Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CUTTING TOOL FOR WEBS OF FILM
Document Type and Number:
WIPO Patent Application WO/2006/063724
Kind Code:
A1
Abstract:
A device for cutting webs of film, comprising a device for transporting the web of film and a cutting tool, characterized in that the cutting tool is provided with a holder and a cutting blade element, said cutting blade element consisting of a circulatory cutter, and the cutting blade element is connected to the holder in such a way that can be rotated about an axis, which extends orthogonally in relation to the cutting blade element and the direction of movement of the web of film, until the web of film is cut with a sufficiently sharp part of the cutting edge. As a result, the device is subject to low wear and tear and has a long service life. The device is suitable for cutting packaging films, particularly water-soluble packaging films. A method for cutting webs of water-soluble film in particular is also disclosed.

More Like This:
Inventors:
SUNDER MATTHIAS (DE)
FILECCIA SALVATORE (DE)
GORMANNS FRANZ (ES)
TOMAS HERRERO FELIX (ES)
POMEDA MOLINA MIGUEL ANGEL (ES)
Application Number:
PCT/EP2005/013089
Publication Date:
June 22, 2006
Filing Date:
December 07, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL KGAA (DE)
SUNDER MATTHIAS (DE)
FILECCIA SALVATORE (DE)
GORMANNS FRANZ (ES)
TOMAS HERRERO FELIX (ES)
POMEDA MOLINA MIGUEL ANGEL (ES)
International Classes:
B26D1/02; B26D7/08; B26D7/26
Foreign References:
US4693157A1987-09-15
US3695131A1972-10-03
GB985083A1965-03-03
Download PDF:
Claims:
Patentansprüche:
1. Vorrichtung zum Zuschneiden von Folienbahnen, umfassend eine Vorrichtung zum Transport der Folienbahn und ein Schneidewerkzeug, dadurch gekennzeichnet, dass das Schneidwerkzeug eine Halterung und ein Klingenblatt umfasst, wobei das Klingenblatt eine umlaufende Schneide aufweist und das Klingenblatt derart mit der Halterung verbunden ist, dass es um eine Achse, die orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht werden kann.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das Klingenblatt eine umlaufende Schneide aufweist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass es sich bei der Vorrichtung zum Transport der Folienbahn um eine rotierende Walze oder ein Transportband handelt.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Vorrichtung zum Transport der Folienbahn Aussparungen aufweist, in welche das Klingenblatt eingreift.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Klingenblatt die Form einer Ellipse, vorzugsweise eine Kreisform aufweist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Klingenblatt einen Durchmesser zwischen 10 und 150 mm, vorzugsweise zwischen 15 und 110 mm und insbesondere zwischen 20 und 70 mm aufweist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Achse, um welche die Klinge gedreht werden kann, durch den Mittelpunkt des Klingenblatts verläuft.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Widerstand, welchen das Klingenblatt der Drehbewegung entgegensetzt, an dem Schneidwerkzeug einstellbar ist.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Klingenblatt einen Schnittwinkel zwischen 10 und 20°, vorzugsweise zwischen 11 und 18° und insbesondere zwischen 12 und 16° aufweist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Klingenblatt wenigstens anteilsweise aus Stahl, vorzugsweise aus einem legierten Stahl, besonders bevorzugt aus einem Schnellarbeitsstahl gefertigt ist.
11. Verfahren zum Zuschneiden von Folienbahnen, bei welchem eine Folienbahn mittels einer Vorrichtung zum Transport der Folienbahn über ein Schneidwerkzeug geführt wird, dadurch gekennzeichnet, dass das Schneidwerkzeug ein Halterung und ein Klingenblatt mit einer Schneide umfasst und das Klingenblatt um eine Achse, die orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht wird.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass es sich bei der eingesetzten Folienbahn um eine wasserlösliche Folie handelt.
Description:
Schneidwerkzeug für Folienbahnen

Gegenstand der vorliegenden Anmeldung ist eine Vorrichtung zum Zuschneiden bewegter Folienbahnen. Weiterhin offenbart diese Anmeldung den Einsatz der vorgenannten Vorrichtung zum Verpacken von Konsumgütern, insbesondere von Konsumgüter uns dem Bereich der Wasch- oder Reinigungsmittel, der Kosmetika, der Klebstoffe oder Oberflächenbehandlungsmittel zur Verpackung von Wasch- oder Reinigungsmitteln in Verpackungsfolien, vorzugsweise in wasserlöslichen Verpackungsfolien.

Die Verpackung von Konsumgütern in Verpackungsfolien ist eine verbreitete, technisch ausgereifte Methode zur Konfektionierung dieser Güter. Die Folien kann dabei beispielsweise um eine Ware herumgezogen werden oder, in so genannten Tiefziehverfahren, durch Druckeinwirkung in Vertiefungen eingeformt und anschließend befüllt werden. Bei den vorgenannten Tiefziehverfahren werden in der Regel breite Folienbahnen in kontinuierlicher oder diskontinuierlicher Weise über ein Formwerkzeug geführt, auf dem Formwerkzeug unter Aufnahme von Aufnahmebehältern in entsprechende Vertiefungen eingeformt, befüllt und noch während dieses Prozesses oder auch nach einer optionalen Versiegelung der Aufnahmebehälter vereinzelt. Die Formwerkzeuge können auf umlaufenden Bändern oder Trommeln angeordnet sein, wobei das Formwerkzeug üblicherweise mehrere Vertiefungen aufweist, die auf dem Formwerkzeug versetzt oder in Reihen angeordnet sind. Zur Vereinzelung wird die Folienbahn vor, während oder nach dem Verformen oder Befüllen zerschnitten. Das Zuschneiden der Folienbahn kann dabei beispielsweise durch Stanzen oder Messer erfolgen. Ein Problem beim Einsatz von Stanzen oder Messern ist deren hoher Verschleiß, wobei die Stanzen oder Messer in Abhängigkeit von den eingesetzten Folienmaterialien in einigen industriell betriebenen Verpackungsverfahren Standzeiten von wenigen Stunden aufweisen. Für eine Auswechselung der Stanzen oder Messer muß das Verpackungsverfahren unterbrochen werden. Die Unterbrechung des Verfahrens resultiert wiederum in einer verringerten Produktivität und erhöhten Produktionskosten.

Neben den beschriebenen mechanischen Schneidwerkzeugen werden in jüngster Zeit auch Laser zum Zerschneiden der Folien eingesetzt. Anders als die zuvor beschriebenen Stanzen oder Messer arbeiten die Laster zwar weitestgehend verschleißfrei, belasten die Verpackungsfolien und die verpackten Güter jedoch thermisch und sind daher nicht für alle Folien und verpackten Güter gleichermaßen geeignet.

Es war nun die Aufgabe der vorliegenden Anmeldung eine Vorrichtung zum Zuschneiden von Verpackungsfolien bereitzustellen, welche die vorgenannten Nachteile nicht aufweist. Insbesondere sollte die Vorrichtung die Verpackungsfolien nicht thermisch belasten und

gleichzeitig einen möglichst geringen Verschleiß und damit möglichst lange Standzeiten aufweisen. Gelöst wurde diese Aufgabe durch ein Schneidwerkzeug, umfassend eine Halterung und ein Klingenblatt, wobei das Klingenblatt eine Schneide aufweist und das Klingenblatt derart mit der Halterung verbunden ist, dass es um eine Achse, die orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht werden kann.

Ein erster Gegenstand der vorliegenden Anmeldung ist daher eine Vorrichtung zum Zuschneiden von Folienbahnen, umfassend eine Vorrichtung zum Transport der Folienbahn und ein Schneidewerkzeug, dadurch gekennzeichnet, dass das Schneidwerkzeug eine Halterung und ein Klingenblatt umfasst, wobei das Klingenblatt eine umlaufende Schneide aufweist und das Klingenblatt derart mit der Halterung verbunden ist, dass es um eine Achse, die orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht werden kann.

Das in der erfindungsgemäßen Vorrichtung eingesetzte Schneidwerkzeug umfasst eine Halterung sowie ein Klingenblatt. Die Halterung hat die Aufgabe das Klingenblatt in der Vorrichtung zu fixieren. Die Position der Halterung in der erfindungsgemäßen Vorrichtung bestimmt zum Beispiel die Position des Klingenblattes relativ zu der bewegten Folienbahn. Klingenblatt und Halterung sind derart miteinander verbunden, dass das Klingenblatt um eine Achse, orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht werden kann. Die Achse, um welche die Klinge gedreht werden kann, verläuft vorzugsweise durch den Mittelpunkt des Klingenblatts.

Die Drehachse kann fest mit dem Klingenblatt oder der Halterung verbunden, also ein integraler Bestandteil von Klingenblatt oder Halterung sein. Alternativ kann es sich bei der Drehachse um ein vom Klingenblatt und der Halterung separates Bauteil handeln. In einer bevorzugten Ausführungsform weist das Klingenblatt in seinem Mittelpunkt ein Loch auf, durch das eine stiftförmige Achse gesteckt werden kann. Ein Beispiel für eine solche stiftförmige Achse ist eine Schraube. Die Schraube kann durch das Loch im Klingenblatt gesteckt und beispielsweise in ein entsprechendes Gewinde in der Halterung gedreht werden, wobei durch Anziehen der Schraube Halterung und Klingenblatt fest miteinander verbunden. Durch Lösen der Schraube wird auch die Verbindung zwischen Halterung und Klingenblatt gelöst und das Klingenblatt kann gedreht werden. Anstelle einer Schraube kann es sich bei der Achse selbstverständlich auch um einen einfachen Stift handeln, mit dessen Hilfe das Klingenblatt, vorzugsweise mittels einer Rast-, Schnapp- oder Steckverbindung mit der Halterung fixiert wird.

Die Drehbewegung kann manuell oder maschinell ausgelöst werden. In einer bevorzugten Ausführungsform umfasst das Schneidwerkzeug außer der Halterung und dem Klingenblatt

weiterhin eine maschinelle Vorrichtung zur Drehung des Klingenblattes. Diese Vorrichtung ist vorzugsweise geeignet, das Klingenblatt mit oder entgegen der Bewegungsrichtung der Folienbahn zu drehen. Die Drehbewegung kann kontinuierlich oder diskontinuierlich erfolgen. Die Geschwindigkeit der Drehbewegung kann vorzugsweise reguliert und der Geschwindigkeit des Folientransports angepasst werden. In einer bevorzugten Ausführungsform beträgt die Geschwindigkeit der Drehbewegung des Klingenblatts das 0,1 bis 50-fache, vorzugsweise das 0,2, bis 30-fache und insbesondere das 0,4 bis 20-fache der Geschwindigkeit des Folientransports.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein Verfahren zum Zuschneiden von Folienbahnen, bei welchem eine Folienbahn mittels einer Vorrichtung für den Transport der Folienbahn über ein Schneidwerkzeug geführt wird, dadurch gekennzeichnet, dass das Schneidwerkzeug eine Halterung und ein Klingenblatt mit einer umlaufenden Schneide umfasst und das Klingenblatt um eine Achse, die orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht wird.

In einer besonders bevorzugten Verfahrensvariante ist die Geschwindigkeit der Drehbewegung des Klingenblatts, also die Drehgeschwindigkeit des Messers während des Schneidvorgangs kleiner als die Transportgeschwindigkeit der Folie.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren zum Zuschneiden von Folienbahnen, bei welchem eine Folienbahn mittels einer Vorrichtung zum Transport der Folienbahn über ein Schneidwerkzeug geführt wird, dadurch gekennzeichnet, dass das Schneidwerkzeug ein Halterung und ein Klingenblatt mit einer Schneide umfasst und das Klingenblatt um eine Achse, die orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht wird, wobei die Geschwindigkeit der Drehbewegung des Klingenblatts während des Schneidvorgangs wenigstens zeitweise kleiner als die Transportgeschwindigkeit der Folienbahn.

Besonders bevorzugt ist eine Verfahrensweise, bei der das Klingenblatt während des Folientransports und während des Schneidvorgangs wenigstens zeitweise stillsteht.

Es wurde festgestellt, dass diese Verfahrensweise die Standzeiten, das heißt die Lebensdauer, der eingesetzten Schneiden verlängert, ohne die Qualität der Schnitte zu beeinträchtigen.

Während des Schneidevorgangs wird die Folienbahn in Vorschubrichtung der Folienbahn in eine Mehrzahl von Reihen unterteilt. Diese Reihen werden vorzugsweise durch eine Führung gehalten, beispielsweise über Scheiben geführt.

Außer durch manuelle oder maschinelle Einwirkung kann eine Drehbewegung des Klingenblattes in Bewegungsrichtung der sich über das Klingenblatt bewegende Folienbahn auch durch die Folienbahn selbst ausgelöst werden. Mit zunehmender Abnutzung und abnehmender Schärfe des Klingenblatts, setzt das Klingenblatt der zu zuschneidenden Folienbahn einen zunehmenden Widerstand entgegen. Durch einfaches Drehen der Klinge kann dieser Widerstand reduziert werden. Wird nun das Klingenblatt mit der Halterung in der Art verbunden, dass die Kraft, welche zur Drehung des Klingenblatts aufgebracht werden muß, reguliert werden kann oder, mit anderen Worten, der Widerstand, welchen das Klingenblatt der Drehbewegung entgegensetzt an dem Schneidwerkzeug einstellbar ist, so wird sich das Klingenblatt ab einem gewissen Abnutzungsgrad selbsttätig soweit drehen, bis die Folienbahn mit einem ausreichend scharfen Teil der Schneide zerschnitten wird.

Erfindungsgemäße Vorrichtungen, dadurch gekennzeichnet, dass der Widerstand, welchen das Klingenblatt der Drehbewegung entgegensetzt an dem Schneidwerkzeug einstellbar ist, sind daher bevorzugt.

