Monoalkoholen, Monomercaptanen, Monoaminen oder deren Mischungen enthält.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass R ein difunktioneller gerader oder verzweigter Alkylrest mit 1 bis 6, insbesondere 2 bis 6, Kohlenstoffatomen ist.

4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass m null oder eins ist.

5. Verfahren nach mindestens einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass der Anteil der Polyolverbindung B 25 bis 150 Mol% der Polyolverbindung A beträgt.

6. Verfahren nach mindestens einem der Ansprüche 2 bis 5 dadurch gekennzeichnet, dass der Anteil der gegenüber Isocyanaten monofunktionellen Verbindung 10 bis 40 Mol% , vorzugsweise 15 bis 30 Mol%, bezogen auf den Gesamtgehalt der Polyolverbindungen A und B und der gegenüber Isocyanaten monofunktionellen Verbindung beträgt.

7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Isocyanatosilan der Formel (I) 3-lsocyanatopropyl-trimethoxysilan oder 3- Isocyanatopropyl-triethoxysilan ist.

8. Silyliertes Polyurethan, herstellbar durch ein Verfahren umfassend:

(A) Umsetzen

(i) mindestens einer Polyolverbindung A mit einem Molekulargewicht von 4 000- 30 000 g/mol mit mindestens einem Diisocyanat bei einem stöchiometrischen überschuss der Diisocyanatverbindung(en) gegenüber der Polyolverbindung(en) A, gefolgt von der Zugabe

(ii) einer Polyolmischung enthaltend ein oder mehrere Polyolverbindung(en) B mit einem Molekulargewicht von bis zu 2000 g/mol in einer Menge, dass die Summe der Polyolverbindungen A und B im stöchiometrischen überschuss gegenüber der Diisocyanatverbindung(en) verwendet werden, wodurch ein Polyurethan-Prepolymer gebildet wird, das Hydroxyl-terminiert ist; und

(B) Umsetzen des Polyurethan-Prepolymers mit einem oder mehreren Isocyanatosilan(en) der Formel (I):

OCN-R-Si-(R 1 ) m (-OR 2 ) 3-m (I)

worin m 0, 1 oder 2 ist, jedes R 2 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist, jedes R 1 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist und R eine difunktionelle organische Gruppe ist.

9. Silyliertes Polyurethan nach Anspruch 8, dadurch gekennzeichnet, dass die

Polyolmischung zusätzlich mindestens eine gegenüber Isocyanaten monofunktionelle Verbindung ausgewählt aus Monoalkoholen, Monomercaptanen, Monoaminen oder deren Mischungen enthält.

10. Silyliertes Polyurethan nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Anteil der Polyolverbindung B 25 bis 150 Mol% der Polyolverbindung A beträgt.

1 1. Silyliertes Polyurethan nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Anteil der monofunktionellen Verbindung 10 bis 40 Mol% , vorzugsweise 15 bis 30 Mol%, bezogen auf den Gesamtgehalt der Polyolverbindungen A und B und der gegenüber Isocyanaten monofunktionellen Verbindung beträgt.

12. Silyliertes Polyurethan nach mindestens einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, dass R ein difunktioneller gerader oder verzweigter Alkylrest mit 1 bis 6, insbesondere 2 bis 6, Kohlenstoffatomen ist und / oder m null oder eins ist.

13. Silyliertes Polyurethan nach mindestens einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass das Isocyanatosilan der Formel (I) 3-lsocyanatopropyl- trimethoxysilan oder 3-lsocyanatopropyl-triethoxysilan ist und / oder die Diisocyanatverbindung ausgewählt ist aus der Gruppe bestehend aus 2,4-Toluol- diisocyanat, 2,6-Toluol-diisocyanat, 4,4'-Diphenyl-methandiisocyanat, 2,4'-Diphenyl- methandiisocyanat, 1-lsocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan (Isophorondiisocyanat, IPDI), 4,4'-Dicyclohexylmethan-diisocyanat-lsomeren, Tetrame- thylxylylendiisocyanat (TMXDI), und Mischungen davon.

14. Silanvernetzende, härtbare Zusammensetzung, enthaltend mindestens ein silyliertes Polyurethan erhältlich durch ein Verfahren nach einem der Ansprüche 1 bis 7 oder mindestens ein silyliertes Polyurethan nach einem der Ansprüche 8 bis 13.

15. Verwendung einer Zubereitung enthaltend ein oder mehrere silylierte(s) Polyurethan(e) herstellbar nach einem Verfahren nach einem der Ansprüche 1 bis 7 oder ein oder mehrere silylierte(s) Polyurethan(e) nach mindestens einem der Ansprüche 8 bis 13 oder eine Zusammensetzung nach Anspruch 14 als Kleb-, oder Dichtstoff oder als Beschichtungsmittel.

Description:

„Härtbare Zusammensetzungen enthaltend silylierte Polyurethane"

Die vorliegende Erfindung betrifft silanvernetzende, härtbare Zusammensetzungen, deren Herstellung und Verwendung in Kleb- und Dichtstoffen und Beschichtungsmitteln.

Polymersysteme, die über reaktive Alkoxysilylgruppen verfügen, sind bekannt. In Gegenwart von Luftfeuchtigkeit sind diese alkoxysilanterminierten Polymere bereits bei Raumtemperatur in der Lage, unter Abspaltung der Alkoxygruppen miteinander zu kondensieren. Je nach Gehalt an Alkoxysilylgruppen und deren Aufbau bilden sich dabei hauptsächlich langkettige Polymere (Thermoplaste), relativ weitmaschige dreidimensionale Netzwerke (Elastomere) oder hochvernetzte Systeme (Duroplaste).

Die Polymere weisen in der Regel ein organisches Grundgerüst auf, das an den Enden Alkoxysilylgruppen trägt. Bei dem organischen Grundgerüst kann es sich beispielsweise um Polyurethane, Polyester, Polyether etc. handeln.

Einkomponentige, feuchtigkeitshärtende Kleb- und Dichtstoffe spielen seit Jahren eine bedeutende Rolle bei zahlreichen technischen Anwendungen. Neben den Polyurethan-Kleb- und Dichtstoffen mit freien Isocyanatgruppen und den traditionellen Silikon- Kleb- und Dichtstoffen auf der Basis von Dimethylpolysiloxanen sind in letzter Zeit auch verstärkt die so genannten modifizierten Silan-Kleb- und Dichtstoffe eingesetzt worden. Bei der letztgenannten Gruppe ist der Hauptbestandteil des Polymerrückgrates ein Polyether und die reaktiven und vernetzungsfähigen Endgruppen sind Alkoxysilylgruppen. Gegenüber den Polyurethan-Kleb- und Dichtstoffen weisen die modifizierten Silan-Kleb- und Dichtstoffe den Vorteil der Freiheit von Isocyanatgruppen, insbesondere von monomeren Diisocyanaten auf, weiterhin zeichnen sie sich durch ein breites Haftspektrum auf einer Vielzahl von Substraten ohne Oberflächenvorbehandlung durch Primer aus.

US 4,222,925 A und US 3,979,344 A beschreiben bereits bei Raumtemperatur härtbare siloxanterminierte organische Dichtstoffzusammensetzungen auf der Basis von Umsetzungsprodukten von Isocyanat-terminierten Polyurethan-Prepolymeren mit 3- Aminopropyltrimethoxysilan beziehungsweise 2-Aminoethyl-, 3-Aminopropylmethoxysilan zu isocyanatfreien siloxanterminierten Prepolymeren. Kleb- und Dichtstoffe auf der Basis dieser Prepolymeren weisen jedoch unbefriedigende mechanische Eigenschaften, insbesondere in Bezug auf ihre Dehnung und Reißfestigkeit auf.

Für die Herstellung von silanterminierten Prepolymeren auf der Basis von Polyethern sind die nachfolgend aufgeführten Verfahren bereits beschrieben worden:

Copolymerisation von ungesättigten Monomeren mit solchen die Alkoxysilylgruppen aufweisen, wie z.B. Vinyltrimethoxysilan.

Aufpfropfung von ungesättigten Monomeren wie Vinyltrimethoxysilan auf Thermoplaste wie Polyethylen.

Hydroxyfunktionelle Polyether werden mit ungesättigten Chlorverbindungen, z.B.

Allylchlorid, in einer Ethersynthese in Polyether mit endständigen olefinischen

Doppelbindungen umgesetzt, die ihrerseits mit Hydrosilanverbindungen, die hydrolysierbare Gruppen haben, wie z.B. HSi(OCH ) in einer Hydrosilylierungsreaktion unter dem katalytischen Einfluss von beispielsweise übergangsmetallverbindungen der 8. Gruppe zu silanterminierten Polyethern umgesetzt werden.

