Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE FOR IN-SITU FABRICATION PROCESS MONITORING AND FEEDBACK CONTROL OF AN ELECTRON BEAM ADDITIVE MANUFACTURING PROCESS
Document Type and Number:
WIPO Patent Application WO/2018/217646
Kind Code:
A1
Abstract:
A High Energy Beam Processing (HEBP) system (1) provides feedback signal monitoring and feedback control for the improvement of process repeatability and three-dimensional (3D) printed part quality. Signals (301, 302, 303, 308) reflecting process parameters and the quality of the fabricated parts are analyzed by monitoring feedback signals from artifact sources (61A, 61B, 62A, 62B, 63A, 63B, 64A, 64B) with a process controller (20) which adjusts process parameters. In this manner, fabricated parts are produced more accurately and consistently from powder feedstock by compensating for process variation in response to feedback signals.

Inventors:
SUTCLIFFE CHRISTOPHER (GB)
GARRARD REBECCA (GB)
JONES ERIC (IE)
MULLEN LEWIS (US)
WONG HAY (GB)
Application Number:
PCT/US2018/033700
Publication Date:
November 29, 2018
Filing Date:
May 21, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HOWMEDICA OSTEONICS CORP (US)
UNIV LIVERPOOL (GB)
SUTCLIFFE CHRISTOPHER J (GB)
GARRARD REBECCA HELEN (GB)
JONES ERIC (IE)
MULLEN LEWIS (US)
WONG HAY (GB)
International Classes:
B22F3/105; B23K15/00; B23K15/02; B23K15/06; B33Y30/00; B33Y50/02; G01N23/2252; G01N33/20
Foreign References:
US20170023499A12017-01-26
CN106180718A2016-12-07
US20160211116A12016-07-21
US20150174658A12015-06-25
US20170066051A12017-03-09
EP3157041A12017-04-19
EP3323617A12018-05-23
EP2918396A12015-09-16
Other References:
NANDWANA, PEEYUSH ET AL.: "Recylability Study on Inconel 18 and Ti-6AI-4V Powders for Use in Electron Beam Melting", METALLURGICAL AND MATERIALS TRANSACTIONS B, vol. 47, no. 1, 2016, pages 754 - 762, XP035944549, DOI: doi:10.1007/s11663-015-0477-9
ECHLIN, PADRICK ET AL., ADVANCED SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS, 1986
Attorney, Agent or Firm:
BERGERON, Ryan, L. et al. (US)
Download PDF:
Claims:
CLAIMS

1. A monitoring and feedback device for use in conjunction with an electron beam generation apparatus in assessing and providing feedback associated with a processing area and a build structure formed from at least a portion of a powder bed on a substrate within the processing area using the electron beam generation apparatus, comprising:

an electronic imaging device including a first plate configured to be electrically insulated from the electron beam generation apparatus and including a feedback signal-capturing surface that electrically conducts an electronic imaging electrical signal upon impingement of impinging electrons emitted from the build structure, the first plate extending either one of or both over and around the processing area; and a monitoring controller configured for receiving and interpreting, by one or more processors, any one or any combination of the following:

(i) the electronic imaging electrical signal electrically conducted by the feedback signal-capturing surface to assess the quality of the deposition of the powder bed within the processing area, and

(ii) the electronic imaging electrical signal electrically conducted by the feedback signal-capturing surface to assess the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area,

the monitoring controller being further configured for transmitting, by one or more processors, one or more instructional electrical signals corresponding to the following:

(i) first instructions based on the assessed quality of the deposition of the powder bed when the monitoring controller assesses the quality of the deposition of the powder bed within the processing area, and

(ii) second instructions based on the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed when the monitoring controller assesses the quality of the solidified surface of the build structure after sintering or melting a portion of the powder bed.

2. The device of claim 1, wherein the electronic imaging device further includes a second plate electrically insulated from the first plate, the second plate providing an electrical noise-filtering surface confronting the first plate.

3. The device of claim 1 or claim 2, wherein the first plate is configured to extend over the processing area in a direction non-orthogonal and nonparallel to the substrate.

4. The device of any one of claims 1-3, wherein the electronic imaging device further comprises a frame having a base defining a beam opening for receiving the electron beam upon deflection thereof and a base opening opposite the beam opening and configured to overlay the substrate.

5. The device of any one of claims 1 -4, wherein the electronic imaging device is a temperature measurement and electronic imaging device that further includes a thermal energy sensing device electrically connected with the first plate, the thermal energy sensing device being configured for electrically conducting a thermal energy sensing electrical signal upon receipt of thermal radiation emitted from the build structure, wherein the monitoring controller is configured for receiving and interpreting, by one or more processors, the thermal energy sensing electrical signal electrically conducted by the thermal energy sensing device to assess the temperature of the processing area, and wherein the monitoring controller is further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to thermal energy instructions based on the assessed temperature of the powder bed within the processing area.