Ein weiterer Bestandteil des Schneidwerkzeug ist das Klingenblatt. Das Klingenblatt ist vorzugsweise rund, jedoch sind auch ovale oder mehreckige Klingenblätter, insbesondere Klingenblätter mit drei, vier, fünf, sechs, sieben, acht oder mehr Ecken realisierbar. Eine erfindungsgemäße Vorrichtung, dadurch gekennzeichnet, dass das Klingenblatt die Form einer Ellipse, vorzugsweise eine Kreisform aufweist, ist bevorzugt.

Der Durchmesser des Klingenblatts beträgt vorzugsweise zwischen 10 und 150 mm, bevorzugt zwischen 15 und 110 mm und insbesondere zwischen 20 und 70 mm. Die Dicke des Klingenblattes sollte vorzugsweise 10 mm nicht überschreiten und beträgt bevorzugt zwischen 0,1 und 2 mm vorzugsweise zwischen 0,2 und 1 mm und insbesondere zwischen 0,3 und 0,8 mm.

Klingenblätter mit einer umlaufenden Schneide sind besonders bevorzugt. Die Tiefe der Schneide, also die Tiefe des zur Schneide geschliffenen Teiles des Klingenblatts beträgt vorzugsweise zwischen 0,5 und 20 mm, vorzugsweise zwischen 1 und 10 mm und insbesondere zwischen 1 und 6 mm. Für die Schneidwirkung und die Verschleißfestigkeit der Klingenblätter hat es sich als vorteilhaft erwiesen, wenn der Schnittwinkel der Klingenblätter zwischen 10 und 20°, vorzugsweise zwischen 11 und 18° und insbesondere zwischen 12 und 16° beträgt.

Das Klingenblatt kann aus allem dem Fachmann zur Fertigung von Klingen bekannten Materialien gefertigt sein. Mit besonderem Vorzug werden jedoch Klingenblätter aus Stahl, vorzugsweise aus legierten Stahl eingesetzt. Überraschenderweise wurde festgestellt, dass Klingenblätter aus

Schnellarbeitsstahl herkömmlichen Stahlklingen hinsichtlich ihrer Schnittwirkung und Schnitthaltigkeit (Verschließfestigkeit) beim Zuschneiden von Folienmaterialien überlegen sind. Als Schnellarbeitsstahl werden Stahllegierungen bezeichnet, die als Legierungs-Bestandteile 10- 20% Chrom und/oder Wolfram und/oder Molybdän und oder Vanadium enthalten. Eine erfindungsgemäße Vorrichtung, dadurch gekennzeichnet, dass das Klingenblatt wenigstens anteilsweise aus Stahl, vorzugsweise aus einem legierten Stahl, besonders bevorzugt aus einem Schnellarbeitsstahl gefertigt ist, ist erfindungsgemäß bevorzugt.

Neben dem Schneidwerkzeug umfasst die erfindungsgemäße Vorrichtung weiterhin eine Vorrichtung zum Transport der Folienbahn. Wie eingangs ausgeführt, wird die Folienbahn in einem Tiefziehverfahren auf einem Formwerkzeug durch Einwirkung einer Kraft verformt. Das Formwerkzeug kann dabei beispielsweise die Form einer rotierenden Walze, einer Tragplatte oder eines Transportbandes aufweisen. In einer bevorzugten Ausführungsform handelt es sich bei der Vorrichtung zum Transport der Folienbahn um eine rotierende Walze oder ein Transportband.

Die Vorrichtung zum Transport der Folienbahn, vorzugsweise die rotierende Walze oder das Transportband weisen in einer bevorzugten Ausführungsform Aussparungen auf, in die das Klingenblatt eingreift. Diese Einkerbungen verlaufen in Richtung der Drehbewegung der Folienbahn und dienen der Führung der Klingenblätter. Die Vorrichtung zum Transport der Folienbahn weist vorzugsweise mehrere parallel verlaufende Einkerbungen auf.

Erfindungsgemäße Vorrichtungen, dadurch gekennzeichnet, dass die Vorrichtungen zum Transport der Folienbahn Aussparungen aufweist, in welche das Klingenblatt eingreift, sind bevorzugt.

In einer bevorzugten Ausführungsform sind die Einkerbungen in der Vorrichtung für den Folientransport derart gestaltet, dass die Klingenblätter die Wandungen der Einkerbungen, insbesondere den Boden der Einkerbungen nicht berühren.

In einer weiteren bevorzugten Ausführungsform weisen die Einkerbungen an ihren Innenseiten, vorzugsweise an ihrem Boden Schleifmittel auf, die mit den in den Einkerbungen geführten Klingenblättern, insbesondere deren Schneiden, in Kontakt stehen und geeignet sind, die Klingenblätter, insbesondere die Schneiden nachzuschleifen und zu schärfen.

In einer weiteren bevorzugten Ausführungsform weisen die Einkerbungen an ihren Innenseiten, vorzugsweise an ihrem Boden Reinigungsmittel auf, die mit den in den Einkerbungen geführten Klingenblättern, insbesondere den Schneiden, in Kontakt stehen und geeignet sind, die

Klingenblätter und insbesondere die Schneiden zu reinigen. Als Reinigungsmittel eignen sich insbesondere mechanische Reinigungsmittel wie Bürsten oder Abstreifer.

Das Klingenblatt kann sich mit oder entgegen der Bewegungsrichtung der Folienbahn drehen. Die Drehung des Klingenblattes kann kontinuierlich oder diskontinuierlich erfolgen und manuell, vorzugsweise jedoch maschinell ausgelöst werden. Das Klingenblatt kann in Bewegungsrichtung der Folienbahn oder entgegen der Bewegungsrichtung der Folienbahn gedreht werden.

Bei dem erfindungsgemäßen Verfahren handelt es sich vorzugsweise um ein Tiefziehverfahren, bei welchem eine bewegte Folienbahn in einem Formwerkzeug unter Ausbildung von Aufnahmekammern verformt wird. Das Verformen des Folienmaterials erfolgt dabei vorzugsweise durch Einwirkung von Druck und/oder Vakuum. Das Folienmaterial kann vor dabei vor oder während des Einformens durch die Einwirkung von Wärme und/oder Lösungsmittel und/oder Konditionierung durch gegenüber Umgebungsbedingungen veränderten relativen Luftfeuchten und/oder Temperaturen vorbehandelt werden. Die Druckeinwirkung kann durch zwei Teile eines Werkzeugs erfolgen, welche sich wie Positiv und Negativ zueinander verhalten und einen zwischen diese Werkzeuge verbrachten Film beim Zusammendrücken verformen. Als Druckkraft eignet sich jedoch auch die Einwirkung von Druckluft und/oder das Eigengewicht der Folie und/oder das Eigengewicht einer auf die Oberseite der Folie verbrachten Aktivsubstanz.

Mit besonderem Vorzug umaßt das erfindungsgemäße Verfahren einen ersten Verfahrensschritt, bei dem eine Folienbahn kontinuierlich auf ein Formwerkzeug aufgebracht wird, welches in seiner Oberfläche Vertiefungen aufweist, in die das Folienmaterial unter Einwirkung eines Vakuums eingeformt werden. Dabei wird die Folie vor dem Tiefziehen vorzugsweise über eine geheizte Walze geführt, welche an der eine Seite der Folie anliegt und die andere Seite der Folie gegen die Oberfläche des Formwerkzeugs drückt.

Das Formwerkzeug weist vorzugsweise eine glatte und polierte Oberfläche auf, auf der das Folienmaterial für eine gewisse Zeit fest haftet, so dass durch Einwirkung eines Vakuums unter Ausbildung von Aufnahmekammern in die Vertiefungen des Werkzeugs gezogen werden kann.

Nach dem Verformen werden die Aufnahmekammern befüllt. Als Füllgut eignen sich insbesondere fließfähige Materialien, also beispielsweise Flüssigkeiten, Schmelzen oder teilchenförmige Zusammensetzungen wie Pulver, Granulate, Extrudate oder Kompaktate. Die Füllung wird im Anschluß vorzugsweise mittels eines Abstreichers geglättet, welche gleichzeitig auch die freiliegende Oberfläche der Folie neben den Aufnahmekammem säubert.

In einer bevorzugten Ausführungsform wird in der Folge eine zweite Folienbahn herangeführt, welche, vorzugsweise nachdem sie durch Aufbringen eines Lösungs- oder Klebemittels und/oder durch leichte Wärme haftend gemacht wurde, auf die befüllten Aufnahmekammern aufgebracht und dicht mit diesen versiegelt wird.

Ein bevorzugter Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren zum Verpacken fließfähiger Materialien, umfassend die Schritte:

) Tiefziehen einer Folienbahn auf einer Matrize unter Ausbildung mindestens einer Aufnahmekammer;

) Befüllen der Aufnahmekammer mit einem fließfähigen Füllgut;

) Optionales Versiegeln der befüllten Aufnahmekammer mit einer zweiten Folienbahn; dadurch gekennzeichnet, dass die befüllten Aufnahmekammern vor, während oder nach dem Befüllen vereinzelt werden, indem die Folienbahn mittels einer Vorrichtung für den Transport der Folienbahn über ein Schneidwerkzeug geführt wird und, welches eine Halterung und ein Klingenblatt mit einer Schneide umfasst, und das Klingenblatt um eine Achse, die orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht wird.

Das tiefgezogenen Folienmaterial wird nach dem Tiefziehen vorzugsweise durch Einsatz eines Vakuums innerhalb der Vertiefung in ihrer durch den Tiefziehvorgang erzielten Raumform fixiert. Das Vakuum wird dabei vorzugsweise kontinuierlich vom Tiefziehen bis zum Befüllen bevorzugt bis zum Versiegeln und insbesondere bis zum Vereinzeln der Aufnahmekammern angelegt. Mit vergleichbarem Erfolgt ist allerdings auch der Einsatz eines diskontinuierlichen Vakuums, beispielsweise zum Tiefziehen der Aufnahmekammern und (nach einer Unterbrechung) vor und während des Befüllens der Aufnahmekammern, möglich. Auch kann das kontinuierliche oder diskontinuierliche Vakuum in seiner Stärke variieren und beispielsweise zu Beginn des Verfahrens (beim Tiefziehen der Folie) höhere Werte annehmen als zu dessen Ende (beim Befüllen oder Versiegeln oder Vereinzeln).

Wie bereits erwähnt, kann das Folienmaterial vor oder während des Einformens in die Aufnahmemulden der Matrizen durch die Einwirkung von Wärme vorbehandelt werden. Das Folienmaterial, vorzugsweise ein wasserlöslicher oder wasserdispergierbarer Polymerfilm, wird dabei für bis zu 5 Sekunden, vorzugsweise für 0.1 bis 4 Sekunden, besonders bevorzugt für 0,2 bis 3 Sekunden und insbesondere für 0,4 bis 2 Sekunden auf Temperaturen oberhalb 6O 0 C, vorzugsweise oberhalb 80 0 C, besonders bevorzugt zwischen 100 und 120°C und insbesondere auf Temperaturen zwischen 105 und 115 0 C erwärmt. Zur Abführung dieser Wärme, insbesondere aber auch zur Abführung der durch die in die tiefgezogenen Aufnahmekammern gefüllten Mittel eingebrachten Wärme (z.B. Schmelzen), ist es bevorzugt die eingesetzten Matrizen und die in diesen Matrizen befindlichen Aufnahmemulden zu kühlen. Die Kühlung erfolgt dabei

vorzugsweise auf Temperaturen unterhalb 2O 0 C, bevorzugt unterhalb 15 0 C, besonders bevorzugt auf Temperaturen zwischen 2 und 14°C und insbesondere auf Temperaturen zwischen 4 und 12 0 C. Vorzugsweise erfolgt die Kühlung kontinuierlich vom Beginn des Tiefziehvorganges bis zur Versiegelung und Vereinzelung der Aufnahmekammern. Zur Kühlung eignen sich insbesondere Kühlflüssigkeiten, vorzugsweise Wasser, welche in speziellen Kühlleitungen innerhalb der Matrize zirkuliert werden.

Diese Kühlung hat ebenso wie das zuvor beschriebene kontinuierliche oder diskontinuierliche Anlegen eines Vakuums den Vorteil, ein Zurückschrumpfen der tiefgezogenen Behältnisse nach dem Tiefziehen zu verhindern, wodurch nicht nur die Optik des Verfahrensproduktes verbessert wird, sondern gleichzeitig auch das Austreten der in die Aufnahmekammern gefüllten Mittel über den Rand der Aufnahmekammer, beispielsweise in die Siegelbereiche der Kammer, vermieden wird. Probleme bei der Versiegelung der befüllten Kammern werden so vermieden.

Bei den Tiefzieh verfahren läßt sich zwischen Verfahren, bei denen das Hüllmaterial horizontal in eine Formstation und von dort in horizontaler Weise zum Befüllen und/oder Versiegeln und/oder Vereinzeln geführt wird und Verfahren, bei denen das Hüllmaterial über eine kontinuierlich umlaufende Matrizenwalze (gegebenenfalls optional mit einer gegenläufig geführten Patrizenformwalze, welche die ausformenden Oberstempel zu den Vertiefungen der Matrizenformwalze führen) geführt wird, unterscheiden. Die zuerst genannte Verfahrensvariante des Flachbettprozesses ist dabei sowohl kontinuierlich als auch diskontinuierlich zu betreiben, die Verfahrensvariante unter Einsatz einer Formwalze erfolgt in der Regel kontinuierlich. Alle genannten Tiefziehverfahren sind zur Herstellung der erfindungsgemäß bevorzugten Mittel geeignet, wobei Verfahren unter Einsatz umlaufender Walzen besonders bevorzugt sind. Die in den Matrizen befindlichen Aufnahmemulden können „in Reihe" oder versetzt angeordnet sein.

