Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DATA PROCESSING DEVICE CAPABLE OF PERFORMING PROBLEM DIAGNOSIS IN A PRODUCTION SYSTEM WITH PLURALITY OF ROBOTS AND METHOD
Document Type and Number:
WIPO Patent Application WO/2019/161947
Kind Code:
A1
Abstract:
The invention is about a data processing device (1) and a related method capable of performing problem diagnosis in a production system with a plurality of robots (21, 22, 2n), comprising - a first time series obtaining part (3) configured to obtain historical event data used for determining some historical alarm indicator in time series and store the historical event data as first time series data, - a historic alarm indicator calculation part (4) configured to calculate a series of historic alarm indicators (ai,h) using statistic characteristics of the first time series data, - a threshold definition part (5) configured to define at least one threshold value based on the statistical distribution of the historical alarm indicators, - a second time series obtaining part (6) configured to obtain operational event data during operation of the robots (21, 22, 2n) used for determining some operational alarm indicator (a,) in time series and store the operational event data as second time series data, - an operational alarm indicator calculation part (7) configured to calculate a series of operational alarm indicators (a,) using statistic characteristics of the second time series data, an alarm notification part (8) configured to give alarm notifications to one of operational, maintenance or troubleshooting personnel for alarm indicators above the at least one threshold level, an event highlighting part (9) configured to highlight to one of operational, maintenance or troubleshooting personnel the events that mainly contribute to the operational alarm indicator (ai), in order to determine the events that mainly contribute to the operational alarm indicator (ai).

Inventors:
DIX, Marcel (Neckarpromenade 15/517, Mannheim, 68167, DE)
FIEDLER, Boris (Oranienstr. 21, Wiesbaden, 65185, DE)
KLÖPPER, Benjamin (Adlerstr. 12, Mannheim, 68199, DE)
Application Number:
EP2018/081202
Publication Date:
August 29, 2019
Filing Date:
November 14, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABB SCHWEIZ AG (Brown Boveri Strasse 6, 5400 Baden, 5400, CH)
International Classes:
G05B23/02
Foreign References:
US20140055274A12014-02-27
Other References:
None
Attorney, Agent or Firm:
MARKS, Frank (Wallstadter Strasse 59, Ladenburg, 68526, DE)
Download PDF:
Claims:
Claims

1. Data processing device (1 ) capable of performing problem diagnosis in a pro- duction system with a plurality of robots (2i, 22, 2n), comprising

- a first time series obtaining part (3) configured to obtain historical event data used for determining some historical alarm indicator in time series and store the historical event data as first time series data,

- a historic alarm indicator calculation part (4) configured to calculate a series of historic alarm indicators (a,,h) using statistic characteristics of the first time se- ries data,

- a threshold definition part (5) configured to define at least one threshold value based on the statistical distribution of the historical alarm indicators,

- a second time series obtaining part (6) configured to obtain operational event data during operation of the robots (2i, 22, 2n) used for determining some opera- tional alarm indicator (a,) in time series and store the operational event data as second time series data,

- an operational alarm indicator calculation part (7) configured to calculate a se- ries of operational alarm indicators (a,) using statistic characteristics of the sec- ond time series data,

an alarm notification part (8) configured to give alarm notifications to one of op- erational, maintenance or troubleshooting personnel for alarm indicators above the at least one threshold level,

an event highlighting part (9) configured to highlight to one of operational, maintenance or troubleshooting personnel the events that mainly contribute to the operational alarm indicator (a,), in order to determine the events that mainly contribute to the operational alarm indicator (a,).

2. A data processing device according to claim 1 , further comprising a machine learning part, configured to execute a machine learning algorithm in order to de- tect anomalies in the event data, and further comprising an alarm indicator part configured to identify the events that probably cause the decision of the ma- chine learning algorithm towards anomaly.

3. A data processing device (1 ) according to claim 1 or 2, characterized in that the device is configured to include abritary input data like I/O or analog signals as event data.

4. State-based or event based alarm system, including a data processing device (1 ) according any of the preceding claims, which is configured to, in case it is state-based, trigger an alarm while the score is above a threshold, and in case it is event-based, to trigger an alarm when the alarm exceeds a threshold.

5. Method for performing unsupervised diagnosis in a production system with a plurality of robots, the method comprising the steps of

S1 : calculating historic alarm indicator values based on historical data,

S2: defining and selecting a threshold value based on the distribution of the historic alarm indicator values,.

