Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CYCLIC PEPTIDE SPECIFICALLY BINDING TO APOPTOTIC CELLS AND USE THEREOF
Document Type and Number:
WIPO Patent Application WO/2016/089187
Kind Code:
A1
Abstract:
The present invention relates to: a cyclic peptide (cyclo [Cys-Gln-Arg-Pro-Pro-Arg-Cys] peptide) composed of the amino acid sequence of SEQ ID NO: 2; and a composition for apoptotic cell detection, drug delivery and imaging, containing the same as an active ingredient. The cyclic peptide (cyclo [Cys-Gln-Arg-Pro-Pro-Arg-Cys] peptide), which is composed of the amino acid sequence of SEQ ID NO: 2, of the present invention, has an excellent effect of binding to apoptotic cells, compared with a linear peptide thereof, thereby greatly facilitating the detection of apoptotic cells and imaging of an affected part under in vivo apoptosis, and the detection and imaging signal shows a very high correlation in disease prognosis prediction. Therefore, the cyclic peptide of the present invention binds to an imaging material, thereby early diagnosing the response of a drug for treating diseases associated with abnormal cell proliferation, and can be used, by binding to a therapeutic material, for the purpose of selectively delivering a drug to tissue affected by diseases associated with apoptosis.

Inventors:
LEE BYUNG-HEON (KR)
KIM IN-SAN (KR)
JUNG HYUN-KYUNG (KR)
Application Number:
PCT/KR2015/013316
Publication Date:
June 09, 2016
Filing Date:
December 07, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KYUNGPOOK NAT UNIV IND ACAD (KR)
International Classes:
C07K7/06; A61K48/00; A61P9/10; A61P25/28; A61P35/00; G01N33/15; G01N33/53
Foreign References:
KR20140130367A2014-11-10
KR20090118868A2009-11-18
KR20110053119A2011-05-19
KR20120060263A2012-06-12
Other References:
KYUNGPOOK NATIONAL UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION: "Monitoring of Apoptosis And Drug Efficacy Using A Peptide Probe", NATIONAL MEDICAL TECHNOLOGY R&D BUSINESS, May 2013 (2013-05-01)
JUNG ET AL.: "In Vivo Near-Infrared Fluorescence Imaging of Apoptosis Using Histone HI-Targeting Peptide Probe After Anti-Cancer Treatment With Cisplatin And Cetuximab For Early Decision On Tumor Response", PLOS ONE, vol. 9, no. 6, 20 June 2014 (2014-06-20), pages 1 - 9
Attorney, Agent or Firm:
LEE, Hee Sook et al. (KR)
이희숙 (KR)
Download PDF:
Claims:
【청구의 범위】

【청구항 1】

사멸세포 (apoptot ic cel l )와 특이적으로 결합하는, 서열번호 2로 표시되는 아미노산서열로 이루어진 고리형 펩타이드.

【청구항 2】

제 1항의 펩타이드를 유효성분으로 포함하는 사멸 세포 검출용 조성물. 【청구항 3】

제 1항의 펩타이드를 유효성분으로 포함하는 세포사멸 관련 질환의 환부에 대 한 영상화용 조성물.

【청구항 4】

제 3항에 있어서, 상기 세포사멸 관련 질환은 종양성 질환, 심근경색, 동맥경 화, 퇴행성 뇌신경질환 및 뇌졸중으로 이루어지는 군에서 선택된 어느 하나인 것을 특징으로 하는 조성물.

【청구항 5]

계 4항에 있어서, 상기 종양성 질환은 뇌암, 신경내분비 암, 위암, 폐암, 유 방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 부신암, 대장 암, 결장암, 자궁경부암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 및 요관 암으로 이루어지는 군에서 선택된 어느 하나인 것을 특징으로 하는 조성물.

【청구항 6]

제 4항에 있어서, 상기 퇴행성 뇌신경질환은 알츠하이머 병, 파킨슨 병, 헌팅 턴 병 (Hunt ington ' s di sease) , 루게릭 병 (Amyotrophi c lateral sclerosi s) , 및 니 만-픽 병 (Nieman-Pi ck di sease)으로 이루어진 군에서 선택된 질환인 것을 특징으로 하는 조성물.

【청구항 7】

제 1항의 펩타이드를 유효성분으로 포함하는, 비정상적 세포증식 관련 질환을 가지는 개체에 대한 세포사멸 유도 활성을 가지는 시험제제의 초기 약물 반웅성 스 크리닝용 조성물.

【청구항 8】

제 7항에 있어서, 상기 비정상적 세포증식 관련 질환은 종양성 질환 또는 이 상증식 혈관 질환인 것을 특징으로 하는 조성물.

【청구항 9]

제 2항 내지 제 8항 중 어느 한 항에 있어서, 상기 펩타이드는 발색효소, 방사 성동위원소, 크로모포어 (chromophore) , 발광물질, 형광물질 (f luorescer ), 가도리늄 (gadol inium) , 상자성입자 (super paramagnet i c part i cles) 및 초상자성입자 (ul trasuper paramagnet ic part icles)로 이루어진 군에서 선택되는 어느 하나로 표 지된 것을 특징으로 하는 조성물.

【청구항 10】

(a) 제 1항의 펩타이드를 시료와 흔합하는 단계;

(b) 미결합되거나 비특이적으로 결합된 상기 펩타이드를 제거하는 단계; 및

(c) 상기 펩타이드의 결합 여부 및 위치를 확인하는 단계를 포함하는 사멸 세포의 검출 방법 .

【청구항 111

(a) 비정상적 세포증식 관련 질환을 가지는 개체에 대하여, 상기 개체로부터 분리된 환부의 표적조직에 세포사멸 유도 활성을 가지는 시험제제를 처리하는 단 계;

(b) 상기 (a) 단계에서 시험제제가 처리된 표적조직과 시험제제가 처리되지 않은 대조군 표적조직에 표지화된 제 1항의 펩타이드를 처리하는 단계; 및

(c) 상기 (b) 단계에서 펩타이드 처리된 표적조직들에 대하여 상기 표지화 수단을 검출 및 비교하는 단계를 포함하는

비정상적 세포증식 관련 질환을 가지는 개체에 대한 시험제제의 초기 약물 반응성을 스크리닝 하는 방법.

【청구항 12]

제 11항에 있어서, 상기 방법은 (d) 상기 대조군 표적조직과 비교하여 시험제제가 처리된 표적조직에서 표지 화 수단의 검출강도가 높으면, 상기 시험제제에 반웅성이 있는 것으로 판정하는 단 계를 추가적으로 포함하는 것을 특징으로 하는, 비정상적 세포증식 관련 질환을 가 지는 개체에 대한 시험제제의 초기 약물 반응성을 스크리닝 하는 방법.

【청구항 13】

제 11항에 있어서, 상기 표지화 수단은 발색효소, 방사성동위원소, 크로모포 어 (chromophore), 발광물질 , 형광물질 (f luorescer), 가도리늄 (gadol inium), 상자성 입자 (super paramagnetic particles) 및 초상자성입자 (ultrasuper paramagnetic particles)로 이루어진 군에서 선택되는 어느 하나의 표지물질인 것을 특징으로 하 는 방법 .

【청구항 14】

제 1항의 펩타이드를 유효성분으로 포함하는 세포사멸 관련 질환의 약물 전달 용 조성물.

【청구항 15]

제 14항에 있어서, 상기 세포사멸 관련 질환은 종양성 질환, 심근경색, 동맥 경화, 퇴행성 뇌신경질환 및 뇌졸중으로 이루어지는 군에서 선택된 어느 하나인 것 을 특징으로 하는 조성물.

【청구항 16]

제 1항의 펩타이드 및 이와 결합된 항-종양성 질환 제제를 유효성분으로 포함 하는 종양성 질환 예방 및 치료용 약학적 조성물.

【청구항 17]

제 16항에 있어서, 상기 항—종양성 질환 제제는 파클리탁샐, 독소루비신, 빈 크리스틴, 다우노루비신 (daunorubicin), 빈블라스틴 (vinblastine) , 액티노마이신- D(actinomycin-D), 도세탁샐 (docetaxel ), 에토포사이드 (etoposide), 테니포사이드 (teniposide) , 비산트렌 (bisantrene), , 글리백 (Gleevec; STI-571), 시스플라틴 (cisplain), 5-플로오우라실 (5-f luouraci 1 ), 아드 리아마이신 (adriamycin), 메토트렉세이트 (methotrexate) , 부설판 (busulfan), 클로 람부실 (chlorambuci l ) , 시클로포스파미드 ( cyclophosphamide ), 멜팔란 (melphalan), 니트로겐 무스타드 (nitrogen mustard) , 니트로소우레아 (ni trosourea), 스트렙토키 나제 (streptokinase) , 유로키나제 (urokinase), 알테플라제 (alteplase) , 안지오텐산 (angiotensin) I I 억제제, 알도스테론 (aldosterone) 수용체 억제제, 에리트로포이 에틴 (erythropoiet in) , NMDA (N-methyl-d-aspartate) 수용체 억제제, 로바스타틴 (Lovastat in) , 라파마이신 (Rapamycin), 셀레브텍스 (Celebrex), 티클로핀 (Ticlopin) 마리마스타트 (Marimastat ) 및 트로케이드 (Trocade)로 이루어진 군에서 선택된 약제 와 결합된 것을 특징으로 하는 조성물.

【청구항 18】

계 1항의 펩타이드 및 이와 결합된 퇴행성 뇌신경질환 치료제를 유효성분 으 로 포함하는 퇴행성 뇌신경질환 예방 및 치료용 조성물.

【청구항 19]

겨 U항의 펩타이드 및 이와 결합된 심근경색 치료제를 유효성분으로 포함하는 심근경색 예방 및 치료용 약학적 조성물.

【청구항 20]

제 1항의 폴리펩타이드 및 이와 결합된 동맥경화 치료제를 유효성분으로 포함 하는 동맥경화 예방 및 치료용 약학적 조성물.

【청구항 21】

제 1항의 폴리펩타이드 및 이와 결합된 뇌졸중 치료제를 유효성분으로 포함하 는 뇌졸중 예방 및 치료용 약학적 조성물.

【청구항 22]

제 14항 내지 제 21항 중 어느 한 항에 있어서, 상기 조성물은 발색효소, 방 사성동위원소, 크로모포어 (chromophore) , 발광물질, 형광물질 (f luorescer), 가도리 늄 (gadol inium), 상자성입자 (super paramagnet ic part icles) 및 초상자성입자 (ultrasuper paramagnet ic part icles)로 이루어진 군에서 선택되는 어느 하나의 표 지물질을 추가로 포함하는 것을 특징으로 하는 조성물. 【청구항 23】

제 1항의 펩타이드 및 이와 결합된 항—종양성 질환 제제를 필요로 하는 개체 에 유효량으로 투여하여 종양성 질환을 치료하는 것을 특징으로 하는 방법.

【청구항 24]

제 1항의 펩타이드 및 이와 결합된 퇴행성 뇌신경질환 치료제를 필요로 하는 개체에 유효량으로 투여하여 퇴행성 뇌신경질환을 예방하거나 치료하는 것을 특징 으로 하는 방법 .

【청구항 25】

제 1항의 펩타이드 및 이와 결합된 심근경색 치료제를 필요로 하는 개체에 유 효량으로 투여하여 심근경색올 예방하거나 치료하는 것을 특징으로 하는 방법.

【청구항 26]

제 1항의 폴리펩타이드 및 이와 결합된 동맥경화 치료제를 필요로 하는 개체 에 유효량으로 투여하여 동맥경화를 예방하거나 치료하는 것을 특징으로 하는 방 법.

【청구항 27]

제 1항의 폴리펩타이드 및 이와 결합된 뇌졸중 치료제를 필요로 하는 개체에 유효량으로 투여하여 뇌졸중을 예방하거나 치료하는 것을 특징으로 하는 방법.

Description:
【명세서】

【발명의 명칭】

사멸세포와 특이적으로 결합하는 고리형 펩타이드 및 이의 용도 【기술분야】

본 출원은 2014년 12월 5일에 출원된 대한민국 특허출원 제 10-2014— 0173936 호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다. 본 발명은 사멸세포 (apoptot ic cel l )와 특이적으로 결합하는 고리형 펩타이 드 및 이의 용도에 관한 것으로, 보다 상세하게는 서열번호 2로 표시되는 아미노산 서열로 이루어진 고리형 펩타이드 및 이를 유효성분으로 포함하는 사멸세포 검출 용, 약물 전달용, 영상화용 조성물 등에 관한 것이다.