Die Tiefziehkörper können eine, zwei, drei oder mehr Aufnahmekammem aufweisen. Diese Aufnahmekammern können in dem Tiefziehteil nebeneinander und/oder übereinander angeordnet sein. Vorzugsweise werden die einzelnen Aufnahmekammern der Tiefziehkörper mit unterschiedlichen Mitteln befüllt. Bevorzugt ist es insbesondere mindestens eine Aufnahmekammer eines Tiefziehkörpers mit einer Flüssigkeit zu befüllen, während mindestens eine weitere Aufnahmekammer dieses Tiefziehkörpers mit einem Feststoff befüllt ist.

In dem erfindungsgemäßen Verfahren wird die Folienbahn vor, während oder nach dem Befüllen der Aufnahmekammern vereinzelt. Hierzu wird die Folie längs (also in Bewegungsrichtung der Folienbahn) und/oder quer (also orthogonal zur Bewegungsrichtung der Folienbahn) zerschnitten.

In einer bevorzugten Ausführungsform des erfindungsgemäß bevorzugten Verfahrens zum Verpacken fließfähiger Materialien, ist die Matrize in Schritt a) mit der Vorrichtung für den Transport der Folienbahn identisch. Mit besonderem Vorzug handelt es sich bei der Matrize bzw. der Vorrichtung für den Transport der Folienbahn um eine rotierende Walze oder ein Transportband. Die zum Tiefziehen und zum Transport der Folienbahn eingesetzte rotierende Walze bzw. das eingesetzte Transportband weisen in ihrer Oberfläche Mulden auf, in welche das Folienmaterial im Tiefziehprozeß eingeformt wird. Die Verformung erfolgt vorzugsweise durch Einwirkung eines Vakuums.

Ein besonders bevorzugter Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren zum Verpacken fließfähiger Materialien, umfassend die Schritte:

) Tiefziehen einer Folienbahn auf einer rotierenden Walze oder einem Transportband unter Ausbildung mindestens einer Aufnahmekammer;

) Befüllen der Aufnahmekammer mit einem fließfähigen Füllgut;

) Optionales Versiegeln der befüllten Aufnahmekammer mit einer zweiten Folienbahn; dadurch gekennzeichnet, dass die befüllten Aufnahmekammern vor, während oder nach dem Befüllen vereinzelt werden, indem die Folienbahn mittels der in Schritt a) eingesetzten Walze oder des in Schritt a) eingesetzten Transportbands über ein Schneidwerkzeug geführt wird und, welches eine Halterung und ein Klingenblatt mit einer Schneide umfasst, und das Klingenblatt um eine Achse, die orthogonal zum Klingenblatt und orthogonal zur Bewegungsrichtung der Folienbahn verläuft, gedreht wird.

Als fließfähiges Füllgut werden beispielsweise Flüssigkeit(en), insbesondere Schmelzen, Gele, Pulver, Granulate, Extrudate oder Kompaktate bezeichnet.

Der Begriff „Flüssigkeit" bezeichnet in der vorliegenden Anmeldung Substanzen oder Substanzgemische ebenso wie Lösungen oder Suspensionen, welche in flüssigem Aggregatzustand vorliegen.

Pulver ist eine allgemeine Bezeichnung für eine Form der Zerteilung fester Stoffe und/oder Stoffgemische, die man durch Zerkleinern, das heißt Zerreiben oder Zerstoßen in der Reibschale (Pulverisieren), Mahlen in Mühlen oder als Folge von Zerstäubungs- oder Gefriertrocknungen erhält. Eine besonders feine Zerteilung nennt man oft Atomisierung oder Mikronisierung; die entsprechenden Pulver werden als Mikro-Pulver bezeichnet.

Nach der Korngröße ist eine grobe Einteilung der Pulver in Grob-, Fein- u. Feinst-Pulver üblich; eine genauere Klassifizierung pulverförmiger Schüttgüter erfolgt über ihre Schüttdichte und durch Siebanalyse.

Pulver lassen sich durch Extrudieren, Pressen, Walzen, Brikettieren, Pelletieren und verwandte Verfahren verdichten und agglomerieren. Jede der im Stand der Technik zur Agglomeration von partikulären Gemischen bekannte Methode ist dabei prinzipiell geeignet, die in den erfindungsgemäßen Mitteln enthaltenen Feststoffe herzustellen. Im Rahmen der vorliegenden Erfindung bevorzugt als Feststoff(e) eingesetzte Agglomerate sind neben den Granulaten die Kompaktate und Extrudate.

Als Granulate werden Anhäufungen von Granulatkörnchen bezeichnet. Ein Granulatkorn (Granalie) ist ein asymmetrisches Aggregat aus Pulverpartikeln. Granulationsverfahren sind im Stand der Technik breit beschrieben. Granulate können durch Feuchtgranulierung, durch Trockengranulierung bzw. Kompaktierung und durch Schmelzerstarrungsgranulierung hergestellt werden.

Die gebräuchlichste Granuliertechnik ist die Feuchtgranulierung, da diese Technik den wenigsten Einschränkungen unterworfen ist und am sichersten zu Granulaten mit günstigen Eigenschaften führt. Die Feuchtgranulierung erfolgt durch Befeuchtung der Pulvermischungen mit Lösungsmitteln und/oder Lösungsmittelgemischen und/oder Lösungen von Bindemitteln und/oder Lösungen von Klebstoffen und wird vorzugsweise in Mischern, Wirbelbetten oder Sprühtürmen durchgeführt, wobei besagte Mischer beispielsweise mit Rühr- und Knefwerkzeugen ausgestattet sein können. Für die Granulation sind jedoch auch Kombinationen von Wirbelbett(en) und Mischer(n), bzw. Kombinationen verschiedener Mischer einsetzbar. Die Granulation erfolgt abhängig vom Ausgangsmaterial sowie den gewünschten Produkteigenschaften unter Einwirkung niedriger bis hoher Scherkräfte.

Erfolgt die Granulation in einem Sprühturm so können als Ausgangsstoffe beispielsweise Schmelzen (Schmelzerstarrung) oder, vorzugsweise wässrige, Aufschlämmungen (Sprühtrocknung) fester Substanzen eingesetzt werden, welche an der Spitze eines Turmes in definierter Tröpfchengröße eingesprüht werden, im freien Fall erstarren bzw. trocknen und am Boden des Turmes als Granulat anfallen. Die Schmelzerstarrung eignet sich im allgemeinen besonders zur Formgebung niedrigschmelzender Stoffe, die im Bereich der Schmelztemperatur stabil sind (z. B. Harnstoff, Ammoniumnitrat u. diverse Formulierungen wie Enzym konzentrate, Arzneimittel etc.), die entsprechenden Granulate werden auch als Prills bezeichnet. Die Sprühtrocknung wird besonders für die Herstellung von Waschmitteln oder Waschmittelbestandteilen eingesetzt.

Weitere im Stand der Technik beschriebene Agglomerationstechniken sind die Extruder- oder Lochwalzengranulierungen, bei denen optional mit Granulierflüssigkeit versetzte Pulvergemische

beim Verpressen durch Lochscheiben (Extrusion) oder auf Lochwalzen plastisch verformt werden. Die Produkte der Extrudergranulierung werden auch als Extrudate bezeichnet.

Werden als fließfähige Substanzen Pulver, Granulate, Extrudate oder Kompaktate eingesetzt, so weisen bevorzugte teilchenförmige Substanzen bezogen auf ihr Gesamtgewicht zu mindestens 50 Gew.-%, vorzugsweise zu mindestens 80 Gew.-% und insbesondere zu mindestens 90 Gew.- % Partikelgrößen unterhalb 5000 μm, vorzugsweise unterhalb 3000 μm, bevorzugt unterhalb 1000 μm, ganz besonders bevorzugt zwischen 50 und 1000 μm und insbesondere zwischen 100 und 800 μm auf.

Erfindungsgemäß bevorzugt werden insbesondere solche Verfahren, bei denen in Schritt b) unterschiedliche fließfähige Substanzen oder Zusammensetzungen in den Aufnahmebehälter gefüllt werden. Besonders bevorzugt ist das Verfüllen eines fließfähigen wasch- oder reinigungsaktiven Füllguts.

In einer ersten besonders bevorzugten Ausführungsform werden in die Aufnahmekammer wasch- oder reinigungsaktive Zusammensetzungen unterschiedlicher Farbe eingefüllt, wobei es besonders bevorzugt ist, dass diese Zusammensetzungen in zeitlicher Abfolge unter Ausbildung einer zwei- oder mehrschichtigen Schüttung in der Aufnahmekammer gefüllt werden.

In einer weiteren besonders bevorzugten Ausführungsform wird in die Aufnahmekammer zunächst eine geschmolzene wasch- oder reinigungsaktive Substanz oder Zubereitung und in der Folge eine zweite, teilchenförmige wasch- oder reinigungsaktive Zubereitung, beispielsweise ein Pulver oder Granulat oder Extrudat oder Kompaktat, eingefüllt.

Bezüglich weiterer bevorzugter Ausführungsformen des erfindungsgemäßen Verfahrens, insbesondere hinsichtlich der Natur der Schneidmesser, der manuellen oder maschinellen Drehung des Klingenblatts und der Größe des Drehwinkels wird zur Vermeidung von Wiederholungen auf die obigen Ausführungen zu der erfindungsgemäßen Vorrichtung verwiesen.

In dem erfindungsgemäßen Verfahren werden mit besonderem Vorzug wasserlösliche Folien und Folienbahnen eingesetzt. Ein erfindungsgemäßes Verfahren, dadurch gekennzeichnet, dass es sich bei der bewegten Folienbahn um eine wasserlösliche Folie handelt, ist daher besonders bevorzugt.

Besonders bevorzugte wasserlösliche oder wasserdispergierbare Folienmaterialien, welche sich sowohl zur Herstellung der Aufnahmekammern, als auch zu deren Versiegelung der befüllten Aufnahmekammem eignen, enthalten mindestens eines der nachfolgenden Polymere:

a) wasserlösliche nichtionische Polymeren aus der Gruppe der a1) Polyvinylpyrrolidone, a2) Vinylpyrrolidon/Vinylester-Copolymere, a3) Celluloseether

b) wasserlösliche amphotere Polymeren aus der Gruppe der b1) Alkylacrylamid/Acrylsäure-Copolymere b2) Alkylacrylamid/Methacrylsäure-Copolymere b3) Alkylacrylamid/Methylmethacrylsäure-Copolymere b4) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsä ure -Copolymere b6) Alkylacrylamid/Methylmethacrylsäure/AlkylaminoalkyKmethJacr ylsäure-

Copolymere b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Al kylmethacrylat-

Copolymere b8) Copolymere aus b8i) ungesättigten Carbonsäuren b8ii) kationisch derivatisierten ungesättigten Carbonsäuren bδiii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren

c) wasserlösliche zwitterionische Polymeren aus der Gruppe der d) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymer e sowie deren Alkali- und Ammoniumsalze c2) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copol ymere sowie deren

Alkali- und Ammoniumsalze c3) Methacroylethylbetain/Methacrylat-Copolymere

d) wasserlösliche anionische Polymeren aus der Gruppe der d1) Vinylacetat/Crotonsäure-Copolymere d2) Vinylpyrrolidon/Vinylacrylat-Copolymere d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen d5) gepfropften und vernetzten Copolymere aus der Copolymerisation von d5i) mindesten einem Monomeren vom nicht-ionischen Typ, dδii) mindestens einem Monomeren vom ionischen Typ,

dδiii) von Polyethylenglycol und dδiv) einem Vemetzter d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden

Gruppen erhaltenen Copolymere: d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren, dθii) ungesättigte Carbonsäuren, dδiii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe dθii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C 8- i 8 -Alkohols d7) Terpolymere aus Crotonsäure, Vinylacetat und einem AIIyI- oder Methallylester d8) Tetra- und Pentapolymere aus d8i) Crotonsäure oder Allyloxyessigsäure dδii) Vinylacetat oder Vinylpropionat dδiii) verzweigten AIIyI- oder Methallylestem dδiv) Vinylethern, Vinylestern oder geradkettigen AlIyI- oder Methallylestem d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe

Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure

e) wasserlösliche kationische Polymeren aus der Gruppe der e1) quaternierten Cellulose-Derivate e2) Polysiloxane mit quaternären Gruppen e3) kationischen Guar-Derivate e4) polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und

Amiden von Acrylsäure und Methacrylsäure eδ) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacry- lats und -methacrylats e6) Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere e7) quaternierter Polyvinylalkohol eδ) unter den INCI-Bezeichnungen Polyquatemium 2, Polyquaternium 17,

Polyquatemium 18 und Polyquaternium 27 angegeben Polymere.

Wasserlösliche Polymere im Sinne der Erfindung sind solche Polymere, die bei Raumtemperatur in Wasser zu mehr als 2,δ Gew.-% löslich sind.

Die in dem erfindungsgemäßen Verfahren eingesetzten Folien und Folienbahnen umfassen vorzugsweise mindestens anteilsweise eine Substanz aus der Gruppe (acetalisierter) Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine.

In einer bevorzugten Verfahrensvariante umfaßt das Folienmaterial ein oder mehrere wasserlösliche(s) Polymer(e), vorzugsweise ein Material aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL), Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose, und deren Derivate und deren Mischungen.

„Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur

die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs

CH2 — CH CH CH2 OH OH

enthalten.

Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.

Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Die Beschichtungen aus Polyvinylalkohol sind

weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.

Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß das in dem erfindungsgemäßen Verafahren eingesetzte Folienmaterial wenigstens anteilsweise einen Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt. In einer bevorzugten Ausführungsform besteht das in dem erfindungsgemäßen Verfahren eingesetzte erste Folienmaterial zu mindestens 20 Gew.-%, besonders bevorzugt zu mindestens 40 Gew.-%, ganz besonders bevorzugt zu mindestens 60 Gew.-% und insbesondere zu mindestens 80 Gew.-% aus einem Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 MoI-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.