In einem anderen Verfahren werden die olefinisch ungesättigte Gruppen enthaltenden Polyether mit einem Mercaptosilan wie z.B. 3-Mercaptopropyltrialkoxysilan umgesetzt. Bei einem weiteren Verfahren werden zunächst Hydroxylgruppen-haltige Polyether mit Di- oder Polyisocyanaten umgesetzt, die dann ihrerseits mit aminofunktionellen Silanen oder mercaptofunktionellen Silanen zu silanterminierten Prepolymeren umgesetzt werden. Eine weitere Möglichkeit sieht die Umsetzung von hydroxyfunktionellen Polyethern mit isocyanatofunktionellen Silanen wie z.B. 3-lsocyanatopropyltrimethoxysilan vor.

Diese Herstellverfahren und die Verwendung der oben genannten silanterminierten Prepolymeren in Kleb-/Dichtstoffanwendungen sind beispielsweise in den folgenden Patentschriften genannt: US-A-3971751 , EP-A-70475, DE-A-19849817, US-A-6124387 US-A- 5990257 US-A-4960844, US-A-3979344, US-A-3632557, DE-A-4029504, EP-A-601021 , oder EP-A-370464.

EP-A-0931800 beschreibt die Herstellung von silylierten Polyurethanen durch Umsetzung einer Polyolkomponente mit einer endständigen Ungesättigtheit von weniger als 0,02 meq/g mit einem Diisocyanat zu einem Hydroxyl-terminierten Prepolymer, das anschließend mit einem Isocyanatosilan der Formel OCN-R-Si-(X) m (-OR 1 ) 3-m umgesetzt wird, wobei m 0,1 oder 2 ist und jeder R 1 -Rest eine Alkylgruppe mit 1 bis 4 C-Atomen und R eine difunktionelle organische Gruppe ist. Gemäß der Lehre dieser Schrift wiesen derartige silylierte Polyurethane eine überlegene Kombination aus mechanischen Eigenschaften auf, die in vernünftigen Zeiträumen zu einen wenig klebrigen Dichtstoff aushärten, ohne eine übermäßige Viskosität aufzuweisen.

WO-A-2003 066701 offenbart Alkoxysilan- und OH-Endgruppen aufweisende Polyurethanprepolymere auf Basis von hochmolekularen Polyurethanprepolymeren mit erniedrigter Funktionalität zur Verwendung als Bindemittel für niedermodulige Dichtstoffe und Klebstoffe. Dazu soll zunächst ein Polyurethanprepolymer aus einer Diisocyanatkomponente mit einem NCO-Gehalt von 20 bis 60% und einer Polyolkomponente, umfassend ein Polyoxyalkylendiol mit einem Molekulargewicht zwischen 3000 und 20000 als Hauptkomponente, umgesetzt werden, wobei die Umsetzung bei einem Umsatz von 50 bis 90% der OH-Gruppen gestoppt werden soll. Diese Reaktionsprodukt soll anschließend mit einer Alkoxysilan- und Aminogruppen aufweisenden Verbindung weiter umgesetzt werden. Durch diese Maßnahmen sollen Prepolymere mit verhältnismäßig geringer mittlerer Molekülmasse und niedriger Viskosität erhalten werden, die dfe Erreichung ein hohen Eigenschaftsniveaus gewährleisten sollen.

Aus WO-A-2005 042605 sind feuchtigkeitshärtende Alkoxysilan-funktionelle Polyetherurethan- Zusammensetzungen bekannt, die 20 bis 90 Gew.% eines Polyetherurethans A mit zwei oder mehr reaktiven Silangruppen und 10 bis 80 Gew.% eines Polyetherurethans B mit einer reaktiven Silangruppe enthalten. Das Polyetherurethan A soll dabei Polyethersegmente mit einem zahlenmittleren Molekulargewicht (M n ) von mindestens 3000 und einer Ungesättigtheit von weniger als 0,04 mequ/g aufweisen, und die reaktiven Silangruppen sollen durch Reaktion einer isocyanatreaktiven Gruppe mit einer Verbindung der Formel OCN-Y-Si-(X) 3 eingefügt werden. Das Polyetherurethan B soll ein oder mehrere Polyethersegmente mit einem zahlenmittleren Molekulargewicht (M n ) von 1000 bis 15000 aufweisen und die reaktiven Silangruppen sollen durch Reaktion einer Isocyanatgruppe mit einer Verbindung der Formel HN(Ri)-Y-Si-(X) 3 eingefügt werden. R 1 ist dabei eine Alkyl-, Cycloalkyl- oder aromatische Gruppe mit 1 bis 12 C-Atomen, X eine Alkoxygruppe und Y ein lineares Radikal mit 2 bis 4 C- Atomen oder ein verzweigtes Radikal mit 5 bis 6 C-Atomen.

Zur Reduzierung der Funktionalität und damit der Vernetzungsdichte von feuchtigkeits- härtenden alkoxysilanterminierten Polyurethanen schlägt WO-A-92/05212 die Mitverwendung von monofunktionellen Isocyanaten im Gemisch mit Diisocyanaten bei der Synthese vor. Monoisocyanate haben bekanntlich einen sehr hohen Dampfdruck und sind wegen ihrer Toxizität in arbeitshygienischer Sicht bedenkliche Einsatzstoffe.

Es besteht weiterhin das Bedürfnis nach isocyanatfreien Zusammensetzungen zur Herstellung von 1 K- oder 2K- Kleb- und Dichtstoffen, die eine akzeptable Härtungszeit und nach Aushärtung eine besonders gute Elastizität und Dehnbarkeit aufweisen. Ferner besteht der

Wunsch, nach einer effizienten Syntheseroute und nach Zusammensetzungen, die keine Restklebrigkeit aufweisen.

Aufgabe der vorliegenden Erfindung ist daher, isocyanatfreie vernetzbare Zusammensetzungen bereitzustellen, die eine hohe Elastizität und eine gute Dehnbarkeit aufweisen. Ferner ist eine anwenderfreundliche Härtungszeit erwünscht.

Die erfindungsgemäße Lösung der Aufgabe ist den Patentansprüchen zu entnehmen. Sie besteht im wesentlichen in der Bereitstellung eines Verfahrens zur Herstellung eines silylierten Polyurethans, umfassend:

(A) Umsetzen

(i) mindestens einer Polyolverbindung A mit einem Molekulargewicht von 4 000 - 30 000 Dalton bzw. g/mol mit mindestens einem Diisocyanat bei einem stöchiometrischen überschuss der Diisocyanatverbindung(en) bzw. des / der Diisocyanate(s) gegenüber der / den Polyolverbindung(en) A, gefolgt von der Zugabe

(ii) einer Polyolmischung enthaltend ein oder mehrere Polyolverbindung(en) B mit einem Molekulargewicht von bis zu 2000 Dalton bzw. g/mol in einer Menge, dass die Summe der Polyolverbindungen A und B im stöchiometrischen überschuss gegenüber der bzw. den Diisocyanatverbindung(en) verwendet wird, wodurch ein Polyurethan-Prepolymer gebildet wird, das Hydroxyl-terminiert ist; und

(B) Umsetzen des Polyurethan-Prepolymers mit einem oder mehreren Isocyanatosilan(en) der Formel (I):

OCN-R-Si-(R 1 ) m (-OR 2 ) 3-m (I)

worin m 0, 1 oder 2 ist, jedes R 2 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist, jedes R 1 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist und R eine difunktionelle organische Gruppe ist.

Das Umsetzen des Polyurethan-Prepolymers mit einem oder mehreren Isocyanatosilanen der Formel (I) gemäß (B) geschieht, um die Hydroxylgruppen des Prepolymers mit dem Isocyanatosilan zu Verkappen, bzw. die Silylterminierung einzuführen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein silyliertes Polyurethan, herstellbar nach dem oben beschriebenen erfindungsgemäßen Verfahren zur Herstellung eines silylierten

Polyurethans. Die Erfindung betrifft daher auch ein silyliertes Polyurethan, das hergestellt wird durch Umsetzen mindestens einer Polyolverbindung A mit einem Molekulargewicht von 4000 bis 30000 g/mol mit einem stöchiometrischen überschuss mindestens eines Diisocyanates (gegenüber der Polyolverbindung(en) A) und nachfolgender Reaktion dieses ersten Reaktionsproduktes mit einer Polyolmischung enthaltend ein oder mehrere Polyolverbindung(en) B mit einem Molekulargewicht von bis zu 2000 g/mol in einer Menge, dass die Summe der Polyolverbindungen A und B im stöchiometrischen überschuss gegenüber der Diisocyanatverbindung(en) bzw. des Diisocyanate(s) eingesetzt werden, wodurch ein Polyurethan-Prepolymer gebildet wird, das Hydroxylgruppen an den Enden trägt bzw. Hydroxyl- terminiert ist. In einer Folgereaktion wird dieses OH-Gruppen tragende Polyurethan-Prepolymer mit einem oder mehreren Isocyanatosilanen der Formel (I) umgesetzt, um die Hydroxylgruppen des Prepolymers mit dem Isocyanatosilan zu Verkappen, bzw. die Silylterminierung einzuführen, wodurch ein silyliertes Polyurethan gebildet wird, das Alkoxysilylgruppen als reaktive Endgruppen aufweist.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine feuchtigkeitshärtende Kleb-, Dichtstoff- oder Beschichtungsmittel- Zubereitung und deren Verwendung, die ein oder mehrere silylierte Polyurethan(e) der vorgenannten Art bzw. hergestellt nach dem vorgenannten Verfahren enthält. Zusätzlich zu den erfindungsgemäßen silylierten Polyurethan(en) kann diese Zubereitung noch weitere Inhaltsstoffe, wie z.B. Weichmacher, Füllstoffe, Katalysatoren und weitere Hilfs- und Zusatzstoffe enthalten.

