Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DC HOMOPOLAR MOTOR/GENERATOR
Document Type and Number:
WIPO Patent Application WO/2007/070806
Kind Code:
A3
Abstract:
In accordance with the teachings described herein, a DC homopolar machine is provided. The DC homopolar machine may include a stator having a stator magnetic core and a permanent' magnet, a rotor magnetic core supported within the stator to rotate relative to the stator, and non-magnetic material within a gap between the rotor magnetic core and the stator magnetic core. The stator, rotor and non-magnetic material form a magnetic circuit having a total reluctance, the total reluctance of the magnetic circuit being provided by a first reluctance of the permanent magnet and a second reluctance of the gap of non-magnetic material, with the first reluctance being substantially equal to the second reluctance.

Inventors:
KERLIN JACK (US)
Application Number:
PCT/US2006/061947
Publication Date:
August 28, 2008
Filing Date:
December 12, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RT PATENT COMPANY INC (US)
KERLIN JACK (US)
International Classes:
H02K49/00
Foreign References:
US6342746B12002-01-29
US5825112A1998-10-20
US20050242679A12005-11-03
Attorney, Agent or Firm:
TANGREN, Dana, L. et al. (1000 Eagle Gate Tower60 East South Templ, Salt Lake City UT, US)
Download PDF:
Claims:

IT IS CLAIMED

1. A DC homopolar machine, comprising: a stator that includes a stator magnetic core and a permanent magnet; a rotor magnetic core supported within the stator to rotate relative to the stator; a non-magnetic material within a gap between the rotor magnetic core and the stator magnetic core; and the stator, rotor and non-magnetic material forming a magnetic circuit having a total reluctance, the total reluctance of the magnetic circuit being provided by a first reluctance of the permanent magnet and a second reluctance of the gap of nonmagnetic material, with the first reluctance being substantially equal to the second reluctance.

2. The DC homopolar machine of claim 1, wherein the non-magnetic material includes copper. 3. The DC homopolar machine of claim 1, wherein the non-magnetic material includes air.

4. The DC homopolar machine of claim 1, wherein the non-magnetic material includes a rotor copper conductor coupled to the rotor magnetic core and a stator copper conductor coupled to the stator magnetic core. 5. The DC homopolar machine of claim 4, wherein the non-magnetic material further includes an air gap between the rotor copper conductor and the stator copper conductor.

6. The DC homopolar machine of claim 1, wherein the DC homopolar machine is a motor. 7. The DC homopolar machine of claim 1, wherein the DC homopolar machine is a generator.

8. The DC homopolar machine of claim 1, wherein the DC homopolar machine may operate as either a motor or a generator.

9. The DC homopolar machine of claim 1, wherein a ratio of a length and a cross-sectional area of the permanent magnet is substantially equal to a ratio of a length and a cross-sectional area of the gap between the rotor magnetic core and the stator magnetic core multiplied by a relative permeability of the permanent magnet.

10. The DC homopolar machine of claim 9, wherein the cross-sectional area of the permanent magnet is substantially equal to the cross-sectional area of the gap between the rotor magnetic core and the stator magnetic core multiplied by twice the core flux density divided by the residual induction flux density of the permanent magnet.

11. The DC homopolar machine of claim 10, wherein the length of the permanent magnet is substantially equal to the length of the gap between the rotor magnetic core and the stator magnetic core multiplied by twice the relative permeability of the permanent magnet multiplied by the core flux density divided by the residual induction flux density of the permanent magnet.

12. The DC homopolar machine of claim 1, wherein a cross-section area defined by the permanent magnet is about a minimum area necessary to conduct total machine flux at a flux density of half the residual induction flux density of the permanent magnet.

Description:

DC HOMOPOLAR MOTOR/GENERATOR

FIELD

The technology described in this patent document relates generally to electric motors and generators. More particularly, a DC homopolar machine is described that is particularly useful for applications requiring a high energy efficiency.

BACKGROUND

The earliest electromotive machine producing rotary shaft power was the homopolar motor/generator. Conversion of electric power into mechanical shaft power was first demonstrated by Michael Faraday in the early 19th century. Variously known as a "homopolar," "unipolar" or "monopolar" machine, this unique energy conversion device represents a true DC machine requiring no commutator or other switching methods for converting direct current into alternating current as required by conventional so-called "DC" machines. The standard homopolar motor/generator is a single-turn machine requiring very high current at just a few volts. This peculiar characteristic of a homopolar machine renders it impractical for most commercial applications.