Vorzugsweise werden als Folienmaterialien Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, daß das Hüllmaterial einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol '1 , vorzugsweise von 11.000 bis 90.000 gmol "1 , besonders bevorzugt von 12.000 bis 80.000 gmol "1 und insbesondere von 13.000 bis 70.000 gmol '1 liegt.

Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.

Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol ® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88 sowie Mowiol ® 8-88.

Weitere als Folienmaterial besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:

Weitere als Folienmaterial geeignete Polyvinylalkohole sind ELVANOL ® 51-05, 52-22, 50-42, 85- 82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX ® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol ® NK-05, A- 300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11 Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K.).

Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung) oder Ketonen (Ketalisierung) verändert werden. Als besonders bevorzugt und aufgrund ihrer ausgesprochen guten Kaltwasserlöslichkeit besonders vorteilhaft haben sich hierbei Polyvinylalkohole herausgestellt, die mit den Aldehyd bzw. Ketogruppen von Sacchariden oder Polysacchariden oder Mischungen hiervon acetalisiert bzw. ketalisiert werden. Als äußerst vorteilhaft einzusetzen sind die Reaktionsprodukte aus PVAL und Stärke.

Weiterhin läßt sich die Wasserlöslichkeit durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verändern und so gezielt auf gewünschte Werte einstellen. Folien aus PVAL sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.

Beispiele geeigneter wasserlöslicher PVAL-Folien sind die unter Bezeichnung "SOLUBLON ® " von der Firma Syntana Handelsgesellschaft E. Harke GmbH & Co. erhältlichen PVAL-Folien. Deren Löslichkeit in Wasser läßt sich Grad-genau einstellen, und es sind Folien dieser Produktreihe erhältlich, die in allen für die Anwendung relevanten Temperaturbereichen in wäßriger Phase löslich sind.

Polyvinylpyrrolidone, kurz als PVP bezeichnet, lassen sich durch die folgende allgemeine Formel beschreiben:

PVP werden durch radikalische Polymerisation von 1-Vinylpyrrolidon hergestellt. Handelsübliche PVP haben Molmassen im Bereich von ca. 2.500 bis 750.000 g/mol und werden als weiße, hygroskopische Pulver oder als wäßrige Lösungen angeboten.

Polyethylenoxide, kurz PEOX, sind Polyalkylenglykole der allgemeinen Formel

H-[O-CH 2 -CH 2 I n -OH

die technisch durch basisch katalysierte Polyaddition von Ethylenoxid (Oxiran) in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenglykol als Startmolekül hergestellt werden. Sie haben Molmassen im Bereich von ca. 200 bis 5.000.000 g/mol, entsprechend Polymerisa- tionsgraden n von ca. 5 bis >100.000. Polyethylenoxide besitzen eine äußerst niedrige Konzentration an reaktiven Hydroxy-Endgruppen und zeigen nur noch schwache Glykol-Eigenschaften.

Gelatine ist ein Polypeptid (Molmasse: ca. 15.000 bis >250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Verpackungsmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet. In Form von Folien findet Gelatine wegen ihres im Vergleich zu den vorstehend genannten Polymeren hohen Preises bisher nur geringe Verwendung.

Bevorzugt sind im Rahmen des erfindungsgemäßen Verfahrens Folienmaterialien, welche ein Polymer aus der Gruppe Stärke und Stärkederivate, Cellulose und Cellulosederivate, insbesondere Methylcellulose und Mischungen hieraus umfassen.

Stärke ist ein Homoglykan, wobei die Glucose-Einheiten α-glykosidisch verknüpft sind. Stärke ist aus zwei Komponenten unterschiedlichen Molekulargewichts aufgebaut: aus ca. 20 bis 30% geradkettiger Amylose (MG. ca. 50.000 bis 150.000) und 70 bis 80% verzweigtkettigem Amylo- pektin (MG. ca. 300.000 bis 2.000.000). Daneben sind noch geringe Mengen Lipide, Phosphorsäure und Kationen enthalten. Während die Amylose infolge der Bindung in 1,4-Stellung lange, schraubenförmige, verschlungene Ketten mit etwa 300 bis 1.200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1 ,6-Bindung zu einem astähnlichen Gebilde mit etwa 1.500 bis 12.000 Molekülen Glucose. Neben reiner Stärke sind zur Herstellung wasserlöslicher Umhüllungen der Waschmittel-, Spülmittel- und Reinigungsmittel-Portionen im Rahmen der vorliegenden Erfindung auch Stärke-Derivate geeignet, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind. Solche chemisch

modifizierten Stärken umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkalistärken, Carboxymethylstärke (CMS), Stärkeester und -ether sowie Aminostärken.

Reine Cellulose weist die formale Bruttozusammensetzung (C 6 H 10 O 5 ) n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5.000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.

Bevorzugte erfindungsgemäße Verfahren sind dadurch gekennzeichnet, daß mindestens eines der eingesetzten Folienmaterialien transparent oder transluzent ist.

Das als Folienmaterial oder als Siegelmaterial eingesetzte Material ist vorzugsweise transparent. Unter Transparenz ist im Sinne dieser Erfindung zu verstehen, daß die Durchlässigkeit innerhalb des sichtbaren Spektrums des Lichts (410 bis 800 nm) größer als 20%, vorzugsweise größer als 30%, äußerst bevorzugt größer als 40% und insbesondere größer als 50% ist. Sobald somit eine Wellenlänge des sichtbaren Spektrums des Lichtes eine Durchlässigkeit größer als 20% aufweist, ist es im Sinne der Erfindung als transparent zu betrachten.

Erfindungsgemäß eingesetzte Folien, können ein Stabilisierungsmittel enthalten. Stabilisierungsmittel im Sinne der Erfindung sind Materialien, welche die in den Aufnahmekammern befindlichen Inhaltsstoffe vor Zersetzung oder Desaktivierung durch Lichteinstrahlung schützen. Als besonders geeignet haben sich hier Antioxidantien, UV-Absorber und Fluoreszensfarbstoffe erwiesen.

Bei den erfindungsgemäß eingesetzten Folienmaterialien handelt es sich vorzugsweise um gegossene oder geblasene Folien. Bevorzugte Verfahrensvarianten sind dabei dadurch

gekennzeichnet, daß die eingesetzte Folie eine Dicke von 5 bis 2000μm, vorzugsweise von 10 bis 1000μm, besonders bevorzugt von 15 bis 500 μm, ganz besonders bevorzugt von 20 bis 200 μm und insbesondere von 25 bis 100 μm aufweist.

Bei den eingesetzten Folien kann sich um ein- oder mehrschichtige Folien (Laminatfolien) handeln. Der Wassergehalt der Folien beträgt vorzugsweise unterhalb 10 Gew.-%, besonders bevorzugt unterhalb 7 Gew.-%, ganz besonders bevorzugt unterhalb 5 Gew.-% und insbesondere unterhalb 4 Gew.-%.

Die nach dem erfindungsgemäßen Verfahren hergestellten wasserlöslichen oder wasserdispergierbaren Behälter eignen sich zur Verpackung unterschiedlichster Aktivsubstanzen. Erfindungsgemäße Verfahren, bei welchen die Aufnahmekammer(n) mit einer Aktivsubstanz oder einem Aktivsubstanzgemisch aus den Bereichen Pharmazeutika, Kosmetika, Futter-, Pflanzenschutz- oder Düngemittel, Klebstoffe, Oberflächenbehandlungsmittel, Wasch- oder Reinigungsmittel und/oder Körperpflegemittel, vorzugsweise jedoch aus dem Bereich der Waschoder Reinigungsmittel, befüilt wird/werden, sind im Rahmen der vorliegenden Anmeldung bevorzugt.

Die nach dem zuvor beschriebenen erfindungsgemäßen Verfahren hergestellten Mittel enthalten bevorzugt wasch- und reinigungsaktive Substanzen, vorzugsweise wasch- und reinigungsaktive Substanzen aus der Gruppe der Gerüststoffe, Tenside, Polymere, Bleichmittel, Bleichaktivatoren, Enzyme, Glaskorrosionsinhibitoren, Korrosionsinhibitoren, Desintegrationshilfsmittel, Duftstoffe und Parfümträger. Diese bevorzugten Inhaltsstoffe werden in der Folge näher beschrieben.

Gerüststoffe

Zu den Gerüststoffe zählen insbesondere die Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.

Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP ® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX ® vertrieben wird und durch die Formel

n Na 2 O (1-n) K 2 O AI 2 O 3 (2 - 2,5) SiO 2 (3,5 - 5,5) H 2 O

beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granulären Compound eingesetzt, als auch zu einer Art „Abpuderung" einer granulären Mischung, vorzugsweise einer zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.

Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSi x O 2x+I

H 2 O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na 2 Si 2 O 5 y H 2 O bevorzugt.

Mit besonderem Vorzug, insbesondere als Bestandteil maschineller Geschirrspülmittel, werden kristalline schichtförmige Silikate der allgemeinen Formel NaMSi x O 2x+1 y H 2 O eingesetzt, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1 ,9 bis 22, vorzugsweise von 1 ,9 bis 4, ist und y für eine Zahl von O bis 33 steht. Die kristallinen schichtförmigen Silikate der Formel NaMSi x O 2x+I

y H 2 O werden beispielsweise von der Firma Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben. Beispiele für diese Silikate sind Na-SKS-1 (Na 2 Si 22 O 45 x H 2 O, Kenyait), Na-SKS-2 (Na 2 Si 14 O 29 x H 2 O, Magadiit), Na-SKS-3 (Na 2 Si 8 O 17 x H 2 O) oder Na- SKS-4 (Na 2 Si 4 O 9 x H 2 O, Makatit).

Für die Zwecke der vorliegenden Erfindung besonders geeignet sind kristalline Schichtsilikate der Formel NaMSi x O 2x+1 y H 2 O, in denen x für 2 steht. Von diesen eignen sich vor allem Na-SKS-5 (OC-Na 2 Si 2 O 5 ), Na-SKS-7 (ß-Na 2 Si 2 0 5 , Natrosilit), Na-SKS-9 (NaHSi 2 O 5 H 2 O), Na-SKS-10 (NaHSi 2 O 5 3 H 2 O, Kanemit), Na-SKS-11 (t-Na 2 Si 2 0 5 ) und Na-SKS-13 (NaHSi 2 O 5 ), insbesondere aber Na-SKS-6 (5-Na 2 Si 2 O 5 ).

Werden die Silikate als Bestandteil maschineller Geschirrspülmittel eingesetzt, so enthalten diese Mittel vorzugsweise einen Gewichtsanteil des kristallinen schichtförmigen Silikats der Formel NaMSi x O 2x+1 y H 2 O von 0,1 bis 20 Gew.-% von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel. Besonders bevorzugt ist es insbesondere, wenn solche maschinellen Geschirrspülmittel einen Gesamtsilikatgehalt unterhalb 7 Gew.-%, vorzugsweise unterhalb 6 Gew.-%, bevorzugt unterhalb 5 Gew. : %, besonders bevorzugt unterhalb 4 Gew.-%, ganz besonders bevorzugt unterhalb 3 Gew.-% und insbesondere unterhalb 2,5 Gew.-% aufweisen, wobei es sich bei diesem Silikat, bezogen auf das Gesamtgewicht des enthaltenen Silikats, vorzugsweise zu mindestens 70 Gew.-%, bevorzugt zu

mindestens 80 Gew.-% und insbesondere zu mindestens 90 Gew.-% um Silikat der allgemeinen Formel NaMSi x O 2x+I y H 2 O handelt.

Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na 2 O : SiO 2 von 1 :2 bis 1 :3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1 :2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Korn paktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe zehn bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.

Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass diese(s) Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Wasch- oder Reinigungsmitteln in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels, enthalten sind.

Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Dies gilt insbesondere für den Einsatz erfindungsgemäßer oder durch erfindungsgemäße Verfahren hergestellter Mittel als maschinelle Geschirrspülmittel, welcher im Rahmen der vorliegenden Anmeldung besonders bevorzugt ist. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatriumbzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.

Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO 3 ) π und Orthophosphorsäure H 3 PO 4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.

Geeignete Phosphate sind beispielsweise das Natriumdihydrogenphosphat, NaH 2 PO 4 , in Form des Dihydrats (Dichte 1,91 gern '3 , Schmelzpunkt 60°) oder in Form des Monohydrats (Dichte 2,04 gern '3 ), das Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na 2 HPO 4 , welches wasserfrei oder mit 2 Mol (Dichte 2,066 gern "3 , Wasserverlust bei 95°), 7 Mol (Dichte 1,68 gern '3 , Schmelzpunkt 48° unter Verlust von 5 H 2 O) und 12 Mol Wasser (Dichte 1 ,52 gern "3 , Schmelzpunkt 35° unter Verlust von 5 H 2 O) eingesetzt werden kann, insbesondere jedoch das Trinatriumphosphat (tertiäres Natriumphosphat) Na 3 PO 4 , welches als Dodecahydrat, als Decahydrat (entsprechend 19-20% P 2 O 5 ) und in wasserfreier Form (entsprechend 39-40% P 2 O 5 ) eingesetzt werden kann.

Ein weiteres bevorzugtes Phosphat ist das Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K 3 PO 4 . Weiterhin bevorzugt werden das Tetranatriumdiphosphat (Natriumpyrophosphat), Na 4 P 2 O 7 , welches in wasserfreier Form (Dichte 2,534 gern "3 , Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern "3 , Schmelzpunkt 94° unter Wasserverlust) existiert, sowie das entsprechende Kaliumsalz Kaliumdiphosphat (Kaliumpyrophosphat), K 4 P 2 O 7 .

