Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE FOR HEATING PROCESS WATER
Document Type and Number:
WIPO Patent Application WO/2018/014057
Kind Code:
A1
Abstract:
The invention relates to a device for heating process water, comprising an essentially cylindrical process water tank having a longitudinal axis (2) and a heat exchanger (3) which is arranged in the process water tank and can be flowed through by a heat exchange medium. In order to increase the useful volume of the process water tank and increase the efficiency of the heat exchange process, it is provided according to the invention that the heat exchanger (3) comprises at least two heat exchanger parts (4, 5) which are arranged concentrically with respect to the longitudinal axis, which each have an inlet (6) and an outlet (7) for the heat exchange medium, and each heat exchanger part (4, 5) is designed as a spirally coiled pipe strip having multiple coils in a plane perpendicular to the longitudinal axis, wherein the pipe strip is oriented parallel to the longitudinal axis and has, in a section plane containing the longitudinal axis, at least two chambers (10, 11) that are spaced apart from one another in the direction of the longitudinal axis and can be flowed through by the heat exchange medium.

Inventors:
LEHNER-DITTENBERGER CHRISTOF (AT)
Application Number:
PCT/AT2017/060116
Publication Date:
January 25, 2018
Filing Date:
May 04, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ECOTHERM AUSTRIA GMBH (AT)
International Classes:
F28D7/04; F24D3/08; F24H1/00; F24H1/20; F28D9/04; F28D20/00; F28F1/02; F28F1/04; F28F3/12
Foreign References:
EP2065666A12009-06-03
GB803933A1958-11-05
DE3303022A11983-08-11
JP2003329375A2003-11-19
EP0767888B12001-04-04
AT412740B2005-06-27
EP2423630A12012-02-29
Attorney, Agent or Firm:
KLIMENT & HENHAPEL PATENTANWAELTE OG (AT)
Download PDF:
Claims:
PATENTANSPRÜCHE

Vorrichtung zum Erwärmen von Brauchwasser, umfassend einen im Wesentlichen zylindrischen

Brauchwasserspeicher (1) mit einer Längsachse (2) und einen im Brauchwasserspeicher (1) angeordneten, von einem Wärmetauschmedium durchströmbaren Wärmetauscher (3), dadurch gekennzeichnet, dass

der Wärmetauscher (3) zumindest zwei konzentrisch zur Längsachse angeordnete Wärmetauscherteile (4,5) umfasst, die jeweils einen Einlass (6) sowie einen Auslass (7) für das Wärmetauschmedium aufweisen, und jedes

Wärmetauscherteil (4,5) als ein in einer Ebene senkrecht zur Längsachse mehrere Windungen aufweisendes,

spiralförmig gewickeltes Leitungsband ausgeführt ist, wobei das Leitungsband parallel zur Längsachse

ausgerichtet ist und in einer die Längsachse enthaltenden Schnittebene zumindest zwei in Richtung der Längsachse voneinander beabstandete und vom Wärmetauschmedium durchströmbare Kammern (10,11) aufweist.

Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Einlässe (6) der Wärmetauscherteile (4,5) über eine gemeinsame Zulaufleitung (8) verbunden sind, und dass die Auslässe (7) der Wärmetauscherteile (4,5) über eine gemeinsame Ablaufleitung (9) verbunden sind, wobei die gemeinsame Zulaufleitung (8) und die gemeinsame

Ablaufleitung (9) mit einer Heizquelle, vorzugsweise mit derselben Heizquelle, verbindbar sind.

Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass für die Einlässe (6) der Wärmetauscherteile (4,5) separate Zulaufleitungen und für die Auslässe (7) der Wärmetauscherteile (4,5) separate Ablaufleitungen

vorgesehen sind, wobei jeweils die Zulaufleitung und die Ablaufleitung eines Wärmetauscherteils (4,5) mit einer Heizquelle verbindbar sind.

Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Leitungsband aus zwei

miteinander verbundenen, vorzugsweise verschweißten, Stahlbändern besteht.

Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Leitungsband zwei

Kammern (10,11) aufweist und die beiden Kammern (10,11) über einen Steg (12) voneinander beabstandet sind.

Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zumindest zwei Kammern (10,11) jeweils einen rechteckigen oder hexagonalen Querschnitt aufweisen .

Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wärmetauscher (3) aus zwei Wärmetauscherteilen (4,5) besteht, die innerhalb des Brauchwasserspeichers (1) in derselben Höhe angeordnet sind .

Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wärmetauscherteile (4,5) gemeinsam zumindest 50%, vorzugsweise zumindest 65%, insbesondere zumindest 75%, der Querschnittsfläche des Brauchwasserspeichers (1) einnehmen.

Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Wärmetauscher (3) in einem Bodenbereich des Brauchwasserspeichers (1) angeordnet ist .