【배경기술】

특정 질병에 대한 감수성 뿐만 아니라, 이러한 질병에 대한 약물 감수성은 사람마다 다르다. 의사가 환자에게 약을 처방할 때에는 진단결과에 근거한 의사의 주관적 판단에 의하여 적절한 의약품을 처방하는데, 경우에 따라서는 처방된 의약 품이 적절한 치료효과를 나타내지 못할 수도 있어, 일정 경과를 지켜 본 후에 다른 의약품을 처방하는 시행착오를 겪을 수도 있다. 이러한 경우 약물에 대한 반웅성 ( 또는 감수성)을 초기에 빠르게 판단하여, 그 약물을 계속 사용할지 또는 다른 약물 로 대체할지를 결정하는 것이 중요하다. 특히 장기간의 투병기간이 소요되는 질환 의 치료에 있어서 시간 및 비용 부담을 줄이기 위하여, 특정 치료 방법이나 약물에 대한 반응성과 효과를 초기에 판단하는 것은 환자의 치료 방침을 결정하는 데 있어 서 매우 중요하다. 한편, 세계적으로 위암 (gastr i c cancer)은 암으로 인한 죽음에 있어서 두번 째 주요 원인이다 [ 1] . 진행성 위암 (advanced gastr ic cancer )을 위한 단일물걸 화 학요법 (S ingle— agent chemotherapy)은 카페시타빈 (capecitabine) 또는 5-플루오로 우라실 (5-f luorouraci l ) 등을 사용하는 반면에, 복합치료 (병용치료) 요법은 시스플 라틴 (ci splat in)과 5-플루오로우라실, 또는 시스플라틴과 카페시타빈 등올 병용 사 용한다 [2] · 불행하게도, 위암에서 상기 화학요법에 대한 반웅성은 낮다. 진행성 위 암에서 상기 화학요법에 대한 반웅률은 단일물질 치료에서 10-30%, 물질 병용치료 시에는 3으60%의 범위로 나타나고 있다 [2] . 뿐만아니라, 세툭시맙 (cetuximab, ant i -e idermal growth factor receptor ant ibody) 및 H&l-^H^^Ctrastuzumab , ant i -Her 2 receptor ant ibody)과 같은 분자적 표적 약물 (molecular targeted drug) 들이 상기 화학요법과 복합적으로 사용되어, 다양한 반응률 (response rate)을 나타 내고 있다 [3-5] . 이러한 낮은 반응률을 고려하면, 항암제 처리 후 초기에 위종양의 반응을 모니터링하고 결정하는 것은 암 치료를 관리 (management )하는데 있어 매우 중요하다. 전통적으로, 종양 반응 (tumor response)에 대한 결정은 컴퓨터 단층촬영 (computerized tomography, CT)을 사용하여 종양 크기 (size)의 변화 측정을 통해 수행되어왔다. 그러나 이처럼 종양 반응에 대하여 종양 크기에 근거한 결정은 약물 치료를 시작한 후 2달 정도 되어야 보통 가능하다. RECIST(Response Evaluat ion Criteria in Sol id Tumors)의 가이드라인에 따르면, 종양의 크기가 적어도 30% 이 상 감소되었을 때 치료에 대하여 부분 반웅 (part ial response)이 있는 것으로 정의 되는 반면에 [6], 종양의 크기가 20% 이상 증가되었을 때 질병이 진행 중인 것으로 여겨진다. 종양 치료에 소요되는 시간과 비용을 줄이기 위하여, 현재와 같이 CT 측 정을 통해 종양 크기에 기반하여 종양 반웅성을 결정하는 방법보다 좀 더 초기에 치료방법 (또는 치료물질)을 계속 사용할지 말지에 대한 결정 (go/no-go decision on the therapy)을 내릴 수 있는 수단이 요구된다.

PET 이미징 (posi tron emission tomography imaging)을 사용하여 종양에 의한

18 18

F-FDG( F-f luorodeoxyglucose)의 흡수를 측정하는 것은, 크기 기반 CT-이미징

(size-based CT imaging) 방법보다 초기에 종양 치료 후의 종양 반응올 결정을 할 수 있는 방법으로 알려져 있다. 화학치료 후에 종양세포 덩어리가 감소되고 종양의

18

대사 (metabol ism)가 감소됨에 따라, 상기 종양 조직에서 F—FDG의 흡수가 감소된 다.

18

그러나 상기 F-FOG의 흡수는 위암의 조직병리학적 형태 (histopathological type)에 주로 의존하는 것으로 알려졌다. 예를 들어 반지모양세포 위암 (signet-

18

ring cel l carcinoma) 및 점액성 선암 (mucinous adenocarcinoma)에서 F— FDG의 흡 수는 낮은 수준올 보이는데, 이는 GLUT-1 transporter가 낮은 수준으로 존재함에 기인하는 것이다 [7,8] . 이러한 특징은 F-FDG의 흡수에 의하여 위암 반응성에 대한 결정을 내리는 것올 제한시킨다. 게다가, 유방암과 같은 어떤 종류의 종양은

18

metabol ic f lare (화학요법 후에 F-FDG의 흡수가 일시적으로 증가되는 것)을 보이 는데, 이는 종양 재발 (tumor relapse)과 식별하기 힘들다 [9] . 이와 같이 상기 암을 비롯한 비정상적 세포증식 관련 질환 등에 있어서, 이 들 치료제 (및 치료방법)가 상기 질환을 가지는 개체에서 반응성올 나타내는지를 초 기에 정확하게 판단 (진단)하는 것이 매우 중요함에도 불구하고, 상기한 바와 같이 현재의 기술은 특정 부위 (또는 범위)의 질환에만 그 검출 효과가 국한되어있어 널 리 웅용하기 어렵다는 한계점이 존재한다. 이에 상기 질환 별 특수 메커니즘 및 조 직학적 특성 등에 큰 영향을 받지 않고 공통적으로 활용될 수 있으며, 사용되는 치 료물질 (또는 치료 방법)에 대한 반웅성을 초기에 정확히 결정할 수 있는 수단이 요 구된다. 한편 본 발명의 발명자는 대한민국 등록특허 10-0952841, 등록특허 10- 1077618을 통하여 아포토시스 (apoptosis)가 진행되고 . 있는 사멸세포 (apoptot ic cel ls)를 특이적으로 표적할 수 있는 펩타이드들을 고안하였고, 이들을 ApoPep-1이 라 명명한 바 있다. 본 발명자는 상기 문헌에서 상기 ApoPep-1의 선형 펩타이드들 이 종양성 질환, 퇴행성 뇌신경질환, 심근경색 및 동맥경화 등의 사멸세포 관련 질 환의 환부 조직에 발생하는 아포토시스를 효과적으로 표적함올 확인한 바 있다. 하지만 상기 펩타이드들의 실제적 이용에 있어서, 이들이 환부의 이미징 및 정확한 진단 정보를 주는데 사용되기 위해서는, 단순히 상기 펩타이드들이 그 아미 노산 서열에 기반한 특성으로인해 증가된 검출율을 보인다는 사실로는 부족하다. 즉, 상기 펩타이드들의 실제적 이용에 있어서 구조, 안정성, 안전성, 투여량 및 효 과 등과 관련하여 많은 제한 요인이 존재하며, 특히, 측정된 정보와 실제 병증의 예후 간에 유의미한 상호관련성이 요구된다.

[선행기술문헌]

[특허문헌]

대한민국 등록특허 10-0952841

대한민국 등록특허 10-1077618 [비특허문헌]

[1] Lozano R, Naghavi M, Foreman K, Lim S, Shi buy a K, et al . (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2095128.

[2] Sastre J, Garciaᅳ Saenz JA, Diaz-Rubio E (2006) Chemother py for gastric cancer . World J Gastroenterol 12: 20413.

[3] Lordick F, Kang YK, Chung HC, Salman P, Oh SC, et al . (2013) Capecitabine and cisplat in with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open- label phase 3 trial . Lancet Oncol 14: 49099.

[4] Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, et al . (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2ᅳ positive advanced gastric or gastr으 oesophageal junction cancer (ToGA): a phase 3, open- label , randomised control led trial . Lancet 376: 68797.

[5] Casadei R, Rega D, Pinto C, Monari F, Ricci C, et al . (2009) Treatment of advanced gastric cancer with cetuximab plus chemotherapy followed by surgery. Report of a case. Tumor i 95: 81114.

[6] Padhani AR, Ollivier L (2001) The RECIST (Response Evaluation Criteria in Sol id Tumors) criteria: implications for diagnostic radiologists. Br J Radiol 74: 98386.

[7] Yoshioka T, Yamaguchi K, ubota K, Saginoya T, Yamazaki T, et al . (2003) Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer . J Nucl Med 44: 69099.

[8] Alakus H, Batur M, Schmidt M, Drebber U, Baldus SE, et al . (2010) Variable 18F-f luorodeoxyglucose uptake in gastric cancer is associated with different levels of GLUT-1 expression. Nucl Med Commun 31: 53238.

[9] Tu DG, Yao WJ, Chang TW, Chiu NT, Chen YH (2009) Flare phenomenon in positron emission tomography in a case of breast cancer pitfall of positron emission tomography imaging interpretation. Clin Imaging 33: 46870. 【발명의 상세한 설명】

【기술적 과제】

이에 본 발명의 발명자들은 종양을 비롯한 비정상적 세포증식 관련 질환의 치료방법 및 치료물질 처방에 있어서 초기에 정확한 방향 설계가 가능케 하는 수단 을 모색하던 중, 본 발명의 고리형 펩타이드 (사이클로 [Cys-Gln-Arg-Pro-Pro-Arg- Cys] 펩타이드)가 선형 펩타이드에 비하여 시험제제에대한 종양 반옹성 (tumor response)을 초기에 높은 감도로 정확히 검출하는 효과가 뛰어날 뿐만 아니라 추후 종양 크기 감소와 밀접한 상관관계를 가짐을 확인하여 본 발명을 완성하였다. 따라서 본 발명의 목적은 사멸세포와 특이적으로 결합하는, 서열번호 2로 표 시되는 아미노산 서열로 이루어진 고리형 펩타이드 (사이클로 [Cys-Gln-Arg-Pro-Pro- Arg-Cys] 펩타이드) 및 이의 용도를 제공하는 것이다. 본 발명의 또 다른 목적은 상기 펩타이드 및 이와 결합된 항—종양성 질환 제 제를 필요로 하는 개체에 유효량으로 투여하여 종양성 질환을 치료하는 것을 특징 으로 하는 방법을 제공하는 것이다 본 발명의 또 다른 목적은 상기 펩타이드 및 이와 결합된 퇴행성 뇌신경질환 치료제를 필요로 하는 개체에 유효량으로 투여하여 퇴행성 뇌신경질환을 예방하거 나 치료하는 것을 특징으로 하는 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 상기 펩타이드 및 이와 결합된 심근경색 치료제를 필요로 하는 개체에 유효량으로 투여하여 심근경색을 예방하거나 치료하는 것을 특 징으로 하는 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 상기 폴리펩타이드 및 이와 결합된 동맥경화 치료 제를 필요로 하는 개체에 유효량으로 투여하여 동맥경화를 예방하거나 치료하는 것 을 특징으로 하는 방법올 제공하는 것이다. 본 발명의 또 다른 목적은 상기 폴리펩타이드 및 이와 결합된 뇌졸중 치료제 를 필요로 하는 개체에 유효량으로 투여하여 뇌졸중을 예방하거나 치료하는 것을 특징으로 하는 방법을 제공하는 것이다. 【기술적 해결방법】