6. The device of claim 5, wherein the thermal energy sensing device is a thermocouple, further comprising:

a first electrical resistor electrically connected to the first plate;

a second electrical resistor electrically connected to the second plate;

a thermocouple amplifier electrically connected to the thermocouple, the thermocouple amplifier providing a feedback electron signal corresponding to the thermal energy sensing electrical signal;

an instrumentation amplifier electrically connected to each of the first and the second resistors, the instrumentation amplifier providing a suitable signal-to-noise ratio to a feedback electron signal corresponding to the electronic imaging electrical signal; and

a suitable data logger for sampling and suitably conditioning the electronic imaging and the thermal energy sensing electrical signals.

7. The device of any one of claims 1-6, further comprising an electromagnetic radiation detection device configured to be mounted in a housing providing vapor protection and thermal regulation, wherein the electromagnetic radiation detection device is configured for placement at least partially within a vacuum chamber and for electrically conducting a radiation detection electrical signal upon the detection of electromagnetic radiation emitted from the build structure, wherein the monitoring controller is configured for receiving and interpreting, by one or more processors, the radiation detection electrical signal electrically conducted by the electromagnetic radiation detection device to assess the chemical composition within the processing area, and wherein the monitoring controller is further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to detected radiation instructions based on the assessed chemical composition within the processing area.

8. The device of claim 7, wherein the electromagnetic radiation detection device is an energy dispersive x-ray detection device, and wherein the electromagnetic radiation is provided by x- rays.

9. The device of claim 7 or claim 8, wherein the radiation detection electrical signal is convertible into spectra.

10. The device of any one of claims 7-9, wherein the electronic imaging device is a temperature measurement and electronic imaging device that further includes (iii) a thermal energy sensing device electrically connected with the first plate, the thermal energy sensing device being configured for electrically conducting a thermal energy sensing electrical signal upon receipt of thermal radiation emitted from the build structure, wherein the monitoring controller is configured for receiving and interpreting, by one or more processors, the thermal energy sensing electrical signal electrically conducted by the thermal energy sensing device to assess the temperature of the processing area, and wherein the monitoring controller is further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to thermal energy instructions based on the assessed temperature of the powder bed within the processing area, and wherein one or some combination of the electronic imaging electrical signal, the thermal energy sensing electrical signal, and the radiation detection electrical signal are indicate a respective one or some combination of the following:

(i) a quality of the powder,

(ii) a quality of the powder bed,

(iii) a temperature stability of a liquid melt zone in the powder bed,

(iv) topographical characteristics of the liquid melt zone,

(v) topographical characteristics of a solidified melted surface,

(vi) any geometric deviation of the solidified melted surface when compared to the design,

(vii) a surface temperature of any one or any combination of a topmost layer of the powder bed, the liquid melt zone, and the solidified melted surface in the processing area, and

(viii) chemical composition characteristics of any one or any combination of the powder, the powder bed, the liquid melt zone, and the solidified melted surface.

11. The device of any one of claims 1 -10, wherein the impinging electrons are any one or any combination of backscattered electrons and secondary electrons.

12. The device of any one of claims 1-11, wherein the second plate is attached to the first plate by fasteners insulated from the first and the second plates by ceramic components.

13. An electron beam and powder bed processing, monitoring, and feedback device for fabricating a build structure in a processing area, comprising:

an electron beam generation apparatus for generating and deflecting an electron beam over a powder bed within the processing area;

a substrate configured for supporting a powder bed and the build structure during deflection of the electron beam; a vacuum chamber;

an electronic imaging device enclosed in the vacuum chamber and including a first plate electrically insulated from the electron beam generation apparatus and including a feedback signal-capturing surface that electrically conducts a first electrical signal upon impingement of impinging electrons emitted from the build structure, the first plate extending either one or both of over and around the processing area; a monitoring controller configured for receiving and interpreting, by one or more processors, any one or any combination of the following:

(i) using a first algorithm, the first electrical signal electrically conducted by the feedback signal- capturing surface to assess the quality of the deposition of the powder bed within the processing area, and

(ii) using a second algorithm, the first electrical signal electrically conducted by the feedback signal- capturing surface to assess the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area,

the monitoring controller being further configured for transmitting, by one or more processors, one or more instructional electrical signals corresponding to the following:

(i) first instructions based on the assessed quality of the deposition of the powder bed when the monitoring controller assesses the quality of the deposition of the powder bed within the processing area,

(ii) second instructions based on the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed when the monitoring controller assesses the quality of the solidified surface of the build structure after sintering or melting a portion of the powder bed; and an electron beam controller configured for receiving and interpreting the one or more instructional electrical signals transmitted by the monitoring controller, the electron beam controller being further configured for transmitting, based on the received and interpreted instructional electrical signals, electron beam controller electrical signals to modify settings of the electron beam generation apparatus, the modified settings of the electron beam generation apparatus reducing or eliminating determined differences between any one or any combination of the following:

(i) the assessed quality of the deposition of the powder bed and a predefined quality of the deposition of the powder bed, and

(ii) the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed and a predefined quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed.