Description:
VORRICHTUNG ZUM ERWÄRMEN VON BRAUCHWASSER

GEBIET DER ERFINDUNG

Die Erfindung betrifft eine Vorrichtung zum Erwärmen von

Brauchwasser, umfassend einen im Wesentlichen zylindrischen Brauchwasserspeicher mit einer Längsachse und einen im

Brauchwasserspeicher angeordneten, von einem Wärmetauschmedi durchströmbaren Wärmetauscher.

STAND DER TECHNIK Brauchwasserspeicher werden in der Regel sowohl im privaten als auch gewerblichen Bereich beim Betrieb von Gebäuden oder Gebäudekomplexen verwendet, um Brauchwasser von einem

niedrigeren Temperaturniveau auf ein höheres Temperaturniveau zu bringen. Bei dem Brauchwasser kann es sich beispielsweise um das Warmwasser für ein Gebäude handeln.

Als Brauchwasserspeicher werden in der Regel isolierte

Behälter verwendet, die ein Innenvolumen zur Aufnahme des Brauchwassers mit einer kreisrunden Querschnittsfläche

aufweisen, sodass der Brauchwasserspeicher im Wesentlichen zylindrisch ausgebildet ist und eine Längsachse aufweist, wobei der Boden- und Deckelbereich auch kalottenförmig

ausgebildet sein können. Zur Erwärmung des Brauchwassers im Brauchwasserspeicher ist gemäß dem Stand der Technik ein Wärmetauscher vorgesehen, der von einem Wärmetauschmedium durchströmbar ist. Als

Wärmetauschmedium wird in der Regel eine erhitzte Flüssigkeit, zumeist erhitztes Wasser, verwendet. Derartige Wärmetauscher weisen üblicherweise eine vom Wärmetauschmedium durchströmbare Rohrleitung auf. Die Rohrleitung kann dabei beispielsweise durch eine mehrere Windungen aufweisende Rohrschlange, die innerhalb des Brauchwasserspeichers schraubenlinienartig verlegt ist, gebildet sein, wobei sich die Rohrschlange um die Längsachse windet. In anderen Worten weist die Rohrschlange mehrere Gänge auf, die durch eine Ganghöhe voneinander

beabstandet sind, wobei Innen- und Außenradius der

Rohrschlange über deren Höhe zumeist konstant bleiben.

Um eine ausreichend große Wärmetauschfläche zu erhalten ist eine Vielzahl an Windungen notwendig, was eine große Bauhöhe der Rohrschlange bedingt. Durch die Erstreckung der

Rohrschlange in Richtung der Längsachse verringert sich zudem der Wirkungsgrad des Wärmetauschers, da sich im

Brauchwasserspeicher verschieden temperierte Schichten mit in Richtung der Längsachse steigender Temperatur des

Brauchwassers ausbilden, sodass in den tiefer liegenden

Bereichen eine höhere Temperaturdifferenz zwischen

Wärmetauschmedium und Brauchwasser vorherrscht als in den höher liegenden Bereichen. Die sich mit zunehmender Bauhöhe der Rohrschlange einstellende, geringere Temperaturdifferenz verringert somit den Wirkungsgrad. Zudem verringert das in den Bruchwasserspeicher eingebrachte Rohrschlangenvolumen das nutzbare Speichervolumen.

AUFGABE DER ERFINDUNG

Es ist daher eine Aufgabe der Erfindung die Nachteile des Stands der Technik zu überwinden und eine Vorrichtung zum Erwärmen von Brauchwasser vorzuschlagen, die sich durch einen höheren Wirkungsgrad auszeichnet und das nutzbare

Speichervolumen vergrößert.

DARSTELLUNG DER ERFINDUNG

Diese Ziele der Erfindung werden bei einer eingangs erwähnten Vorrichtung zum Erwärmen von Brauchwasser, umfassend einen im Wesentlichen zylindrischen Brauchwasserspeicher mit einer Längsachse und einen im Brauchwasserspeicher angeordneten, von einem Wärmetauschmedium durchströmbaren Wärmetauscher, dadurch gelöst, dass der Wärmetauscher zumindest zwei konzentrisch zur Längsachse angeordnete Wärmetauscherteile umfasst, die jeweils einen Einlass sowie einen Auslass für das Wärmetauschmedium aufweisen, und jedes Wärmetauscherteil als ein in einer Ebene senkrecht zur Längsachse mehrere Windungen aufweisendes, spiralförmig gewickeltes Leitungsband ausgeführt ist, wobei das Leitungsband parallel zur Längsachse ausgerichtet ist und in einer die Längsachse enthaltenden Schnittebene zumindest zwei in Richtung der Längsachse voneinander beabstandete und vom Wärmetauschmedium durchströmbare Kammern aufweist. Mithilfe der erfindungsgemäßen Lösung wird die Erstreckung des Wärmetauschers in Richtung der Längsachse reduziert und eine kompakte Bauweise ermöglicht. Hierfür ist der Wärmetauscher als ein in einer Ebene senkrecht zur Längsachse mehrere