Creation of the magnetic field in a DC homopolar machine is readily facilitated by permanent magnet (PM) material. Historically, PM-based homopolar machine design has focused on creating the highest possible flux content from a given quantity of PM material. This design philosophy derives from the understanding that torque is directly proportional to total magnetic flux.

Accordingly, the rotor-stator gap is typically kept as small as practicable in order to increase total flux content. Typical machines consequently embody a relatively small rotor-stator gap which in turn restricts the amount of copper available for current conduction through the rotor-stator gap region. Excessive heat production and low efficiency typically ensue as a result of reduced copper volume.

SUMMARY

In accordance with the teachings described herein, a DC homopolar machine is provided. The DC homopolar machine may include a stator having a stator magnetic core and a permanent magnet, a rotor magnetic core supported within the stator to rotate relative to the stator, and non-magnetic material within a gap between the rotor magnetic core and the stator magnetic core. The stator, rotor and non-

magnetic material form a magnetic circuit having a total reluctance. The total reluctance of the magnetic circuit is provided by a first reluctance of the permanent magnet and a second reluctance of the gap of non-magnetic material, with the first reluctance being substantially equal to the second reluctance. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a simple magnetic circuit that includes an ideal iron core of infinite permeability interrupted with two gaps.

Figure 2 depicts a cross-sectional view of an example DC homopolar motor/generator. Figure 3 depicts an example external view of the DC homopolor motor/generator shown in Figure 2.

DETAILED DESCRIPTION

Figure 1 shows a simple magnetic circuit 10 that includes an ideal iron core 12 of infinite permeability interrupted with two gaps 14, 16. One gap 14 is filled with PM material and the other gap 16 is filled at least partial with copper conductors. Relative permeability of the PM gap 14 is nearly twice that of free space or air. The PM material 14 provides magnetomotive force (mmf) for driving flux through both its own reluctance and the reluctance of the other gap 16. The latter gap 16 is referred to herein as the "air gap" even though in an actual machine application it may be mostly filled with copper conductors. Copper has a relative permeability nearly that of air. Permanent magnets are rated for their "closed circuit" flux density which falls off when an air gap is added to the circuit due to the resulting rise of overall circuit reluctance. Thus, the actual gap flux density will always be less than the rated PM value depending on the magnitude of the additional air gap length. Referring to Figure 1, let the fundamental (mmf} arising from the PM material be represented as:

where: (ni cc ) = equivalent "closed circuit" amp-turns or mmf of PM material that drives flux through the circuit;

B R = so-called "Residual Induction", the rated flux density of PM material in a closed circuit; I 1n = gap length occupied by the PM material; μ r = relative magnetic permeability of PM material, where a value of "unity" represents free space (air); and μ o - absolute permeability of free space (air essentially).

The magnetic circuit equation, similar in form to Ohm's Law, is:

where: φ = circuit flux which has the same value at all points in the circuit, thus no subscript; and < Si tot = total circuit reluctance including both the air gap and the gap occupied by PM material.

Total circuit reluctance 5? /ot is the summation of reluctance contributed by each gap, 9ϊ m and 5R g where:

where: 5R m = reluctance of gap occupied by PM material;

5R g = reluctance of air gap (occupied by copper conductors); A m = gap area filled with PM material; l g = length of air gap; and

A g = area of air gap.

The first term in Eq. 3 represents reluctance of the gap 14 holding PM material; the second term is the reluctance of the air gap 16 containing the copper conductors. Substituting Eq. 3 into Eq. 2:

Substituting Eq. 1 into Eq. 4:

The total circuit flux φ is the same everywhere, thus:

where: B m = flux density of PM gap under non-closed circuit conditions; B g = flux density of air gap;

A core = area of the circuit iron core connecting the two gaps; and B sat = saturation flux density of the interconnecting core. Core area A ∞re is the minimum value required to carry flux φ at the maximum saturation flux density in order to reduce circuit weight and achieve optimum core material (iron) utilization.