Das technisch wichtige Pentanatriumtriphosphat, Na 5 P 3 O 10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H 2 O kristallisierendes, nicht hygroskopisches, farbloses, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O] n -Na mit n=3. Das entsprechende Kaliumsalz Pentakaliumtriphosphat, K 5 P 3 O 10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P 2 O 5 , 25% K 2 O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

(NaPOs) 3 + 2 KOH → Na 3 K 2 P 3 O 10 + H 2 O

Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und

Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.

Werden im Rahmen der vorliegenden Anmeldung Phosphate als wasch- oder reinigungsaktive Substanzen in Wasch- oder Reinigungsmitteln eingesetzt, so enthalten bevorzugte Mittel diese(s) Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% uns insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels.

Bevorzugt ist es insbesondere Kaliumtripolyphosphat und Natriumtripolyphosphat in einem Gewichtsverhältnis von mehr als 1:1 , vorzugsweise mehr als 2:1 , bevorzugt mehr als 5:1 , besonders bevorzugt mehr als 10:1 und insbesondere mehr als 20:1 einzusetzen. Besonders bevorzugt ist es, ausschließlich Kaliumtripolyphosphat ohne Beimischungen anderer Phosphate einzusetzen.

Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetall- sesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buiidersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat. Aufgrund ihrer im Vergleich mit anderen Buildersubstanzen geringen chemischen Kompatibilität mit den übrigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, werden die Alkalimetallhydroxide bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-% und insbesondere unterhalb 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, eingesetzt. Besonders bevorzugt werden Mittel, welche bezogen auf ihr Gesamtgewicht weniger als 0,5 Gew.-% und insbesondere keine Alkalimetallhydroxide enthalten.

Besonders bevorzugt ist der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7,5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels. Besonders bevorzugt werden Mittel, welche bezogen auf das Gewicht des Wasch- oder Reinigungsmittels weniger als 20 Gew.- %, vorzugsweise weniger als 17 Gew.-%, bevorzugt weniger als 13 Gew.-% und insbesondere

weniger als 9 Gew.% Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonat(e), besonders bevorzugt Natriumcarbonat enthalten.

Als organische Cobuilder sind insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate zu nennen. Diese Stoffklassen werden nachfolgend beschrieben.

Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.

Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.

Als Gerüststoffe sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.

Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen M w der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.

Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe

wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.

Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.

Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt von Wasch- oder Reinigungsmitteln an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.

Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.

Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.

Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.

Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze.

Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.

Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzym katalysierten

Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.

Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.

Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N ' - disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.

Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.

Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Gerüststoffe eingesetzt werden.

Tenside

Zur Gruppe der Tenside werden die nichtionischen, die anionischen, die kationischen und die amphoteren Tenside gezählt.

Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden. Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten Wasch- oder Reinigungsmittel, insbesondere Reinigungsmittel für das maschinelle Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole

mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 MoI EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C 12-14 -Alkohole mit 3 EO oder 4 EO, C 9-11 -Alkohol mit 7 EO, C 13 . 15 -Alkohole mit 3 EO, 5 EO 1 7 EO oder 8 EO, C 12 . 18 -Alkoho- Ie mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Ci 2- i 4 -AIkohol mit 3 EO und C 12-18 -Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt einer ganzen oder einer gebrochenen Zahl entsprechen können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G) x eingesetzt werden, in der R einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Mono- glykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.

Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.

Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,

R-CO- TN-[Z]

in der R für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R 1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel

in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R 1 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R 2 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Ci. 4 -Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.

[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

Mit besonderem Vorzug werden weiterhin Tenside eingesetzt, welche ein oder mehrere Taigfettalkohole mit 20 bis 30 EO in Kombination mit einem Silikonentschäumer enthalten.

Niotenside aus der Gruppe der alkoxylierten Alkohole, besonders bevorzugt aus der Gruppe der gemischt alkoxylierten Alkohole und insbesondere aus der Gruppe der EO-AO-EO-Niotenside, werden ebenfalls mit besonderem Vorzug eingesetzt.

Insbesondere bevorzugt sind nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen. Nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von

20 0 C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3 0 C, ist/sind besonders bevorzugt.

Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden Niotenside eingesetzt, die bei Raumtemperatur hochviskos sind, so ist bevorzugt, dass diese eine Viskosität oberhalb von 20 Pa-s, vorzugsweise oberhalb von 35 Pa-s und insbesondere oberhalb 40 Pa-s aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.

Bevorzugt einzusetzende Tenside, die bei Raumtemperatur fest sind, stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen ((PO/EO/PO)-Tenside). Solche (PO/EO/PO)- Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.

Ein besonders bevorzugtes, bei Raumtemperatur festes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C 16-2 o-Alkohol), vorzugsweise einem C 18 -Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow ränge ethoxylates" (siehe oben) besonders bevorzugt.

Mit besonderem Vorzug werden daher ethoxylierte Niotenside, die aus C 6-20 - Monohydroxyalkanolen oder C 6 . 2 o-Alkylphenolen oder C 16-2 o-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurden, eingesetzt.

Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen

Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Mittel sind dadurch gekennzeichnet, dass sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen.

Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan, enthält.

Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen PoIy Tergent ® SLF-18 von der Firma Olin Chemicals erhältlich.

Tenside der Formel

R 1 O[CH 2 CH(CH 3 )O] x [CH 2 CH 2 OI y CH 2 CH(OH)R 2 ,

in der R 1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R 2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 sowie y für einen Wert von mindestens 15 steht, sind weitere besonders bevorzugte Niotenside.

Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel

R 1 O[CH 2 CH(R 3 )O] x [CH 2 ] k CH(OH)[CH 2 ] j OR 2 ,

in der R 1 und R 2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R 3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R 3 in der obenstehenden Formel

R 1 O[CH 2 CH(R 3 )O] x [CH 2 ] k CH(OH)[CH 2 ] j OR 2 unterschiedlich sein. R 1 und R 2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R 3 sind H, -CH 3 oder -CH 2 CH 3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.

Wie vorstehend beschrieben, kann jedes R 3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R 3 ausgewählt werden, um Ethylenoxid- (R 3 = H) oder Propylenoxid- (R 3 = CH 3 ) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)- Gruppen einschließt, oder umgekehrt.

Besonders bevorzugte endgruppenverschlossene poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so dass sich die vorstehende Formel zu

R 1 O[CH 2 CH(R 3 )O] X CH 2 CH(OH)CH 2 OR 2

vereinfacht. In der letztgenannten Formel sind R 1 , R 2 und R 3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R 1 und R 2 9 bis 14 C-Atome aufweisen, R 3 für H steht und x Werte von 6 bis 15 annimmt.

Fasst man die letztgenannten Aussagen zusammen, sind endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel

R 1 O[CH 2 CH(R 3 )O] x [CH 2 ]κCH(OH)[CH 2 ] j OR 2 ,

in der R 1 und R 2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R 3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, bevorzugt, wobei Tenside des Typs

R 1 O[CH 2 CH(R 3 )O] X CH 2 CH(OH)CH 2 OR 2 ,

in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.

Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind nichionisches Tenside der allgemeinen Formel

bevorzugt, in der R 1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C 6 . 24 -Alkyl- oder -Alkenylrest steht; jede Gruppe R z bzw. R 3 unabhängig voneinander ausgewählt ist aus -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH(CH 3 ) 2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.

Die bevorzugten Niotenside der vorstehenden Formel lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R 1 -OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R 1 in der vorstehenden Formel kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R 1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzweigt, wobei die linearen Reste aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind Niotenside bevorzugt, bei denen R 1 in der vorstehenden Formel für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.

Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R 2 bzw. R 3 unabhängig voneinander ausgewählt sind aus - CH 2 CH 2 -CH 3 bzw. CH(CH 3 ) 2 sind geeignet. Bevorzugt werden Niotenside der vorstehenden

Formel eingesetzt, bei denen R 2 bzw. R 3 für einen Rest -CH 3 , w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.

Zusammenfassend sind insbesondere nichtionische Tenside bevorzugt, die einen C 9-15 -Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von1 bis 4 Propylenoxideinheiten aufweisen. Diese Tenside weisen in wässriger Lösung die erforderliche niedrige Viskosität auf und sind erfindungsgemäß mit besonderem Vorzug einsetzbar.

Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel

R 1 O[CH 2 CH(R 3 )O] X R 2 ,

in der R 1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, R 2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und vorzugsweise weiterhin mit einer Ethergruppe funktionalisiert sind, R 3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest und x für Werte zwischen 1 und 40 steht.

In einer besonders bevorzugten Ausführungsform der vorliegenden Anmeldung steht R 3 in der vorgenannten allgemeinen Formel für H. Aus der Gruppe der resultierenden endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel

R 1 O[CH 2 CH 2 O] x R 2

sind insbesondere solche Niotenside bevorzugt, bei denen R 1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, R 2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und x für Werte zwischen 1 und 40 steht.

Insbesondere werden solche endgruppenverschlossene poly(oxyalkylierten) Niotenside bevorzugt, die gemäß der Formel

R 1 O[CH 2 CH 2 O] x CH 2 CH(OH)R 2

neben einem Rest R 1 , welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R 2 mit 1 bis 30 Kohlenstoffatomen aufweisen, welcher einer monohydroxylierten Zwischengruppe - CH 2 CH(OH)- benachbart ist. x steht in dieser Formel für Werte zwischen 1 und 90.

Besonders bevorzugt sind nichtionische Tenside der allgemeinen Formel

R 1 O[CH 2 CH 2 O] x CH 2 CH(OH)R 2 ,

welche neben einem Rest R 1 , der für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R 2 mit 1 bis 30 Kohlenstoffatomen, vorzugsweise 2 bis 22 Kohlenstoffamtomen, aufweisen, welcher einer monohydroxylierten Zwischengruppe -CH 2 CH(OH)- benachbart ist und bei denen x für Werte zwischen 40 und 80, vorzugsweise für Werte zwischen 40 und 60 steht.

Die entsprechenden endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der vorstehenden Formel lassen sich beispielsweise durch Umsetzung eines endständigen Epoxids der Formel R 2 CH(O)CH 2 mit einem ethoxylierten Alkohol der Formel R 1 O[CH 2 CH 2 O] x-1 CH 2 CH 2 OH erhalten.

Besonders bevorzugt werden weiterhin solche endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel

R 1 O[CH 2 CH 2 O] x [CH 2 CH(CH 3 )OI y CH 2 CH(OH)R 2 ,

in der R 1 und R 2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R 3 unabhängig voneinander ausgewählt ist aus -CH 3 -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH(CH 3 ) 2 , vorzugsweise jedoch für -CH 3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, wobei Niotenside mit Werten für x von 15 bis 32 und y von 0,5 und 1 ,5 ganz besonders bevorzugt sind.

Tenside der allgemeinen Formel

in der R 1 und R 2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R 3 unabhängig voneinander ausgewählt ist aus -CH 3 -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH(CH 3 ) 2 , vorzugsweise jedoch für -CH 3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, sind erfindungsgemäß bevorzugt, wobei Niotenside mit Werten für x von 15 bis 32 und y von 0,5 und 1 ,5 ganz besonders bevorzugt sind.

Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade der vorgenannten Niotenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.

Selbstverständlich können die vorgenannten nichtionischen Tenside nicht nur als Einzelsubstanzen, sondern auch als Tensidgemische aus zwei, drei, vier oder mehr Tensiden eingesetzt werden. Als Tensidgemische werden dabei nicht Mischungen nichtionischer Tenside bezeichnet, die in ihrer Gesamtheit unter eine der oben genannten allgemeinen Formeln fallen, sondern vielmehr solche Mischungen, die zwei, drei, vier oder mehr nichtionische Tenside enthalten, die durch unterschiedliche der vorgenannten allgemeinen Formeln beschrieben werden können.

Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C 9 . 13 -Alkylbenzolsul- fonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus Ci 2- i 8 -Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C 12-18 -Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.

Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der Ci 2 -C 18 -Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C 10 -C 20 -Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die Ci 2 -C 16 -Alkylsulfate und C 12 -Ci 5 - Alkylsulfate sowie C 14 -C 15 -Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell OiI Company unter dem Namen DAN ® erhalten werden können, sind geeignete Aniontenside.

Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C 7-2 i-Alkohole, wie 2-Methyl-verzweigte C 9 . i r Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C 12-18 -Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.

Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen, darstellen. Bevorzugte Sulfosuccinate enthalten C 8 - I8 - Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.

Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.

Sind die Aniontenside Bestandteil maschineller Geschirrspülmittel, so beträgt ihr Gehalt, bezogen auf das Gesamtgewicht der Mittel vorzugsweise weniger als 4 Gew.-%, bevorzugt weniger als 2 Gew.-% und ganz besonders bevorzugt weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine Aniontenside enthalten, werden insbesondere bevorzugt.

An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.

Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der nachfolgenden Formeln eingesetzt werden:

worin jede Gruppe R 1 unabhängig voneinander ausgewählt ist aus C 1-6 -Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R 2 unabhängig voneinander ausgewählt ist aus C 8-28 -Alkyl-

oder -Alkenylgruppen; R 3 = R 1 oder (CH 2 ) n -T-R 2 ; R 4 = R 1 oder R 2 oder (CH 2 ) n -T-R 2 ; T = -CH 2 -, -O- CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.

In maschinellen Geschirrspülmitteln, beträgt der Gehalt an kationischen und/oder amphoteren Tensiden vorzugsweise weniger als 6 Gew.-%, bevorzugt weniger als 4 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% und insbesondere weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine kationischen oder amphoteren Tenside enthalten, werden besonders bevorzugt.

Polymere

Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktiven Poylmere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in Wasch- oder Reinigungsmitteln neben nichtionischen Polymeren auch kationische, anionische und amphotere Polymere einsetzbar.