14. The device of claim 13, wherein the electron beam generation apparatus comprises: an electron filament from which an electron beam is generated;

a grid cup for containing emitted electrons of the electron beam;

a focus apparatus for focusing the electron beam; and

a scan apparatus for deflecting the electron beam over the powder bed within a processing area to sinter or melt at least a portion of the powder bed to form at least a portion of a build structure, wherein the electron beam controller is configured for transmitting, based on the received and interpreted instructional electrical signals, any one or any combination of the following:

(i) a grid cup electrical signal to grid cup electronics associated with the grid cup to modify settings on the grid cup,

(ii) a focus apparatus electrical signal to focus apparatus electronics associated with the focus apparatus to modify settings on the focus apparatus, and

(iii) a scan apparatus electrical signal to scan apparatus electronics associated with the scan apparatus to modify settings on the scan apparatus, and

wherein the settings of the grid cup, the focus apparatus, and the scan apparatus are modified when the corresponding grip cup electrical signal, focus apparatus electrical signal, and scan apparatus electrical signal are received to reduce or eliminate the determined differences.

15. The device of claim 13 or claim 14, wherein the electronic imaging device includes a second plate electrically insulated from the first plate, the second plate providing an electrical noise- filtering surface confronting the first plate.

16. The device of any one of claims 13-15, wherein the electronic imaging device is a temperature measurement and electronic imaging device that further includes a thermocouple electrically connected with the first plate, the thermocouple electrically conducting a thermal energy sensing electrical signal upon receipt of thermal radiation emitted from the build structure, wherein the monitoring controller is configured for receiving and interpreting, by one or more processors, using an algorithm different from the first and the second algorithms, the thermal energy sensing electrical signal electrically conducted by the thermocouple to assess the temperature of the processing area, wherein the monitoring controller is further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to thermal energy instructions based on the assessed temperature of the powder bed within the processing area, and wherein the modified settings of the electron beam generation apparatus reduce or eliminate determined differences between the assessed temperature of the powder bed within the processing area and a predefined temperature of the powder bed within the processing area.

17. The device of any one of claims 13-16, further comprising an electromagnetic radiation detection device mounted in a housing providing vapor protection and thermal regulation, the electromagnetic radiation detection device being at least partially within the vacuum chamber and electrically conducting a radiation detection electrical signal upon the detection of electromagnetic radiation emitted from the build structure, wherein the monitoring controller is configured for receiving and interpreting, by one or more processors, using an algorithm different from the first and the second algorithms, the radiation detection electrical signal electrically conducted by the electromagnetic radiation detection device to assess the chemical composition within the processing area, wherein the monitoring controller is further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to detected radiation instructions based on the assessed chemical composition within the processing area, and wherein the modified settings of the electron beam generation apparatus reduce or eliminate determined differences between the assessed chemical composition within the processing area and a predefined chemical composition within the processing area.

18. The device of any one of claims 13-17, wherein the first plate extends over the processing area in a direction non-orthogonal and nonparallel to the substrate.

19. A high energy beam processing (HEBP) apparatus with in situ feedback control capability, comprising:

a build platform defining a processing area;

a powder deposition system for providing successive layers of a uniform powder bed on the build- platform;

an electron beam generation system for generating and directing an electron beam;

an electron sensor system including an electron sensor, the electron sensor system being suitable for providing an output upon incidence of a feedback electron signal on the electron sensor;

a radiation sensor system including a radiation sensor, the radiation sensor system being suitable for providing an output upon incidence of feedback radiation on the radiation sensor;

a vacuum chamber housing the build platform, the powder deposition system, the electron beam generation system, the electron sensor, and the radiation sensor;

a monitoring controller interpreting either one or both of the feedback electron signal and the feedback radiation captured by the respective electron and radiation sensors and automatically generating corresponding process control commands; and

a process controller setting process parameters for the HEBP apparatus and executing the process control commands received from the monitoring controller to control the generation and directing of the electron beam by the electron beam generation system.

20. The HEBP apparatus of claim 19, wherein the electron sensor system comprises:

an electrically conductive sensing surface for the capture of feedback electrons;

electrical-noise filter plates for noise reduction in the feedback electron signal;

suitable ceramic components configured for positioning the electron sensor at a suitable location and for providing the electrical-noise filter plates with electrical insulation from the electrically conductive sensing surface;

an instrumentation amplifier for providing a suitable signal-to-noise ratio in the feedback electron signal; and suitable data loggers to sample and perform suitable signal conditioning to the feedback electron signal and the scan apparatus process parameters, wherein the electron sensor system encloses the processing area to maximize the chance for capturing feedback electrons emitted from the processing area at a wide range of angles.