상기와 같은 목적을 달성하기 위하여, 본 발명은 사멸세포와 특이적으로 결 합하는, 서열번호 2로 표시되는 아미노산 서열로 이루어진 고리형 펩타이드 (시 "이클 로 [Cys-Gln-Arg-Pr으 Pro-Arg-Cys] 펩타이드)를 제공한다. 본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 펩타이드를 유효성 분으로 포함하는 사멸세포 검출용 조성물 및 상기 펩타이드를 이용한 사멸세포 검 출 방법을 제공한다. 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 펩타이드를 유 효성분으로 포함하는 세포사멸 관련 질환의 환부에 대한 영상화용 조성물을 제공한 다. 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 펩타이드를 유 효성분으로 포함하는, 비정상적 세포증식 관련 질환을 가지는 개체에 대한 세포사 멸 유도 활성을 가지는 시험제제의 초기 약물 반응성 스크리닝^ 조성물 및 상기 펩타이드를 이용하여 비정상적 세포증식 관련 질환을 가지는 개체에 대한 세포사멸 유도 활성을 가지는 시험제제의 초기 약물 반옹성을 스크리닝 하는 방법을 제공한 다. 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 펩타이드를 유 효성분으로 포함하는 세포사멸 관련 질환의 약물 전달용 조성물을 제공한다. 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 펩타이드 및 이 와 결합된 항-종양성 질환 제제를 필요로 하는 개체에 유효량으로 투여하여 종양성 질환을 치료하는 것을 특징으로 하는 방법을 제공한다 본 발명의 또 다른 목적올 달성하기 위하여, 본 발명은 상기 펩타이드 및 이 와 결합된 퇴행성 뇌신경질환 치료제를 필요로 하는 개체에 유효량으로 투여하여 퇴행성 뇌신경질환을 예방하거나 치료하는 것을 특징으로 하는 방법올 제공한다.一 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 펩타이드 및 이 와 결합된 심근경색 치료제를 필요로 하는 개체에 유효량으로 투여하여 심근경색을 예방하거나 치료하는 것을 특징으로 하는 방법을 제공한다. 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리펩타이드 및 이와 결합된 동맥경화 치료제를 필요로 하는 개체에 유효량으로 투여하여 동맥 경화를 예방하거나 치료하는 것을 특징으로 하는 방법을 제공한다. 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리펩타이드 및 이와 결합된 뇌졸중 치료제를 필요로 하는 개체에 유효량으로 투여하여 뇌졸중 을 예방하거나 치료하는 것을 특징으로 하는 방법을 제공한다. 이하, 본 발명을 상세히 설명한다. 본 발명에서 용어 '세포사멸 (apoptosis , 아포토시스)' 이란 개체의 생명 유 지를 위해서 불필요한 세포 혹은 위험한 세포를 스스로 죽게 하도록 하는 현상올 의미한다. 본 발명에서 용어 '사멸세포 (apoptot ic cel l )' 는 세포사멸 작용이 발생, 진 행 또는 완료된 세포를 모두 포함하는 의미이나, 바람직하게 상기 세포사멸 작용의 진행 완료로 인한 실질적인 세포 죽음 (cel l death) 상태의 세포를 의미하는 것 일 수 있다. 본발명은사멸세포 (apoptot ic cel l )와특이적으로결합하는, 사이클로 [Cys- Gln-Arg-Pro-Pro-Arg-Cys] 펩타이드를 제공한다. 상기 사이클로 [Cys-Gln-Arg-Pn)-Pn)-Arg-Cys] 펩타이드는 서열번호 2로 표 시되는 아미노산 서열로 이루어진 고리형 펩타이드를 의미하는 것으로, 본 발명의 명세서에서 고리형 펩타이드, 고리형 ApoPep-l( cycl ic form of ApoPep-1) 등의 명 칭으로 흔용되어 지칭 될 수 있다. 바람직하게 본 발명의 사이클로 [Cys-Gln-Arg- Pro-Pro-Arg-Cys] 펩타이드는 하기 화학식 1의 구조를 갖는 것일 수 있다. <화학식 1>

본 발명의 펩타이드는 천연으로부터 유래될 수도 있으며, 공지의 펩타이드 합성 방법을 이용하여 합성될 수 있다. 또한, 본 발명의 펩타이드는 천연형 아미노 산 서열올 갖는 펩타이드 뿐만 아니라 이의 아미노산 서열 변이체가 또한 본 발명 의 범위에 포함된다. 본 발명에서 상기 펩타이드의 아미노산 서열 변이체란 서열번 호 2의 아미노산 서열에서 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또 는 보전적 치환, 아미노산 유사체의 치환 또는 이들의 조합에 의하여 상이한 서열 을 가지는 펩타이드를 의미한다. 분자의 활성을 전체적으로 변경시키지 않는 아미 노산 교환은 당해 분야에 공지되어 있다 (H.Neurath, R.L.Hi l l , The Proteins , Academic Press , New York, 1979) .

경우에 따라서, 본 발명의 펩타이드는 인산화 (phosphorylat ion) , 황화 (sul fat ion) , 아크릴화 (acrylat ion), 당화 (glycosylat ion), 메틸화 (methylat ion), 파네실화 (farnesylat ion) 등으로 수식 (modi f i cat ion)될 수도 있다. 본 발명의 발명자에 의한 대한민국 등록특허 10-0952841, 등록특허 10- 1077618에서는 사멸세포 표면에 존재하는 히스톤 HI과 결합하는 서열번호 1로 표시 되는 사멸세포 표적용 선형 펩타이드를 제조한 바 있으나, 상기 기출원에 기재된 선형 펩타이드는 단순히 그 아미노산 서열에 근거하여 비교적 우수한 검출능을 보 였으나, 환부를 영상화 및 진단하고 실제 질병 예후와의 관계성을 파악할 수 있을 정도로 민감하게 신호정보를 제공하는 데는 유의미하지 못했다.

하지만 본 발명의 사이클로 [Cys-Gln-Arg-Pro— Pro-Arg-Cys] 펩타이드는 그 선형 펩타이드와 비교하여 사멸세포와 결합 (또는 타겟)하는 효과가 뛰어나, 사멸세 포의 검출 및 in w o상에서 세포사멸이 진행되고 있는 환부의 이미징을 매우 용이 하게 하며, 상기 검출 및 이미징 신호가 질병과의 예후 예측에 있어 매우 높은 관 련성을 나타내는 것이 그 특징이다. 이는 본 발명의 명세서 실시예에 잘 나타나 있다. 본 발명의 명세서 일 실시예에서는 서열번호 1로 표시되는 선형 펩타이드 (선 형 ApoPep-l , CQRPPR)의 카복시 말단에 Cys (시스테인) 잔기를 부가하여 서열번호 2 로 표시되는 선형 펩타이드를 제작한 후, 상기 서열번호 2로 표시되는 선형 펩타이 드의 아미노 말단 및 카복시 말단 사이의 이황화결합 (di sul f ied bond)을 통해 고리 화 (crystal izat ion) 하여 본 발명의 사이클로 [CQRPPRC] 펩타이드 (고리형 ApoPep- 1)를 제작하였다.

본 발명의 다른 일 실시예에서는 상기 본원 발명의 사이클로 [CQRPPRC] 펩타 이드 (고리형 ApoPep-l)와 선형 ApoPep-l의 in vitro 세포 사멸 검출 효과 및 in vivo 세포사멸 이미징 ( imaging) 효과를 측정하였다. 그 결과 본 발명의 사이클로 [CQRPPRC] 펩타이드는 선형 ApoPep-l뿐만아니라 대조군인 annexin V 에 비하여 더 욱 민감하게 세포사멸을 검출하였고 (실시예 1), 특히 in vivo 이미징 효과가 선형 ApoPep-l에 비하여 현저하게 향상되었을 뿐만아니라 실제적으로 종양 예후와도 역 비례적인 관계가 강하게 성립하는 것올 발견하였다 (실시예 2 내지 4) .

뿐만아니라 본 발명의 또다른 실시예에 의하면, 혈청에서 본 발명의 고리형 ApoPep-l 펩타이드가 선형 펩타이드와 동일한 안정성을 보이는 것을 확인하여, 이 로서 본 발명의 고리형 ApoPep-l 펩타이드의 타겟 효율이 현저하게 높은 것은 단순 히 펩타이드 안정성에 기인한 것이 아님을 확인하였다 (실시예 5) . 일반적으로 고리 형 구조의 펩타이드는 선형의 펩타이드 보다 안정성이 향상되는 것으로 알려져 있 어, 본원 발명의 고리형 펩타이드가 높은 강도의 신호를 나타내는 것이 이러한 특 성에 기인될 것으로 예측할 수 있겠으나, 상기 혈청 실험을 통해 본 발명의 고리형 펩티드는 사멸세포 (특히 히스톤 HI)와 더 잘 결합하는 구조를 가지는 것으로 생각 되었다. 상기와 같이, 본 발명의 고리형 펩타이드는 기존에 세포사멸 탐침 (probe)으 로 알려진 annexin V 에 비하여도 뛰어난 검출 효과를 보일 뿐만 아니라, 본 발명 의 고리형 펩타이드가 기원된 선형 ( l inear form) 펩타이드 보다도 종양조직 내 사 멸세포를 표적하는 효과가 뛰어남을 확인하였으며, 따라서 세포사멸의 생체 내 영 상 ( / ? vivo imaging) 및 모니터링 효과가 현저하였다. 따라서, 본 발명의 펩타이드 를 사멸세포의 검출용 조성물로 이용할 수 있음을 알 수 있었으며, 더 나아가 종양 과 같이 세포사멸 관련 질환의 환부 조직 내에 아포토시스를 인식하는 진단 또는 치료추적용 제제, 또는 상기 질환 ( ex .종양)에 대한 별도의 치료용 제제와 더불어 상기 질환에 대한 예방 및 치료용 약학적 조성물 등으로서 사용할 수 있음을 알 수 있다. 따라서 본발명은상기 사이클로 [Cys-Gln-Arg-Pro-Pro-Arg-Cys] 펩타이드를 유효성분으로포함하는사멸 세포 검출용조성물을 제공한다. 본 발명의 상기 펩타이드의 사멸세포 결합 여부 확인, 검출 및 정량을 용이 하게 하기 위하여, 본 발명의 펩타이드는 표지된 상태로 제공될 수 있다. 즉, 검출 가능한 표지에 링크 (예: 공유 결합 또는 가교)되어 제공될 수 있다. 상기 검출가능 한 표지는 발색효소 (예: 퍼옥시다제, 알칼라인 포스파타제), 방사성 동위원소 (예:

18 123 124 125 32 35 67

F, I , I I , P, S, Ga) , 크로모포어 (chromophore) , 발광물질 또는 형광 물질 (예: FITC, ITC, 형광단백질 (GFP(Green Fluorescent Protein) ; EGFP( Enhanced Green Fluorescent Protein) , RFP(Red Fluorescent Protein); DsRed(Di scosoma sp . red f luorescent protein); CFPCCyan Fluorescent Protein) , CGFP(Cyan Green Fluorescent Protein) , YFP(Yel low Fluorescent Protein) , Cy3 , Cy5 및 Cy7.5) , 자 기공명 영상물질 (예: Gadol inium(Gd, 가도리늄), 상자성입자 (super paramagnet i c part icles) 또는 초상자성입자 (ul trasuper paramagnet ic part icles) )일 수 있다. 표지에 따른 검출 방법은 당업계에 널리 알려져 있으나, 예를 들어 다음과 같은 방법에 의해 수행될 수 있다. 만약 검출가능한 표지로 형광물질을 이용하는 경우에는 면역형광염색법을 이용할 수 있다. 또한 예컨대, 형광물질로 표지된 본 발명의 펩타이드를 시료와 반응시키고 미결합 또는 비특이적인 결합 산물을 제거한 다음 형광현미경 하에서 펩타이드에 의한 형광을 관찰하거나, 유세포분석기 ( f low cytometry)를 이용하여 형광의 강도를 측정할 수 있다. 또한 검출가능한 표지로 효 소를 이용하는 경우에는 효소반웅을 통한 기질의 발색반웅에 의해 흡광도를 측정하 고, 방사선 물질인 경우에는 방사선 방출량을 측정함으로써 수행 할 수 있다. 아울 러, 검출된 결과는 검출표지에 따른 공지된 영상화 방법에 따라 영상화될 수도 있 다. 예를 들어 본 발명의 고리형 펩타이드는 SPECT(single photon emission computed tomography) , PET imaging 등의 영상화 (또는 검출) 수단의 프로브 (probe, 탐침)으로서 사용될 수 있다. 또한, 본 발명은 (a) 사이클로 [Cys-Gln-Arg-Pn)-Pro-Arg-Cys] 펩타이드를 시료와 혼합하는 단계; (b) 미결합되거나 비특이적으로 결합된 상기 펩타이드를 제 거하는 단계; 및 (c) 상기 펩타이드의 결합 여부 및 위치를 확인하는 단계를 포함 하는 사멸 세포의 검출 방법을 제공한다. 이 때, 상기 (c) 단계에서 본 발명의 사 이클로 [Cys-Gln-Arg-Pro-Pr으 Arg-Cys] 펩타이드의 사멸세포와 결합 여부 및 위치 를 확인하기위하여 수행되는 펩타이드의 검출 방법은 상기에서 기재한 바 또는 공 지된 방법에 따라수행할 수 있다. 본 발명에서 상기 용어 '시료' 는 생물학적 시료를 의미하는 것으로서, 혈액 및 생물학적 기원의 기타 액상 시료, 생검 표본, 조직 배양과 같은 고형 조직 시료 또는 이로부터 유래된 세포가 포함된다. 상기 시료는 동물, 바람직하게는 포유동물 로부터 수득될 수 있다. 상기 시료는 검출에 사용하기 전에 전처리할 수 있다. 예 를 들어, 추출, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다. 본 발명의 사이클로 [Cys-Gln-Arg-Pro-Pr으 Arg-Cys] 펩타이드는 사멸세포와 특이적으로 결합하므로, 임의의 표지수단 (영상화용 수단)과 함께 세포사멸이 진행 되고 있는 환부를 영상화 할 수 있다. 따라서 본 발명은 상기 사이클로 [Cys-Gln- Arg-Pro-Pro-Arg-Cys] 펩타이드를 유효성분으로 포함하는 세포사멸 관련 질환의 환 부에 대한 영상화용 조성물을 제공한다. 이 때, 질환의 영상화 및 진단은, 이에 한정되지는 않으나, 질환의 초진 목 적 뿐만아니라, 진행 경과, 치료에 대한 치료 경과, 치료제에 대한 반웅 모니터링 등을 포괄하여 사용할 수 있다. 상기 본 발명의 펩타이드는 결합 여부의 확인, 검 출 및 정량올 용이하게 하기 위하여, 표지된 상태로 제공될 수 있으며, 이에 대해 서는 상기에서 기술한 바와 같다. 본 발명에서 용어 '세포사멸 관련 질환' 이란, 환부에서 나타나는 주요 증상 적 특징으로서 정상수준 이상의 증가된 세포사멸 활성을 포함하는 질환을 의미하는 것으로, 공지의 세포사멸 관련 질환이라면 그 종류가 제한되지 않으나, 예를 들어 종양성 질환 (암), 퇴행성 뇌질환, 뇌졸중 (stroke) , 심근경색, 동맥경화 및 망막질 환 등의 질환과 장기이식 거부 반웅 등을 포함한다.