„Kationische Polymere" im Sinne der vorliegenden Erfindung sind Polymere, welche eine positive Ladung im Polymermolekül tragen. Diese kann beispielsweise durch in der Polymerkette vorliegende (Alkyl-)Ammoniumgruppierungen oder andere positiv geladene Gruppen realisiert werden. Besonders bevorzugte kationische Polymere stammen aus den Gruppen der quaternierten Cellulose-Derivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, der Vinylpyrrolidon- Methoimidazoliniumchlorid-Copolymere, der quatemierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquatemium 27 angegeben Polymere.

„Amphorere Poylmere" im Sinne der vorliegenden Erfindung weisen neben einer positiv geladenen Gruppe in der Polymerkette weiterhin auch negativ geladenen Gruppen bzw. Monomereinheiten auf. Bei diesen Gruppen kann es sich beispielsweise um Carbonsäuren, Sulfonsäuren oder Phosphonsäuren handeln.

Bevorzugte Wasch- oder Reinigungsmittel, insbesondere bevorzugte maschinelle Geschirrspülmittel, sind dadurch gekennzeichnet, dass sie ein Polymer a) enthalten, welches Monomereinheiten der Formel R 1 R 2 C=CR 3 R 4 aufweist, in der jeder Rest R 1 , R 2 , R 3 , R 4 unabhängig voneinander ausgewählt ist aus Wasserstoff, derivatisierter Hydroxygruppe, Ci -30 linearen oder verzweigten Alkylgruppen, Aryl, Aryl substitutierten Ci -30 linearen oder verzweigten Alkylgruppen, polyalkoyxylierte Alkylgruppen, heteroatomaren organischen Gruppen mit

mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N- Atom oder mindestens eine Aminogruppe mit einer positiven Ladung im Teilbereich des pH- Bereichs von 2 bis 11 , oder Salze hiervon, mit der Maßgabe, dass mindestens ein Rest R 1 , R 2 , R 3 , R 4 eine heteroatomare organische Gruppe mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung ist.

Im Rahmen der vorliegenden Anmeldung besonders bevorzugte kationische oder amphotere Polymere enthalten als Monomereinheit eine Verbindung der allgemeinen Formel

X "

bei der R 1 und R 4 unabhängig voneinander für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen steht; R 2 und R 3 unabhängig voneinander für eine Alkyl-, Hydroxyalkyl-, oder Aminoalkylgruppe stehen, in denen der Alkylrest linear oder verzweigt ist und zwischen 1 und 6 Kohlenstoffatomen aufweist, wobei es sich vorzugsweise um eine Methylgruppe handelt; x und y unabhängig voneinander für ganze Zahlen zwischen 1 und 3 stehen. X- repräsentiert ein Gegenion, vorzugsweise ein Gegenion aus der Gruppe Chlorid, Bromid, lodid, Sulfat, Hydrogensulfat, Methosulfat, Laurylsulfat, Dodecylbenzolsulfonat, p- Toluolsulfonat (Tosylat), Cumolsulfonat, Xylolsulfonat, Phosphat, Citrat, Formiat, Acetat oder deren Mischungen.

Bevorzugte Reste R 1 und R 4 in der vorstehenden Formel sind ausgewählt aus -CH 3 , -CH 2 -CH 3 , - CH 2 -CH 2 -CH 3 , -CH(CHs)-CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH(OH)-CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 - CH(OH)-CH 3 , -CH(OH)-CH 2 -CH 3 , und -(CH 2 CH 2 -O) n H.

Ganz besonders bevorzugt werden Polymere, welche eine kationische Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R 1 und R 4 für H stehen, R 2 und R 3 für Methyl stehen und x und y jeweils 1 sind. Die entsprechenden Monomereinheit der Formel

H 2 C=C H-(C H 2 )-N (C H 3 J 2 -(C H 2 )-C H=C H 2 X "

werden im Falle von X " = Chlorid auch als DADMAC (Diallyldimethylammonium-Chlorid) bezeichnet.

Weitere besonders bevorzugte kationische oder amphotere Polymere enthalten eine Monomereinheit der allgemeinen Formel

in der R 1 , R 2 , R 3 , R 4 und R 5 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ungesättigen Alkyl-, oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise für einen linearen oder verzweigten Alkylrest ausgewählt aus -CH 3 , -CH 2 -CH 3 , - CH 2 -CH 2 -CH 3 , -CH(CH 3 )-CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH(OH)-CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 - CH(OH)-CH 3 , -CH(OH)-CH 2 -CH 3 , und -(CH 2 CH 2 -O) n H steht und x für eine ganze Zahl zwischen 1 und 6 steht.

Ganz besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung Polymere, welche eine kationsche Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R 1 für H und R 2 , R 3 , R 4 und R 5 für Methyl stehen und x für 3 steht. Die entsprechenden Monomereinheiten der Formel

H 2 C=C(CH3)-C(O)-NH-(CH2)χ-N + (CH 3 )3

X "

werden im Falle von X " = Chlorid auch als MAPTAC (Methyacrylamidopropyl- trimethylammonium-Chlorid) bezeichnet.

Erfindungsgemäß bevorzugt werden Polymere eingesetzt, die als Monomereinheiten Diallyldimethylammoniumsalze und/oder Acrylamidopropyltrimethylammoniumsalze enthalten.

Die zuvor erwähnten amphoteren Polymere weisen nicht nur kationische Gruppen, sondern auch anionische Gruppen bzw. Monomereinheiten auf. Derartige anionischen Monomereinheiten stammen beispielsweise aus der Gruppe der linearen oder verzweigten, gesättigten oder ungesättigten Carboxylate, der linearen oder verzweigten, gesättigten oder ungesättigten Phosphonate, der linearen oder verzweigten, gesättigten oder ungesättigten Sulfate oder der linearen oder verzweigten, gesättigten oder ungesättigten Sulfonate. Bevorzugte Monomereinheiten sind die Acryisäure, die (Meth)acrylsäure, die (Dimethyl)acrylsäure, die (Ethyl)acrylsäure, die Cyanoacrylsäure, die Vinylessingsäure, die Allylessigsäure, die

Crotonsäure, die Maleinsäure, die Fumarsäure, die Zimtsäure und ihre Derivate, die Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure oder die Allylphosphonsäuren.

Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Acrylsäure/Alkyl- aminoalkyl(meth)acrylsäure-Copolymere, der

Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)-acry lsäure-Copolymere, der

Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth )acrylsäure-Copolymere, der Alkyl- acrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylme thacrylat-Copolymere sowie der Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.

Bevorzugt einsetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymer e sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacryisäure-Copol ymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.

Bevorzugt werden weiterhin amphotere Polymere, welche neben einem oder mehreren anionischen Monomeren als kationische Monomere Methacrylamidoalkyl-trialkylammoniumchlorid und Dimethyl(diallyl)ammoniumchlorid umfassen.

Besonders bevorzugte amphotere Polymere stammen aus der Gruppe der Methacrylamidoalkyl- trialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acr ylsäure-Copolymere, der

Methacryl-amidoalkyltrialkylammoniumchlorid/Dimethyl(dial lyl)ammoniumchlorid/Methacrylsäure-

Copolymere und der

Methacrylamidoalkyltrialkylammoniumchlorid/DimethyKdially Oammoniumchlorid/Alkyl-

(meth)acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze.

Insbesondere bevorzugt werden amphotere Polymere aus der Gruppe der

Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(dia llyl)ammoniumchlorid/Acrylsäure-

Copolymere, der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(dially l)ammonium- chlorid/Acrylsäure-Copolymere und der Methacrylamidopropyitrimethylammonium- chlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyi(meth)acrylsä ure-Copolymere sowie deren Alkali- und Ammoniumsalze.

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung liegen die Polymere in vorkonfektionierter Form vor. Zur Konfektionierung der Polymere eignet sich dabei u.a.

die Verkapselung der Polymere mittels wasserlöslicher oder wasserdispergierbarer

Beschichtungsmittel, vorzugsweise mittels wasserlöslicher oder wasserdispergierbarer natürlicher oder synthetischer Polymere; die Verkapselung der Polymere mittels wasserunlöslicher, schmelzbarer

Beschichtungsmittel, vorzugsweise mittels wasserunlöslicher Beschichtungsmittel aus der

Gruppe der Wachse oder Paraffine mit einem Schmelzpunkt oberhalb 3O 0 C; die Cogranulation der Polymere mit inerten Trägermaterialien, vorzugsweise mit

Trägermaterialien aus der Gruppe der wasch- oder reinigungsaktiven Substanzen, besonders bevorzugt aus der Gruppe der Builder (Gerüststoffe) oder Cobuilder.

Wasch- oder Reinigungsmittel enthalten die vorgenannten kationischen und/oder amphoteren Polymere vorzugsweise in Mengen zwischen 0,01 und 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels. Bevorzugt werden im Rahmen der vorliegenden Anmeldung jedoch solche Wasch- oder Reinigungsmittel, bei denen der Gewichtsanteil der kationischen und/oder amphoteren Polymere zwischen 0,01 und 8 Gew.-%, vorzugsweise zwischen 0,01 und 6 Gew.-%, bevorzugt zwischen 0,01 und 4 Gew.-%, besonders bevorzugt zwischen 0,01 und 2 Gew.-% und insbesondere zwischen 0,01 und 1 Gew.-%, jeweils bezogen auf das Gesamtgewicht des maschinellen Geschirrspülmittels, beträgt.

Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.

Besonders bevorzugt als Sulfonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.

Im Rahmen der vorliegenden Erfindung sind als Monomer ungesättigte Carbonsäuren der Formel

R 1 (R 2 )C=C(R 3 )COOH

bevorzugt, in der R 1 bis R 3 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.

Unter den ungesättigten Carbonsäuren, die sich durch die vorstehende Formel beschreiben lassen, sind insbesondere Acrylsäure (R 1 = R 2 = R 3 = H), Methacrylsäure (R 1 = R 2 = H; R 3 = CH 3 ) und/oder Maleinsäure (R 1 = COOH; R 2 = R 3 = H) bevorzugt.

Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel

R 5 (R 6 )C=C(R 7 )-X-SO 3 H

bevorzugt, in der R 5 bis R 7 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH 2 ),,- mit n = O bis 4, -COO-(CH 2 ) k - mit k = 1 bis 6, -C(O)-NH-C(CH 3 ) 2 - und -C(O)-NH-CH(CH 2 CH 3 )-.

Unter diesen Monomeren bevorzugt sind solche der Formeln

H 2 C=CH-X-SO 3 H

H 2 C=C(CHs)-X-SO 3 H

HO 3 S-X-(R 6 )C=C(R 7 )-X-SO 3 H

in denen R 6 und R 7 unabhängig voneinander ausgewählt sind aus -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CHa) n - mit n = O bis 4, -COO-(CH 2 ) k - mit k = 1 bis 6, -C(O)-NH-C(CH 3 ) 2 - und -C(O)-NH- CH(CH 2 CH 3 )-.

Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1- propansulfonsäure, 2-Methacrylamido-2-methyl-1 -propansulfonsäure, 3-Methacrylamido-2- hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2- propeni-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3- Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethyimethacrylamid sowie wasserlösliche Salze der genannten Säuren.

Als weitere ionogene oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an diesen weiteren ionogene oder nichtionogenen Monomeren weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Formel R 1 (R 2 )C=C(R 3 )COOH und Monomeren der Formel R 5 (R 6 )C=C(R 7 )-X-SO 3 H.

Zusammenfassend sind Copolymere aus i) ungesättigten Carbonsäuren der Formel R 1 (R 2 )C=C(R 3 )COOH in der R 1 bis R 3 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, ii) Sulfonsäuregruppen-haltigen Monomeren der Formel R 5 (R 6 )C=C(R 7 )-X-SO 3 H in der R 5 bis R 7 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH 2 ) n - mit n = O bis 4, -COO- (CH 2 ) k - mit k = 1 bis 6, -C(O)-NH-C(CH 3 ) 2 - und -C(O)-NH-CH(CH 2 CH 3 )- ii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren besonders bevorzugt.

Weitere besonders bevorzugte Copolymere bestehen aus i) einer oder mehreren ungesättigter Carbonsäuren aus der Gruppe Acrylsäure,

Methacrylsäure und/oder Maleinsäure ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln:

H 2 C=CH-X-SO 3 H

H 2 C=C(CH 3 )-X-SO 3 H

HO 3 S-X-(R 6 )C=C(R 7 )-X-SO 3 H

in der R 6 und R 7 unabhängig voneinander ausgewählt sind aus -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 und X für eine optional vorhandene Spacergruppe steht, die

ausgewählt ist aus -(CH 2 ),,- mit n = O bis 4, -COO-(CH 2 ) k - mit k = 1 bis 6, -C(O)-NH- C(CHs) 2 - und -C(O)-NH-CH(CH 2 CH 3 )- iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.

Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.

So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel

-[CH 2 -CHCOOH] m -[CH 2 -CH 2 C(O)-Y-SO 3 H] p -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -O- (C 6 H 4 )-, für -NH-C(CHa) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel

-[CH 2 -C(CH 3 )COOH] m -[CH 2 -CH 2 C(O)-Y-SO 3 H] p -

in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoff resten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -O- (C 6 H 4 )-, für -NH-C(CH 3 ) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel

-[CH 2 -CHCOOHIm-[CH 2 -CH(CH 3 )C(O)-Y-SO 3 H] P -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = O bis 4, für -O- (C 6 H 4 )-, für -NH-C(CH 3 ) 2 - oder -NH-CH(CH 2 CH 3 )- steht, ebenso bevorzugt wie Copolymere, die Struktureinheiten der Formel

-[CH 2 -C(CH 3 )COOH] m -[CH 2 -CH(CH 3 )C(O)-Y-SO 3 H] p -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = O bis 4, für -O- (C 6 H 4 )-, für -NH-C(CHa) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Copolymeren, die Struktureinheiten der Formel

-[HOOCCH-CHCOOHIm-[CH 2 -CH 2 C(O)-Y-SO 3 H]P-

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -O- (C 6 H 4 )-, für -NH-C(CHs) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind. Erfindungsgemäß bevorzugt sind weiterhin Copolymere, die Struktureinheiten der Formel

-[HOOCCH-CHCOOH] m -[CH 2 -CH(CH 3 )C(O)O-Y-SO 3 H] p -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -O- (C 6 H 4 )-, für -NH-C(CHa) 2 - oder -NH-CH(CH 2 CH 3 )- steht.