21. The HEBP apparatus of claim 19 or claim 20, wherein the radiation sensor system comprises:

one or more detectors with the capability of detecting electromagnetic radiation as individual photons; and

a system to measure either or both of an energy and a wavelength of the detected radiation within the process chamber.

Description:
DEVICE FOR IN-SITU FABRICATION PROCESS MONITORING AND FEEDBACK CONTROL OF AN ELECTRON BEAM ADDITIVE MANUFACTURING PROCESS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of the filing date of U.S. Provisional Patent

Application No. 62/509,464, filed May 22, 2017, the disclosure of which is hereby incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to additive manufacturing, and in particular relates to a system for monitoring, interpreting, and controlling the fabrication of components during High Energy Beam Processing (HEBP).

BACKGROUND OF THE INVENTION

[0003] Additive Manufacturing (AM) is increasingly used in the development of new products across many industrial sectors such as the medical and aerospace industries. HEBP technologies can be used as one of the AM techniques to build three-dimensional (3D) parts as a series of two-dimensional (2D) layers via a layer-wise computer-controlled production process. HEBP machines used in AM will be referred to as High Energy Beam Additive Manufacturing (HEBAM) machines hereinafter. A HEBAM machine harnesses the energy of a beam to perform selective sintering or full melting to consolidate metallic powder. In order to be used in a HEBAM machine, a 3D design is modeled and programmatically divided into 2D cross-sectional layers. The design in the form of a set of 2D cross- sections is then imported to a HEBAM machine and successively processed to materialize the 3D design into a physical 3D object.

[0004] Among many possible HEBAM machine layouts, a Powder-Bed Fusion (PBF) set-up includes a powder deposition system having a moving rake, a roller or other spreading device, and powder containers. In order to process a 2D cross section, the powder deposition system is used to deposit a powder layer onto a substrate in a machine processing area. A high energy beam is focused onto a build platform and then deflected using computer-controlled electromagnetic lenses to trace out the geometry of the 2D cross-section of the 3D design. The energy of the beam causes a specific area of the powder layer within the traced-out geometry to be sintered or fully melted. Upon solidification of the traced-out areas within the current powder layer, the build platform lowers, and a new powder layer is deposited on the machine processing area. Three-dimensional objects can be built layer upon layer through the repetition of powder layer deposition and selective sintering or melting. FIG.l shows in part a schematic layout of a conventional HEBAM machine which employs high energy electrons as its energy source for selective sintering or melting.

[0005] Applications of AM techniques in various industries have been met by challenges caused by a lack of process repeatability and part quality reproducibility. Typical quality issues in AM processes include the formation of undesired porosity on melted surfaces as well as the delamination of layers, both of which affect mechanical properties and the geometry of AM-manufactured parts. Moreover, sublimation or evaporation of materials in layers being processed or adjacent to layers being processed could also occur during the melting process, which is often observed as metallization, i.e., metallic coatings attached to interior surfaces of a build chamber. Within an alloy, chemical constituents of the alloy have different thermal properties, meaning that sublimation or evaporation is non-uniform. (See Nandwana, Peeyush, et al., "Recylability Study on Inconel 18 and Ti-6A1-4V Powders for Use in Electron Beam Melting," Metallurgical and Materials Transactions B, 47(1) (2016), pp. 754-762.) This non-uniformity could cause the chemical composition of the powder to be different than that of printed parts.

[0006] In the current state of the art, AM machines lack effective in situ process monitoring and control, which hinders the establishment of desired correlations between AM process parameters and AM-manufactured part characteristics, which include part geometry, processing area quality, and the chemical composition of printed parts. These deficiencies are among the major barriers inhibiting the adoption of AM techniques across industries. Selective Laser Additive Manufacturing (SLAM), including selective laser sintering and selective laser melting, and Electron Beam Additive Manufacturing (EBAM) are two common HEBP processes. While some in situ process monitoring methods are used for SLAM processes with the PBF set-up, these methods are not suitable for the EBAM process for two main reasons. First, the physics of interactions between the different energy source, i.e., the laser beam and the electron beam, and the powder itself are sufficiently different such that any in situ monitoring methods associated with a laser heat source are not readily applicable to a process using an electron beam as the heat source. Secondly, the above-noted sublimation and evaporation of the powder occurs more commonly during the EBAM process which requires a vacuum chamber. The metallization forms in vacuum more readily than in an inert gas environment used with laser -based processes. These metallic coatings would reduce the effectiveness or even damage typical SLAM sensors if they were to be integrated into an EBAM apparatus for monitoring and control purposes.