상기 종양성 질환은 뇌암, 신경내분비 암, 위암, 폐암, 유방암, 난소암, 간 암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 부신암, 대장암, 결장암, 자궁 경부암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 및 요관암 등일 수 있으 나, 이에 제한되지 않는다.

상기 퇴행성 뇌신경질환은 알츠하이머 병, 파킨슨 병, 헌팅턴 병 (Hunt ington' s disease) , 루게릭 병 (Amyotrophic lateral sclerosis) , 및 니만一픽 병 (Nieman-Pick disease) 등 일 수 있으나, 이에 제한되지 않는다. 또한 본 발명은 상기 사이클로 [Cys-Gln-Arg-Pro-Pro-Arg-Cys] 펩타이드를 유효성분으로 포함하는, 비정상적 세포증식 관련 질환을 가지는 개체에 대한 세포 사멸 유도 활성을 가지는 시험제제의 초기 약물 반웅성 스크리닝용 조성물을 제공 한다. 본 발명에서 용어 '비정상적 세포증식 관련 질환' 이란 정상상태와 비교하여 세포의 비정상적 증식으로 인해 야기되는 질병을 의미하는 것으로, 공지의 비정상 적 세포증식 관련 질환이라면 그 종류가 특별히 제한되지 않으나, 예를 들어 종양 성 질환, 이상증식 혈관 질환 등을 포함한다. 종양성 질환에 대해서는 전술한 바와 같다.

본 발명에서 용어 '이상증식 혈관 질환' 은 혈관에 존재하는 세포, 특히 혈 관 평활근 세포의 과도한 증식에 의해 야기되는 질환 또는 질병을 의미한다. 상기 이상증식 혈관질환은, 예를 들어 동맥경화증, 아테롬성 동맥경화증, 재발협착증 및 협착증, 혈관 기형, 혈액투석과 관련된 혈관 통로 협착, 이식 후 동맥병증 (transplant arteriopathy) , 맥관염, 혈관염증질환, 디 S지 증후군, 유전성 출혈성 모세혈관확장증 (HHT) , 해면상혈관종, 켈로이드성 반흔, 화농성 육아종, 수포질환, 카포시 육종, 과증식성 유리체 증후군, 미숙아 망막증, 맥락막 신생혈관, 황반변 성, 당뇨병성 망막증, 안내 신생혈관증식, 원발성 폐고혈압증, 천식, 비폴립 (nasal polyps) , 염증성 장 및 치주 질환, 복수, 복막 유착, 피임, 자궁내막증, 자궁출혈, 난소낭, 난소과자극증후군, 관절염, 류마티스성 관절염, 만성 관절류마티즘, 윤활 막염, 골관절염, 골수염, 골증식, 폐혈증, 혈관누출 증후군, 암, 감염성 질환 또는 자가면역질환을 포함한다. 바람직하게는, 본 발명의 이상증식 혈관 질환은 동맥경 화증, 아테롬성 동맥경화증, 재발협착증 또는 협착증이다. 아테롬성 동맥경화증은 동맥의 내층에 지방 물질이 침착되거나 섬유화 (f ibrosis)되어 있으며 혈관 내피세 포의 증식이 일어나 혈관이 좁아지거나 막히게 되어 그 혈관이 말초로의 혈류 장애 를 일으키는 질환이다. 한편, 재발협착증은 혈관벽이 손상 (traumat izat ion)된 후 혈관 통로가 좁혀지는 질환으로 주원인은 혈관근육세포의 이상증식이다. 동맥경화 진행과 스탠트 삽입술 후에 발생하는 혈관 재발협착증은 혈관평활근 세포의 증식, 이동 그리고 세포외 기질 (extracel lular matrix)의 분비 등에 기인한다고 알려져 있다 (Circulat ion, 1997, 95 , 1998-2002; J . Cl in. Invest . 1997, 99, 2814-2816; Cardiovasc . Res . 2002, 54, 499-502) . 이에, 동맥경화의 진행과 혈관 재협착의 방 지를 위해 혈관 평활근 세포의 증식을 억제하는 약물에 대한 연구가 널리 진행되고 있다 (J . Am. Col l . Cardiol . , 2002, 39, 183-193) . 본 발명에서 용어 '시험제제' 는 임의의 물질 (substance) , 분자 (molecule), 원소 (element ) , 화합물 (compound ) , 실재물 (ent i ty) 또는 이들의 조합을 포함한다. 예컨대, 이에 제한되지는 않으나, 단백질, 폴리펩티드, 소 유기 물질 (smal l organic molecule) , 다당류 (polysaccharide), 폴리뉴클레오티드 등을 포함한다. 또 한 자연 산물 (natural product ) , 합성 화합물 또는 화학 화합물 또는 2개 이상의 물질의 조합일 수도 있다. 다르게 지정되지 않는 한, 제제, 물질 및 화합물은 호환 성 있게 ( interchangeably) 사용할 수 있다.

본 발명에서 상기 '세포사멸 유도활성을 가지는 시험제제' 는 상기 비정상적 세포증식 관련 질환을 가지는 개체의 환부에서 비정상적으로 증식되어있는 세포들 의 사멸을 유도하여 궁극적으로 치료 활성을 나타내는 물질들을 의미하는 것으로 세 가장 바람직하게 정상세포에 대해서는 실질적인 아포토시스 유도작용을 나타내 지 않고 환부의 비정상적으로 증식된 세포에 대해서만 실질적으로 아포토시스 유도 작용을 나타내는 제제인 것이 바람직 할 수 있다. 상기 세포사멸 유도 활성을 지니 는 시험제제는 당업자라면 상기 질환에 따라 약물의 종류를 선택적으로 사용할 수 있는 것으로서, 예를 들어 상기 비정상적 세포증식 관련 질환이 종양성 질환 (특히 암)인 경우 상기 시험제제는 공지의 항-종양제 (항암제) 일 수 있다. 본 발명에서 용어 '약물 반웅성' 이란, 특정 질환을 앓고 있는 개체에서 약 물에 의해 환부의 증상이 개선되는 상태 변화를 의미하는 것으로, 본 발명에서 바 람직하게는 약물에 의해 환부에 세포사멸이 증가되는 상태를 의미한다 . 상기 '반응 성' 은 감수성 또는 민감성 등으로 이해될 수 있으며, 상기 용어 간에 흔용되어 기 술될 수 있다. 따라서 약물 반응성 (또는 감수성 )이 있다는 것은 약물 반응성 (감수 성 )이 없는 것으로 결정된 시험제제의 효능 가능성과 비교하여, 치료적으로 효능이 있을 가능성이 보다 높음을 의미한다. 구체적으로 예를 들면, 상기 특정 질환이 종 양 (암)인 경우 상기 '약물 반웅성' 은 약물에 의한 종양반웅 (tumor response)으로 이해되며, 상기 종양 반응이란 동일한 임상적 병리 조직학적 특성임에도 불구하고 어떤 환자는 치료효과가 있고, 어떤 환자는 그렇지 않은 현상을 의미한다. 종양들 사이에는 현재 우리가 이해하지 못하는 임상적으로 의의있는 생물학적 차이가 있 고, 치료를 한후에야 이를 알수 있다. 또한 본 발명에서 용어 '약물 반응성 스크리닝' 이란 특정 질환의 환부에서 증상의 개선적 반응을 보이는 시험제제를 선별하는 것을 의미한다. 본 발명에서 용어 '초기' 란 사전적 의미로서, 시험제제 투여에있어 통상적 인 조기 단계를 의미하는 것으로, 질환의 종류 및 시험제제 (약물)의 종류에 따라 일반적인 투여 용량과 기간이 다르기 때문에 상기 '시험제제 투여에 있어 통상적인 조기 단계' 의 구체적인 날짜또는 시간은 달라질 수 있으며 이는 당업자라면 투여 대상의 상태에 따라 적절하게 변화하여 적용시킬 수 있다. 예를들어 상기 '초기' 는 시험제제 투여의 개시일로부터 1일 내지 30일 일 수 있고, 바람직하게는 시험제 제 투여의 개시일로부터 1일 내지 15일 일 수 있으며, 가장 바람직하게는 시험제제 투여의 개시일로부터 1일 내지 7일 일 수 있다. 일반적으로, 어떤 질병에 대한 약물 반웅성 (감수성)은 개인차가 있으며 이러 한 개인차는 개체의 유전자형 및 질병의 종류에 따라 천차만별이다. 치료 효율, 시 간 및 비용 부담 등의 여러가지 측면에서, 특정 치료 방법이나 약물에 대한 반웅성 과 효과를 초기에 예측하는 것은 환자의 치료 방침을 결정하는 데 있어서 매우 중 요하다. 또한 비정상적 세포증식 관련질환, 특히 암 (종양)에 있어서, 이렇게 약물 반웅성을 초기에 예측 및 판단하는 것은 약물에 의한 치료효과 뿐만아니라 항암제 의 내성 획득 여부 판단과도 밀접하게 연관되어 있어 중요하다. 검출 수단과 관련 하여, 당업계에는 다양한 물질을 타겟하는 단백질, 펩타이드 등이 사용되고 있으 나, 실제적으로 상기 펩타이드들이 환부의 이미징 수단 및 병증의 진단 정보를 주 기 위하여 유의미하게 사용되기 위해서는, 측정된 신호 정보와 실제 병증의 예후 간에 유의미한 상호 관련성이 요구된다 . 따라서 많은 펩타이드들이 단순 검출 목적 으로 사용됨에 그칠 뿐, 실제적으로 검출 또는 이미징 결과에 기반하여 통계적으로 질병의 예후 예측에 사용되는 것에는 한계점이 있다. 그러나 본 발명의 고리형 펩 타이드를 이용하면, 약물 처리 초기 단계에서 환부의 반웅을 본원 발명의 펩타이드 를 이용한 생체 영상을 통하여 얻은 신호 (형광 신호)와 실제 약물 처리 완료 후 환 부의 증상 완화 예후 간에 유의미하게 상호 관련성이 있기 때문에, 처리한 치료물 질 (시험제제)의한 실제 병증의 예후를 예측 가능하게 하는 효과가 있다. 이는 본 발명의 일실시예에 잘 나타나있다. 본 발명의 일실시예에서는 마우스에 항암제 처리 개시 후 1주 및 2주에, 형 광 표지된 고리형 ApoPep-l(본 발명의 사이클로 [Cys-Gln-Arg-Pro-Pro-Arg-Cys] 펩 타이드) 및 상기 고리형 펩타이드가기원된 선형 ApoPep-l올 각각 꼬리정맥을 통해 주사하여 in vivo 이미징 형광신호를 수득하고, 상기 수득된 형광신호와 추후 (3주 후) 종양부피 감소의 예후 간에 상호 관련성을 선형회귀분석법을 통해 조사하였다. 그 결과 본 발명의 고리형 ApoPep-1으로 NIR f luorescence imaging하여 수득한 형 광신호는 마우스에 항암제 처리 개시 후 1주 ' 에서, 추후 종양 부피 감소의 예후와 역비례적으로 매우 높은 관련성을 나타냄을 확인하였다.