S3: calculating an operational alarm indicator during live operation, using new event data,

S4: giving alarm notifications for values above the threshold, to operational, maintenance, or troubleshooting personal

S5: highlighting to the operational, maintenance or troubleshooting personal the events that mainly contribute to the operational alarm indicator.

6. A method according to claim 5, further comprising the steps of

S6: running a machine learning algorithm to detect anomalies in the event data and

S7: running an alarm indicator algorithm to identify the events that probably cause the decision of the machine learning algorithms towards anomaly.

7. Method according to any of claims 5 - 6, including the use of abritary input data like I/O or analog signals as event data.

Description:
Data processing device capable of performing problem diagnosis in a production system with plurality of robots and method

Specification

The invention is about a data processing device capable of performing problem diag- nosis in a production system with a plurality of robots.

The invention is further about a method for performing unsupervised diagnosis in a production system with a plurality of robots,

In a production line, an industrial robot is used together with a number of other robots or machines. In many applications, large number of industrial robots are installed in one site. Thus, even when only one robot fails to operate properly, the whole produc- tion line may be terminated. Therefore, there is a need for means to detect problems occurring at a robot in a production line with a plurality of robots that may lead to mal- function of the robot early enough to prevent the halt of the production line.

Detecting problems in a robot as part in a large fleet of robots is not an easy task.

Not always are problems visible to the operators in the line - for instance synchroni- zation problems might call delays of a couple of seconds that are unnoticed, but add- up to a serious problem if they keep on occurring for a longer time.

One source of information to monitor a robot is the event log, that each robot produc- es during operation in production. But analysis of the raw event logs is a very tedious task and does not scale. Event data are monitored for each robot in a dashboard, so there are at least as many dashboards of robot event data as there are robots in the line, which makes it nearly impossible for an operator to monitor or analyze these data.

So it is the object of the present invention to provide a data processing device and a method capable of performing problem diagnosis in a plurality of robots that allows to realize an alarm system to perform fault diagnosis of one or more robots in a fleet of a plurality of robots, that allows for an algorithmic analysis of the log-files of the ro- bots without large engineering effort, and which reduces the complexity of monitoring information to a degree that can be processed by a human operator.

The problem is solved with respect to the device according to the invention by a data processing device comprising the features of claim 1.

The problem is solved with respect to the method according to the invention by a method comprising the features of claim 2.

A data processing device according to the invention comprises

- a first time series obtaining part configured to obtain historical event data used for determining some historical alarm indicator in time series and store the historical event data as first time series data,

- a historic alarm indicator calculation part configured to calculate a series of historic alarm indicators a,,h using statistic characteristics of the first time series data,

- a threshold definition part configured to define at least one threshold value based on the statistical distribution of the historical alarm indicators,

- a second time series obtaining part configured to obtain operational event data dur- ing operation of the robots used for determining some operational alarm indicator a, in time series and store the operational event data as second time series data,

- an operational alarm indicator calculation part configured to calculate a series of operational alarm indicators a, using statistic characteristics of the second time series data,

- an alarm notification part configured to give alarm notifications to one of operational, maintenance or troubleshooting personnel for alarm indicators above the at least one threshold level,

- an event highlighting part configured to highlight to one of operational, maintenance or troubleshooting personnel the events that mainly contribute to the operational alarm indicator a,, in order to determine the events that mainly contribute to the oper- ational alarm indicator a,.

The solution according to the present invention is an algorithmic analysis of the log files that highlights robots that require attention. It derives an alarm logic from histori cal event data, provides alarms and additional diagnostics information about the type of problem without human intervention.

The data processing device according to the invention provides high level alarm logic robust to single nuisance alarms without the need to manually define or tune alarm thresholds.

It further provides an automatic overview of‘hot-areas’ both in production structure, i.e. for example line or cell, and technical nature of the problems, i.e. for example ap- plication specific, communication, mechanical... .

The invention provides a generic approach to monitoring dashboards based on robot event data.

The invention, further advantages of the invention and advantageous embodiments of the invention will now be described with reference to the accompanying figures.