[0007] Some HEBAM machine manufacturers have been developing camera-based quality verification systems. This optical monitoring system is used to carry out post-processing part-geometry measurement. The system includes a camera that captures radiation with wavelength in both visible and near-infrared regions coming from the processing area, pneumatic shutters for protection of the camera lenses from evaporation of metallic materials during the HEBAM process, and software to carry out image analysis. The system captures digital optical images of the entire processing area of the HEBAM machine and provides some post-build indications regarding the level of porosity in solidified melted surfaces as well as the level of expansion or shrinkage of printed parts. However, this camera system lacks the ability to magnify an individual region of interest on the powder bed without compromising spatial resolution, and further lacks the capability to observe the chemical composition of the printed part or of the powder among other deficiencies.

[0008] Apart from the efforts made by machine manufacturers, academic communities have also carried out various research projects to build in situ HEBAM process control systems for monitoring either one or both of the quality and temperature stability of the liquid melt zone and part geometry. The systems developed in academia have thus far involved the use of camera to detect radiation with wavelengths either in the visible or infrared (IR) region. One of the major inherent drawbacks of collecting and making use of detected radiation with wavelengths either in the visible or IR region is that the spatial resolution near part boundaries of the generated digital optical image is influenced heavily by the radiation emitted from the Heat-Affected Zone (HAZ) surrounding the region of interest. This emitted radiation might result in blurred part boundaries in the digital optical images and affect the accuracy of part-geometry analysis.

SUMMARY OF THE INVENTION

[0009] In accordance with an aspect, an in situ monitoring and control device and process are disclosed herein for a High Energy Beam Additive Manufacturing (HEBAM) process, in particular an Electron Beam Additive Manufacturing (EBAM) process. The process, which may be embodied as one or more monitoring and control algorithms and executed via a host machine of the device as disclosed herein, includes automatically detecting or measuring features of interest in the EBAM process using one or more sensors. Such detection or measurement may include analyzing at least one of the liquid melt zone and a processing area via a time-series feedback signal and feedback radiation; electronically imaging at least one of a solidified melted surface and the processing area via the feedback signal and feedback radiation; and analyzing chemical compositions of either one or both of the liquid melt zone and the processing area via feedback radiation. The feedback signal and feedback radiation may be captured by sensors and may be fed into a monitoring controller, which may evaluate the data associated with the detected feedback signal and feedback radiation captured by the sensors to determine any one or any combination of a magnitude, a degree, and a rate of change in monitored features of interest of any one or any combination of the EBAM process, the liquid melt zone, the solidified melted surface, and the processing area. The monitoring controller may then send process control commands to the process controller on the host machine to modify a set of process parameters for the EBAM process. In this manner, execution of the in situ EBAM process monitoring and control algorithms may maintain consistency of the EBAM process.

[0010] In accordance with another aspect, a device may include an EBAM machine that may be configured, among other possible configurations, for an EBAM process with a Powder Bed Fusion (PBF) set-up in which electromagnetic lenses may be employed as part of a scan apparatus on the host machine. This device, including the host EBAM machine, may include a build platform, a powder deposition system, an electron beam generating apparatus, a focus apparatus, a scan apparatus, a feedback signal sensor, a feedback radiation sensor, a vacuum chamber, a monitoring controller, and a process controller. The build platform may be configured to define a processing area. The powder deposition system may deposit successive layers of a uniform powder bed onto either of the build platform and the previous powder layer. The electron beam generating apparatus may emit an electron beam. The focus apparatus may be configured to focus the electron beam onto the powder bed to sinter or fully melt the powder within one or more liquid melt zones. The scan apparatus may be configured to deflect the electron beam across the processing area. The feedback signal sensor may be configured to generate an output upon incidence of a feedback signal, e.g., a feedback electron signal, on the feedback signal sensor. The feedback radiation sensor may be configured to generate an output upon incidence of various types of feedback radiation on the feedback radiation sensor. The vacuum chamber may enclose and seal the build platform, the powder deposition system, the electron beam generating apparatus, the focus apparatus, the scan apparatus, and the feedback signal and feedback radiation sensors. The monitoring controller may interpret the data associated with the feedback signal and feedback radiation captured by the feedback signal and feedback radiation sensors and may automatically generate corresponding process control commands. The process controller may set the EBAM process parameters and may execute feedback control commands sent from the monitoring controller.