Figure 2 depicts a cross-sectional view of an example DC homopolar machine 20. The example machine 20 depicted in Figure 2 includes physical features that correspond to the magnetic circuit 10 depicted in Figure 1. Specifically, the example homopolar machine includes a stator having a stator iron core 24 and a permanent magnet 22, a rotor magnetic core 28 supported within the stator 22, 24 to rotate relative to the stator, and non-magnetic material within a rotor-stator gap 26 between

the rotor magnetic core 28 and the stator magnetic core 24. Also illustrated is a shaft 34 connected to the rotor 28. The non-magnetic material within the rotor-stator gap 26 depicted in this example includes a rotor copper conductor 30 and a stator copper conductor 32. The non-magnetic material in the rotor-stator gap 26 also includes at least a small gap filled with air, such that the rotor 28 may rotate relative to the stator 24. It should be understood, however, that in other examples the non-magnetic material within the rotor-stator gap 26 may include a larger gap of air, or may be entirely air without any copper conductors. In addition, other examples may include non-magnetic material within the rotor-stator gap 26 other than copper or air. Figure 3 depicts an example external view of the DC homopolor motor/generator shown in Figure 2.

As described in more detail with reference to the equations provided below, the stator 22, 24, rotor 28 and rotor-stator gap 26 form a magnetic circuit. The total reluctance of the magnetic circuit is provided by a first reluctance of the permanent magnet 22 and a second reluctance of the rotor-stator gap 26, with the first reluctance being substantially equal to the second reluctance. It should be understood that the term "substantially equal" is used herein to equate things that are either exactly equal or about equal. TORQUE EQUATION DERIVATION: The following equations (Eq. 7 - Eq. 12) may be used to express the total machine torque for the example motor/generator depicted in Figures 2 and 3. Let motor torque T be given as:

where: F = force developed on rotor conductors;

/ = total electric current flowing through all the rotor conductors; B g = rotor-stator gap magnetic flux density; w g = length of rotor conductors immersed in the magnetic field; and / = rotational radius of rotor conductors.

Let gap area A g be expressed as the length of the gap circumference 2πr g times axial length w g :

Solving Eq. 8 for w g and substituting into Eq. 7:

Inserting Eq. 6 into Eq. 9:

Total machine torque T is revealed by Eq. 10 to be a function of two fundamental machine properties, current capacity / , and machine flux capacity φ . Practical limitation of / is dictated by copper content. Maximum flux φ is governed by the iron content. The quantity of copper constrains current to within the thermal limit. Iron quantity limits flux to the saturation level. Rewriting Eq. 5 while using Eq. 6 for flux φ :

Solving Eq. 11 for rotor-stator gap flux B :

MACHINE FLUX AS FUNCTION OF ROTOR-STATOR GAP:

If μ r = 1 and A 1n = A then Eq. 12 reduces to:

From Eq. 13 it may be shown that gap flux density B g declines from B g = B R at / = 0 to B g = j B R at / = I 1n . Because torque is a function of total machine flux φ according to Eq. 10, not gap flux density B g , it is more instructive to rewrite

Eq. 12 as:

Clearly, total machine flux diminishes as the rotor-stator gap length l g increases, which is why conventional machine design typically attempts to keep the / g as small as possible. OPTIMAL GAP FOR MAXIMUM TORQUE AT GIVEN EFFICIENCY:

Solving Eq. 11 for A S 0 B S 0 and inserting into Eq. 10 results in:

As shown by Eq. 14, maximum torque occurs at l g = 0 because this condition would give maximum gap flux density B g . In practice, however, at / = 0 there would be no space available for copper, resulting in an infinitely high electrical resistance and zero machine efficiency. Conversely, an excessively large gap l g ,

while lowering electrical resistance, would also reduce the flux density, and, consequently, torque would drop at a given current / . Therefore, at a specified efficiency there is an optimum value of gap length l g that produces peak torque.