Die nach dem erfindungsgemäßen Verfahren hergestellten silylierten Polyurethane zeichnen sich insbesondere durch gute Dehnbarkeiten aus.

Als Polyolverbindungen bzw. Polyole können prinzipiell eine Vielzahl von mindestens zwei Hydroxylgruppen-tragenden Polymeren eingesetzt werden, beispielhaft genannt seien Polyester, Polyole, Hydroxylgruppen-haltige Polycaprolactone, Hydroxylgruppen-haltige Polybutadiene oder Polyisoprene sowie deren Hydrierungsprodukte oder auch Hydroxylgruppen-haltige Polyacrylate oder Polymethacrylate. Es können auch Mischungen verschiedener Polyolverbindungen verwendet werden.

Ganz besonders bevorzugt werden jedoch als Polyole Polyoxyalkylene, insbesondere Polyethylenoxide und/oder Polypropylenoxide, eingesetzt.

Polyole, die Polyether als Polymergerüst enthalten, besitzen nicht nur an den Endgruppen, sondern auch im Polymerrückgrat eine flexible und elastische Struktur. Damit kann man Zusammensetzungen herstellen, die nochmals verbesserte elastische Eigenschaften aufweisen. Dabei sind Polyether nicht nur in ihrem Grundgerüst flexibel, sondern gleichzeitig beständig. So werden Polyether beispielsweise von Wasser und Bakterien, im Gegensatz zu beispielsweise Polyestern, nicht angegriffen oder zersetzt.

Besonders bevorzugt werden daher Polyethylenoxide und/oder Polypropylenoxide eingesetzt.

Das Molekulargewicht M n des Polymergerüsts der Polyolverbindungen A liegt zwischen 4000 und 30000 g/mol (Dalton). Nach einer bevorzugten Ausführungsform der Erfindung beträgt das Molekulargewicht M n der Polyolverbindung A zwischen 5000 und 25000 g/mol. Weitere besonders bevorzugte Molekulargewichtsbereiche sind 8000 bis 20000 g/mol, ganz besonders bevorzugt sind 12000 bis 19000 bzw. 15000 bis 18000 g/mol.

Diese Molekulargewichte sind besonders vorteilhaft, da Zusammensetzungen, die unter Verwendung von Polyolverbindungen A mit diesen Molekulargewichten hergestellt wurden Viskositäten aufweisen, die eine leichte Verarbeitbarkeit ermöglichen.

Nach einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Polyolverbindung A eingesetzt, insbesondere ein Polyoxyalkylen, insbesondere Polyethylenoxid und/oder Polypropylenoxid.

Ganz besonders bevorzugt werden Polyoxyalkylene, insbesondere Polyethylenoxide oder Polypropylenoxide, eingesetzt, die eine Polydispersität PD von weniger als 2, bevorzugt weniger als 1 ,5, insbesondere weniger als 1 ,3, aufweisen.

Unter dem Molekulargewicht M n wird das zahlenmittlere Molekulargewicht des Polymeren verstanden. Dieses kann, ebenso wie das gewichtsmittlere Molekulargewicht M w , durch Gelpermeationschromatographie (GPC, auch: SEC) bestimmt werden. Dieses Verfahren ist dem Fachmann bekannt. Die Polydispersität leitet sich aus den mittleren Molekulargewichten M w und M n ab. Sie wird berechnet als PD = M w / M n .

Besonders vorteilhafte viskoelastische Eigenschaften lassen sich erreichen, wenn man als polymere Grundgerüste Polyoxyalkylenpolymere A, welche eine enge Molmassenverteilung und damit niedrige Polydispersität besitzen, einsetzt. Diese sind beispielsweise durch die so

genannte Double-Metal-Cyanide-Katalyse (DMC-Katalyse) herstellbar. Diese Polyoxyalkylenpolymere zeichnen sich in der Regel durch eine besonders enge Molmassenverteilung, durch eine hohe mittlere Molmasse und durch eine sehr niedrige Zahl an Doppelbindungen an den Enden der Polymerketten aus.

Solche Polyoxyalkylenpolymere haben eine Polydispersität PD (MJM n ) von höchstens 1 ,7. Besonders bevorzugte organische Grundgerüste sind beispielsweise Polyether mit einer Polydispersität von etwa 1 ,01 bis etwa 1 ,3, insbesondere etwa 1 ,05 bis etwa 1 ,18, beispielsweise etwa 1 ,08 bis etwa 1 ,1 1 oder etwa 1 ,12 bis etwa 1 ,14. In einer bevorzugten Ausführungsform der Erfindung weisen diese Polyether ein mittleres Molekulargewicht (M n ) von etwa 5 000 bis etwa 30 000 g/mol auf, insbesondere etwa 6000 bis etwa 25 000 g/mol. Besonders bevorzugt sind Polyether mit mittleren Molekulargewichten von etwa 10 000 bis etwa 22 000 g/mol, insbesondere mit mittleren Molekulargewichten von etwa 12 000 bis etwa 18 000 oder 15 000 bis 18 000 g/mol.

Die Polyolverbindung B ist ebenfalls vorzugsweise ein Polyoxyalkylen. Es weist ein mittleres Molekulargewicht (M n ) von bis zu 2000 Dalton bzw. g/mol auf und kann eine höhere Polydispersität haben als das Polyol A. Die Zahl an Doppelbindungen an den Enden der Polymerketten (terminale Ungesättigtheit) kann dabei für die Polyolverbindung B größer sein als für die Polyolverbindung A. Besonders bevorzugt sind mittlere Molekulargewichte (M n ) von 500 bis 1500 g/mol, insbesondere ca. 1000 g/mol.

Als Diisocyanate zur Herstellung des Hydroxyl-terminierten Polyurethan-Prepolymers eignen sich beispielsweise Ethylendiisocyanat, 1 ,4-Tetramethylendiisocyanat, 1 ,4-Tetramethoxybutan- diisocyanat, 1 ,6-Hexamethylendiisocyanat (HDI), Cyclobutan-1 ,3-diisocyanat, Cyclohexan-1 ,3- und -1 ,4-diisocyanat, Bis(2-isocyanato-ethyl)fumarat, 1-lsocyanato-3,3,5-trimethyl-5-isocyana- tomethylcyclohexan (Isophorondiisocyanat, IPDI), 2,4- und 2,6-Hexahydrotoluylendiisocyanat, Hexahydro-1 ,3- oder -1 ,4-phenylendiisocyanat, Benzidindiisocyanat, Naphthalin-1 ,5- diisocyanat, 1 ,6-Diisocyanato-2,2,4-trimethylhexan, 1 ,6-Diisocyanato-2,4,4-trimethylhexan, Xylylendi-isocyanat (XDI), Tetramethylxylylendiisocyanat (TMXDI), 1 ,3- und 1 ,4-Phenylendii- socyanat, 2,4- oder 2,6-Toluylendiisocyanat (TDI), 2,4 ' -Diphenylmethandiisocyanat, 2,2 - Diphenylmethandiisocyanat oder 4,4 ' -Diphenylmethandiisocyanat (MDI) sowie deren Isomerengemische. Weiterhin kommen partiell oder vollständig hydrierte Cycloalkylderivate des MDI, beispielsweise vollständig hydriertes MDI (H12-MDI), alkylsubstituierte Diphenylmethan- diisocyanate, beispielsweise Mono-, Di-, Tri- oder Tetraalkyldiphenylmethandiisocyanat sowie deren partiell oder vollständig hydrierte Cycloalkylderivate, 4,4 ' -Diisocyanatophe- nylperfluorethan, Phthalsäure-bis-isocyanatoethylester, 1-Chlormethylphenyl-2,4- oder -2,6-

diisocyanat, 1-Brommethylphenyl-2,4- oder -2,6-diisocyanat, 3,3-Bis-chlormethylether-4,4 ' - diphenyldiisocyanat, schwefelhaltige Diisocyanate, wie sie durch Umsetzung von 2 mol Diisocyanat mit 1 mol Thiodiglykol oder Dihydroxydihexylsulfid erhältlich sind, die Diisocyanate der Dimerfettsäuren, oder Gemische aus zwei oder mehr der genannten Diisocyanate, in Frage.