따라서 본 발명의 고리형 ApoPep-1 펩타이드는 치료물질 (시험제제)의한 실제 병증의 치료 예후를 초기에 예측 가능하게 하는 효과가 뛰어나다. 따라서 본 발명은

(a) 비정상적 세포증식 관련 질환을 가지는 개체에 대하여, 상기 개체로부터 분리된 환부의 표적조직에 세포사멸 유도 활성을 가지는 시험제제를 처리하는 단 계;

(b) 상기 (a) 단계에서 시험제제가 처리된 표적조직과 시험제제가 처리되지 않은 대조군 표적조직에 표지화된 사이클로 [Cys-Gln-Arg-Pro-Pro-Arg-Cys] 펩타이 드를 처리하는 단계; 및

(c) 상기 (b) 단계에서 펩타이드 처리된 표적조직들에 대하여 상기 표지화 수단을 검출 및 비교하는 단계를 포함하는 비정상적 세포증식 관련 질환을 가지는 개체에 대한 시험제제의 초기 약물 반웅성을 스크리닝 하는 방법을 제공한다. 상기 본 발명의 ' (a) 내지 (c) 단계를 포함하는 비정상적 세포증식 관련 질 환을 가지는 개체에 대한 시험제제의 초기 약물 반웅성을 스크리닝 하는 방법' 은 하기의 (d) 단계를 추가로 포함하는 것을 특징으로 하여 수행 되는 것 일 수 있다: (d) 상기 대조군 표적조직과 비교하여 시험제제가 처리된 표적조직에서 표지화 수 단의 검출강도가높으면, 상기 시험제제에 반응성이 있는 것으로 판정하는 단계. 또한 상기 방법에서, 표지화 수단 및 이의 검출 방법은 본 명세서에서 전술 한 바 있으며, 공지의 방법에 따라 수행할 수 있다. 본 발명에서 상기 용어 '환부 (患部)' 란 병이나 상처가 발생한 부위를 의미 한다. 또한 본 발명의 템타이드는 사멸세포와 특이적으로 결합하는 효과가 뛰어나 므로, 약물을 상기 사멸세포에 (궁극적으로 상기 사멸세포가 존재하는 질환성 부위 에) 선택적으로 전달하는 지능형 약물 전달체로서 사용할 수 있다. 따라서, 본 발 명의 펩타이드를 유효성분으로 포함하는 세포사멸 관련 질환의 약물 전달용 조성물 을 제공한다. 따라서, 상기 본 발명의 약물 전달용 조성물은 종양성 질환, 퇴행성 뇌질환, 뇌졸중, 심근경색 또는 동맥경화 등 세포사멸 관련 질환에 특이적일 수 있다. 상기 세포사멸질환에 관해서는 전술한 바와 같다. 본 발명의 약물 전달용 조성물에 포함되는 본 발명의 고리형 펩타이드를 종 래 항-종양성 질환 제제, 퇴행성 뇌신경질환 치료제, 뇌졸중 치료제, 심근경색 치 료제 및 동맥경화 치료제 등의 약제와 연결하여 치료에 이용한다면 본 발명의 펩타 이드에 의해 상기 제제가 종양세포, 퇴행성 뇌신경질환 부위, 뇌졸중 부위, 심근경 색 부위, 동맥경화 부위 등의 질환 부위 (환부)에만 선택적으로 전달되기 때문에 약 의 효력을 증가시킬 수 있고 동시에 정상조직에 미치는 부작용을 현저히 줄일 수 있다.

따라서 본 발명은 상기 본 발명의 고리형 펩타이드 및 이와 결합된 항 -종양 성 질환 제제를 유효성분으로 포함하는 종양성 질환 예방 및 치료용 약학적 조성 물, 상기 본 발명의 고리형 펩타이드 및 이와 결합된 퇴행성 뇌신경질환 치료제를 유효성분 으로 포함하는 퇴행성 뇌신경질환 예방 및 치료용 조성물, 상기 본 발명 의 고리형 펩타이드 및 이와 결합된 심근경색 치료제를 유효성분으로 포함하는 심 근경색 예방 및 치료용 약학적 조성물, 상기 본 발명의 고리형 폴리펩타이드 및 이 와 결합된 동맥경화 치료제를 유효성분으로 포함하는 동맥경화 예방 및 치료용 약 학적 조성물, 상기 본 발명의 고리형 펩타이드 폴리펩타이드 및 이와 결합된 뇌졸 중 치료제를 유효성분으로 포함하는 뇌졸중 예방 및 치료용 약학적 조성물을 제공 한다. 본 발명의 펩타이드에 연결 될 수 있는 항ᅳ종양성 질환 제제는 공지의 종양 치료물질이라면 그 종류가 특별히 제한되지 않으며, 예를 들어 파클리탁셀, 독소루 비신, 빈크리스틴, 다우노루비신 (daunorubicin) , 빈블라스틴 (vinblast ine), 액티노 마이신 -D(act inomycin-D) , 도세탁셀 (docetaxel ), 에토포사이드 (etoposide) , 테니포 사이드 (teniposide), 비산트렌 (bisantrene), jL≤.¾fl ¾≤. i (horaoharringtonine) , 글 리백 (Gleevec ; STI-571) , 시스폴라틴 (ci splain), 5-플로오우라실 (5-f luouraci 1 ), 아드리아마이신 (adriamycin) , 메토트렉세이트 (methotrexate), 부설판 (busul fan) , 클로람부실 (chlorambuci l ) , 시클로포스파미드 (cyclophosphamide), 멜팔란 (melphalan) , 니트로겐 무스타드 (nitrogen mustard) , 니트로소우레아 (nitrosourea) , 스트랩토키나제 (streptokinase), 유로키나제 (urokinase), 알테플라 제 (alteplase) , 안지오텐신 (angiotensin) I I 억제제, 알도스테론 (aldosterone) 수 용체 억제제, 에리트로포이에틴 (erythropoiet in) , 励 A (N-methyl-d-aspartate) 수 용체 억제제, 로바스타틴 (Lovastat in) , 라파마이신 (Rapamycin), 셀레브렉스 (Celebrex) , 티클로핀 (Ticlopin) 마리마스타트 (Marimastat ) 및 트로케이드 (Trocade) 등으로 이루어진 군에서 선택된 하나 이상의 것 일 수 있다. 아을러, 퇴행성 뇌신경질환 치료제, 뇌졸중 치료제, 심근경색 치료제 및 동 맥경화 치료제는 종래 이들 질환의 치료에 사용되는 것이라면 제한 없이 사용될 수 있으며, 예컨대, 본 발명의 펩타이드에 연결될 수 있는 퇴행성 뇌신경질환 치료제 로는 뇌신경세포 보호제인 MDA (N-methyl-d-aspartate) 수용체 억제제, 아세틸콜 린 에스테라제 억제제, 항 아밀로이드 단백질제 등으로서, 예를 들어 도네페질, 갈 란타민, 타그린, 메만틴 등 일 수 있다. 또한, 뇌졸중 및 심근경색 질환에서 혈관 을 막고 있는 혈전을 제거하기 위해 사용되고 있는 혈전용해제 (thrombolyt ic drug) 인 스트렙토키나제 (streptokinase) , 유로키나제 (urokinase), 알테플라제 (alteplase) 등의 약물이 있다. 또한 심근세포 보호제인 안지오텐신 (angiotensin) II 억제제, 알도스테론 (aldosterone) 수용체 억제제 및 에리트로포이에틴 (erythropoiet in) 등이 있다. 또한 콜레스테를 합성 억제 및 혈중 콜레스테를 농도 를 낮추는 약물인 로바스타틴 (Lovastat in) , 혈관평활근세포의 증식을 줄이는 약물 인 라파마이신 (Rapamycin) , 항염증약물인 셀레브렉스 (Celebrex) , 혈소판 응집 억제 약물인 티클로핀 (Ticlopin) 및 기질금속단백질분해효소 (matrix metal loprotease) 억제 약물인 마리마스타트 (Marimastat ) 및 트로케이드 (Trocade) 등이 있다. 상기 제제와 본 발명의 펩타이드의 연결은 당업계에 공지된 방법, 예컨대, 공유 결합, 가교 등을 통해 수행될 수 있다. 이를 위해 본 발명의 고리형 펩타이드는 필요하다 면 그 활성이 소실되지 않는 범위에서 화학적으로 수식 (modi f icat ion)될 수 있다. 본 발명의 조성물에 포함되는 본 발명의 고리형 펩타이드의 양은 결합되는 상기 치 료제의 종류 및 양에 따라 달라질 수 있다. 상기 본 발명의 약학적 조성물에서 본 발명의 고리형 펩타이드는 표적 기관 에 결합하였는지 여부 확인, 검출 및 정량을 용이하기 하기 위하여 표지된 상태로 제공될 수 있으며, 이에 대해서는 상기에서 기술한 바와 같다. 한편, 본 발명에 따른 약학적 조성물은 상기 펩타이드의 순수한 형태 또는 약학적으로 허용되는 담체와 함께 적합한 형태로 제형화함으로써 제공될 수 있다. "약학적으로 허용되는" 이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적 으로 위장 장애, 현기증 등과 같은 알레르기 반웅 또는 이와 유사한 반응을 일으키 지 않는 비독성의 조성물을 말한다. 상기 담체로는 모든 종류의 용매, 분산매질, 수중유 또는 유중수 에멀견, 수성 조성물, 리포좀, 마이크로비드 및 마이크로좀, 생분해성 나노입자 등이 포함된다. 한편, 본 발명에 따른 약학적 조성물은 투여 경로에 따라 적합한 담체와 함 께 제형화될 수 있다. 상기 본 발명에 따른 약학적 조성물의 투여 경로로는 이에 한정되지는 않으나 경구적 또는 비경구적으로 투여될 수 있다. 비경구적 투여 경로 로는 예를 들면, 경피, 비강, 복강, 근육, 피하 또는 정맥 등의 여러 경로가 포함 된다. 본 발명의 약학적 조성물을 경구 투여하는 경우 본 발명의 약학적 조성물은 적합한 경구 투여용 담체와 함께 당업계에 공지된 방법에 따라 분말, 과립, 정제, 환제, 당의정제, 캡슐제, 액제, 겔제, 시럽제, 현탁액, 웨이퍼 등의 형태로 제형화 될 수 있다. 적합한 담체의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비를, 만니 를, 자일리를, 에리스리를 및 말티를 등을 포함하는 당류와 옥수수 전분, 밀 전분, 쌀 전분 및 감자 전분 등을 포함하는 전분류, 샐를로즈, 메틸 샐를로즈, 나트륨 카 르복시메틸셀를로오즈 및 하이드록시프로필메틸-셀를로즈 등을 포함하는 셀롤로즈 류, 젤라틴, 폴리비닐피를리돈 등과 같은 층전제가 포함될 수 있다. 또한, 경우에 따라 가교결합 폴리비닐피를리돈, 한천, 알긴산 또는 나트륨 알기네이트 등을 붕해 제로 첨가할 수 있다. 나아가, 상기 약학적 조성물은 항응집제,, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다. 또한, 비경구적으로 투여하는 경우 본 발명의 약학적 조성물은 적합한 비경 구용 담체와 함께 주사제, 경피 투여제 및 비강 흡입제의 형태로 당 업계에 공지된 방법에 따라 제형화될 수 있다. 상기 주사제의 경우에는 반드시 멸균되어야 하며 박테리아 및 진균과 같은 미생물의 오염으로부터 보호되어야 한다. 주사제의 경우 적합한 담체의 예로는 이에 한정되지는 않으나, 물, 에탄올, 폴리을 (예를 들어, 글 리세를, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜 등), 이들의 흔합물 및 /또는 식물유를 포함하는 용매 또는 분산매질일 수 있다. 보다 바람직하게는, 적합한 담 체로는 행크스 용액, 링거 용액, 트리에탄올 아민이 함유된 PBS(phosphate buf fered sal ine) 또는 주사용 멸균수, 10% 에탄올, 40% 프로필렌 글리콜 및 5% 덱 스트로즈와 같은 등장 용액 등을 사용 할 수 있다. 상기 주사제를 미생물 오염으로 부터 보호하기 위해서는 파라벤, 클로로부탄올, 페놀, 소르빈산, 티메로살 등과 같 은 다양한 항균제 및 항진균제를 추가로 포함할 수 있다. 또한, 상기 주사제는 대 부분의 경우 당 또는 나트륨 클로라이드와 같은 등장화제를 추가로 포함할 수 있 다. 이들 제형은 제약 화학에 일반적으로 공지된 처방서인 문헌 (Remi ngton ' s Pharmaceut i cal Sci ence , 15th Edi t ion , 1975 , Mack Publ i shing Company, East on, Pennsylvani a)에 기술되어 있다. 흡입 투여제의 경우, 본 발명에 따라 사용되는 화합물은 적합한 추진제, 예 를 들면, 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로 에탄, 이산화탄소 또는 다른 적합한 기체를 사용하여, 가압 팩 또는 연무기로부터 에어로졸 스프레이 형태로 편리하게 전달 할 수 있다. 가압 에어로졸의 경우, 투약 단위는 계량된 양을 전달하는 밸브를 제공하여 결정할 수 있다. 예를 들면, 흡입기 또는 취입기에 사용되는 젤라틴 캡슬 및 카트리지는 화합물, 및 락토즈 또는 전분 과 같은 적합한 분말 기제의 분말 흔합물을 함유하도톡 제형화할 수 있다. 그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 수 있다 (Remington ' s Pharmaceut ical Sciences , 19th ed. , Mack Publ ishing Company, East on, PA, 1995) .