To find the optimum rotor-stator gap length l g , begin by expressing motor efficiency as the ratio of mechanical power output to electrical power input:

where: P s = shaft power; and P n = resistive loss due to copper resistance

The importance of keeping resistive losses to a minimum to obtain good efficiency is shown by Eq. 15. The ratio P a /P s may be evaluated by first deriving the dissipative loss power P a :

where: R = total rotor/stator resistance; and / = total rotor/stator current

Machine resistance R is calculated using the dimensional information from Fig. 2:

where: "2" = multiplier to account for both rotor and stator conductors which are assumed to be identical in cross-sectional area and length; σ = copper resistivity;

K = proportional multiplier that determines total conductor length as function of w ; w g = axial length of conductor immersed in the magnetic field as previously defined for Eq. 7; k P = copper fill-factor applied to copper area A copper ; and

A copper - total area available for copper. Solving Eq. 8 for w and inserting into Eq. 17:

Let copper area A ∞mr be expressed as:

where l g j2 accounts for half the radial rotor-stator gap length allocated equally between rotor copper and stator copper since rotor and stator conductors are connected in series. Inserting Eq. 19 into Eq. 18:

Substituting Eq. 20 into Eq. 16:

Let shaft power P s be the product of torque T and angular shaft frequency ω using Eq. 14 for T :

Combining Eq. 21 and Eq. 22:

Solving Eq. 23 for current / :

Rewriting Eq. 14:

Substituting Eq. 24 into Eq. 25:

The variable configuration parameters are contained within the square brackets of Eq. 26 which may be simplified to give:

Examination of Eq. 27 shows there is an optimal value of either A g or / g that gives a maximum value of the quantity within the square brackets [ ] . The optimal value of l g is found by differentiating the entire bracketed quantity [ ] with respect to l g and setting the result equal to zero so that:

Rearranging the terms in Eq. 31 :

Or:

Thus, the optimal shape of the rotor-stator gap, that is, the proportional relationship of rotor-stator gap length / to rotor-stator gap area A σ , is the same as the shape of the PM gap, except as modified by the multiplier (l/μ r ), where μ r is the relative permeability of the PM material. Regardless of the absolute sizes of the rotor-stator gap and PM cavity volumes, their shape relative to each other is invariant as governed by Eq. 32. Furthermore, they may assume any imaginable shape, but nevertheless remain proportional to one another according to the dictates of Eq. 32. Optimal rotor-stator gap length is found by solving Eq. 32 for (/„ ) :

TORQUE AT OPTIMIZED ROTOR-STATOR GAP:

Torque production under the optimized condition stipulated by Eq. 33 is found by substituting Eq. 31 into Eq. 27:

Substituting Eq. 33 into Eq. 34:

Substituting Eq. 35 into Eq. 26:

The term A 1n I 1n represents the volume of PM material which, aside from gap radius r g , is the only dimensional variable pertinent to torque production.

Relative permeability μ r of the PM material is often not found in the technical literature. Typically the "energy product" of PM material is published which is actually the "energy density" in kJ/meter 3 which may be used in Eq. 27 by rearranging formula for energy density. Let:

where: E tot = total PM magnetic energy stored in the volume of A m I 1n ;

E p - magnetic "energy product" of PM material, i.e., energy per unit volume

= kl/meter 3 ;

∞: Then from

Inserting Eq. 38 into Eq. 36:

CONVERSION FACTORS:

The following definitions and conversion constants may be used to convert Eq. 39 into English units:

Rewriting Eq. 39 using Eqs. 40-44:

All of the units cancel in Eq. 48, except for {Newton -meter) or Nm to use the common nomenclature. Thus torque in Eq. 48 is given in units of Newton- meters. Dropping the units in Eq. 48 for clarity gives:

Using Eq. 45 to convert Eq. 50 to units of Ib. ft. :

Substituting Eq. 47 into Eq. 51 :

The dimensional terms in Eqs. 49-52 reveal the "5 th Power Rule" where: , which is applicable to all electromagnetic machines including non- mechanical devices such as transformers. This rule states that for a given efficiency, frequency and machine shape, power increases as the 5 th power of any dimension. Therefore, doubling the size of the machine will result in a 32-fold increase in power while weight only increase as the cube. Thus "specific power," power per unit weight, varies as the square of machine size which means larger machines are more power-dense than smaller machines. EQUIVALENT AMP-TURNS OF PM MATERIAL:

The equivalent amp-turns {ni) pMe that would be required to duplicate the mmf of PM material can be found starting with Eq. 37 where:

Therefore Eq. 1 may be rewritten by multiplying top and bottom by "2", " B R " and substituting Eq. 52 A:

Converting Eq. 52B to English units:

Eq.52C

It should be understood that amp-turns (ni) as given by Eq. 52D is not the motor drive current, but rather the equivalent ni that would be required for creating the machine's static magnetic field electromagnetically rather than with PM material. RELUCTANCE MATCHING:

Motor torque is shown by Eqs. 49-52 to be dependent on the product of the PM gap area A n and the PM gap length I 1n to give volume AJ 1n without regard to the particular shape of the PM cavity. Only the absolute volume AJ m is relevant to the magnitude of the torque developed. However, relative to machine efficiency, the shape of both volumes, the PM cavity and the rotor-stator gap volume, are of paramount importance, as shown by Eq. 32 under optimized conditions. It is the ratio of / w to A 1n , i.e., PM gap shape, that determines rotor-stator gap shape at maximum efficiency, not their absolute values. Dividing both sides of Eq. 32 by absolute permeability μ 0 gives:

These terms are simply expressions of the rotor-stator gap and PM gap reluctances as presented by Eq. 3. Therefore, Eq. 53 can be written as:

Under optimal design conditions, the reluctances of both gaps are equal. This is because the electric circuit analogue, optimized for maximum power transfer, requires load resistance to be equal to the supply resistance, a condition known as "impedance matching". The magnetic circuit counterpart to electrical resistance is termed "reluctance," the resistance to flux flow. Eq. 54 specifies an equivalent "reluctance matching" in order to obtain maximum rotor-stator gap power from a given mmf, where the PM material is acting as the analogous "electrical power supply".

MACHINE FLUX CAPACITY: To determine the rotor-stator gap flux density when the optimal design criteria are satisfied, Eq. 32 A may be substituted into Eq. 12:

Eq. 55

Rearranging terms in Eq. 55:

Or:

According to Eqs. 56 and 57, circuit flux θ o≠ under optimal design parameters is half the value of flux θ R that would exist under closed circuit conditions, wherein the rating of B n is obtained. This result is achieved because the presence of the rotor-stator gap with an optimized design doubles the closed circuit reluctance (Eq. 54). Hence circuit flux would predictably drop to half the closed-circuit value.

Measurement of total machine flux corresponds to half the PM magnet rating when the optimized criteria have been incorporated into the design. However, core cross- sectional area is designed to carry total machine flux near saturation so that closed- circuit flux is not obtained because of flux capacity limits imposed by saturation. RELATIVE PERMEABILITY OF PM MATERIAL:

The value of the PM material's relative permeability μ r , according to Eq. 33, may be used to implement an optimized design. This value can be found by rearranging the terms in Eq. 38:

Thus, with the rated technical data of "residual induction", i.e., flux density B R , and "energy product" E , it is possible to calculate the relative permeability μ r for use in dimensional equations such as Eq. 33. Converting Eq. 58 to English units using Eqs. 40, 43, 46:

where energy product E p is in units of kj/ meter 3 .

In the case of a Neodymium-Iron-Boron (NIB) "super magnet", where B R = 1.21 Tesla and E p = 303 kj/m 3 , the relative permeability calculated from Eq. 60 is μ r = 1.92, a value that remains fairly constant among various MB magnet grades.

Solving Eq. 33 for L :

In the particular case of A 1n = A g and μ r = 1.92 » 2, Eq. 61 results inn a PM cavity length I 1n that is almost twice as long as the rotor-stator gap length / g at

A, = A t .

FLUX DENSITY INSIDE OF PM MATERIAL:

Substituting Eq. 6 into Eq. 11 :

Solving Eq. 62 for B 1n :

Inserting Eq. 32A into Eq. 63 to find B 1n for an optimized design:

Comparing Eq. 64 and Eq. 55 shows that B g _ opt and B m _ opt are not the same.

The difference is due to the fact that the PM gap of B m _ opt is filled with PM material such that the circuit mmf (see Eq. 1) and cavity reluctance 5R m both vary with a changing PM cavity volume. On the other hand, only the rotor-stator gap reluctance

$R g varies with a changing rotor-stator gap volume while the circuit mmf remains constant.