Zusammenfassend sind erfindungsgemäß solche Copolymere bevorzugt, die Struktureinheiten der Formeln

-[CH 2 -CHCOOH] m -[CH 2 -CH 2 C(O)-Y-SO 3 H] p -

-[CH 2 -C(CH 3 )COOH] m -[CH 2 -CH 2 C(O)-Y-SO 3 H] p -

-[CH 2 -CHCOOH] n -[CH 2 -CH(CH 3 )C(O)-Y-SO 3 H] P -

-[CH 2 -C(CH 3 )COOH] nT [CH 2 -CH(CH 3 )C(O)-Y-SO 3 H] P -

-[HOOCCH-CHCOOH] m -[CH 2 -CH 2 C(O)-Y-SO 3 H] p -

-[HOOCCH-CHCOOH] m -[CH 2 -CH(CH 3 )C(O)O-Y-SO 3 H] p -

enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = O bis 4, für -O- (C 6 H 4 )-, für -NH-C(CHa) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.

Die Monomerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.

Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.

Die Molmasse der erfindungsgemäß bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol "1 , vorzugsweise von 4000 bis 25.000 gmol "1 und insbesondere von 5000 bis 15.000 gmol "1 aufweisen.

Bleichmittel

Die Bleichmittel sind eine mit besonderem Vorzug eingesetzte wasch- oder reinigungsaktive Substanz. Unter den als Bleichmittel dienenden, in Wasser H 2 O 2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natrium perboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H 2 O 2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.

Weiterhin können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε- Phthalimidoperoxycapronsäure [Phthaliminoperoxyhexansäure (PAP)], o-

Carboxybenzamidoperoxycapronsäure, N-Nonenylamidoperadipinsäure und N-

Nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1 ,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure,

Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1 ,4-disäure, N 1 N- Terephthaloyl-di(δ-aminopercapronsäue) können eingesetzt werden.

Als Bleichmittel können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterozyklische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1 ,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.

Erfindungsgemäß werden Wasch- oder Reinigungsmittel, insbesondere maschinelle Geschirrspülmittel, bevorzugt, die 1 bis 35 Gew.-%, vorzugsweise 2,5 bis 30 Gew.-%, besonders bevorzugt 3,5 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Bleichmittel, vorzugsweise Natriumpercarbonat, enthalten.

Der Aktivsauerstoffgehalt der Wasch- oder Reinigungsmittel, insbesondere der maschinellen Geschirrspülmittel, beträgt, jeweils bezogen auf das Gesamtgewicht des Mittels, vorzugsweise zwischen 0,4 und 10 Gew.-%, besonders bevorzugt zwischen 0,5 und 8 Gew.-% und insbesondere zwischen 0,6 und 5 Gew.-%. Besonders bevorzugte Mittel weisen einen

Aktivsauerstoffgehalt oberhalb 0,3 Gew.-%, bevorzugt oberhalb 0,7 Gew.-%, besonders bevorzugt oberhalb 0,8 Gew.-% und insbesondere oberhalb 1 ,0 Gew.-% auf.

Bleichaktivatoren

Bleichaktivatoren werden in Wasch- oder Reinigungsmitteln beispielsweise eingesetzt, um beim Reinigen bei Temperaturen von 60 0 C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran. Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insbesondere kationische Nitrile der Formel

in der R 1 für -H, -CH 3 , einen C 2-24 -Alkyl- oder -Alkenylrest, einen substituierten C 2-24 -Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH 2 , -CN, einen Alkyl- oder Alkenylarylrest mit einer C 1-24 -Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C 1-24 -Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R 2 und R 3 unabhängig voneinander ausgewählt sind aus -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH(CH 3 )-CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH(OH)-CH 3 , -CH 2 - CH 2 -CH 2 -OH, -CH 2 -CH(OH)-CH 3 , -CH(OH)-CH 2 -CH 3 , -(CH 2 CH 2 -O) n H mit n = 1 , 2, 3, 4, 5 oder 6 und X ein Anion ist.

Besonders bevorzugt ist ein kationisches Nitril der Formel

in der R 4 , R 5 und R 6 unabhängig voneinander ausgewählt sind aus -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 - CH 3 , -CH(CH 3 )-CH 3 , wobei R 4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R 5 = R 6 = -CH 3 und insbesondere R 4 = R 5 = R 6 = -CH 3 gilt und Verbindungen der Formeln (CH 3 ) 3 N (+) CH 2 -CN X ' , (CH 3 CH 2 ) 3 N (+) CH 2 -CN X " , (CH 3 CH 2 CH 2 ) 3 N (+) CH 2 -CN X " , (CH 3 CH(CH 3 )) 3 N (+) CH 2 -CN X " , oder (HO-CH 2 -CH 2 ) 3 N (+) CH 2 -CN X " besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH 3 ) 3 N (+) CH 2 -CN X ' , in welcher X " für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.

Als Bleichaktivatoren können weiterhin Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n- Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA) sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.

Sofern neben den Nitrilquats weitere Bleichaktivatoren eingesetzt werden sollen, werden bevorzugt Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis

10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt.

Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingesetzt werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru- Amminkomplexe sind als Bleichkatalysatoren verwendbar.

Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.

Enzyme

Zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung von Wasch- oder Reinigungsmitteln sind Enzyme einsetzbar. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Wasch- oder Reinigungsmittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10 "6 bis 5 Gew.-% bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.

Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase ® von der Firma Novozymes A/S, Bagsvaerd, Dänemark, erhältlich. Die

Subtilisine 147 und 309 werden unter den Handelsnamen Esperase ® , beziehungsweise Savinase ® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP ® geführten Varianten ab.

Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym ® , Relase ® , Everlase ® , Nafizym, Natalase ® , Kannase ® und Ovozymes ® von der Firma Novozymes, die unter den Handelsnamen, Purafect ® , Purafect ® OxP und Properase ® von der Firma Genencor, das unter dem Handelsnamen Protosol ® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi ® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather ® und Protease P ® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.

Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliqußfaciens oder aus B. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus B. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl ® und von der Firma Genencor unter dem Namen Purastar ® ST erhältlich. Weiterentwicklungsprodukte dieser α- Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl ® und Termamyl ® ultra, von der Firma Genencor unter dem Namen Purastar ® OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase ® erhältlich. Die α-Amylase von ß. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN ® vertrieben, und abgeleitete Varianten von der α- Amylase aus S. stearothermophilus unter den Namen BSG ® und Novamyl ® , ebenfalls von der Firma Novozymes.

Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben.

Darüber hinaus sind die unter den Handelsnamen Fungamyl ® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT ® .

Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der

Firma Novozymes unter den Handelsnamen üpolase ® , Lipolase ® Ultra, LipoPrime ® , üpozyme ® und Lipex ® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE ® , Lipase P ® , Lipase B ® , beziehungsweise Lipase CES ® , Lipase AKG ® , Bacillis sp. Lipase ® , Lipase AP ® , Lipase M-AP ® und Lipase AML ® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase ® und Lipomax ® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30 ® , Lipase OF ® und Lipase PL ® vertriebenen Enzyme zu erwähnen, femer das Produkt Lumafast ® von der Firma Genencor.

Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und ß-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase ® und Pektinex AR ® von der Firma Novozymes, unter dem Namen Rohapec ® B1L von der Firma AB Enzymes und unter dem Namen Pyrolase ® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus S. subtilis gewonnene ß-Glucanase ist unter dem Namen Cereflo ® von der Firma Novozymes erhältlich.

Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie HaIo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Als geeignete Handelsprodukte sind Denilite ® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluss zu gewährleisten (Mediatoren).

Die Enzyme stammen beispielsweise entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.

Die Aufreinigung der betreffenden Enzyme erfolgt vorzugsweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.

Die Enzyme können in jeder nach dem Stand der Technik etablierten Form eingesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.

Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.

Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.

Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Wasch- oder Reinigungsmittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.

Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin- Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-substituierte, meta-substituierte und para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Als peptidische

Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.

Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C n , wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen zusätzlich ein enthaltenes Enzym zu stabilisieren.

Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calcium-Acetat oder Calcium-Formiat, und Magnesiumsalze.

Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N- Oxid-enthaltende Polymere wirken als Enzymstabilisatoren. Andere polymere Stabilisatoren sind die linearen C 8 -Ci 8 Polyoxyalkylene. Alkylpolyglycoside können die enzymatischen Komponenten stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen wirken ebenfalls als Enzym-Stabilisatoren.

Reduktionsmittel und Antioxidantien erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall. Ein schwefelhaltiges Reduktionsmittel ist beispielsweise Natrium-Sulfit.

Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid- Aldehyd-Stabilisatoren wird durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt.

Bevorzugt werden ein oder mehrere Enzyme und/oder Enzymzubereitungen, vorzugsweise feste Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4,5 Gew.-% und insbesondere von 0,4 bis 4 Gew.-%, jeweils bezogen auf das gesamte enzymhaltige Mittel, eingesetzt.

Glaskorrosionsinhibitoren

Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glaskorrosionsinhibitoren stammen aus der Gruppe der Magnesium- und/oder Zinksalze und/oder Magnesium- und/oder Zinkkomplexe.

Eine bevorzugte Klasse von Verbindungen, die zur Verhinderung der Glaskorrosion eingesetzt werden können, sind unlösliche Zinksalze.

Unlösliche Zinksalze im Sinne dieser bevorzugten Ausführungsform sind Zinksalze, die eine Löslichkeit von maximal 10 Gramm Zinksalz pro Liter Wasser bei 2O 0 C besitzen. Beispiele für erfindungsgemäß besonders bevorzugte unlösliche Zinksalze sind Zinksilikat, Zinkcarbonat, Zinkoxid, basisches Zinkcarbonat (Zn 2 (OH) 2 CO 3 ), Zinkhydroxid, Zinkoxalat, Zinkmonophosphat (Zn 3 (PO 4 ) 2 ) und Zinkpyrophosphat (Zn 2 (P 2 O 7 )).

Die genannten Zinkverbindungen werden vorzugsweise in Mengen eingesetzt, die einen Gehalt der Mittel an Zinkionen zwischen 0,02 und 10 Gew.-%, vorzugsweise zwischen 0,1 und 5,0 Gew.- % und insbesondere zwischen 0,2 und 1,0 Gew.-%, jeweils bezogen auf das gesamte glaskorrosionsinhibitorhaltige Mittel, bewirken. Der exakte Gehalt der Mittel am Zinksalz bzw. den Zinksalzen ist naturgemäß abhängig von der Art der Zinksalze - je weniger löslich das eingesetzte Zinksalz ist, umso höher sollte dessen Konzentration in den Mitteln sein.

Da die unlöslichen Zinksalze während des Geschirreinigungsvorgangs größtenteils unverändert bleiben, ist die Partikelgröße der Salze ein zu beachtendes Kriterium, damit die Salze nicht auf Glaswaren oder Maschinenteilen anhaften. Hier sind Mittel bevorzugt, bei denen die unlöslichen Zinksalze eine Partikelgröße unterhalb 1 ,7 Millimeter aufweisen.

Wenn die maximale Partikelgröße der unlöslichen Zinksalze unterhalb 1 ,7 mm liegt, sind unlösliche Rückstände in der Geschirrspülmaschine nicht zu befürchten. Vorzugsweise hat das unlösliche Zinksalz eine mittlere Partikelgröße, die deutlich unterhalb dieses Wertes liegt, um die Gefahr unlöslicher Rückstände weiter zu minimieren, beispielsweise eine mittlere Partikelgröße kleiner 250 μm. Dies gilt wiederum umso mehr, je weniger das Zinksalz löslich ist. Zudem steigt die glaskorrosionsinhibierende Effektivität mit sinkender Partikelgröße. Bei sehr schlecht löslichen Zinksalzen liegt die mittlere Partikelgröße vorzugsweise unterhalb von 100 μm. Für noch schlechter lösliche Salze kann sie noch niedriger liegen; beispielsweise sind für das sehr schlecht lösliche Zinkoxid mittlere Partikelgrößen unterhalb von 60 μm bevorzugt.

Eine weitere bevorzugte Klasse von Verbindungen sind Magnesium- und/oder Zinksalz(e) mindestens einer monomeren und/oder polymeren organischen Säure. Diese bewirken, dass auch bei wiederholter Benutzung die Oberflächen gläsernen Spülguts nicht korrosiv verändert, insbesondere keine Trübungen, Schlieren oder Kratzer aber auch kein Irisieren der Glasoberflächen verursacht werden.

Obwohl alle Magnesium- und/oder Zinksalz(e) monomerer und/oder polymerer organischer Säuren eingesetzt werden können, werden doch, die Magnesium- und/oder Zinksalze monomerer und/oder polymerer organischer Säuren aus den Gruppen der unverzweigten gesättigten oder ungesättigten Monocarbonsäuren, der verzweigten gesättigten oder ungesättigten Monocarbonsäuren, der gesättigten und ungesättigten Dicarbonsäuren, der aromatischen Mono-, Di- und Tricarbonsäuren, der Zuckersäuren, der Hydroxysäuren, der Oxosäuren, der Aminosäuren und/oder der polymeren Carbonsäuren bevorzugt.