Nach einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält die Polyolmischung gemäß Schritt (A) (ii) zusätzlich mindestens eine gegenüber Isocyanaten monofunktionelle Verbindung. Besonders bevorzugt ist es, wenn diese gegenüber Isocyanaten monofunktionelle Verbindung ausgewählt wird aus Monoalkoholen, Monomercaptanen, Monoaminen oder deren Mischungen. In diesem Fall wird eine Menge der Polyolmischung zugegeben, dass die Summe der Polyolverbindungen A und B sowie der (gegenüber Isocyanaten) monofunktionellen Verbindung(en) im stöchiometrischen überschuss gegenüber der bzw. den Diisocanatverbindung(en) verwendet wird. Das bedeutet, dass die Gesamtzahl der Hydroxylgruppen aus Polyolverbindungen A und B sowie ggf. Monoalkohol und ggf. SH- bzw. Amingruppen aus Monomercaptanen bzw. Monoaminen im stöchiometrischen überschuss gegenüber den Isocyanatgruppen der/des Diisocyanatverbindung(en) verwendet wird, d.h. höher als die Zahl der Isocyanatgruppen ist. Bevorzugt ist es allerdings, wenn ein so großer überschuss verwendet wird, dass auch die Summe der Polyolverbindungen A und B im stöchiometrischen überschuss gegenüber der /den Isocyanatverbindung(en) verwendet wird. In diesem Fall ist die Gesamtzahl der Hydroxylgruppen aus Polyolverbindungen A und B im stöchiometrischen überschuss gegenüber den Isocyanatgruppen der/des Diisocyanatverbindung(en), d.h. höher als die Zahl der Isocyanatgruppen. Besonders bevorzugt ist die Verwendung einer Polyolmischung bestehend aus einer oder mehrerer Polyolverbindung(en) B und mindestens einer gegenüber Isocyanaten monofunktionellen Verbindung, bspw. eine Polyolmischung bestehend aus einer Polyolverbindung B und einer gegenüber Isocyanaten monofunktionellen Verbindung.

So lässt sich die Funktionalität der resultierenden silylierten Polyurethane steuern, so dass beispielsweise ein bevorzugter Silylierungsgrad bzw. Silylterminierungsgrad von 1 ,5 bis kleiner als 2,0, insbesondere 1 ,6 bis 1 ,8 eingestellt werden kann. Dies hat den Vorteil, dass die resultierenden silylierten Polyurethane eine nochmals erhöhte Dehnbarkeit und eine gute Elastizität bei gleichzeitig niedrigen Elastizitätsmodulen (E-50, E-100), insbesondere kleiner als 0,5 N/mm 2 , besonders bevorzugt kleiner als 0,4 N/mm 2 aufweisen.

Erfindungsgemäß sind als (gegenüber Isocyanaten) monofunktionelle Verbindungen solche Verbindungen geeignet, die gegenüber Isocyanaten reaktive Gruppen mit einer Funktionalität

von 1 haben. Grundsätzlich sind hierfür alle monofunktionellen Alkohole, Amine oder Mercaptane verwendbar, dies sind insbesondere monofunktionelle Alkohole (Monoalkohole) mit bis zu 36 Kohlenstoffatomen, monofunktionelle primäre und/oder sekundäre Amine (Monoamine) mit bis zu 36 Kohlenstoffatomen oder monofunktionelle Mercaptane (Monomercapane) mit bis zu 36 Kohlenstoffatomen. Es können aber auch Mischungen von Polyalkoholen, Polyaminen und/oder Polymercaptanen als monofunktionelle Verbindungen verwendet werden, solange deren durchschnittliche Funktionalität deutlich unter 2 liegt.

Besonders bevorzugt sind zum Beispiel Monoalkohole wie Benzylalkohol, Methanol, Ethanol, die Isomeren des Propanols, Butanols und Hexanols, Monoether von Ethylenglykol und/oder Diethylenglykol, sowie die durch Reduktion von Fettsäuren erhältlichen primären Alkohole mit 8 bis 18 C-Atomen wie Octanol, Decanol, Dodecanol, Tetradecanol, Hexadecanol und Octadecanol, insbesondere in Form technischer Gemische derselben. Monoalkohole mit 4 bis 18 C-Atomen sind bevorzugt, da sich die niedrigen Alkohole nur schwer wasserfrei herstellen lassen.

Weiterhin einsetzbar sind Monoalkylpolyetheralkohole unterschiedlichen Molekulargewichts, wobei ein Zahlenmittel des Molekulargewichts zwischen 1000 und 2000 g/mol bevorzugt ist. Ein bevorzugter Vertreter ist z. B. Monobutylpropylenglykol.

Es können auch gesättigte Fettalkohole mit bis zu 26 Kohlenstoffatomen eingesetzt werden, vorzugsweise solche mit bis zu 22 Kohlenstoffatomen, die großtechnisch durch Reduktion (Hydrierung) von Fettsäuremethylestem synthetisiert werden. Beispielhaft genannt seien: Capronalkohol, Caprylalkohol, Pelargonalkohol, Caprinalkohol, Laurinalkohol, Myristinalkohol, Cetylalkohol, Stearylalkohol, Gadoleylalkohol und Behenylalkohol oder die Guerbetalkohole 2- Hexyldecanol, 2-Octyldodecanol, 2-Decyltetradecanol, 2-Dodecylhexadecanol, 2-Tetradecyl- octadecanol, 2-Hexadecyleicosanol, Guerbetalkohol aus Erucylalkohol, Behenylalkohol und Ocenolen.

Gegebenfalls können Gemische, resultierend aus der Guerbetisierung der technischen Fettalkohole, zusammen mit den anderen vorgenannten Alkoholen, verwendet werden.

Bei der Herstellung der erfindungsgemäßen silylierten Polyurethane bzw. bei dem erfindungsgemäßen Verfahren wird zunächst in einem ersten Schritt die Polyolverbindung A mit einem stöchiometrischen überschuß einer Diisocyanatverbindung bzw. eines Diisocyanates umgesetzt. Im nachfolgenden Schritt wird diesem Reaktionsgemisch die Polyolverbindung B

und gegebenenfalls die (gegenüber Isocyanaten) monofunktionelle Verbindung in einem solchen stöchiometrischen überschuß zugesetzt, dass ein Hydroxyl-terminiertes Polyurethanprepolymer entsteht. Der Anteil der eingesetzten Polyolverbindung(en) B beträgt vorzugsweise 25 bis 150 Mol% der Polyolverbindung A. Das bedeutet, dass die Polyolverbindung(en) B vorzugsweise 20 bis 60 Mol.% bezogen auf den Gesamtgehalt aus Polyolverbindungen A und B ausmachen und entsprechend der Anteil der Polyolverbindung(en) A 40 bis 80 Mol.% beträgt. Der Anteil der (gegenüber Isocyanaten) monofunktionellen Verbindung(en) beträgt vorzugsweise 0 bis 40 Molprozent, bezogen auf die Polyolmischung enthaltend Polyolverbindung(en) B und mindestens eine (gegenüber Isocyanaten) monofunktionelle Verbindung; besonders bevorzugt ist ein Anteil an monofunktioneller Verbindung(en) von 15 bis 30 Molprozent. Der Anteil der (gegenüber Isocyanaten) monofunktionellen Verbindung beträgt vorzusgsweise bis zu 40 Mol%, insbesondere 10 bis 40 Mol.%., vorzugsweise 15 bis 30 Mol.%, ganz besonders bevorzugt 10 bis 20 Mol%, der Mischung aus Polyolverbindungen bzw. Polyolen A und B und der (gegenüber Isocyanaten) monofunktionellen Verbindung bzw. bezogen auf den Gesamtgehalt der Polyolverbindungen A und B und der (gegenüber Isocyanaten) monofunktionellen Verbindung. In einer Folgereaktion wird das Hydroxyl-terminierte Polyurethanprepolymer mit einem oder mehreren Isocyanatosilanen der Formel (I) so umgesetzt, dass die Hydroxylgruppen vollständig durch das Isocyanatosilan verkappt werden.

Der stöchiometrische überschuss der Summe aus Polyolverbindungen A und B und ggf. monofunktioneller Verbindung gegenüber der eingesetzten Diisocyanatverbindung oder Mischung aus Diisocyanaten beträgt 1 ,1 bis 2,0, vorzugsweise liegt er zwischen 1 ,2 und 1 ,5. Hierdurch ist sichergestellt, dass das Umsetzungsprodukt der Stufe A ein Polyurethanprepolymer mit endständigen Hydroxylgruppen gebildet wird.