To verify the veracity of Eqs. 55 and 64, solve Eq. 64 for B R and substitute into Eq. 55:

Eq. 66 results in a constancy of flux that is independent of circuit location, as previously indicated by Eq. 6. OPTIMAL VOLUME OF PM CAVITY:

Using the foregoing equations, a machine may be designed based on optimized parameters and yielding maximum performance. In order to maximize machine materials utilization, the iron core should operate near saturation because the quantity of flux φ and current / are the primary criteria governing torque production, as revealed by Eq. 10. The total flux φ m produced by the PM cavity is given from Eq. 64 as:

The subscript " opt " has been dropped for simplification with the understanding that all parameters are hereafter considered optimal unless otherwise stated. Flux is conducted axially through the rotor portion of the magnetic circuit at a flux density near saturation. Using Eq. 67 let:

where: B sat = saturation flux density

With reference to Fig. 2, rotor cross-sectional area is:

Inserting Eq. 69 into Eq. 68:

Solving Eq. 70 for PM cavity area A 1n :

According to Eq. 71, PM cavity area A m varies only with gap radius r because both B sat and B R are constants.

Solving Eq. 32A for PM cavity length / under optimized conditions:

Inserting Eq. 71 into Eq. 72

An increase of rotor-stator gap area A g results in a decrease of PM cavity length I 1n , which seemingly means a reduction in PM material usage and lower cost.

But according to Eq. 39, machine torque T is a function of gap radius / * g and PM

volume A n I 1n so that nothing is gained in terms of reducing the quantity of PM material per unit torque by enlarging the rotor-stator gap area A g . Therefore, A g is the minimum value necessary to conduct rotor flux. This means gap area A g must be equal to rotor area A rotor to maintain constant flux density near saturation B sai . Using Eq. 69:

Inserting Eq. 74 into Eq. 73:

Dimensions of the optimum PM cavity volume are given by Eq. 71 and Eq. 75. Combining these equations gives the total PM cavity volume as:

TORQUE USING OPTIMAL PM CAVITY VOLUME:

Machine torque produced with optimal PM volume may be found by substituting Eq. 76 into Eq. 39 for torque T :

Rearranging terms in Eq. 77 :

Substituting Eq. 47 into Eq. 78:

At a specified efficiency E^ and shaft frequency ω , machine torque is expressed in terms of two dimensions, rotor-stator gap radius r g and rotor-stator gap length l g , retaining the "5 th power rule" as before. Machine torque is extremely sensitive to gap radius r g , varying as the fourth power of r g for a given rotor-stator gap length l g .

Rearranging terms in Eq. 79:

From Eq. 58:

Inserting Eq. 81 into Eq. 80:

CONVERTING TORQUE EQUATIONS TO ENGLISH UNITS: Converting Eq. 82 to English units using Eqs. 41, 42, 46:

The units remaining are:

Eq. 84 T = volt -amp -sec = watt -sec = Joules = Nm

Consolidating terms in Eq. 83;

Eq. 85

Using Eq. 45 to convert Eq. 86 to units of Ib. ft. :

As a cross-check for errors in Eq. 87, substitute Eq. 58 into Eq. 76 for PM cavity volume AJ, m :

Converting Eq. 88 to English units:

where energy product E p is in units of kj/ meter 3 .

Substituting Eq. 90 for A m I into Eq. 51 for torque T :

DRIVE CURRENT:

To find drive current / required to produce torque under optimized design conditions, Eq. 14 may be expressed in terms of optimized quantities:

Substituting Eq. 32A into Eq. 93:

Inserting Eqs. 56 and 57 into Eq. 94:

Inserting Eq. 71 for A n into Eq. 95:

Solving Eq. 96 for drive current / while dropping subscript "opt "inasmuch as optimization conditions have already been specified following Eq. 67:

Converting Eq. 97 to English units using Eqs. 43-46:

INDUCED VOLTAGE:

Machine induced voltage v s , which is typically referred to as "back emf" in a motor and "forward emf' in a generator, excludes resistive voltage drop. Induced voltage v s is related only to mechanical power P s .

From Eq. 22:

Solving Eq. 100 for machine voltage v s and substituting Eq. 96 for torque T :

Arriving at Eq. 101 using a different approach will validate the preceding equations from which it was derived. The familiar equation for voltage v s induced in a conductor of length w g moving at velocity V through a magnetic field of flux density B g is:

where: V = velocity of the conductor normal to the magnetic field; and w g = conductor length immersed in magnetic field = rotor/stator gap axial length.