또한, 본 발명에 따른 약학적 조성물은 하나 이상의 완층제 (예를 들어, 식염 수 또는 PBS) , 카보하이트레이트 (예를 들어, 글루코스, 만노즈, 슈크로즈 또는 덱 스트란), 안정화제 (아황산수소나트륨, 아황산나트륨 또는 아스코르브산) 항산화제, 정균제, 킬레이트화제 (예를 들어, EDTA 또는 글루타치온), 아쥬반트 (예를 들어, 알 루미늄 하이드록사이드) , 현탁제, 농후제 및 /또는 보존제 (벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올)를 추가로 포함할 수 있다.

또한, 본 발명의 약학적 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출올 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형 화될 수 있다.

상기와 같은 방법으로 제형화된 약학적 조성물은 유효량으로 경구, 경피, 피 하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있다. 상기에서 '유효 량' 이란 환자에게 투여하였을 때, 진단 또는 치료 효과의 추적을 가능하게 하는 화합물 또는 추출물의 양을 말한다. 본 발명에 따른 약학적 조성물의 투여량은 투 여 경로, 투여 대상, 대상 질환 및 이의 중증정도, 연령, 성별 체중, 개인차 및 질 병 상태에 따라 적절히 선택할 수 있다. 바람직하게는, 본 발명의 펩타이드를 포함 하는 약학적 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있으나, 통상적으로 성인을 기준으로 할 때 1회 투여시 1 mg 내지 1000 mg의 유효용량으로 하루에 수 차례 반복 투여될 수 있다. 또한, 본 발명은 상기 본 발명의 고리형 펩타이드 및 이와 결합된 항-종양성 질환 제제를 필요로 하는 개체에 유효량으로 투여하여 종양성 질환을 치료하는 것 을 특징으로 하는 방법을 제공한다. 본 발명은 상기 본 발명의 고리형 펩타이드 및 이와 결합된 퇴행성 뇌신경질 환 치료제를 필요로 하는 개체에 유효량으로 투여하여 퇴행성 뇌신경질환을 예방하 거나 치료하는 것을 특징으로 하는 방법을 제공한다. 본 발명은 상기 본 발명의 고리형 펩타이드 및 이와 결합된 심근경색 치료제 를 필요로 하는 개체에 유효량으로 투여하여 심근경색을 예방하거나 치료하는 것을 특징으로 하는 방법을 제공한다. 본 발명은 상기 본 발명회 폴리펩타이드 및 이와 결합된 동맥경화 치료제를 필요로 하는 개체에 유효량으로 투여하여 동맥경화를 예방하거나 치료하는 것을 특 징으로 하는 방법을 제공한다. 본 발명은 상기 본 발명의 폴리펩타이드 및 이와 결합된 뇌졸중 치료제를 필 요로 하는 개체에 유효량으로 투여하여 뇌졸중을 예방하거나 치료하는 것을 특징으 로 하는 방법을 제공한다. 본 발명의 종양성 질환, 퇴행성 뇌신경질환, 심근경색, 동맥경화 및 뇌졸중 은 세포사멸 관련 질환에 속하며, 이에 대해서는 상기 기재한 바와 같다. 또한 본 발명의 종양성 질환 치료제, 퇴행성 뇌신경질환 치료제, 심근경색 치료제, 동맥경화 치료제 및 뇌졸중 치료제는 종래 이들 질환의 치료에 사용되는 것이라면 제한 없이 사용될 수 있으며, 이에 대해서는 상기 기재한 바와 같다. 본 발명의 상기 '유효량' 이란 환자에게 투여하였을 때, 질병의 치료 및 예 방 효과를 나타내는 양을 말하며, 상기 '개체' 란 동물, 바람직하게는 포유동물, 특히 인간을 포함하는 동물일 수 있으며, 동물에서 유래한 세포, 조직, 기관 등일 수도 있다. 상기 개체는 치료가 필요한 환자 (pat i ent )일 수 있다/ 【유리한 효과】

본 발명의 서열번호 2로 표시되는 아미노산 서열로 이루어진 고리형 펩타이 드 (사이클로 [Cys-Gln-Arg-Pro-Pro-Arg-Cys] 펩타이드)는 그 선형 펩타이드와 비교 하여 사멸세포와 결합 (또는 타겟)하는 효과가 뛰어나, 사멸세포의 검출 및 in vivo 상에서 세포사멸이 진행되고 있는 환부의 이미징 ( imaging)을 매우 용이하게 하며, 상기 검출 및 이미징 신호가 질병 예후 예측에 있어 매우 높은 관련성을 나타낸다. 따라서 본 발명의 고리형 펩타이드는 영상물질과 결합하여 비정상적 세포증식 관련 질환에 대한 치료 약물의 반웅성을 초기에 진단할 수 있을 뿐만아니라, 치료물질과 결합하여 세포사멸 관련 질환 조직에 약물을 선택적으로 전달하는 목적으로 사용될 수 있다.

【도면의 간단한 설명】

도 1은 세포에 시스플라틴과 세툭시맙올 단독 또는 병용 처리한 후, 각각 선 형 ApoPep-l(A) , 고리형 ApoPep-l(B) 및 Annexin V(C)를 이용하여 in vitro상에서 사멸세포를 검출한 결과를 정량적으로 나타낸다 (PBS: 항암제 비처리 대조군, CPT: 시스플라틴 단독 처리군, CET: 세특시맙 단독 처리군, CPT+CET: 시스플라틴 및 세 툭시맙 병용처리군) . 도 2는 마우스에 1 및 2 라운드에 걸쳐 시스플라틴과 세툭시맙을 단독 또는 병용 처리한 후, 각각 선형 ApoPep-l(A) , 고리형 ApoPep— 1(B)을 사용하여 in vivo 상에서 사멸세포를 근적외선 형광 이미징 (NIR f luorescence imaging) 하였을 때의 형광강도를 나타낸다 (PBS: 항암제 비처리 대조군, CPT: 시스플라틴 단독 처리군, CET: 세툭시맙 단독 처리군, CPT+CET: 사스플라틴 및 세툭시맙 병용처리군, 1st : 상기 항암제들의 1라운드 (1주째) 처리군, 2nd: 상기 항암제들의 2라운드 (2주째) 처 리군) . 도 3은 마우스에 1 및 2 라운드에 걸쳐 시스플라틴과 세툭시맙을 단독 또는 병용 처리한 후, 각각 선형 ApoPep-l(C) , 고리형 ApoPep-l(D)을 사용하여 in vivo 상에서 사멸세포를 근적외선 형광 이미징 하였을 때의 대표 이미지이다 (PBS: 항암 제 비처리 대조군, CPT: 시스플라틴 단독 처리군, CET: 세툭시맙 단독 처리군, CPT+CET: 시스플라틴 및 세특시맙 병용처리군, 1st : 상기 항암제들의 1라운드 ( 1주 째) 처리군, 2nd : 상기 항암제들의 2라운드 (2주째) 처리군) . 도 4는 마우스에 1 및 2 라운드에 걸쳐 시스플라틴과 세툭시맙을 단득 또는 병용 처리하고 초기에 각각 선형 ApoPep-l(A) , 고리형 ApoPep-l(B)을 사용하여 세 포사멸을 검출하였던 마우스들에 대하여, 상기 항암 처리 후 3주 후까지의 종양 부 피의 변화를 나타낸다 (PBS: 항암제 비처리 대조군, CPT: 시스플라틴 단독 처리군, CET: 세툭시맙 단독 처리군, CPT+CET: 시스플라틴 및 세툭시맙 병용처리군, 화살표 는 항암제 처리 시점 (t ime point )들을 나타낸다) . 도 5는 마우스에 1 및 2 라운드에 걸쳐 시스플라틴과 세툭시맙을 단독 또는 병용 처리하고 초기에 각각 선형 ApoPep-l(C) , 고리형 ApoPep-l(D)을 사용하여 세 포사멸을 검출하였던 마우스들에 대하여, 상기 항암 처리 후 3주후에 마우스로부 터 종양을 적출하여 측정한 종양 무게를 나타낸다 (PBS: 항암제 비처리 대조군, CPT: 시스플라틴 단독 처리군, CET: 세툭시맙 단독 처리군, CPT+CET: 시스플라틴 및 세특시맙 병용처리군, 각각 ■, A , T , 令는 서브그룹 (n=3)의 각 개체에 대한 측정값이며 -는 평균값올 의미) . 도 6은 마우스에 1 및 2 라운드에 걸쳐 시스플라틴과 세특시맙을 단독 또는 병용 처리하고 초기에 각각 선형 ApoPep-l(E) , 고리형 ApoPep-l(F)을 사용하여 세 포사멸을 검출하였던 마우스들에 대하여, 상기 항암 처리 후 3주 후에 마우스로부 터 적출된 종양 조직에 대하여 TUNEL 염색한 결과를 나타낸다 (Green: apoptot ic cel ls ; Blue : nucleus . PBS: 항암제 비처리 대조군, CPT: 시스플라틴 단독 처리군, CET: 세툭시맙 단독 처리군, CPT+CET: 시스플라틴 및 세툭시맙 병용처리군, 각 이 미지 하단의 Scale bars는 50j«m를 나타낸다) . 도 7의 A 및 C는 마우스에 1라운드 항암제 처리 (각각 시스플라틴과 세툭시맙 을 단독 또는 병용 처리) 후, 각각 선형 ApoPep-l(A) , 고리형 ApoPep-l(C)올 사용 하여 근적외선 형광 이미징 하였을 때의 in vivo 형광 강도와 종양 부피의 예후 간 에 상관관계를 선형회귀분석한 결과를 나타내며

도 7의 B 및 D는 마우스에 2라운드 항암제 처리 (각각 시스플라틴과 세툭시맙 을 단독 또는 병용 처리) 후, 각각 ApoPep-l(B) , 고리형 ApoPep-l(D)을 사용하여 근적외선 형광 이미징 하였올 때의 in vivo형광 강도와 종양 부피의 예후 간에 상 관관계를 선형회귀분석한 결과를 나타낸다. 도 8은 각각 선형 ApoPep-l(A) , 고리형 ApoPep— 1(B)을 마우스 혈청에서 0 내 지 24시간까지 인큐베이션 후, 상기 펩타이드들을 회수하여 C18 reverse-phase FPLC로 분석한 결과를 시간순으로 나타낸다 (Y 축은 215nm에서의 absorbance uni t를 나타내며 X 축은 지연시간 (retent ion t ime)을 나타낸다. 화살표는 선형 또는 고리 형 ApoPep-1 펩타이드의 피크 (peak)를 가리킨다) . 도 9a는 선형 ApoPep-1을 마우스 혈청에 24시간 인큐베이션 후, 상기 펩타이 드를 회수하고 C18 reverse-phase FPLC 하여 수득한 펩타이드 피크 (peak) 분획 ( fract ion)에 대한 MS spectrum을 나타내며, 도 9b는 혈청에서 배양되지 않은 최초 합성상태의 선형 ApoPep-1 펩타이드에 대한 MS 결과이다 (화살표는 선형 ApoPep-1 펩타이드의 피크 (peak)를 가리킨다) . 상기 도 9a 및 도 9b의 비교를 통하여, 24시 간 동안 배양 후에도 선형 ApoPep-1이 혈청에서 안정하게 존재하였음을 알 수 있 다. 도 9c는 고리형 ApoPep-1을 마우스 혈청에 24시간 인큐베이션 후, 상기 펩타 이드를 회수하고 C18 reverse-phase FPLC 하여 수득한 펩타이드 피크 (peak) 분획 ( fract ion)에 대한 MS spectrum 을 나타내며, 도 9d는 혈청에서 배양되지 않은 최 초 합성상태의 고리형 ApoPep-1 펩타이드에 대한 MS 결과이다 (화살표는 고리형 ApoPep-1 펩타이드의 피크 (peak)를 가리킨다) . 상기 도 9c 및 도 9d의 비교를 통하 여, 24시간 동안 배양 후에도 선형 ApoPep-1이 혈청에서 안정하게 존재하였음을 알 수 있다.