Windungen aufweisendes, spiralförmig gewickeltes Leitungsband ausgeführt. Der Wärmetauscher ist somit „flach" ausgebildet, da die einzelnen Windungen nicht schraubenlinienförmig, wie nach dem Stand der Technik bekannt, sondern spiralförmig verlaufend angeordnet sind. Diese Konfiguration wird durch die Wicklung eines Leitungsbandes um eine Achse, die parallel zur Längsachse ausgerichtet ist oder mit der Längsachse

zusammenfällt, erreicht, wobei die einzelnen Windungen keine Ganghöhe aufweisen. Diese „flache" Ausbildung ermöglicht es, den Wärmetauscher derart im Wärmespeicher anzuordnen, dass die Temperaturdifferenz zwischen Wärmetauscher und Brauchwasser möglichst groß ist. Gleichzeitig erhöht sich dadurch auch das nutzbare Speichervolumen des Brauchwasserspeichers, da der erfindungsgemäße Wärmetauscher wesentlich weniger Bauraum benötigt als herkömmliche Rohrschlangen, wie noch näher ausgeführt werden wird.

Ein weiterer Vorteil der erfindungsgemäßen Vorrichtung äußert sich darin, dass der Wärmetauscher nicht rohrförmig, sondern als Leitungsband ausgebildet ist. Rohre, die in der Regel einen kreisrunden Durchmesser aufweisen, werden beim

Biegevorgang zu einer Spirale oder einer Rohrschlange starken Zug- und Druckbelastungen ausgesetzt und weisen ein hohes Widerstandsmoment gegen Biegung auf. Daher sind sowohl die Mindestdurchmesser als auch die Maximaldurchmesser der

Rohrspiralen bzw. Rohrschlangen durch die zur Herstellung verwendete Biegevorrichtung begrenzt. Ein Leitungsband gemäß der Erfindung ist mit wesentlich geringerem Aufwand biegbar als ein herkömmliches Rohr, sodass sich Spiralen mit nahezu beliebig großem Innen- und Außendurchmesser herstellen lassen, um den Raum im Brauchwasserspeicher bestmöglich ausnützen zu können .

Um die Druckbeständigkeit des Leitungsbands zu erhöhen, umfasst das Leitungsband zumindest zwei, vorzugsweise genau zwei Kammern, die vom Wärmetauschmedium durchströmbar sind, auf. So wird einer Verformung, die beim Durchströmen einer Kammer mit dem Wärmetauschmedium auftreten könnte, vorgebeugt. Zudem kann der durch den Wärmetauscher leitbare Volumenstrom des Wärmetauschmediums auf zumindest zwei Kammern aufgeteilt werden, wobei jede Kammer eine separate Leitung für das

Wärmetauschmedium bildet. Dadurch wird auch das Verhältnis von Volumenstrom zu Wärmetauscher-Oberfläche verbessert.

Trotz aller zuvor genannten Vorteile ist die Anzahl der

Wicklungen des Leitungsbandes aus strömungstechnischen

Überlegungen begrenzt, da der Strömungswiderstand mit

zunehmender Länge der durch die Kammern gebildeten Leitungen ansteigt. Mit zunehmender Anzahl an Wicklungen des

spiralförmig gewickelten Leitungsbands steigt auch die Länge der durch die Kammern gebildeten Leitungen und damit der

Strömungswiderstand in den Leitungen. Um den zum Erwärmen des Brauchwassers benötigten Volumenstrom durch die Leitungen fördern zu können, ist demnach ein immer höherer Pumpdruck notwendig, was zu größer dimensionierten Pumpaggregaten, höherem Energiebedarf und damit auch höheren Anschaffungs- und Betriebskosten führt.

Um diese Probleme zu überwinden ist erfindungsgemäß auch vorgesehen, dass der Wärmetauscher zumindest zwei,

vorzugsweise genau zwei Wärmetauscherteile aufweist, die jeweils über einen eigenen Einlass und Auslass verfügen. So ist jedes Wärmetauscherteil getrennt voneinander durch das Wärmetauschmedium durchströmbar. Da jedes Wärmetauscherteil, wie oben beschrieben, ein spiralförmig gewickeltes Leitungsband umfasst, kann die Anzahl an Windungen eines

Wärmetauscherteils in Abhängigkeit des Strömungswiderstands dimensioniert werden. So können zwei, drei, vier oder mehr Wärmetauscherteile konzentrisch zueinander angeordnet sein, um einerseits eine große Wärmetauschfläche zu erhalten und andererseits den Strömungswiderstand in den einzelnen

Wäremtauscherteilen in einem vertretbaren Rahmen zu halten.

Die Kombination aller zuvor genannten Merkmale, also die

Aufteilung des Wärmetauschers in mehrere konzentrisch

angeordnete Wärmetauscherteile, die jeweils durch ein

spiralförmig gewickeltes Leitungsband mit zumindest zwei

Kammern ausgebildet ist, ermöglicht demnach einen höheren Wirkungsgrad bei der Erwärmung des Brauchwassers, ein hohes Nutzvolumen im Brauchwasserspeicher und einen geringeren

Energiebedarf beim Betrieb der Vorrichtung.