Let tangential velocity V be expressed in terms of angular frequency o :

From Eq. 6 for constancy of flux throughout the entire machine core, let:

Or:

Maximum core material utilization occurs when all of the iron is operating near saturation so that:

Therefore, substituting Eq. 106 into Eq. 105:

Expressing Eq. 107 in terms of rotor radius r g and rotor-stator gap length w g :

Solving Eq. 108 for conductor length w :

Substituting Eqs. 103, 106 and 109 into Eq. 102:

Converting Eq. 110 to English units:

It should be understood that machine voltage V 5 as given by Eq. 112 is not the applied terminal voltage, but rather the voltage arising from mechanical power which excludes resistive voltage drop across the copper conductors. RATIO OF PM CAVITY AREA TO ROTOR-STATOR GAP AREA:

Substituting Eq. 106 into Eq. 55 gives the ratio of PM cavity cross-sectional area ^relative to the rotor-stator gap area A g :

Then:

From the above equation it may be deduced that if B sat - B R then A g = \A m . This results because machine flux is half the closed-circuit value due to double the reluctance relative to the closed-circuit reluctance at which B R is rated. Also, the area ratio of Eq. 114 is constant irrespective of absolute machine size, being a function of magnetic properties only.

RATIO OFPM CAVITYVOLUME TOROTOR-STATORGAPVOLUME: From Eq. 74 let:

Dividing Eq. 76 for A 1n I 1n by Eq. 115:

According to Eq. 116, the ratio of the PM cavity vs. rotor-stator volume is constant regardless of absolute volume size. The volume ratio is strictly a function of magnetic properties independent of machine geometry or structural dimensions.

Examining Eq. 33 and Eq. 116 shows that the shape (Eq. 33) and size (Eq. 116) of the PM cavity corresponds to the shape and size of the rotor-stator gap volume that is chosen to satisfy a particular mechanical design, or vice-versa. In other words, both the shape and size of the rotor-stator gap volume are independent variables, while the PM cavity shape and size are dependent upon the rotor-stator geometry (or vice-versa) according to the dictates of Eqs. 33 and 116. SUMMARY OF EQUATIONS:

The dimensional parameters, given in "inch" units, of an optimized machine are summarized here with reference to Fig. 2.

From Eq. 71 :

where: r o = outside radius of PM cavity.

Solving Eq. 113 for PM cavity outside radius r 0

Rewriting Eq. 109:

PM cavity length Z n is taken from Eq. 75:

Because the PM relative permeability μ r is not usually published, it may be calculated from Eq. 60, repeated here for convenience:

Typically μ r « 1.92 for neodymium-iron-boron magnets. (See the calculation following Eq. 60) Substituting Eq. 121 into Eq. 120 as an alternative expression for PM cavity length fusing published data of "residual induction" B R and "energy product" E p :

where flux density B is always in units of "Tesla" and "energy product" E p is in units of kf /meter 3

If the PM cavity length I 1n is known in advance, then the rotor-stator gap length I g is derived from Eq. 122:

Total volume of PM material is found from Eq. 90:

;

where E p = kj/m 3

Let the weight W t _ m of PM material be given as:

Eq. 125 ;

where: p PM = PM material density of approximately (.272)^/ 3

Substituting Eq. 124 into Eq. 125:

Repeated here for convenience are Eq. 92 and Eq. 52 for torque T :

where: Energy product E p has been changed to units of kj/m 3 in Eq. 124.

The DC homopolar motor/generator described herein specifies design parameters for achieving maximum torque at a given efficiency. Theoretical analysis reveals that optimum performance is obtained when the rotor-stator gap shape and size yields a total machine flux that is half of the closed-circuit flux content. (Closed-circuit flux is defined as the flux that would exist with a rotor-stator gap length of zero.) This ideal design condition is achieved when the machine's total magnetic circuit reluctance is divided equally between the reluctance of the PM cavity (filled with PM material) and the rotor-stator gap reluctance. The resulting "reluctance matching" is analogous to "impedance matching" in electrical circuits for maximum power transfer.

The optimized gap length of the DC homopolar motor/generator described herein is many times larger than that of a conventional homopolar machine. Although machine flux for a given amount of PM material is significantly less than found in standard practice, the attendant large copper volume permits high current at low dissipation to yield the highest torque theoretically possible from a given quantity of PM material.

This written description uses examples to disclose the invention, including the best mode, and also to enable a person skilled in the art to make and use the invention. The patentable scope of the invention may include other examples that occur to those skilled in the art.