【발명의 실시를 위한 형태】

이하 본 발명을 상세히 설명한다.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실 시예에 한정되는 것은 아니다.

<실험재료 및 실험방법>

1. 펩타이드 합성 및 형광 표지

Peptron Inc . (Dae j eon, Korea . )에 의해 선형 ApoPep-l(CQRPPR, 서열번호 1) 및 고리형 ApoPep-l(본 발명의 사이클로 [CQRPPRC] , 서열번호 2 , 아미노 말단 및 카 복시 말단의 이황화 결합에 의해 고리화됨) 펩타이드 각각이 합성되었고, highperformance l iquid chromatography (HPLC)를 이용해 순도 >9¾로 정제되었다. 상기 펩타이드들은 FITC( f luorescein i sothiocyanate) 또는 FPR675 근적외선 (near- infrared, NIR) 형광 염료 (Bioacts Inc . , Incheon, Korea . )로 표지되었다. 2. 시험관 내 조건 (//? 에서, 사멸세포에 대한 펩타이드 결합

SNU16 인간 위암 세포주는 KCLB (Seoul , Korea)로부터 구입되었다. 세포사멸 (apoptosis)을 유도하기 위하여, 세포들에 24시간동안 시스플라틴 (cisplatin, 300 ng/ml), 세툭시맙 (cetuximab, 200 //g/ml) 단독처리 또는 시스플라틴과 세툭시맙을 병용 처리 (cisplatin 300 ng/ml , cetuximab, 200 ;g/ml)하였다. 상기 시스플라틴 및 세툭시맙의 처리 농도는 이전의 연구를 기반으로 선택되었다 (Choi CH, Cha YJ, An CS, Kim KJ, Kim C, et al . (2004) Molecular mechanisms of hepta latin effective against cisplat in-resistant cancer cell lines: less involvement of metal lothionein. Cancer Cell Int 4: 6.; Yun J, Song SH, Park J , Rim HP, Yoon YK, et al . (2012) Gene silencing of EREG medi ted by DNA methyl at ion and hi stone modification in human gastric cancers. Lab Invest 92: 1033-1044. ) . 상 기 물질 처리 후, 세포들은 fluorescein isothiocyanate (FTTC)와 컨쥬게이트 된 선형 또는 고리형의 ApoPep-1 펩타이드와 함께 4 ° C에서, 1시간동안 배양되었다. 대 조군으로서, 세포를 상온에서 A lexa488ᅳ conjugated annex in V(Life technologies, Carlsbad, CA)로 15분 동안 염색하였다. 형광 (상기 선형 또는 고리형 ApoPep-1 펩 타이드가 결합되었거나 또는 annexin V가 결합되어 나타나는 형광) 세포의 백분율 은 유세포분석기 (Fluorescence-activated cell sorting (FACS) , FACS calibur, BD Biosciences, MA, USA)를 사용하여 유액상태의 세포가 일정 형광감지 지역을 통과할 때 각각의 세포에서 나타나는 형광신호 (상기 선형 또는 고리형 ApoPep-1 펩타이드 가 결합되었거나 또는 annexin V가 결합되어 나타나는 형광)를 선택하여 측정하고 분석하는 방법을 사용하여 산출되었다.

3. 마우스에 항암제 처리 (anti-tumor treatment) 및 종양 크기 축정 모든 동물 실험은 위원회 지침서 (institutional guidelines)에 따라, 그리고 경북대학교 IACUC의 가이드라인 (guideline of the Institutional Animal Care and Use Co讓 ittee ( IACUC) of yungpook National University)에 의해 승인받은 동물 실혈 프로토콜 (permission No. KNU 2012-15)에 따라 수행되었다.

8주령 암컷 무흉선 (athymic, nu/ηύ) Balb/c 마우스를 Orient laboratories (Seongnam, Korea)로부터 구입하였고, 사료 및 물을 자유식이 (ᅳ Ubitum 、 SPF 조건 (specif ic— pathogen一 free condition)에서 사육되었다. 위종양 (stomach tumor) 의 이종이식 (xenograft)은 ΙΟΟμΙ saline에 포함된 1 χ Ιθ' SNU-16 세포를 마우스의 오른쪽 옆구리 (right flank)에 피하주사하여 제작하였다. 마우스에서 종양의 부피 가 50-60 腿 3 되었을 때, 무작위로 각각의 실험군으로 나누어 실험물질의 처리를 개 시하였다. 상기 종양 마우스에 시스플라틴 및 세툭시맙의 처리는 이전의 연구에서 공지된 프로토콜에 따라 수행되었다 (Steiner P, Joynes C, Bassi R, Wang S, Tonra JR, et al . (2007) Tumor growth inhibi t ion wi th cetuximab and chemotherapy in non-smal l cel l lung cancer xenografts expressing wi ld-type and mutated epidermal growth factor receptor . CI in Cancer Res 13 : 1540-1551. ) 마우스들은 각각 4개의 처리군으로 나뉘었고 (각 군당 n =6) , 항암제는 2주 동안 처리되었다: 1) phosphate buf fered sal ine 처리한 대조군 (PBS, control ) ; 2) 시스플라틴 처리군 (5 mg/kg, 복강내 주사, 1주일에 1회 주사하여 총 2번 주사) ; 3)세특시맙 처리군 ( 1.5 mg/kg, 복강내 주사, 1주일에 2번 주사하여 총 4회 주사) ; 4)시스플라틴 (5 mg/kg, 복강내 주사, 1주일에 1회 주사하여 총 2번 주사) 및 세특시맙 ( 1.5 mg/kg , 복강내 주사, 1주일에 2번 주사하여 총 4회 주사) 흔합처리군. 항암제 처리의 1라운드 (one round)는 시스플라틴을 day 1/week (한 주를 단위로 할 때, 한주의 첫째날)에 주입 하고, 세툭시맙을 day 1/week 및 day 4/week (한 주를 단위로 할 때, 한주의 첫째날 및 넷째날)에 주입하는 방식으로 수행되었고, 본 실험에서는 2주동안 총 2 라운드 의 항암제 처리가 이루어졌다. 종양 크기의 변화는 3주에 걸쳐서 전자 캘리퍼 (automat ic cal iper)로 측정하였다. 종양의 부피는 하기의 공식을 사용하여 계산되 었다: 부피 = (길이 X 너비 X 높이) /2. 종양의 무게는 마우스로부터 종양 덩어리를 분 리해낸 후에 측정되었다.

4. 생체 내 ( //? vivo) 조건에서, 종양 세포사멸의 근적외선형광 이미징 ( imaging)

생체 근적외선형광 영상 ( /2 vivo NIR f luorescence imaging)은 첫번째 및 두 번째 라운드의 항암제 처리 후에 각각 수행되었다. 선형 ApoPep-1 또는 고리형 ApoPep-1 펩타이드로 각각 이미징하기 위해, 각 처리군 (n=6)은 2개의 서브그룹 (n=3)으로 나누어졌다. 선형 또는 고리형의 FPR675- labeled ApoPep-1 (각각 선형 펩타이드 1.45 mg/kg 및 고리형 펩타이드 1.54 mg/kg 주입; 각 펩타이드의 800 nraol/kg 에 상응하는 양임)은 마우스의 꼬리정맥을 통해 주사되었다. 상기 형광 표 지된 선형 및 고리형의 ApoPep-1 펩타이드를 주입하고 90분 후에, 마우스들을 마취 시키고 이미징 ( imaging)하였다. 근적외선형광 (일반적으로 650 및 llOOnrn 사이에서) 은 생체 광학영상 ( //? vivo opt ical imaging)에서 선호되는데, 이는 조직 내 불특정 한 흡수가 적고 조직 투과력 또한 높기 때문이다. (Konig (2000) Mul t iphoton microscopy in life sciences. J Microsc 200: 83-104.). 본 연구에서 사용된 FPR675 dye의 여기 /방출 (excitation/emission) 파장은 675/698 nm이다. 이미지들은 eXplore Optix optical imaging system (ART Inc. , Montreal , Canada)을 사용하여 수득되었고, 몸 전체 스케닝 (whole-body scanning) 결과의 획득 시간은 각 마우스 당 15분이었다. ROKregion of interest)에서의 형광강도는.제조사 (ART Inc.)에 의 해 제공된 분석 소프트웨어를 사용하여 분석되었다.

5. 세포사멸의 조직학적 분석

생체 영상 후, 항암제처리 개시로부터 3주 (21일)에 마우스들을 안락사 시키 고 종양을 제거한 뒤, O.C.T. embedding medium (Sakura Finetechnical , Tokyo , Japan)에서 재빨리 동결시켰다. 조직들은 6/ 박편으로 잘려졌으며, 핵의 대비염색 (nucleus counterstaining)을 위하여 DAPI (4' , 6—d i ami dino—2— phenyl indole)로 염 색되었다 . TUNEL(Terminal deoxyᅳ nucleot idyl transferaseᅳ mediated dUTP nick-end labeling) 염색은 Apo tag Red In Situ Apoptosis Detection kit 를 사용하여 제조 사의 지침에 따라 수행되었다 (Millipore, Billerica, MA). 상기 염색된 조직 박편 들은 형광 현미경 (Carl Zeiss, Jena, Germany)으로 관찰되었다.

6. 형광 강도 및 종양 부피 사이의 연관성 분석

항암제처리 개시일로부터 3주 후 (실험의 종결 단계)에, 마우스의 종양 부피 를 측정하고 마우스로부터 종양을 적출하여 무게를 측정하였다. 근적외선형광 강도 및 종양 부피 사이의 연관성은 Graphpad software를 이용한 선형회귀분석법 (linear regression analysis)에 의해 평가되었다.

7. 혈청에서 펩타이드들의 안정성

혈청에서의 펩타이드 안정성은 하기 문헌을 참고하여 같은 방법으로 검사되 었다: Yoo SA, Bae DG, Ryoo JW, Kim HR, Park GS, et al . (2005) Arginine-rich ant i vascular endothelial growth factor (anti-VEGF) hexapept ide inhibits col lagen induced arthritis and VEGF-stimulated productions of TNF-alpha and IL-6 by human monocytes. J Immunol 174: 5846-5855. 마우스의 혈액을 채취한 뒤, 4°C에서 원심분리하여 혈청을 수집하고 0.22 pore의 필터로 여과하여 사용하였 다. 각각 선형 및 고리형 ApoPep-1 펩타이드 (50^ PBS에 포함된 100 펩타이드)를 상기 여과된 혈청 50^와 함께 37 ° C에서 시간간격을 두고 24시간까지 반웅시켰다 ( 각각의 샘플들은 혈청 + 펩타이드 (즉, 100/ig) = 10 βί 씩으로 조성되어,

Oh, lh, 4h, 8h, 16h, 24h의 시간별로 각각의 튜브에서 반웅시켰다 .)· 상기 샘플들 을 100배 희석하여 100^씩 주입하였고, flow rate는 분당 0.3ml로 하고 acetonitrile을 사용하여 0에서 100%까지 20%씩의 직선농도구배 (linear gradient) 를 통해 C18 reverse phase FPLC로 분석하였다 (Vydac protein and peptide C18, 0.1% tri f luoroacetate in water for equilibration, and 0.1% trif luoroacetate in acetonitrile for elution). 상기 C18 reverse phase FPLC의 결과로 나타난 각 각의 피크에 따라 수집된 분획샘플들은 회수하여 동결건조하였다. 수집된 분획샘플 에서 펩타이드를 동정하기 위해서 MALDI-T0F mass spectrometer (Life Technologies, Carlsbad, CA)를 이용하여 mass spectrometry (MS)를 분석하였다.

8. 통계적 분석

상기 실험군 및 대조군 간 차이의 통계적 유의성은 one-way analysis of variance (AN0VA)를 사용하여 분석되었다 (* p<0.05, ** p<0.01, ***p<0.001으로 각 도면에 통계적 유의성을 표시하였다).