Für die nachfolgende Umsetzung des Hydroxyl-terminierten Polyurethan-Prepolymers mit einem oder mehreren Isocyanatosilanen bzw. isocyanatofunktionellen Alkoxysilanen der Formel (I) sind die nachfolgend aufgeführten Isocyanatosilane geeignet:

Methyldimethoxysilylmethylisocyanat, Ethyldimethoxysilylmethylisocyanat, Methyldiethoxysilylmethylisocyanat, Ethyldiethoxysilylmethylisocyanat, Me- thyldimethoxysilylethylisocyanat, Ethyldimethoxysilylethylisocyanat, Methyldiethoxy- silylethylisocyanat, Ethyldiethoxysilylethylisocyanat, Methyldimethoxysilylpropylisocyanat, Ethyldimethoxysilylpropylisocyanat, Methyldiethoxysilylpropylisocyanat, Ethyldiethoxysilylpropylisocyanat, Methyldimethoxysilylbutylisocyanat, Ethyldimethoxysilyl-

butylisocyanat, Methyldiethoxysilylbutylisocyanat, Diethylethoxysilylbutylisocyanat, Ethyldiethoxysilylbutylisocyanat, Methyldimethoxysilylpentylisocyanat, Ethyldi- methoxysilylpentylisocyanat, Methyldiethoxysilylpentylisocyanat, Ethyldiethoxysilyl- pentylisocyanat, Methyldimethoxysilylhexylisocyanat, Ethyldimethoxysilylhexylisocyanat, Methyldiethoxysilylhexylisocyanat, Ethyldiethoxysilylhexylisocyanat, Trimethoxysilyl- methylisocyanat, Triethoxysilylmethylisocyanat, Trimethoxysilylethylisocyanat, Triethoxy- silylethylisocyanat, Trimethoxysilylpropylisocyanat, Triethoxysilylpropylisocyanat, Trimethoxysilylbutylisocyanat, Triethoxysilylbutylisocyanat, Trimethoxysilylpentylisocyanat, Triethoxysilylpentylisocyanat, Trimethoxysilylhexylisocyanat, Triethoxysilylhexylisocyanat.

R ist vorzugsweise eine bivalente aliphatische Kohlenwasserstoffgruppe und kann gesättigt oder ungesättigt sein und hat bevorzugt eine Hauptkette von 1 bis 6 Kohlenstoffatomen, bevorzugt Methylen, Ethylen oder Propylen. Besonders bevorzugt sind 2 bis 6 Kohlenstoffatome. Besonders bevorzugt ist R ferner ein difunktioneller gerader oder verzweigter Alkylrest mit 1 bis 6, insbesondere 2 bis 6, Kohlenstoffatomen.

Nach einer weiteren bevorzugten Ausführungsform steht R fUr -CH 2 -. Solche Verbindungen weisen eine hohe Reaktivität der Silylgruppen auf, was zur Verkürzung der Abbinde- und Härtungszeiten beiträgt.

Nach einer weiteren bevorzugten Ausführungsform steht R für -(CH 2 )3-. Wird für R eine Propylengruppe gewählt, so weisen diese Verbindungen eine besonders hohe Flexibilität auf. Diese Eigenschaft wird der längeren verbindenden Kohlenstoff kette zugeschrieben, da Methylengruppen allgemein flexibel und beweglich sind.

Vorzugsweise ist m null oder eins, d.h. das isocyanatofunktionelle Alkoxysilan bzw. Isocyanatosilan trägt eine Trialkoxy- oder Dialkoxygruppe. Generell verfügen Polymere, die Di- bzw. Trialkoxysilylgruppen enthalten, über hoch reaktive Verknüpfungsstellen, die ein schnelles Aushärten, hohe Vernetzungsgrade und damit gute Endfestigkeiten ermöglichen. Ein weiterer Vorteil solcher Alkoxygruppen enthaltenden Polymere ist darin zu sehen, dass bei der Aushärtung unter dem Einfluss von Feuchtigkeit Alkohole gebildet werden, die in den freigesetzten Mengen unbedenklich sind und verdunsten. Daher eignen sich derartige Zusammensetzungen insbesondere auch für den Heimwerkerbereich. Der besondere Vorteil der Verwendung von Dialkoxysilylgruppen liegt darin, dass die entsprechenden Zusammensetzungen nach der Aushärtung elastischer, weicher und flexibler sind als Trialkoxysilylgruppen enthaltende Systeme. Sie sind deshalb insbesondere für eine Anwendung

als Dichtstoffe geeignet. Darüber hinaus spalten sie bei der Aushärtung noch weniger Alkohol ab und sind deshalb besonders interessant, wenn die Menge an freigesetztem Alkohol reduziert werden soll.

Mit Trialkoxysilylgruppen hingegen lässt sich ein höherer Vernetzungsgrad erreichen, was besonders vorteilhaft ist, wenn nach der Aushärtung eine härtere, festere Masse gewünscht wird. Darüber hinaus sind Trialkoxysilylgruppen reaktiver, vernetzen also schneller und senken somit die benötigte Menge an Katalysator; und sie weisen Vorteile beim „kalten Fluss" - der Formstabilität eines entsprechenden Klebstoffs unter dem Einfluss von Kraft- und gegebenenfalls Temperatureinwirkung - auf.

Als Alkoxygruppen werden insbesondere Methoxy-, Ethoxy-, Propyloxy- und Butyloxygruppen, gewählt.

Insbesondere ist eine Ausführungsform bevorzugt, in der R 1 und R 2 eine Methylgruppe sind. Verbindungen mit Alkoxysilylgruppen weisen je nach Natur der Alkylreste am Sauerstoffatom unterschiedliche Reaktivitäten bei chemischen Reaktionen auf. Dabei zeigt innerhalb der Alkoxygruppen die Methoxygruppe die größte Reaktivität. Auf derartige Silylgruppen kann also zurückgegriffen werden, wenn eine besonders schnelle Aushärtung gewünscht wird. Höhere aliphatische Reste wie Ethoxy bewirken eine im Vergleich zu Methoxygruppen bereits geringere Reaktivität der terminalen Alkoxysilylgruppe und können vorteilhaft zur Ausprägung abgestufter Vernetzungsgeschwindigkeiten eingesetzt werden. Neben Methoxy- und Ethoxygruppen können selbstverständlich auch größere Reste als hydrolysierbare Gruppen eingesetzt werden, die naturgemäß eine geringere Reaktivität aufweisen. Dies ist besonders dann von Interesse, wenn eine verzögerte Aushärtung gewünscht ist, beispielsweise bei Klebstoffen, die auch nach der Applikation noch ein Verschieben der verklebten Flächen gegeneinander zum Finden der endgültigen Position ermöglichen sollen.

Besonders bevorzugt werden Methyldimethoxysilylmethylisocyanat, Methyldiethoxysilyl- methylisocyanat, Methyldimethoxysilylpropylisocyanat und Ethyldimethoxysilylpropylisocyanat oder deren Trialkoxyanaloga, insbesondere Trimethoxysilylpropylisocyanat bzw. 3- Isocyanatopropyl-trimethoxysilan oder Triethoxysilylpropylisocyanat bzw. 3-lsocyanatopropyl- triethoxysilan.

Das oder die Isocyanatosilan(e) werden dabei in mindestens stöchiometrischer Menge zu den Hydroxylgruppen des Polyurethan-Prepolymers eingesetzt, bevorzugt wird jedoch ein geringer

stöchiometrischer überschuss der Isocyanatosilane gegenüber den Hydroxylgruppen. Dieser stöchiometrische überschuss der Isocyanatosilane gegenüber den Hydroxylgruppen-haltigen Prepolymeren beträgt zwischen 4 und 15 äquivalentprozenten, vorzugsweise zwischen 5 und 10 äquivalentprozenten bezogen auf die Isocyanatgruppierung.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein silyliertes Polyurethan, herstellbar nach dem oben beschriebenen erfindungsgemäßen Verfahren zur Herstellung eines silylierten Polyurethans. Solch ein silyliertes Polyurethan ist demgemäß herstellbar durch ein Verfahren umfassend:

(A) Umsetzen

(i) mindestens einer Polyolverbindung A mit einem Molekulargewicht von 4 000- 30 000 g/mol mit mindestens einem Diisocyanat bei einem stöchiometrischen überschuss der Diisocyanatverbindung(en) gegenüber der / den Polyolverbindung(en) A, gefolgt von der Zugabe

(ii) einer Polyolmischung enthaltend ein oder mehrere Polyolverbindung(en) B mit einem Molekulargewicht von bis zu 2000 g/mol in einer Menge, dass die Summe der Polyolverbindungen A und B im stöchiometrischen überschuss gegenüber der/den Diisocyanatverbindung(en) verwendet werden, wodurch ein Polyurethan-Prepolymer gebildet wird, das Hydroxyl-terminiert ist; und

(B) Umsetzen des Polyurethan-Prepolymers mit einem oder mehreren Isocyanatosilan(en) der Formel (I):

OCN-R-Si-(R 1 ) m (-OR 2 ) 3-m (I)

worin m 0, 1 oder 2 ist, jedes R 2 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist, jedes R 1 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist und R eine difunktionelle organische Gruppe ist.