Brief description of the drawings:

Figure 1 is a functional block diagram of a data processing device capable of per- forming problem diagnosis in a plurality of robots according to one embod- iment,

Figure 2 is a flow chart showing the process performed by a data processing device capable of performing problem diagnosis in a plurality of robots according to one embodiment

Figure 1 is a functional block diagram of a data processing device 1 capable of per- forming problem diagnosis in a plurality of robots 2i, 22, 2 n according to one embodi- ment. The data processing device 1 is communicatively coupled to a plurality of ro- bots 2i, 2 2 , 2 n in a production line or an industrial process. The robots 2i, 2 2 , 2 n are not illustrated in detail but may be known multiple-joint robots provided with a plurality of motors for driving joints, and provided with a robot controller each or a robot con- trol unit for controlling a plurality of robots together. The data processing device 1 may be a device on its own functionally and communicatively coupled to each of the robots 2i, 22, 2 n , receiving information from the respective robot control units, or it may be a functional part of a general robot control unit for controlling the robots. The data processing device 1 may be realized as a software program, either running on its own or as a program module of the robot control and monitoring software.

The data processing device 1 comprises a first time series obtaining part 3 config- ured to obtain historical event data used for determining some historical alarm indica- tor in time series and store the historical event data as first time series data. It further comprises a historic alarm indicator calculation part 4 configured to calculate a series of historic alarm indicators a,,h using statistic characteristics of the first time series data. It further comprises a threshold definition part 5 configured to define at least one threshold value based on the statistical distribution of the historical alarm indica- tors. It further comprises a second time series obtaining part 6 configured to obtain operational event data during operation of the robots 2i, 22, 2 n used for determining some operational alarm indicator a, in time series and store the operational event da- ta as second time series data. It further comprises an operational alarm indicator cal- culation part 7 configured to calculate a series of operational alarm indicators a, using statistic characteristics of the second time series data. It further comprises an alarm notification part 8 configured to give alarm notifications to one of operational, mainte- nance or troubleshooting personnel for alarm indicators above the at least one threshold level. It further comprises an event highlighting part 9 configured to high- light to one of operational, maintenance or troubleshooting personnel the events that mainly contribute to the operational alarm indicator a,, in order to determine the events that mainly contribute to the operational alarm indicator (a,).

Each of the first time series obtaining part 3, historic alarm indicator calculation part 4, threshold definition part 5, second time series obtaining part 6, operational alarm indicator calculation part 7, alarm notification part 8, and event highlighting part 9 may be realized as program modules of the robot control and monitoring software.

The overall process as executed by the data processing device 1 is depicted with reference to figure 2.

In an initial step S1 , some historic alarm indicator values are calculated based on historical data. The historic alarm indicator can be defined for time-windows, e.g. hours or days, or alarm episode, e.g. chunk of events with less then 5 minutes be- tween the subsequent events.

Based on the distribution of the historic alarm indicator values, a threshold value is defined and selected in the following step S2.

In the next step S3, during live operation, new event data is used to calculate an op- erational alarm indicator. The operational alarm indicator calculation part 4 may for this purpose use the same algorithm as is used in the historic alarm indicator calcula- tion part 7.

For values above the threshold, in step S4 alarm notifications are given to operation- al, maintenance, or troubleshooting personal.

In a further step S5, the events that mainly contribute to the operational alarm indica- tor are highlighted to the operational, maintenance or troubleshooting personal.

The basic idea of the invention is to use statistic characteristic of the event log to cal- culate an alarm indicator (ai).

For instance, the alarm indicator for one day could be calculated by:

With

x’ = numbers event in an observation period (day, hour)

X

= average number of events

s = standard deviations in number of events

The ai captures, how much of the current number of the events deviating from the average can be accounted for the standard deviation and how much is uncommon. Based on the statistical distribution of ai in the historical data, one or several thresh- old values can be defined, e.g.:

ai > 0.3 => yellow alarm

ai > 0.5 => orange alarm

ai > 0.8 => red alarm

The values could be for instance the 0.75; 0.85 and 0.95 percentile of the distribution of ai.

The parameters of the ai are determined in an initial training step on historical data.

At runtime, new‘chuncks’ of incoming events are used to calculate an updated value for the alarm indicator ai. If ai is above the threshold, an alarm with all relevant infor- mation, e.g. production line, cell, robot, are displayed to the monitoring personnel.

Furthermore, additional information highlighting the current condition of the ro- bot/line/cell are provided. Such additional information may comprise: - A list of events that cause the high value of ai, e.g. unlikely events, uncommon frequent events, missing events and so on, or

- a visualization of the alarm indicator in a hierarchal fashion, e.g. visualizing how much ai is caused by one line/cell/robot, how much ai is caused by what category of event, which category of event may be one of communication, tool, application, electrical, etc.