[0011] In accordance with another aspect, in situ EBAM process monitoring may be carried out based on various physical phenomena. Inside the host EBAM machine, a beam of accelerated primary electrons generated from either thermionic or field emission, may be raster- scanned on a region of interest of a powder bed over an in-process specimen in a pre-designed pattern during an electronic imaging process. Upon electron- specimen interactions, the primary electrons may scatter within the specimen and their kinetic energy may be converted into either heat or atomic molecular excitation energy. Some of the primary electrons may undergo elastic collisions with the specimen atoms and scatter back as backscattered electrons (BSE). During scattering, a portion of energy from either the primary electrons or the BSE may be transferred to the valence electrons in the conduction band of the specimen atoms via inelastic collisions. With enough energy, such energized valence electrons may escape from the atoms. If these electrons are close enough to the surface, they may successfully avoid being re-absorbed and then be emitted from the specimen surface as secondary electrons (SE). The yields of SE and BSE may be sensitive to the topographical characteristics of the specimen surface but have been found to be almost independent of the specimen temperature for metals (see, e.g., JEOL Ltd., SEM; Scanning Electron Microscope A To Z: Basic Knowledge for Using the SEM (2009); Reimer, Ludwig, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (1998)), and thus the influence of the Heat Affected Zone (HAZ) of the in-process specimen on the electron signal is minimal.

[0012] When the primary electron beam interacts with the specimen, x-rays are released by two different mechanisms: elastic interactions yield characteristic x-rays, inelastic interactions lead to the emission of continuum x-rays. When primary electrons interact elastically with the specimen atoms, ionization can occur. (See Echlin, Padrick, et al., Advanced Scanning Electron Microscopy and X-Ray Microanalysis (1986).) The inner shell vacancy is filled by the transition of an outer shell electron, and its excess energy is released as a photon. The energy of the photon is characteristic to the atom and results from the energy difference of the shells between which the electron moved. This energy is released during the filling of inner shell vacancies by excited electrons and may be used to assess the composition of the section of the specimen being irradiated. Continuum x-ray photons are released from an inelastic interaction with a specimen atom that decelerates the primary electron, and such photons may have any positive non-zero value up to total energy of the primary electron beam. FIG. 2 gives a schematic representation of the generation of SE, BSE and X-rays from electron-specimen interaction. [0013] In electronic imaging, a grey-scale digital electronic image consists of arrays of pixels.

Each pixel holds a value of pixel intensity within the grey-scale range, which represents the brightness of the pixel. A 2D digital electronic image may be generated from feedback electrons, such as but not limited to SE and BSE, emitted from the specimen surface, revealing the topographical details of the specimen. In this manner, the feedback signal, which may be but is not limited to being provided by SE and BSE, and the feedback radiation, which may include but is not limited to including X-rays, may be captured to form various time-series signals and 2D digital electronic images for the purposes of process monitoring and control. As a result, the quality control of the chemical composition of EBAM manufactured parts may be improved over existing technologies through in situ process monitoring and control via feedback signal and feedback radiation.

[0014] In accordance with another aspect, a monitoring and feedback device for use in conjunction with an electron beam generation apparatus in assessing and providing feedback associated with a processing area and a build structure formed from at least a portion of a powder bed on a substrate within the processing area using the electron beam generation apparatus may include a temperature measurement and electronic imaging device, an electromagnetic radiation detection device, and a monitoring controller. The temperature measurement and electronic imaging device may include a first plate, a second plate, and a thermal energy sensing device. The first plate may be configured to be electrically insulated from the electron beam generation apparatus and may include a feedback signal- capturing surface that may electrically conduct a first electrical signal upon impingement of impinging electrons emitted from the build structure. The first plate may extend either one or both of over and around the processing area. The second plate may be electrically insulated from the first plate. The second plate may provide an electrical noise-filtering surface confronting the first plate. The thermal energy sensing device may be electrically connected with the first plate. The thermal energy sensing device may electrically conduct a second electrical signal upon receipt of thermal radiation emitted from the build structure.

[0015] The electromagnetic radiation detection device of the monitoring and feedback device may be mounted in a housing that may provide vapor protection and thermal regulation. The electromagnetic radiation detection device may be at least partially within the vacuum chamber and may electrically conduct a third electrical signal upon the detection of electromagnetic radiation emitted from the build structure.

[0016] The monitoring controller may be configured for receiving and interpreting, by one or more processors, any one or any combination of the first electrical signal electrically conducted by the feedback signal-capturing surface, the second electrical signal electrically conducted by the thermal energy sensing device, and the third electrical signal electrically conducted by the electromagnetic radiation detection device. The first electrical signal electrically conducted by the feedback signal- capturing surface may be received and interpreted by the monitoring controller to assess the quality of the deposition of the powder bed within the processing area. The first electrical signal electrically conducted by the feedback signal-capturing surface may be received and interpreted by the monitoring controller to assess the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area. The second electrical signal electrically conducted by the thermal energy sensing device may be received and interpreted by the monitoring controller to assess the temperature of the processing area. The third electrical signal electrically conducted by the electromagnetic radiation detection device may be received and interpreted by the monitoring controller to assess the chemical composition within the processing area.