Die für das erfindungsgemäße Verfahren beschriebenen Ausführungsformen gelten daher auch für das erfindungsgemäße silylierte Polyurethan.

Insbesondere enthält die Polyolmischung gemäß Schritt (A) (ii) nach einer besonders bevorzugten Ausführungsform zusätzlich mindestens eine gegenüber Isocyanaten monofunktionelle Verbindung. Besonders bevorzugt ist es, wenn diese gegenüber Isocyanaten

monofunktionelle Verbindung ausgewählt wird aus Monoalkoholen, Monomercaptanen, Monoaminen oder deren Mischungen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine silanvernetzende, härtbare Zusammensetzung, enthaltend mindestens ein silyliertes Polyurethan erhältlich durch das erfindungsgemäße Verfahren oder mindestens ein erfindungsgemäßes silyliertes Polyurethan.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung einer Zubereitung enthaltend ein oder mehrere silylierte(s) Polyurethan(e) herstellbar nach dem erfindungsgemäßen Verfahren oder ein oder mehrere erfindungsgemäße silylierte(s) Polyurethan(e) oder eine erfindungsgemäße Zusammensetzung als Kleb-, oder Dichtstoff oder als Beschichtungsmittel.

Die erfindungsgemäßen Kleb- und Dichtstoff-Zusammensetzungen bzw. -Zubereitungen können neben den vorgenannten silylierten Polyurethanverbindungen noch weitere Hilfs- und Zusatzstoffe enthalten, die diesen Zubereitungen verbesserte elastische Eigenschaften, verbesserte Rückstellfähigkeit, ausreichend lange Verarbeitungszeit, schnelle Durchhärtungsgeschwindigkeit und geringe Restklebrigkeit verleihen. Zu diesen Hilfs- und Zusatzstoffen gehören beispielsweise Weichmacher, Stabilisatoren, Antioxidantien, Füllstoffe, Verdünner bzw. Reaktivverdünner, Trockenmittel, Haftvermittler und UV-Stabilisatoren, Fungizide, Flammschutzmittel, Pigmente, rheologische Hilfsmittel, Farbpigmente oder Farbpasten und/oder gegebenenfalls auch im geringen Umfang Lösungsmittel.

Als Weichmacher geeignet sind beispielsweise Adipinsäureester, Azelainsäureester, Benzoesäureester, Buttersäureester, Essigsäureester, Ester höherer Fettsäuren mit etwa 8 bis etwa 44 C-Atomen, Ester OH-Gruppen tragender oder epoxidierter Fettsäuren, Fettsäureester und Fette, Glykolsäureester, Phosphorsäureester, Phthalsäureester, von 1 bis 12 C-Atomen enthaltenden linearen oder verzweigten Alkoholen, Propionsäureester, Sebacinsäureester, Sulfonsäureester, Thiobuttersäureester, Trimellithsäureester, Zitronensäureester sowie Ester auf Nitrocellulose- und Polyvinylacetat-Basis, sowie Gemische aus zwei oder mehr davon. Besonders geeignet sind die asymmetrischen Ester von Adipinsäuremonooctylester mit 2-Ethylhexanol (Edenol DOA, Fa. Cognis Deutschland GmbH, Düsseldorf) oder auch Ester der Abietinsäure.

Beispielsweise eignen sich von den Phthalsäureestern Dioctylphthalat (DOP), Dibutylphthalat, Diisoundecylphthalat (DIUP) oder Butylbenzylphthalat (BBP), von den Adipaten Dioctyladipat (DOA), Diisodecyladipat, Diisodecylsuccinat, Dibutylsebacat oder Butyloleat.

Ebenfalls als Weichmacher geeignet sind die reinen oder gemischten Ether monofunktioneller, linearer oder verzweigter C 4- i 6 -Alkohole oder Gemische aus zwei oder mehr verschiedenen Ethern solcher Alkohole, beispielsweise Dioctylether (erhältlich als Cetiol OE, Fa. Cognis Deutschland GmbH, Düsseldorf).

Ferner eignen sich als Weichmacher endgruppenverschlossene Polyethylenglykole. Beispielsweise Polyethylen- oder Polypropylenglykoldi-C- M -alkylether, insbesondere die Dimethyl- oder Diethylether von Diethylenglykol oder Dipropylenglykol, sowie Gemische aus zwei oder mehr davon.

Besonders bevorzugt sind jedoch endgruppenverschlossene Polyethylenglykole, wie Polyethylen- oder Polypropylenglykoldialkylether, wobei der Alkylrest ein bis vier C-Atome beträgt, und insbesondere die Dimethyl- und Diethylether von Diethylenglykol und Dipropylenglykol. Insbesondere mit Dimethyldiethylenglykol wird eine auch unter ungünstigeren Auftragungsbedingungen (geringe Luftfeuchtigkeit, niedrige Temperatur) eine akzeptable Aushärtung erreicht. Für weitere Einzelheiten zu Weichmachern wird auf die einschlägige Literatur der Technischen Chemie verwiesen.

Weichmacher können in den Zubereitungen zwischen 0 und 40, vorzugsweise zwischen 0 und 20 Gew.% (bezogen auf die Gesamtzusammensetzung) in der Zubereitung mit verwendet werden.

"Stabilisatoren" im Sinne dieser Erfindung sind Antioxidantien, UV-Stabilisatoren oder Hydrolyse-Stabilisatoren zu verstehen. Beispiele hierfür sind die handelsüblichen sterisch gehinderten Phenole und/oder Thioether und/oder substituierten Benzotriazole und/oder Amine vom "HALS"-Typ (Hindered Amine Light Stabilizer). Es ist im Rahmen der vorliegenden Erfindung bevorzugt, wenn ein UV-Stabilisator eingesetzt wird, der eine Silylgruppe trägt und beim Vernetzen bzw. Aushärten in das Endprodukt eingebaut wird. Hierzu besonders geeignet sind die Produkte Lowilite 75, Lowilite 77 (Fa. Great Lakes, USA). Ferner können auch Benzotriazole, Benzophenone, Benzoate, Cyanacrylate, Acrylate, sterisch gehinderte Phenole, Phosphor und / oder Schwefel zugegeben werden. Der erfindungsgemäße Zubereitung kann bis zu etwa 2 Gew.- %, vorzugsweise etwa 1 Gew.-% an Stabilisatoren enthalten. Ferner kann die erfindungsgemäße Zubereitung weiterhin bis zu etwa 7 Gew.-%, insbesondere bis zu etwa 5 Gew.-% Antioxidantien enthalten.

Als Katalysatoren können alle bekannten Verbindungen eingesetzt werden, die die hydrolytische Spaltung der hydrolysierbaren Gruppen der Silangruppierungen sowie die anschließende Kondensation der Si-OH-Gruppe zu Siloxangruppierungen (Vernetzungsreaktion bzw. Haftvermittlungsfunktion) katalysieren können. Beispiele hierfür sind Titanate wie Tetrabutyltitanat und Tetrapropyltitanat; Bismutverbindungen, wie Bismut-tris-2-ethylhexanoat, Zinncarboxylate wie Dibutylzinndilaurat (DBTL), Dibutylzinndiacetat, Dibutylzinndiethylhexanoat, Dibutylzinndioctoat, Dibutylzinndimethylmaleat, Dibutylzinndiethylmaleat, Dibutylzinndibutyl- maleat, Dibutylzinndiiosooctylmaleat, Dibutylzinnditridecylmaleat, Dibutylzinndibenzylmaleat, Dibutylzinnmaleat, Dibutylzinndiacetat, Zinnoctaoat, Dioctylzinndistealeat, Dioctylzinndilaulat, Dioctylzinndiethylmaleat, Dioctylzinndiisooctylmaleat, Dioctylzinndiacetat, und Zinnnaphthenoat; Zinnalkoxide wie Dibutylzinndimethoxid, Dibutylzinndiphenoxid, und Dibutylzinndiisoproxid; Zinnoxide wie Dibutylzinnoxid, und Dioctylzinnoxid; Reaktionsprodukte zwischen Dibutylzinnoxiden und Phthalsäureestern, Dibutylzinnbisacetylacetonat; Organoaluminum- verbindungen wie Aluminumtrisacetylacetonat, Aluminumtrisethylacetoacetat, und Diisopropoxyaluminum-ethylacetoacetat; Chelatverbindungen wie Zirconumtetraacetylacetonat, und Titantetraacetylacetonat; Bleioctanoat; Aminverbindungen oder ihre Salze mit Carbonsäuren, wie Butylamin, Octylamin, Laurylamin, Dibutylamine, Monoethanolamine, Diethanolamine, Triethanolamin, Diethylenetriamin, Triethylenetetramin, Oleylamine, Cyclohexylamin, Benzylamin, Diethylaminopropylamin, Xylylenediamin, Triethylenediamin, Guanidin, Diphenylguanidin, 2,4,6-tris(dimethylaminomethyl)phenol, Morpholin, N- methylmorpholin und 1 ,8-Diazabicyclo-(5,4,0)-undecen-7 (DBU), ein niedermolekulares Polyamid Harz erhalten aus einem überschuß eines Polyamins und einer Polybasischen Säure, Addukte aus einem Polyamin im überschuß mit einem Epoxid, Silanhaftvermittler mit Aminogruppen, wie 3-Aminopropyltrimethoxysilan, und N-(ß-aminoethyl)aminopropylmethyl- dimethoxysilan. Der Katalysator, bevorzugt Mischungen mehrerer Katalysatoren, werden in einer Menge von 0,001 bis etwa 5 Gew.-% bezogen auf das Gesamtgewicht der Zubereitung eingesetzt. Bevorzugt sind Gew.-% von 0,01 bis 1 , insbesondere 0,03 bis 0,5, besonders bevorzugt kleiner als 0,1 , Gew.-% Katalysator, bezogen auf das Gesamtgewicht der Zubereitung.