<실시예 1>

세포 내 조건 (/? t^ ro)에서. 시스폴라틴 및 세특시맙 처리 후 ADoPep-Ι을 이용한 위종양 세포의 세포사멸 (apoptosis) 검출

ApoPep-1의 구조적 특징에 따른 세포사멸 검출 정도를 조사하기 위하여, 위 종양 세포들에 시스플라틴 또는 세툭시맙을 단독처리하거나 병용처리하고, 후에 FITC와 컨쥬게이트된 선형 또는 고리형의 ApoPep-1과 배양하였다. 고리형 ApoPep- 1(본 발명의 사이클로 [CQRPPRC] 펩타이드)은 선형 ApoPep-l(CQRPPR)의 카복시 말단 에 시스테인 잔기를 부가하고, 이황화 결합을 통해 고리화 (cyclization)되었다. 선 형 ApoPep-1에 의해 검출된 사멸세포의 백분율은 시스플라틴 단독 처리군, 세툭시 맙 단독 처리군ᅳ 시스플라틴 및 세툭시맙 병용 처리군 각각에서 약 28%, 25%, 및 34%였다 (도 1의 A). 고리형 ApoPep-1에 의해 검출된 사멸세포의 백분율은 시스플라 틴 단독 처리군, 세툭시맙 단독 처리군, 시스플라틴 및 세툭시맙 병용 처리군 각각 에서 약 56%, 49%, 및 78%였다 (도 1의 B). annex in V 에 의해 검출된 사멸세포의 백 분율은 시스플라틴 단독 처리군, 세툭시맙 단독 처리군, 시스플라틴 및 세특시맙 병용 처리군 각각에서 약 43%, 40%, 및 45%였다 (도 1의 C). 이러한 결과는 시스플라 틴 또는 세특시맙을 각각 처리했을 때보다 시스플라틴 및 세툭시맙의 병용 처리가 위 종양 세포에 높은 수준으로 세포사멸올 유도함을 보여준다. 또한, 이러한 결과 는 고리형 ApoPep-1이 선형 ApoPep-1 또는 annexin V 보다 종양 세포에서 더욱 민 감하게 세포사멸을 검출한다는 것을 제시한다.

<실시예 2>

생체 내 ( / ' ? vivo) 조건에서. 시스플라틴 및 세룩시맙 처리 후 ADoPep-Ι을 이 용한 위종양의 세포사멸 이미징 ( imaging)

in vivo상에서 ApoPep-1의 구조적 특징에 따른 세포사멸 검출 정도 및 이 미징 효과를 조사하기 위하여, 첫번째 및 두번째 라운드 각각의 약물 처리 후에, 종양 조직에 근적외선형광시약 (FPR675)이 표지된 ApoPep-1의 축적에 의한 종양 부 위에서의 형광 강도를 측정하였다 (각각, 약물 처리 ' 개시후 1주 및 2주에서 동일한 방식으로 수행됨) . 종양 부위에서 선형 또는 고리형 ApoPep-1에 의한 형광 강도의 정량은, 첫번째 및 두번째 라운드의 시료처리 후, 약물이 비처리된 대조군에 비하 여 시스플라틴 단독 처리군, 세특시맙 단독 처리군, 시스플라틴 및 세툭시맙 병용 처리군에서 유의적으로 높은 강도를 보여주었다 (도 2의 A, 및 도 2의 B) . 선형 ApoPep-1에 의한 형광 강도는 시스플라틴 단독 (약물처리 첫번째 및 두번째 라운드 후 각각에서 p<0.05 및 p<0.05 , 도 2의 A) 또는 세특시맙의 단독 처리군 (약물처리 첫번째 라운드에서는 pO . Ol , 두번째 라운드에서는 유의성이 관찰되지 않음, 도 2 의 A) 과 비교하여, 시스플라틴 및 세툭시맙 병용 처리군에서 높았다.

특히, 본 발명의 고리형 ApoPep-1에 의한 종양 부위의 형광 강도는 시스플라 틴 단독 (약물처리 첫번째 라운드 및 두번째 라운드 후 각각에서 ρθ .01 및 p<0.01 , 도 2의 B) 또는 세툭시맙의 단독 처리군 (약물처리 첫번째 라운드 및 두번째 라운드 후 각각에서 p<0.001 및 ρθ .01 , 도 2의 B)과 비교하여, 시스플라틴 및 세툭시맙 병 용 처리군에서 현저하게 높았다.

선형 및 고리형 ApoPep-1에 의한 대표적인 몸 전체 형광 이미지를 각각 도 3 의 C 및 도 3의 D에서 보여준다. 도 3에서 보는 바와 같이, 선형 ApoPep-1에 의한 것 보다 고리형 ApoPep-1에 의한 형광이미지에서 실험군 간의 형광 강도 차이가 육안 으로도 명확히 구별되는 것을 확인하였다. 약한 배경 형광신호 (background f luorescence signals)가 간 또는 폐와 같은 다른 장기에서 관찰되었다 (도 3의 C 및 도 3의 D) .

<실시예 3> 시스폴라틴 및 세특시맙을 이용하 항암 처리 후. 종양 부피 및 무게의 측정 시스플라틴, 세툭시맙의 단독 및 병용 처리의 항-암 성장 효과 (anti-tumor growth effect)를 조사하기 위하여, 상기 약물 처리 후 종양 부피 및 무게를 측정 하였다. 시스플라틴과 세특시맙의 단독 및 병용 처리는 약물 비처리 대조군과 비교 하여 선형 ApoPep— 1 처리군 (순서대로 각각 p<0.05, p<0.05, 및 pO.OOl, 도 4의 A) 및 고리형 ApoPep-1 처리군 (순서대로 각각 p<0.05, p<0.01, 및 ρ<0·001, 도 4의 B) 에서 모두 종양의 부피를 감소시킨 것으로 나타났다. 시스플라틴 및 세툭시맙의 병 용 처리는 시스플라틴 또는 세툭시맙의 단독 처리 (도 4의 A에서 보는 바와 같이, 선 형 ApoPep-1 처리군에서는 각각 p<0.05 및 p<0.05, 도 4의 B에서 보는 바와 같이 고리형 ApoPep-1 처리군에서는 각각 ρ<0·01 및 ρ<0·01)와 비교하여 종양 부피를 더 욱 효과적으로 감소시켰다. 약물 비처리 대조군과 비교하여, 시스플라틴과 세툭시맙의 단독 처리 및 병 용 처리 후에 종양 무게의 변화에 있어서도 상기와 유사한 패턴이 선형 ApoP印 -1 처리군 (각각 순서대로 p< 0.01, p<0.01 및 pO.001, 도 5의 C) 및 고리형 ApoPep-1 처리군 (각각 순서대로 pO.01, p<0.01 및 pO.001, 도 5의 D)에서 관찰되었다.

시스플라틴과 세특시맙의 병용처리가 시스플라틴 단독 및 세툭시맙의 단독처 리와 비교하여 (도 5의 C에서 보는 바와 같이 선형 ApoPep-1 처리군에서는 각각 p< 0.05 및 p<0.05, 도 5의 D에서 보는 바와 같이 고리형 ApoPep— 1 처리군에서는 각각 ρθ.01 및 p<0.01), 종양의 무게를 더욱 효과적으로 감소시켰다

상기와 같이 약물 처리 후, 선형 또는 고리형의 ApoPep-1을 주사한 실험군 사이에 종양 부피 및 무게의 감소 수준은 유사하였고, 이미징 (imaging) 작업 수행 시 상기 두 그룹 간의 종양 부피에는 차이가 없었다. 도 6에서 보는 바와 같이 시 스플라틴 또는 세특시맙의 단독처리와 비교하여, 시스플라틴 및 세특시맙의 병용 처리 후 높은 수준의 세포사멸은 종양 조직에 대한 TUNEL staining을 통하여 더욱 입증되었다 (도 6).

<실시예 4>

형광 강도 및 종양 크기 사이의 연관성

첫번째 및 두번째 라운드의 약물처리 후에, 사멸세포 in vivo이미지의 형광 강도 (약물 처리 개시 후 각각 1주 및 2주에서 동일한 방법으로 측정)와 추후 종양 부피 (약물처리 개시 후 3주차) 사이의 상관관계를 조사하였다. 약물 처리 첫번째 라운드 후에 고리형 ApoPep-1에 의해 수득된 이미지의 형광강도는 강력한 일치성을 보이며 (with the strongest agreement ) 역비례적으로 종양 부피와 상호관계 되었다

(correlat ion coef f icient 0.934, 도 7의 C) . 이는 약물처리 두 번째 라운드 후 에 고리형 ApoPep-1에 의해 수득된 형광강도 (r 2 =0.705, 도 7의 D) , 약물처리 첫 번 째 라운드 후 선형 ApoPep-1에 의해 수득된 형광 강도 (r 2 = 0.631 , 도 7의 A) 및 약 물처리 두 번째 라운드 후 선형 ApoPep-1에 의해 수득된 형광 강도 (r 2 =0.402 , 도 7 의 B)와 비교하여, 높은 상호관련성을 보이는 것이다. 이러한 결과를 통하여 본원 발명의 고리형 ApoPep-1 펩타이드는 약물 처리 후 초기 단계에서 (1주 정도에서도) 약물에 대한 종양 반웅성의 빠른 진단이 가능함을 알 수 있었다.

<실시예 5>

혈청에서 선형 및 고리형 ADoPeD-1의 안정성

상기 실시예들에서 선형 ApoPep— 1과 비교하여 고리형 ApoPep-1에 의해 높은 수준의 이미징 시그널이 검출된 것이, 혈청 속에서의 펩타이드 안정성 문제에 기인 하는 것인지 조사하였다. 마우스 혈청과 선형 또는 고리형 ApoPep-1을 각각 24시간 까지 배양한 후, 혈청 속에 남아있는 펩타이드의 양을 분석하였다. 펩타이드 피크 ( 도 8에서 화살표 표시됨)는 혈청의 비특이적 피크로부터 분리 가능하였고, 혈청 속 에 남아있는 선형 또는 고리형 ApoPep— 1 펩타이드 양 (peak area 값에 의해 계산됨) 은 24시간까지 유의미하게 변화되지 않았다 (각각 도 8의 A 및 도 8의 B) . 상기 각 펩타이드 피크의 MS 분석을 통해 선형 (도 9a) 및 고리형 (도 9c) ApoPep-1임을 확인 하였다. 이러한 결과는 선형 및 고리형 ApoPep-1 모두 배양된 시간동안 안정성의 변화없이 24시간동안 혈청에서 안정하였다는 것을 제시하며, 또한 이는 본 발명의 고리형 ApoPep-1 펩타이드가 선형 펩타이드에 비하여 현저하게 향상된 타겟팅 활성 을 보이는 것이 혈청에서의 펩타이드 안정성 차이에 기인하는 특성이 아님을 의미 한다. 따라서 본 발명의 고리형 ApoPep-1 펩타이드에는, 펩타이드의 고리화 과정에 서 사멸세포 (히스톤 HI)와 더 잘 결합하는 인위적 구조가 발생된 것으로 생각되었 다.

【산업상 이용가능성】

이상 살펴본 바와 같이, 본원 발명은 서열번호 2로 표시되는 아미노산 서열 로 이루어진 고리형 펩타이드 (사이클로 [Cys-Gln-Arg-Pro-Pro-Arg-Cys] 펩타이드) 및 이를 유효성분으로 포함하는 사멸세포 검출용, 약물 전달용, 영상화용 조성물 등에 관한 것이다.

본 발명의 서열번호 2로 표시되는 아미노산 서열로 이루어진 고리형 펩타이 드 (사이클로 [Cys-Gln-Arg-Pro-Pn)-Arg-Cys] 펩타이드)는 그 선형 펩타이드와 비교 하여 사멸세포와 결합 (또는 타겟)하는 효과가 뛰어나, 사멸세포의 검출 및 in vivo 상에서 세포사멸이 진행되고 있는 환부의 이미징 ( imaging)을 매우 용이하게 하며 , 상기 검출 및 이^징 신호가 질병 예후 예측에 있어 매우 높은 관련성을 나타낸다. 따라서 본 발명의 고리형 펩타이드는 영상물질과 결합하여 비정상적 세포증식 관련 질환에 대한 치료 약물의 반웅성을 초기에 진단할 수 있을 뿐만아니라, 치료물질과 결합하여 세포사멸 관련 질환 조직에 약물을 선택적으로 전달하는 목적으로 사용될 수 있어, 산업상 이용 가능성이 크다.