Das Spektrum der erfindungsgemäß bevorzugten Zinksalze organischer Säuren, vorzugsweise organischer Carbonsäuren, reicht von Salzen, die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/I, vorzugsweise unterhalb 10 mg/l, insbesondere unterhalb 0,01 mg/l aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/l, vorzugsweise oberhalb 500 mg/l, besonders bevorzugt oberhalb 1 g/l und insbesondere oberhalb 5 g/l aufweisen (alle Löslichkeiten bei 2O 0 C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkeitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.

Mit besonderem Vorzug wird als Glaskorrosionsinhibitor mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkeitrat eingesetzt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.

Im Rahmen der vorliegenden Erfindung beträgt der Gehalt von Reinigungsmitteln an Zinksalz vorzugsweise zwischen 0,1 bis 5 Gew.-%, bevorzugt zwischen 0,2 bis 4 Gew.-% und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn 2+ ) zwischen 0,01 bis 1 Gew.-%, vorzugsweise zwischen 0,02 bis 0,5 Gew.-% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des glaskorrosionsinhibitorhaltigen Mittels.

Korrosionsinhibitoren

Korrosionsinhibitoren dienen dem Schütze des Spülgutes oder der Maschine, wobei im Bereich des maschinellen Geschirrspülens besonders Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder - komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Als Beispiele der erfindungsgemäß bevorzugt einzusetzenden 3-Amino-5-alkyl- 1,2,4-triazole können genannt werden: Propyl-, -Butyl-, -Pentyl-, -Heptyl-, -Octyl-, -Nonyl-, -Decyl-, -Undecyl-, -Dodecyl-, -Isononyl-, -Versatic-10-säurealkyl-, -Phenyl-, -p-Tolyl-, -(4-tert. Butylphenyl)-, -(4-Methoxyphenyl)-, -(2-, -3-, -4-Pyridyl)-, -(2-Thienyl)-, -(5-Methyl-2-furyl)-, -(5- Oxo-2-pyrrolidinyl)-, -3-amino-1 ,2,4-triazol. In Geschirrspülmitteln werden die AIkyl-amino-1 ,2,4- triazole bzw. ihre physiologisch verträglichen Salze in einer Konzentration von 0,001 bis 10 Gew.- %, vorzugsweise 0,0025 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5-Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5- Isononyl-, 5-Versatic-10-säurealkyl-3-amino-.1,2,4-triazole sowie Mischungen dieser Substanzen.

Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und Stickstoff-haltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen eingesetzt. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti 1 Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.

Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.

Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z.B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z.B. Stearat.

Metallkomplexe im Sinne der Erfindung sind Verbindungen, die aus einem Zentralatom und einem oder mehreren Liganden sowie gegebenenfalls zusätzlich einem oder mehreren der o.g. Anionen bestehen. Das Zentralatom ist eines der o.g. Metalle in einer der o.g. Oxidationsstufen. Die Liganden sind neutrale Moleküle oder Anionen, die ein- oder mehrzähnig sind; der Begriff "Liganden" im Sinne der Erfindung ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1990, Seite 2507" näher erläutert. Ergänzen sich in einem Metallkomplex die Ladung des Zentralatoms und die Ladung des/der Liganden nicht auf Null, so sorgt, je nachdem, ob ein kationischer oder ein anionischer Ladungsüberschuß vorliegt, entweder eines oder mehrere der o.g. Anionen oder ein oder mehrere Kationen, z.B. Natrium-, Kalium-, Ammoniumionen, für den Ladungsausgleich. Geeignete Komplexbildner sind z.B. Citrat, Acetylacetonat oder 1-Hydroxyethan-1 ,1-diphosphonat.

Die in der Chemie geläufige Definition für "Oxidationsstufe" ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1991 , Seite 3168" wiedergegeben.

Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnSO 4 , Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-1 ,1- diphosphonat], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co(NO 3 ) 2 , Ce(NO 3 ) 3 , sowie deren Gemische, so dass die Metallsalze und/oder Metallkomplexe ausgewählt aus der Gruppe MnSO 4 , Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-1 ,1- diphosphonat], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co(NO 3 ) 2 , Ce(NO 3 ) 3 mit besonderem Vorzug eingesetzt werden.

Bei diesen Metallsalzen bzw. Metallkomplexen handelt es sich im allgemeinen um handelsübliche Substanzen, die zum Zwecke des Silberkorrosions-Schutzes ohne vorherige Reinigung in den Wasch- oder Reinigungsmitteln eingesetzt werden können. So ist z.B. das aus der SO 3 -Her- stellung (Kontaktverfahren) bekannte Gemisch aus fünf- und vierwertigem Vanadium (V 2 O 5 , VO 2 , V 2 O 4 ) geeignet, ebenso wie das durch Verdünnen einer Ti(SO 4 ) 2 -Lösung entstehende Titanylsulfat, TiOSO 4 .

Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise gecoatet, d.h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung

oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindustrie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Carnaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren. Dabei wird das bei Raumtemperatur feste Coatingmaterial in geschmolzenem Zustand auf das zu coatende Material aufgebracht, z.B. indem feinteiliges zu coatendes Material in kontinuierlichem Strom durch eine ebenfalls kontinuierlich erzeugte Sprühnebelzone des geschmolzenen Coatingmaterials geschleudert wird. Der Schmelzpunkt muss so gewählt sein, dass sich das Coatingmaterial während der Silberbehandlung leicht löst bzw. schnell aufschmilzt. Der Schmelzpunkt sollte idealerweise im Bereich zwischen 45 0 C und 65 0 C und bevorzugt im Bereich 5O 0 C bis 6O 0 C liegen.

Die genannten Metallsalze und/oder Metallkomplexe sind in Reinigungsmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.-%, vorzugsweise 0,2 bis 2,5 Gew.-%, jeweils bezogen auf das gesamte korrosionsinhibitorhaltige Mittel enthalten.

Desintegrationshilfsmittel

Um den Zerfall vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.

Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.

Bevorzugt werden Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt.

Als bevorzugte Desintegrationsmittel werden Desintegrationsmittel auf Cellulosebasis eingesetzt, so dass bevorzugte Wasch- und Reinigungsmittel ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C 6 H 10 Os) n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.

Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel ® TF-30-HG von der Firma Rettenmaier erhältlich.

Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose eingesetzt werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die

mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.

Bevorzugte Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulierter oder kompaktierter Form, sind in den desintegrationsmittelhaltigen Mitteln in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationsmittelhaltigen Mittels, enthalten.

Erfindungsgemäß bevorzugt können darüber hinaus weiterhin gasentwickelnde Brausesysteme als Tablettendesintegrationshilfsmittel eingesetzt werden. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den Wasch- und Reinigungsmittel eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.

Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.

Bevorzugt werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 Gew.-% und insbesondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen das Gesamtgewicht des Mittels, eingesetzt.

Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate,

Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure,

Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan ® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).

Bevorzugt sind Acidifizierungsmittel im Brausesystem aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische.

Duftstoffe

Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, < χ -lsomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.

Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muss ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note),

"Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahmehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.

Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennadelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaϊvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskömeröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Stemanisöl, Terpentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang- Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronellöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylalkohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bomylacetat, α-Bromstyrol, n- Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p- Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon,

Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl- ß-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, ß-Naphtholethylether, ß-Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy- Acetophenon, Pentadekanolid, ß-Phenylethylalkohol, Phenylacetaldehyd-Dimethyacetal,

Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Ursprung, die allein oder in Mischungen eingesetzt werden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -Propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.

Die Duftstoffe können direkt verarbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.

Farbstoffe

Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den farbstoffhaltigen Mitteln zu behandelnden Substraten wie beispielsweise Textilien, Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.

Bei der Wahl des Färbemittels muss beachtet werden, dass die Färbemittel im Falle von Textilwaschmitteln keine zu starke Affinität gegenüber textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen, während im Falle von Reinigungsmitteln eine zu starke Affinität gegenüber Glas, Keramik oder Kunststoffgeschirr vermieden werden muss. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, dass Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, dass wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z.B. dem oben genannten Basacid ® Grün oder dem gleichfalls oben genannten Sandolan ® Blau, werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10 '2 bis 10 "3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z.B. den oben genannten Pigmosol ® - Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10 '3 bis 10 '4 Gew.-%.

Es werden Färbemittel bevorzugt, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönem. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (Cl) Teil 1: Acid Green 1 ; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid ® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol ® Blau 6900 (Cl 74160), Pigmosol ® Grün 8730 (Cl 74260), Basonyl ® Rot 545 FL (Cl 45170), Sandolan ® Rhodamin EB400 (Cl 45100), Basacid ® Gelb 094 (Cl 47005), Sicovit ® Patentblau 85 E 131 (Cl 42051), Acid Blue 183 (CAS 12217-22-0, Cl Acidblue 183), Pigment Blue 15 (Cl 74160), Supranol ® Blau GLW (CAS 12219-32-8, Cl Acidblue 221)), Nylosan ® Gelb N-7GL SGR (CAS 61814-57-1 , Cl Acidyellow 218) und/oder Sandolan ® Blau (Cl Acid Blue 182, CAS 12219-26-0) zum Einsatz.

Zusätzlich zu den bisher ausführlich beschriebenen Komponenten können die Wasch- und Reinigungsmittel weitere Inhaltsstoffe enthalten, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften dieser Mittel weiter verbessern. Bevorzugte Mittel enthalten einen oder mehrere Stoffe aus der Gruppe der Elektrolyte, pH-Stellmittel, Fluoreszenzmittel, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optische Aufheller,

Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffen, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber.

Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI 2 in den Wasch- oder Reinigungsmitteln bevorzugt.

Um den pH-Wert von Wasch- oder Reinigungsmitteln in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.

Als Schauminhibitoren, kommen u.a. Seifen, Öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich

beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R 2 SiO)X aufgebaut sind und auch als Silikonöle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten dar mit einem Molekulargewicht zwischen 1000 und 150.000, und Viskositäten zwischen 10 und 1.000.000 mPa-s.

Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.

Optische Aufheller (sogenannte „Weißtöner") können den Wasch- oder Reinigungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4 ' -Distyryl-biphenylen,

Methylumbelliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.

Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar.

Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie

Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.

Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können synthetische Knitterschutzmittel eingesetzt werden. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.

Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- undZirconiumsalze, organische Silikate, Silikone, Polyacrylsäureester mit perfluorierter Alkohol- Komponente oder mit perfluoriertem Acyl- oder Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, die die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprägniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten oder Siloxan-Gruppen. Geeignete Hydrophobiermittel sind z.B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- oder Zirconium-Salzen, quartäre Ammonium-Verbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäuremodifizierte Melaminharze, Chrom-Komplexsalze, Silikone, Zinn-organische Verbindungen und Glutardiaidehyd sowie perfluorierte Verbindungen. Die hydrophobierten Materialien fühlen sich nicht fettig an; dennoch perlen - ähnlich wie an gefetteten Stoffen - Wassertropfen an ihnen ab, ohne zu benetzen. So haben z.B. Silikon-imprägnierte Textilien einen weichen Griff und sind wasser- und schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.

Zur Bekämpfung von Mikroorganismen können antimikrobielle Wirkstoffe eingesetzt werden. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw.. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.

Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.

Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.

Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff" (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können Weichspüler eingesetzt werden. Die Wirkstoffe in Weichspülformulierungen sind "Esterquats", quartäre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldimethylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten. Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, dass man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmitteln quaterniert. Als Appretur weiterhin geeignet ist Dimethylolethylenhamstoff.

Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügeins der behandelten Textilien können Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten von Wasch- oder Reinigungsmitteln durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate

sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C- Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglykole aufweisen sowie die Polyalkylenoxid-modifizierten Dimetylpolysiloxane.

Schließlich können erfindungsgemäß auch UV-Absorber eingesetzt werden, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.

Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfindung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milch- eiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z.B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure- Kondensationsprodukte.

Zu den nichtwässrigen Lösungsmittel, welche erfindungsgemäß eingesetzt werden können, zählen insbesondere die organischen Lösungsmittel, von denen hier nur die wichtigsten aufgeführt sein können: Alkohole (Methanol, Ethanol, Propanole, Butanole, Octanole, Cyclohexanol), Glykole (Ethylenglykol, Diethylenglykol), Ether und Glykolether (Diethylether, Dibutylether, Anisol, Dioxan, Tetrahydrofuran, Mono-, Di-, Tri-, Polyethylenglykolether), Ketone (Aceton, Butanon, Cyclohexanon), Ester (Essigsäureester, Glykolester), Amide und andere

Stickstoff-Verbindungen (Dimethylformamid, Pyridin, N-Methylpyrrolidon, Acetonitril), Schwefel- Verindungen (Schwefelkohlenstoff, Dimethylsulfoxid, Sulfolan), Nitro-Verbindungen (Nitrobenzol), Halogenkohlenwasserstoffe (Dichlormethan, Chloroform, Tetrachlormethan, Tri-, Tetrachlorethen, 1 ,2-Dichlorethan, Chlorfluorkohlenstoffe), Kohlenwasserstoffe (Benzine, Petrolether, Cyclohexan, Methylcyclohexan, Decalin, Terpen-Lösungsmittel, Benzol, Toluol, XyIoIe). Alternativ können statt der reinen Lösungsmittel auch deren Gemische, welche beispielsweise die Lösungseigenschaften verschiedener Lösungsmittel vorteilhaft vereinigen, eingesetzt werden. Ein derartiges und im Rahmen der vorliegenden Anmeldung besonders bevorzugtes Lösungsmittelgemisch ist beispielsweise Waschbenzin, ein zur chemischen Reinigung geeignetes Gemisch verschiedener Kohlenwasserstoffe, vorzugsweise mit einem Gehalt an C12 bis C14 Kohlenwasserstoffen oberhalb 60 Gew.-%, besonders bevorzugt oberhalb 80 Gew.-% und insbesondere oberhalb 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Gemischs, vorzugsweise mit einem Siedebereich von 81 bis 110 0 C.