Die erfindungsgemäße Zusammensetzung bzw. Zubereitung kann zusätzlich Füllstoffe enthalten. Hier eignen sich beispielsweise Kreide, Kalkmehl, gefällte und/oder pyrogene Kieselsäure, Zeolithe, Bentonite, Magnesiumcarbonat, Kieselgur, Tonerde, Ton, Talkum, Titanoxid, Eisenoxid, Zinkoxid, Sand, Quartz, Flint, Glimmer, Glaspulver und andere gemahlene Mineralstoffe. Weiterhin können auch organische Füllstoffe eingesetzt werden, insbesondere Ruß, Graphit, Holzfasern, Holzmehl, Sägespäne, Zellstoff, Baumwolle, Pulpe, Baumwolle,

Hackschnitzel, Häcksel, Spreu, gemahlene Walnussschalen und andere Faserkurzschnitte. Ferner können auch Kurzfasern wie Glasfaser, Glasfilament, Polyacrylnitril, Kohlefaser, Kevlarfaser oder auch Polyethylenfasern zugesetzt werden. Aluminiumpulver ist ebenfalls als Füllstoff geeignet.

Die pyrogenen und/oder gefällten Kieselsäuren weisen vorteilhaft eine BET-Oberfläche von 10 bis 90 m 2 /g, insbesondere von 35 bis 65 m 2 /g, auf. Bei Ihrer Verwendung bewirken sie keine zusätzliche Erhöhung der Viskosität der erfindungsgemäßen Zubereitung, tragen aber zu einer Verstärkung der gehärteten Zubereitung bei.

Besonders bevorzugt wird eine hochdisperse Kieselsäure mit einer BET-Oberfläche von 45 bis 55 m 2 /g eingesetzt, insbesondere mit einer BET-Oberfläche von etwa 50 m 2 /g. Derartige Kieselsäuren weisen den zusätzlichen Vorteil einer um 30 bis 50 % verkürzten Einarbeitungszeit im Vergleich zu Kieselsäuren mit höherer BET-Oberfläche auf. Ein weiterer Vorteil liegt darin, dass sich die genannte hochdisperse Kieselsäure in silanterminierte Kleb-, Dicht- oder Beschichtungsstoffe in erheblich höherer Konzentration einarbeiten lässt, ohne dass die Fließeigenschaften der Kleb-, Dicht- oder Beschichtungsstoffe beeinträchtigt werden.

Es ist ebenso denkbar, pyrogene und/oder gefällte Kieselsäuren mit einer höheren BET- Oberfläche, vorteilhafterweise mit 100 - 250 m 2 /g, insbesondere 110 - 170 m 2 /g, als Füllstoff einzusetzen. Aufgrund der höheren BET-Oberfläche, kann man den gleichen Effekt, z.B. Verstärkung der gehärteten Zubereitung, bei einem geringeren Gewichtsanteil Kieselsäure erzielen. Somit kann man weitere Stoffe einsetzen, um die erfindungsgemäße Zubereitung hinsichtlich anderer Anforderungen zu verbessern.

Ferner eignen sich als Füllstoffe Hohlkugeln mit einer mineralischen Hülle oder einer Kunststoffhülle. Dies können beispielsweise Glashohlkugeln sein, die unter den Handelsbezeichnungen Glass Bubbles® kommerziell erhältlich sind. Hohlkugeln auf Kunststoffbasis sind z.B. unter den Handelsbezeichnungen Expancel® oder Dualite® erhältlich. Diese sind aus anorganischen oder organischen Stoffen zusammengesetzt, jede mit einem Durchmesser von 1 mm oder weniger, bevorzugt von 500 μm oder weniger.

Für manche Anwendungen sind Füllstoffe bevorzugt, die den Zubereitungen Thixotropie verleihen. Solche Füllstoffe werden auch als rheologische Additive bzw. Hilfsmittel beschrieben, z. B. Kieselgele, Aerosile, Kohle, Ruß oder quellbare Kunststoffe wie PVC. Ferner können als rheologische Modifikatoren folgende organische Additive eingesetzt werden: hydrogenisiertes

Rizinusöl, Fettsäureamide Harnstoffderivate und Polyharnstoffderivate. Um gut aus einer geeigneten Dosiervorrichtung (z. B. Tube) auspressbar zu sein, besitzen solche Zubereitungen eine Viskosität von 30.000 bis 150.000, vorzugsweise 40.000 bis 80.000 mPas, insbesondere 50.000 bis 60.000 mPas oder auch 3.000 bis 15.000 mPas.

Die Füllstoffe werden vorzugsweise in einer Menge von 1 bis 80 Gew.-%, vorzugsweise von 5 bis 60 Gew.%, bezogen auf das Gesamtgewicht der Zubereitung eingesetzt.

Beispiele für geeignete Pigmente sind Titandioxid, Eisenoxide oder Ruß.

Häufig ist es sinnvoll, die erfindungsgemäßen Zubereitungen durch Trockenmittel weiter gegenüber eindringender Feuchtigkeit zu stabilisieren, um die Lagerbarkeit (shelf-life) noch weiter zu erhöhen. Es besteht gelegentlich auch Bedarf, die Viskosität des erfindungsgemäßen Kleb- oder Dichtstoffs für bestimmte Anwendungen durch Verwendung eines Reaktivverdünners zu erniedrigen. Als Reaktivverdünner kann man alle Verbindungen, die mit dem Kleb- oder Dichtstoff unter Verringerung der Viskosität mischbar sind und über mindestens eine feuchtigkeitsvernetzende oder mit dem Bindemittel reaktive Gruppe verfügen, einsetzen.

Als Reaktivverdünner kann man z.B. folgende Stoffe einsetzen: mit Isocyanatosilanen umgesetzte Polyalkylenglykole (z.B. Synalox 100-50B, DOW), Carbamatopropyl- trimethoxysilan, Alkyltrimethoxysilan, Alkyltriethoxysilan, wie Methyltrimethoxysilan, Methyltriethoxysilan sowie Vinyltrimethoxysilan (VTMO, Geniosil XL 10, Wacker), Vinyltriethoxysilan, Phenyltrimethoxysilan, Phenyltriethoxysilan, Octyltrimethoxysilan, Tetraethoxysilan, Vinyldimethoxymethylsilan (XL12, Wacker), Vinyltriethoxysilan (GF56, Wacker), Vinyltriacetoxysilan (GF62, Wacker), Isooctyltrimethoxysilan (IO Trimethoxy), Isooctyltriethoxysilan (IO Triethoxy, Wacker), N-Trimethoxysilylmethyl-O-methylcarbamat (XL63, Wacker), N-Dimethoxy(methyl)silylmethyl-O-methyl-carbamat (XL65, Wacker),

Hexadecyltrimethoxysilan, 3-Octanoylthio-1-propyltriethoxysilan und Teilhydrolysate dieser Verbindungen.

Ferner sind ebenfalls folgende Polymere von Kaneka Corp. als Reaktivverdünner einsetzbar: MS S203H, MS S303H, MS SAT 010, und MS SAX 350.

Ebenso kann man silanmodifizierte Polyether verwenden, die sich z.B. aus der Umsetzung von Isocyanatosilan mit Synalox Typen ableiten.

Eine Vielzahl der vorgenannten silanfunktionellen Reaktivverdünner haben gleichzeitig eine trocknende und / oder haftvermittelnde Wirkung in der Zubereitung. Diese Reaktivverdünner werden in Mengen zwischen 0,1 und 15 Gew.%, vorzugsweise zwischen 1 und 5 Gew.%, bezogen auf die Gesamtzusammensetzung der Zubereitung eingesetzt.