In einer Ausführungsvariante der Erfindung ist vorgesehen, dass die Einlässe der Wärmetauscherteile über eine gemeinsame Zulaufleitung verbunden sind und dass die Auslässe der

Wärmetauscherteile über eine gemeinsame Ablaufleitung

verbunden sind, wobei die gemeinsame Zulaufleitung und die gemeinsame Ablaufleitung mit einer Heizquelle, vorzugsweise mit derselben Heizquelle, verbindbar sind. Durch die

gemeinsame Zulaufleitung und die gemeinsame Ablaufleitung lassen sich alle Wärmetauscherteile gemeinsam in einen

Wärmetauschmedium-Kreislauf integrieren, bei der das

Wärmetauschmedium durch eine Heizquelle strömt, um auf ein höheres Temperaturniveau gebracht zu werden, über ein

Pumpaggregat in die gemeinsame Zulaufleitung gefördert wird und alle, also zumindest zwei Wärmetauscherteile vom

Wärmetauschmedium durchströmt werden. Beim Durchströmen der Wärmetauscherteil wird Wärmenergie an das die

Wärmetauscherteile umgebende Brauchwasser abgegeben und dieses dadurch erwärmt, bevor das Wärmetauschmedium durch die

Auslässe der Wärmetauscherteile in die gemeinsame

Ablaufleitung gelangt und der Kreislauf von Neuem beginnt. Um unterschiedliche Wärmetauschmedium-Kreisläufe zu ermöglichen, bei dem jedes Wärmetauscherteil mit einer anderen Heizquelle verbunden ist, beispielsweise um unterschiedliche Temperaturniveaus in den einzelnen Wärmetauscherteilen

einstellen zu können, sieht eine alternative

Ausführungsvariante der Erfindung vor, dass für die Einlässe der Wärmetauscherteile separate Zulaufleitungen und für die Auslässe der Wärmetauscherteile separate Ablaufleitungen vorgesehen sind, wobei jeweils die Zulaufleitung und die

Ablaufleitung eines Wärmetauscherteils mit einer Heizquelle verbindbar sind. Dabei gleicht der Wärmetauschmedium-Kreislauf im Wesentlichen dem oben beschriebenen Kreislauf, jedoch gelangt das Wärmetauschmedium jeweils über eine Zulaufleitung in einen Wärmetauscherteil und über eine Ablaufleitung wieder zurück in den Kreislauf.

Es versteht sich natürlich von selbst, dass bei drei oder mehr Wärmetauscherteilen mehrere Wärmetauscherteile mit einer gemeinsamen Zulauf- und Ablaufleitung versehen sein können, während einzelne Wärmetauscherteile eine separate Zulauf- bzw. Ablaufleitung aufweisen.

Gemäß einer weiteren Ausführungsvariante der Erfindung besteht das Leitungsband aus zwei miteinander verbundenen,

vorzugsweise verschweißten, Stahlbändern. Stahlbänder zeichnen sich einerseits durch ihre hohe Festigkeit und Formstabilität aus, andererseits lassen sie sich durch Umformung profilieren. So kann der die beiden Kammern ausbildende Querschnitt des Leitungsbandes, sofern er symmetrisch ausgebildet ist, durch zwei Halbprofile dargestellt werden, wobei jedes Stahlband eines der Halbprofile aufweist. Im Betriebszustand sind die beiden Stahlbänder dicht miteinander verbunden, beispielsweise verpresst oder verklebt. Eine besonders gute Dichtigkeit und einfache Herstellbarkeit des Leitungsbandes ist dann gegeben, wenn die beiden Stahlbänder miteinander verschweißt sind.

Eine bevorzugte Ausführungsvariante der erfindungsgemäßen Vorrichtung sieht vor, dass das Leitungsband zwei Kammern aufweist und die beiden Kammern über einen Steg voneinander beabstandet sind. Um die Bauhöhe, also die Abmessung des

Wärmetauscher in Richtung der Längsachse, gering zu halten und die Fertigung des Leitungsbandes zu vereinfachen sind genau zwei Kammern vorgesehen. Der Steg, der zwischen den beiden Kammern ausgebildet ist, steigert einerseits die

Druckbeständigkeit des Leitungsbandes, andererseits erhöht sich durch den Steg die Oberfläche des jeweiligen

Wärmetauscherteils, da der Steg im Betriebszustand ebenfalls durch das die Kammern durchströmende Wärmetauschmedium erhitzt wird. Vorzugsweise ist der Steg parallel zur Längsachse ausgerichtet .

Eine hohe Formstabilität des Leitungsbandes sowie eine

vergrößerte Wärmetauscher-Oberfläche wird in einer weiteren bevorzugten Ausführungsvariante der erfindungsgemäßen

Vorrichtung dadurch erreicht, dass die zumindest zwei Kammern einen rechteckigen oder hexagonalen Querschnitt aufweisen.