Other examples of alarm indicators can be:

- Based on the frequency of overall events, event categories, or single events;

- Based on distance to k-th nearest neighbors using some distance or similarity measure like cosine, jacquard, Euclidian or other;

- Error rates of machine learning algorithms like autoencoder networks, regres- sion algorithms, bayes classifier or others;

- Based on event probabilities and likelihoods, e.g, estimated by kernel density estimation

A further advantageous embodiment can be the combination of a machine learning algorithm, e.g. once-class-svm, knn anomaly detection, local-outlier-factor, autoen- coder networks, to detect anomalies in the event data and an alarm indicator to iden- tify the events that probably cause the decision of the machine learning algorithms towards anomaly.

A further advantageous embodiment may be an integration into a - e.g. state-based or event based - alarm system. Such an alarm system, in case it is state-based, will . trigger an alarm while the score is above a threshold. In case it is event-based, it will trigger an alarm when the alarm exceeds a threshold.

A further advantageous embodiment may be to include abritary input data like I/O or analog signals.

Input for the calculation of alarm Key Performance Indicators (KPIs) is the log file of the robots or production system. Below is an example of a log file produced by one or several robots. The example log file has the attributes category and message. A log file can have more attributes, like several message arguments or event severity.

Example 1 :

This example how to calculate an alarm indicator based on the number of events in a specified time-slot. Input is the historical time-series as shown in the table above with vents from one or several robots. The robot event are have different categories, e.g. motion (e.g. collision event, path executed), communication (e.g. I/O status change, I/O card missing), controller (e.g. backup, high temperature) depending on the source of the event documented in the log. In a first step, the number of events per hour is calculated. For ten hours the results in the following number per hour:

Motion Communication Controller Total

1 66 45 39 150

2 86 5 5 96

3 68 1 3 72

4 108 45 16 169

5 120 17 9 146

6 64 35 50 149

7 119 7 29 155

8 73 6 5 84

9 60 1 41 102 The following tables show the average and standard deviation for the total number of events and the number of event in each category:

Motion Communication Controller Total

Average 84,88889 18 21,888889 124,7778

STD 24,42051 18,57417562 18,120737 35,94711 An alarm KPI can be calculated by the formula: with ¾- as the

average number of total alarms, * the number of alarms in the hour and s the standard deviation of alarm per hour, resulting in the following alarm indicator for the 10 hours:

Al

1 1

2 1

3 0,681103

4 0,812874

5 1

6 1

7 1

8 0,881537

9 1

The 10% percentile for Al is 0.68, the 25% percentile is 0.85 and the 0.75 percentile is 1. This can be used to define the following alarm thresholds:

Assuming that different categories of events exists like motion event, tool events, controller events additional information can be provided about the main contributors to events. The contribution can be for instance calculated by applying the alarm indicator formula to the event categories.

During operation, the event generated during the last 60 minutes are collected from the robot and the alarm indicator is calculated. Assuming the following two example hours:

Motion Communication Controller Total

A 80 20 35 135 B 50 0 15 65

The events in hour A result in an alarm indicator is AIA=0.6 1 and thus will not trigger an alarm. The events in hour B result in an alarm indictor AIB=0.6 and will result in showing a red-alarm. Furthermore, the alarm indicator for hour B per category are AIB, motion 0.7 and AIB, communication 1 and AlB.controieir 1 implying that a possible issue is related to the motion of the robot.

Example 2:

This example shows how a machine learning model can be used to calculate and alarm KPI. Input is again the historical logfile of one or several robots. The log file table is transformed into samples for a decision tree classification:

Where event category is the category of an event from the event log, category 1 st event before is the category of the event one row before the event, and category 2 nd event is the category of the event two rows before the event. Each row (beside the ‘row from original table’ column) is used as one sample for a decision tree training, where the decision tree is trained to predict the category of the event when knowing the category of the 1 st event and 2 nd event before. This is a typical classification problem in machine learning.

The figure above shows an example of a decision tree output. Following the criteria in the leaves of the tree, one reaches to the predicition of the tree. When making predicition, the decision tree will make correct and incorrect predictions. On the historical data, the decision tree might make 90% correct predictions. During the online phase, the decision tree is used to predict events in the incoming stream of data. If the decision trees correct prediction rates drops e.g. over an hour below a first threshold (e.g. 70%), as yellow alarm is generated. If the prediction e.g. over an hour below 50%, a red alarm is generated.

Other machine learning model might use regression or probability estimations (e.g. kernel density estimation) and their output to derive an alarm indicator.

Reference numerals