[0017] The monitoring controller of the monitoring and feedback device may be configured for transmitting, by one or more processors, one or more instructional electrical signals corresponding to any one or any combination of first instructions, second instructions, third instructions, and fourth instructions. The first instructions may be based on the assessed quality of the deposition of the powder bed when the monitoring controller assesses the quality of the deposition of the powder bed within the processing area. The second instructions may be based on the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed when the monitoring controller assesses the quality of the solidified surface of the build structure after sintering or melting a portion of the powder bed. The third instructions may be based on the assessed temperature of the powder bed within the processing area when the monitoring controller assesses the temperature of the processing area. The fourth instructions may be based on the assessed chemical composition within the processing area when the monitoring controller assesses the chemical composition within the processing area.

[0018] In some arrangements, the temperature measurement and electronic imaging device may be enclosed in a vacuum chamber or may be configured to be enclosed in a vacuum chamber.

[0019] In some arrangements, the impinging electrons may be any one or any combination of backscattered electrons and secondary electrons. In some arrangements, the monitoring controller may be configured for receiving and interpreting the first electrical signal to assess the quality of the deposition of the powder bed within the processing area using a first algorithm. In some arrangements, the monitoring controller may be configured for receiving and interpreting the first electrical signal to assess the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area using a second algorithm. In some such arrangements, the first and the second algorithms may be the same algorithm. In some arrangements, monitoring controller may be configured for receiving and interpreting the second electrical signal to assess the temperature of the processing area using a third algorithm. In some arrangements, monitoring controller may be configured for receiving and interpreting the third electrical signal to assess the chemical composition within the processing area using a fourth algorithm.

[0020] In some arrangements, the electromagnetic radiation detection device may be an energy dispersive x-ray detection device. In such arrangements, the electromagnetic radiation may be provided by x-rays.

[0021] In some arrangements, any one or any combination of the quality of the deposition of the powder bed within the processing area, the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area, the temperature of the powder bed within the processing area, and the chemical composition within the processing area may be assessed within various locations. Such locations may be any of the whole processing area, a user- defined area within the process-area, and a user-defined point or set of points within the processing area.

[0022] In some arrangements, any one or any combination of the quality of the deposition of the powder bed within the processing area, the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area, the temperature of the powder bed within the processing area, and the chemical composition within the processing area may be assessed at various times. Such periods may be any one or any combination of before sintering or melting a portion of the powder bed, after sintering or melting a portion of the powder bed, and any time during sintering or melting of the powder bed.

[0023] In some arrangements, the second plate may be attached to the first plate by fasteners that may be insulated from the first and the second plates by ceramic components.

[0024] In some arrangements, each of the first and the second plates may have one or more holes that may extend through either or both of the first and the second plates. The respective holes may provide mounting points for attachment of any one or any combination of the thermal energy sensing device, the fasteners attaching the first and the second plates, and other components attachable to the holes.

[0025] In some arrangements, the thermal energy sensing device may be a thermocouple. The thermal energy sensing device may include a first electrical resistor, a second electrical resistor, a thermocouple amplifier, an instrumentation amplifier, and a suitable data logger. In some such arrangements, the first electrical resistor may be electrically connected to the first plate. The second electrical resistor may be electrically connected to the second plate. The thermocouple amplifier may be electrically connected to the thermocouple in which the thermocouple amplifier may provide a feedback electron signal corresponding to the second electrical signal. The instrumentation amplifier may be electrically connected to each of the first and the second resistors in which the instrumentation amplifier may provide a suitable signal-to-noise ratio to a feedback electron signal corresponding to the first electrical signal. The suitable data logger may be configured for sampling and suitably conditioning the first and the second electrical signals.

[0026] In some arrangements, the third electrical signal may be convertible into spectra. In some arrangements, any one or any combination of the first electrical signal, the second electrical signal, and the third electrical signal may be used to assess various process parameters. Such parameters may include a quality of the powder, a quality of the powder bed, a temperature stability of a liquid melt zone in the powder bed, topographical characteristics of the liquid melt zone, topographical characteristics of a solidified melted surface, any geometric deviation of the solidified melted surface when compared to the design, an indication of surface temperature of a topmost layer of the powder bed, the liquid melt zone, and the solidified melted surface in the processing area, and chemical composition characteristics of the powder, the powder bed, the liquid melt zone, and the solidified melted surface. [0027] In some arrangements, the temperature measurement and electronic imaging device may further include a frame. The frame may have a base that may define a beam opening and a base opening. The beam opening may be configured for receiving the electron beam upon deflection of the electron beam. The base opening may be opposite the beam opening and may be configured to overlay the substrate.

[0028] In some arrangements, the thermal energy sensing device may be attached to the first plate. In some arrangements, the first plate may be configured to extend over the processing area in a direction non-orthogonal and nonparallel to the substrate.