Gemäß einer weiteren Ausführungsvariante der Erfindung ist vorgesehen, dass der Wärmetauscher aus zwei

Wärmetauscherteilen besteht, die innerhalb des

Brauchwasserspeichers in derselben Höhe angeordnet sind.

Versuche haben ergeben, dass bereits mit zwei

Wärmetauscherteile in einem Brauchwasserspeicher der

Strömungswiderstand in den Leitungen erheblich gesenkt werden kann. Wenn die beiden Wärmetauscherteile in derselben Höhe angeordnet sind, ist der Wärmetauscher besonders kompakt bzw. „flach" gebaut. Eine weitere bevorzugte Ausführungsvariante der Erfindung sieht vor, dass die Wärmetauscherteile gemeinsam zumindest 50%, vorzugsweise zumindest 65%, insbesondere zumindest 75%, einer vom im Wesentlichen zylindrischen Brauchwasserspeicher begrenzten Querschnittsfläche einnehmen. Je größer der Anteil der Fläche ist, die der Wärmetauscher bzw. die den

Wärmetauscher ausbildenden Wärmetauscherteile einnehmen, desto größer ist die gesamte Wärmetauscher-Oberfläche. Da jedoch das Brauchwasser in Kontakt mit der Wärmetauscher-Oberfläche treten muss, ist zwischen den Windungen der Wärmetauscherteile ein vom Brauchwasser durchströmbarer Freiraum ausgebildet.

In einer weiteren Ausführungsvariante der Erfindung ist

vorgesehen, dass der Wärmetauscher in einem Bodenbereich des Brauchwasserspeichers angeordnet ist. Da das kalte

Brauchwasser im Brauchwasserspeicher nach unten in Richtung des Bodenbereichs absinkt bzw. von unten über einen

Kaltwasserzulauf zugeführt wird, während das erwärmte

Brauchwasser aufsteigt, bildet sich im Bodenbereich im

Betriebs zustand eine Brauchwasserschicht mit niedriger

Temperatur aus. Wenn der Wärmetauscher in diesem Bereich angeordnet ist, ist die Temperaturdifferenz zwischen dem

Brauchwasser und dem durch das Wärmetauschmedium erhitzten Wärmetauscher besonders groß, sodass eine besonders effiziente Erwärmung des Brauchwassers im Brauchwasserspeicher erzielt wird. Unter dem Bodenbereich wird üblicher Weise ein Bereich von bis zu 60 cm, vorzugsweise bis zu 45, insbesondere bis zu 30 cm, oberhalb des Kaltwasserzulaufs des

Brauchwasserspeichers verstanden.

KURZE BESCHREIBUNG DER FIGUREN Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert. Die Zeichnungen sind beispielhaft und sollen den Erfindungsgedanken zwar darlegen, ihn aber keinesfalls

einengen oder gar abschließend wiedergeben. Dabei zeigt :

Fig. 1 eine Vorrichtung zum Erwärmen von Brauchwasser gemäß dem Stand der Technik;

Fig. 2 eine Vorrichtung zum Erwärmen von Brauchwasser mit einem einteiligen Wärmetauscher;

Fig. 2a eine vergrößerte Darstellung von Detail A aus Fig. 2; Fig. 3 eine Explosionsdarstellung eines zweiteiligen

Wärmetauschers für eine erfindungsgemäße Vorrichtung; Fig. 4 eine axonometrische Ansicht des zweiteiligen

Wärmetauschers aus Fig. 3. WEGE ZUR AUSFÜHRUNG DER ERFINDUNG

Figur 1 zeigt eine Vorrichtung zu Erwärmen von Brauchwasser gemäß dem Stand der Technik. Die Vorrichtung umfasst einen eine Längsachse 2 aufweisenden Brauchwasserspeicher 1, der im Wesentlichen zylindrisch ausgebildet ist. In anderen Worten begrenzt der Hauptkörper des Brauchwasserspeichers 1 ein

Innenvolumen des Brauchwasserspeichers 1 mit einer

kreisförmigen Querschnittsfläche, wobei sich im

Betriebs zustand Brauchwasser im Innenvolumen befindet. Die obere und untere Deckfläche des Brauchwasserspeichers 1 sind kalottenförmig ausgebildet. Der Brauchwasserspeicher 1 weist an seiner Unterseite einen Kaltwasserzulauf 14 in Form eines Rohres auf, durch welches kaltes Brauchwasser in den Brauchwasserspeicher 1 eintreten kann. Gleichzeitig dient der Kaltwasserzulauf 14 auch als Entleerungsleitung, über die das im Brauchwasserspeicher 1 befindliche Brauchwasser abgelassen werden kann,

beispielsweise für Wartungsarbeiten im Brauchwassersystem oder an der Vorrichtung selbst. An der Oberseite des

Brauchwasserspeichers 1 ist ein Warmwasserablauf 15

angeordnet, über den das in der Vorrichtung erwärmte

Brauchwasser aus dem Brauchwasserspeicher 1 austreten kann.