Unter einem Haftvermittler wird eine Substanz verstanden, die die Haftungseigenschaften von Klebeschichten auf Oberflächen verbessert. Es können ein oder mehrere Haftvermittler enthalten sein. Als Haftvermittler eignen sich auch so genannte Klebrigmacher wie Kohlenwasserstoffharze, Phenolharze, Terpen-Phenolharze, Resorcinharze oder deren Derivate, modifizierte oder unmodifizierte Harzsäuren bzw. -ester (Abietinsäurederivate), Polyamine, Polyaminoamide, Anhydride und Anhydrid-enthaltende Copolymere. Auch der Zusatz von Polyepoxidharzen in geringen Mengen kann bei manchen Substraten die Haftung verbessern. Hierfür werden dann vorzugsweise die festen Epoxidharze mit einem Molekulargewicht von über 700 in fein gemahlener Form eingesetzt. Falls Klebrigmacher als Haftvermittler eingesetzt werden, hängt deren Art und Menge von der Kleb- / Dichtstoffzusammensetzung ab sowie von dem Substrat, auf welches dieser appliziert wird. Typische klebrigmachende Harze (Tackifier) wie z.B. Terpenphenolharze oder Harzsäurederivate werden in Konzentrationen zwischen 5 und 20 Gew.% verwendet, typische Haftvermittler wie Polyamine, Polyaminoamide oder Phenolharze oder Resorcinderivate werden im Bereich zwischen 0,1 und 20 Gew.%, insbesondere 0,5 bis 10, besonders bevorzugt 1 bis 5 Gew.-%, bezogen auf die Gesamtzusammensetzung der Zubereitung verwendet. Besonders gut geeignet sind Silan-Haftvermittler, insbesondere Alkoxysilane, mit einer (weiteren) funktionellen Gruppe wie z.B. einer Aminogruppe, einer Mercaptogruppe, einer Epoxygruppe, einer Carboxylgruppe, einer Vinylgruppe, einer Isocyanatgruppe, einer Isocyanuratgruppe oder einem Halogen. Beispiele sind γ-Mercaptopropyltrimethoxysilan, γ-Mercaptopropyltriethoxysilan, γ-Mercaptopro- pylmethyldimethoxysilan, γ-Glycidoxypropyltrimethoxysilan, γ-Glycidoxypropyltriethoxysilan, y- Glycidoxypropylmethyldimethoxysilan, ß-Carboxyethyltriethoxysilan, ß-Carboxyethylphenylbis(2- methoxyethoxy)silan, N-ß-(Carboxymethyl) aminoethyl-γ-aminopropyltrimethoxysilan, Vinyltrimethoxysilan, Vinyltriethoxysilan, γ-Acroyloxypropylmethyltriethoxysilan, Y- Isocyanatopropyltrimethoxysilan, γ-lsocyanatopropyltriethoxysilan, γ-lsocyanatopropylmethyldiethoxysilan, γ-lsocya- natopropylmethyldimethoxysilan, Tris(trimethoxysilyl)isocyanurat und γ-Chloropro- pyltrimethoxysilan.

Besonders bevorzugt als Haftvermittler sind insbesondere Aminosilane (aminofunktionelle Alkoxysilane bzw. Aminoalkyl-alkoxysilane), wie z.B. γ-Aminopropyl-trimethoxysilan, y-

Aminopropyltriethoxysilan, γ-Aminopropyltriisopropoxysilan, y-

Aminopropylmethyldimethoxysilan, γ-Aminopropylmethyldiethoxysilan, γ-(2-Aminoethyl)-3- aminopropyltrimethoxysilan, γ-(2-Aminoethyl) aminopropylmethyldimethoxysilan, γ-(2- Aminoethyl)aminopropyltriethoxysilan, γ-(2-Aminoethyl) aminopropylmethyldiethoxysilan, γ-(2- Aminoethyl) aminopropyltriisopropoxysilan, N-Phenyl-γ-aminopropyltrimethoxysilan, N-Benzyl-γ- aminopropyltrimethoxysilan, und N-Vinylbenzyl-γ-aminopropyltriethoxysilan, oder oligomere Aminosilane, wie z.B. aminoalkylgruppenmodifiziertes Alkylpolysiloxan (Dynasylan 1146).

Die Herstellung der erfindungsgemäßen Zubereitung erfolgt nach bekannten Verfahren durch inniges Vermischen der Bestandteile in geeigneten Dispergieraggregaten, z. B. Schnellmischer, Kneter, Planetenmischer, Planetendissolver, Innenmischer, so genannte „Banburymischer", Doppelschneckenextruder und ähnliche dem Fachmann bekannte Mischaggregate.

Eine bevorzugte Ausführungsform der erfindungsgemäßen Zubereitung kann enthalten:

- 5 bis 50 Gew.-%, bevorzugt 10 bis 40 Gew.-% einer oder mehrerer Verbindungen der erfindungsgemäßen silylierten Polyurethane,

- 0 bis 30 Gew.-%, insbesondere weniger als 20 Gew.-%, besonders bevorzugt weniger als 10 Gew.-% Weichmacher, z.B. 0,5 - 30, insbesondere 1 - 25 Gew.-% Weichmacher,

- 0 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-%, besonders bevorzugt 30 bis 55 Gew.-% Füllstoffe.

Ferner kann die Ausführungsform weitere Hilfsstoffe enthalten, z.B. 0 - 10 Gew.-%, insbesondere 0,5 - 5 Gew.-%.

Die Gesamtheit aller Bestandteile summiert sich zu 100 Gew.-%, wobei sich die Summe der oben aufgeführten Hauptbestandteile allein nicht zu 100 Gew.-% addieren muß.

Die erfindungsgemäßen silylierten Polyurethan Prepolymere härten mit der umgebenden Luftfeuchtigkeit zu niedermoduligen Polymeren aus, so dass aus diesen Prepolymeren mit den vorgenannten Hilfs- und Zusatzstoffen niedermodulige, feuchtigkeitshärtende Kleb- und Dichtstoffzubereitungen sowie Beschichtungen und Haftklebstoffe herstellbar sind.

In den nachfolgenden Ausführungsbeispielen soll die Erfindung näher erläutert werden, wobei die Auswahl der Beispiele keine Beschränkung des Umfangs des Erfindungsgegenstandes darstellen soll.

Beispiele

Herstellung der silanterminierten Polyurethan Prepolymere:

Die eingesetzten Polyole und Monoalkohole wurden vor der Umsetzung in einem 2000 ml Dreihalskolben bei 80 0 C im Vakuum getrocknet.

Die folgenden Polyole und Isocyanatverbindungen wurden verwendet:

Polyol A: Polyoxypropylenglycol , MW 8000 Funktinalität 2, OH-Zahl 13,6, Acclaim 8000, Fa.

Bayer

Diisocyanat: TMXDI (m-Tetramethylxylendiisocyanat)

Polyol B: Polyoxypropylenglycol, MW 2000, Funktionalität 2, OH-Zahl 56, Lupranol 1000, Fa.

BASF

Monoalkohol: Ethylhexanol

3-lsocyanatopropyltrimethoxysilan, Geniosil GF 40, Fa. Wacker

Polyol A wird mit dem Diisocyanat vorgelegt und bei 80° C unter Katalyse mit DBTL zu einem NCO-terminierten Prepolymer umgesetzt. Sobald der theoretisch berechnete NCO Wert erreicht wird, werden sukzessive erst Monoalkohol und dann das Polyol B unter starkem Rühren zudosiert. Es wird eine halbe Stunde nachgerührt bei 80 0 C, Isocyanatosilan zudosiert und weitere halbe Stunde nachgerührt. Anschließend erfolgt die Zugabe von 1 ,5 % UV Stabilisator sowie 2% VTMO versetzt.

Gemäß der obigen allgemeinen Herstellvorschrift wurden die in der folgenden Tabelle 1 aufgeführten silanterminierten Polyurethane hergestellt, dabei sind die Mengenangaben Gramm bzw. Millimol:

Tabelle 1

Prüfbedingungen für die ausgehärteten Polymerfilme

Von den Mischungen gemäß Tabelle 1 wurden Hautbildungszeit (Skin over time / SOT) und die

Zeit zur Ausbildung einer klebfreien Schicht (Tack free time / TFT) ermittelt.

Weiterhin wurden die oben genannten Mischungen formuliert (100 Teile Polymer + 1 Teil Aminosilan (Geniosil GF 91 ) + 0,2 Teile DBTL) und in einer Schichtstärke von 2 mm auf mit Polyetherfolie bespannte Glasplatten aufgetragen. Aus diesen Filmen wurden nach 7 Tagen Lagerung (23°C, 50% relative Luftfeuchtigkeit) Probenkörper (S2-Prüfkörper) ausgestanzt und die mechanischen Daten (Module bei 50, 100 und 200% Dehnung und Bruchdehnung, in Anlehnung an DIN EN 27389 und DIN EN 28339 bestimmt. Weiterhin ist die Viskosität (Brookfield RVT Viskosimeter) der nicht ausgehärteten Polymermischungen aufgeführt

In der Tabelle 2 sind die Messergebnisse zusammengefasst.

Tabelle 2

Wie aus der Tabelle 2 ersichtlich, ergeben die ausgehärteten Filme der erfindungsgemäßen Zusammensetzungen niedermodulige, weichelastische Polymerfilme.