Im Brauchwasserspeicher 1 ist ein von einem Wärmetauschmedium, im vorliegenden Fall handelt es sich dabei um erhitztes

Wasser, durchströmbarer Wärmetauscher 3 in Form dreier

miteinander verbundener Rohrschlangen angeordnet, mit denen das Brauchwasser erwärmbar ist. Die drei Rohrschlangen

bestehen jeweils aus einem Rohr mit kreisförmigem Querschnitt und sind konzentrisch zur Längsachse 2 angeordnet. Jede

Rohrschlange weist mehrere Windungen auf, die in Richtung einer Schraubachse mit einer Ganghöhe schraubenlinienförmig verlaufen, wobei die Schraubachse der Längsachse 2 entspricht. Die drei Rohrschlangen sind über eine Zulaufleitung 8

miteinander verbunden, über die das von einer Heizquelle erhitzte Wärmetauschmedium im Betriebszustand in die Rohrschlangen einströmt. Am oberen Ende der Rohrschlangen sind diese durch eine Ablaufleitung 9 wiederum miteinander

verbunden, sodass das Wärmetauschmedium gesammelt wieder aus dem Brauchwasserspeicher 1 ausströmt. Die Ablaufleitung 9 ist in der Regel mit der Heizquelle verbunden, sodass sich ein Wärmetauschmedium-Kreislauf ausbildet. Hier wird ein

sogenannter Gleichlauf Warmetauschprozess beschrieben, wobei auch ein Gegenlauf Warmetauschprozess denkbar ist, bei dem die Ablaufleitung 9 und die Zulaufleitung 8 vertauscht sind.

Beim Durchströmen des Wärmetauschers 3 wird über die

Wärmetauscher-Oberfläche Wärmeenergie vom Wärmetauschmedium an das den Wärmetauscher 3 umgebende Brauchwasser abgegeben und so das Brauchwasser in an sich bekannter Art und Weise

erwärmt .

Wie aus Figur 1 deutlich ersichtlich ist, nimmt der

Wärmetauscher 3 einen nicht unbeträchtlichen Teil des

Innenvolumens des Brauchwasserspeichers 1 ein, sodass das mit Brauchwasser befüllbare Nutzvolumen im Brauchwasserspeicher 1 reduziert ist. Gleichermaßen ist der Wärmetauscher 3 zu einem Großteil in der oberen Hälfte des Brauchwasserspeichers 1 angeordnet, was zu einem geringeren Wirkungsgrad beim

Wärmetausch führt: Da sich im Brauchwasserspeicher 1

unterschiedliche Temperaturschichten ausbilden und sich das Brauchwasser mit der geringsten Temperatur in einem

Bodenbereich des Brauchwasserspeichers 1, üblicherweise innerhalb der untersten 60 cm gemessen von der Position des Kaltwasserzulaufs 14 aus, befindet, ist die Position des Wärmetauschers 3 nicht optimal. Gleichermaßen ändert sich beim Durchströmen des Wärmetauschers 3 durch das Brauchwasser ständig die Temperaturdifferenz zwischen Wärmetauschmedium und Brauchwasser, sodass der Wirkungsgrad zusätzlich verringert wird. Ein weiteres Problem äußert sich darin, dass die

Rohrschlangen nur bis zu einem vorgegebenen Minimal- bzw.

Maximaldurchmesser gebogen werden können, und so der

Wärmetausch nicht über den gesamten Querschnitt des

Brauchwasserspeichers 1 stattfinden kann. Figur 2 zeigt eine Darstellung zur Erläuterung des

erfindungsgemäß vorgesehenen Leitungsbandes, bevor auf die erfindungsgemäße Ausführung des Wärmetauschers eingegangen wird. Der Wärmetauscher 3 ist hierbei als ein in einer Ebene senkrecht zur Längsachse mehrere Windungen aufweisendes, spiralförmig gewickeltes Leitungsband ausgeführt. Das

Leitungsband weist im vorliegenden Beispiel in einer die

Längsachse 2 enthaltenden Schnittebene zwei vom

Wärmetauschmedium durchströmbare Kammern 10,11 auf, die übereinander angeordnet sind. Die Windungen des Leitungsbands sind dabei nicht, wie in Figur 1 beschrieben, in Richtung der Längsachse 2 voneinander beabstandet, sondern bilden eine, vorzugsweise archimedische, in derselben Höhe verbleibende Spirale, in der die Windungen radial zur Längsachse 2

voneinander beabstandet sind. Durch die flache Bauweise des Wärmetauschers 3, bei der durch die hohe Anzahl an Windungen eine große Wärmetauscher-Oberfläche erreicht werden kann, wird das Nutzvolumen des Brauchwasserspeichers 1 durch den

Wärmetauscher 3 nur geringfügig verringert. Gleichzeitig ist es möglich, den Wärmetauscher 3 im Bodenbereich des

Brauchwasserspeichers 1 anzuordnen, um den Wirkungsgrad des Wärmetauschvorgangs zu steigern.

Die Zulaufleitung 8, über die im Betriebszustand von der Heizquelle erhitztes Wärmetauschmedium in den Wärmetauscher 3 strömt, verläuft radial zur Längsachse 2 und ist mit einem Einlass 6 des Wärmetauschers 3 verbunden, über den beide

Kammern 10,11 mit Wärmetauschmedium versorgt werden. Das Wärmetauschmedium durchströmt die durch die Kammern 10,11 ausgebildeten spiralförmig verlaufenden Leitungen von innen nach außen, jeweils bezogen auf die Längsachse 2, wobei am äußersten Punkt ein Auslass 7 angeordnet ist, über den das Wärmetauschmedium aus den beiden Kammern 10,11 in die

Ablaufleitung 9 gelangt. Wiederum ist die Ausbildung eines Wärmetauschmedium-Kreislaufs mit einer Heizquelle, wie oben beschrieben denkbar. Ebenso denkbar ist es, dass Einlass 6 und Auslass 7 bzw. Zulaufleitung 8 und Ablaufleitung 9 vertauscht sind, sodass das Wärmetauschmedium von außen nach innen strömt . In der Figur 2a ist eine Detaildarstellung des Querschnitts des Leitungsbands abgebildet. Dabei ist deutlich zu erkennen, dass die beiden Kammern 10,11 jeweils einen im Wesentlichen hexagonalen Querschnitt aufweisen, wobei die inneren und äußeren Seitenwände 13 der Kammern 10,11 parallel zur

Längsachse 2 ausgerichtet sind. Die erste Kammer 10 ist durch einen Steg 12 mit der zweiten Kammer 11 verbunden bzw. durch den Steg 12 von der zweiten Kammer 11 in Richtung der

Längsachse 2 beabstandet. Der Steg 12 ist dabei ebenfalls parallel zur Längsachse 2 ausgerichtet. Oberhalb bzw.

unterhalb der Kammern 10,11 weist das Leitungsband einen

Fortsatz auf, der einerseits die Formstabilität des

Leitungsbandes erhöht und andererseits für die Fertigung des Leitungsbandes benötigt wird. Das Leitungsband ist im

vorliegenden Beispiel durch zwei an den Fortsätzen miteinander verschweißte Stahlbleche ausgebildet, die jeweils ein

Halbprofil der Geometrie des Querschnitts aufweisen. Das Leitungsband ist dabei wesentlich einfacher in Form einer Spirale biegbar als es beispielsweise ein herkömmliches kreisrundes Rohr ist. Dadurch lassen sich theoretisch beliebig große spiralförmige Wärmetauscher 3 aus einem Leitungsband herstellen . Es versteht sich dabei von selbst, dass in alternativen

Ausführungsvarianten auch drei, vier, fünf oder mehr durch Stege miteinander verbundene Kammern 10, 11 von einem

Leitungsband ausgebildet sein können, wobei der Querschnitt der Kammern 10, 11 jeweils vorzugsweise hexagonal oder

rechteckig ausgebildet ist.

Durch die beschriebene Ausbildung des Leitungsbandes kann eine besonders große Wärmetauscher-Oberfläche realisiert werden, da die Abmessung der Kammern 10, 11 radial zur Längsachse 2 geringer ist als die Abmessung der Kammern 10, 11 in Richtung der Längsachse 2. Auch der Steg 12, der durch das im

Betriebs zustand durch die Kammern 10, 11 strömende

Wärmetauschmedium erhitzt wird, trägt zur Vergrößerung der Wärmetauscher-Oberfläche bei. Durch die oben beschriebene Ausbildung des den Wärmetauscher 3 ausbildenden Leitungsbandes und der Kammern 10,11 des

Leitungsbandes, kommt es jedoch zu einem erhöhten

Strömungswiderstand in den durch die Kammern 10,11

ausgebildeten Leitungen, der mit zunehmender Länge der

Leitungen steigt. Während bei einem von einem Leitungsband ausgebildeten Wärmetauscher 3 grundsätzlich eine beliebig große Länge der Leitung durch Vergrößern der Spirale möglich ist, führt eine Verlängerung der Leitungen dazu, dass zum

Fördern des Wärmetauschmediums durch den Wärmetauscher 3 eine größere Pumpleistung notwendig ist. Dadurch würde sich

einerseits die zum Betrieb des Wärmetauschmedium-Kreislaufs benötigte Energie als auch die erforderliche Leistung der im Wärmetauschmedium-Kreislauf angeordneten Pumpaggregate

erhöhen, was einerseits zu höheren Investitionskosten und andererseits auch zu höheren Betriebskosten führen würde.

Daher ist erfindungsgemäß auch vorgesehen, dass der

Wärmetauscher 3 zumindest zwei Wärmetauscherteile 4,5

aufweist, wie in der Folge an Hand der Figuren 3 und 4

erläutert wird. Der einteilige Wärmetauscher 3 aus Figur 2 kann dabei durch den Wärmetauscher 3 der Figuren 3 und 4 mit zumindest zwei Wärmetauscherteilen 4,5 ersetzt werden.

Figur 3 zeigt einen Wärmetauscher 3, der zwei konzentrisch zueinander angeordnete Wärmetauscherteile 4,5 umfasst bzw. aus zwei konzentrisch zueinander angeordneten

Wärmetauscherteilen 4,5 besteht. Beide Wärmetauscherteile 4,5 sind dabei auch konzentrisch zur Längsachse 2 des

Brauchwasserspeichers 1, die zum besseren Verständnis

eingezeichnet ist, angeordnet. Der erste Wärmetauscherteil 4 bildet im vorliegenden Ausführungsbeispiel das Innenteil des Wärmetauschers 3 und erstreckt sich vom radial zur

Längsachse 2 gesehen innersten Punkt des Wärmetauschers 3 spiralförmig nach außen. Die Anzahl der Windungen des ersten Wärmetauscherteils 4 bzw. die aus den Radien resultierende Länge der durch die Kammern 10,11 gebildeten Leitung, lässt sich dadurch hinsichtlich des Strömungswiderstands optimieren. Um eine möglichst große Wärmetauscher-Oberfläche zu ermöglichen und den zur Verfügung stehenden, durch den

Querschnitt des Innenvolumens des Brauchwasserspeichers 1 definierten Raum bestmöglich auszunutzen, schließt an das erste Wärmetauscherteil 4 das zweite Wärmetauscherteil 5 radial zur Längsachse 2 gesehen an. Dieses erstreckt sich spiralförmig bis zum radial zur Längsachse 2 gesehen äußersten Punkt des Wärmetauschers 3. Betrachtet man die beiden

Wärmetauscherteile 4,5 in Richtung der Längsachse 2, so bilden beide Wärmetauscherteile 4,5 eine kreisringförmige Grundfläche aus, wobei der Außendurchmesser des ersten

Wärmetauscherteils 4 dem Innendurchmesser des zweiten

Wärmetauscherteils 5 ungefähr entspricht. Die von den beiden Wärmetauscherteilen 4,5 gemeinsam gebildete, kreisringförmige Fläche nimmt dabei im vorliegenden Fall mehr als 75%,

vorzugsweise mehr als 80%, der vom Brauchwasserspeicher 1 begrenzten Querschnittsfläche, also von der Querschnittsfläche des Innenvolumens des Brauchwasserspeichers 1, ein. Wie in den Figuren 3 und 4 zu erkennen ist, weist jeder

Wärmetauscherteil 4,5 einen eigenen Einlass 6 und einen eigenen Auslass 7 auf, die jeweils am radial innersten bzw. radial äußerten Punkt der Wärmetauscherteile 4,5 angeordnet sind. Beide Kammern 10,11 sind dabei mit dem Einlass 6 bzw. Auslass 7 verbunden. Einlass 6 und Auslass 7 sind jeweils durch ein radial zur Längsachse 2 verlaufendes zylindrisches Rohr ausgebildet. Wie insbesondere in der Figur 4 zu erkennen ist, sind die beiden Einlässe 6 der Wärmetauscherteile 4,5 über eine gemeinsame Zulaufleitung 8 miteinander verbunden, und die beiden Auslässe 7 der Wärmetauscherteile 4,5 über eine gemeinsame Ablaufleitung 9. Über die gemeinsame

Zulaufleitung 8 und die gemeinsame Ablaufleitung 9 lässt sich ein Wärmetauschmedium-Kreislauf für beide

Wärmetauscherteile 4,5 verwirklichen, bei dem das

Wärmetauschmedium von einer gemeinsamen Heizquelle erwärmt und von einem gemeinsamen Pumpaggregat gefördert wird.

In einer alternativen, nicht dargestellten AusführungsVariante der Erfindung ist vorgesehen, dass jeder Einlass 6 eines Wärmetauscherteils 4,5 über eine separate Zulaufleitung mit Wärmetauschmedium versorgt wird, und dass jeder Auslass 7 eines Wärmetauscherteils 4,5 mit einer separaten

Ablaufleitung 9 verbunden ist. Somit können unterschiedlich Wärmetauschmedium-Kreisläufe für jedes Wärmetauscherteil 4, verwirklicht werden. So lässt sich für jedes

Wärmetauscherteil 4,5 über eine eigene Heizquelle ein bestimmtes Temperaturniveau einstellen, wobei die

Temperaturniveaus voneinander abweichen können.

BEZUGSZEICHENLISTE

1 Brauchwasserspeieher

2 Längsachse

3 Wärmetauscher

4 erstes Wärmetauscherteil

5 zweites Wärmetauscherteil

6 Einlass

7 Auslass

8 Zulaufleitung

9 Ablaufleitung

10 erste Kammer

11 zweite Kammer

12 Steg

13 Seitenwand

14 Kaltwasserzulauf

15 Warmwasserablauf