[0029] In accordance with another aspect, an electron beam and powder bed processing, monitoring, and feedback device for fabricating build structure in a processing area may include an electron beam generation apparatus for generating and deflecting an electron beam over a powder bed within the processing area, a substrate, a vacuum chamber, a temperature measurement and electronic imaging device, an electromagnetic radiation detection device, a monitoring controller, and an electron beam controller. The electron beam generation apparatus may include an electron filament, a grid cup, a focus apparatus, and a scan apparatus. An electron beam may be generated from the electron filament. The grid cup may be configured for containing emitted electrons of the electron beam. The focus apparatus may be configured for focusing the electron beam. The scan apparatus may be configured for deflecting the electron beam over a powder bed within a processing area to sinter or melt at least a portion of the powder bed to form at least a portion of a build structure. The substrate may be configured for supporting the powder bed and the build structure during deflection of the electron beam.

[0030] The temperature measurement and electronic imaging device may be enclosed in the vacuum chamber and may include a first plate, a second plate, and a thermocouple. The first plate may be electrically insulated from the electron beam generation apparatus and may include a feedback signal- capturing surface. The feedback signal-capturing surface may extend either one or both over the processing area and may electrically conduct a first electrical signal upon impingement of impinging electrons emitted from the build structure. The second plate may be electrically insulated from the first plate. In this manner, the second plate may provide an electrical noise-filtering surface confronting the first plate. The thermocouple may be electrically connected with the first plate. The thermocouple may electrically conduct a second electrical signal upon receipt of thermal radiation emitted from the build structure.

[0031] The electromagnetic radiation detection device of the electron beam and powder bed processing, monitoring, and feedback device may be mounted in a housing. The housing may provide vapor protection and thermal regulation. The electromagnetic radiation detection device may be at least partially within the vacuum chamber and may electrically conduct a third electrical signal upon the detection of electromagnetic radiation emitted from the build structure.

[0032] The monitoring controller may be configured for receiving and interpreting, by one or more processors, any one or any combination of the first electrical signal electrically conducted by the feedback signal-capturing surface, the second electrical signal electrically conducted by the thermocouple, and the third electrical signal electrically conducted by the electromagnetic radiation detection device. The first electrical signal electrically conducted by the feedback signal-capturing surface may be received and interpreted by the monitoring controller using a first algorithm to assess the quality of the deposition of the powder bed within the processing area. The first electrical signal electrically conducted by the feedback signal-capturing surface may be received and interpreted by the monitoring controller using a second algorithm to assess the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area. The second electrical signal electrically conducted by the thermocouple may be received and interpreted by the monitoring controller using a third algorithm to assess the temperature of the processing area. The third electrical signal electrically conducted by the electromagnetic radiation detection device may be received and interpreted by the monitoring controller using a fourth algorithm to assess the chemical composition within the processing area.

[0033] The monitoring controller of the electron beam and powder bed processing, monitoring, and feedback device may be configured for transmitting, by one or more processors, one or more instructional electrical signals corresponding to first instructions, second instructions, third instructions, and fourth instructions. The first instructions may be based on the assessed quality of the deposition of the powder bed when the monitoring controller assesses the quality of the deposition of the powder bed within the processing area. The second instructions may be based on the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed when the monitoring controller assesses the quality of the solidified surface of the build structure after sintering or melting a portion of the powder bed. The third instructions may be based on the assessed temperature of the powder bed within the processing area when the monitoring controller assesses the temperature of the processing area. The fourth instructions may be based on the assessed chemical composition within the processing area when the monitoring controller assesses the chemical composition within the processing area.

[0034] The electron beam controller may be configured for receiving and interpreting the instructional electrical signals transmitted by the monitoring controller. The electron beam controller may be further configured for transmitting, based on the received and interpreted instructional electrical signals, any one or any combination of a grid cup electrical signal, a focus apparatus electrical signal, and a scan apparatus electrical signal. The electron beam controller may be configured to transmit, based on the received and interpreted instructional electrical signals, any one or any combination of the grid cup electrical signal to grid cup electronics associated with the grid cup to modify settings on the grid cup, the focus apparatus electrical signal to focus apparatus electronics associated with the focus apparatus to modify settings on the focus apparatus, and the scan apparatus electrical signal to scan apparatus electronics associated with the scan apparatus to modify settings on the scan apparatus. In this manner, respective settings of the grid cup, the focus apparatus, and the scan apparatus may be modified when the corresponding grip cup electrical signal, focus apparatus electrical signal, and scan apparatus electrical signal are received. Such modifications of the settings for the grip cup, the focus apparatus, and the scan apparatus reduce or eliminate determined differences between any one or any combination of the assessed quality of the deposition of the powder bed and a predefined quality of the deposition of the powder bed, the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed and a predefined quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed, the assessed temperature of the powder bed within the processing area and a predefined temperature of the powder bed within the processing area, and the assessed chemical composition within the processing area and a predefined chemical composition within the processing area.

[0035] In some arrangements, the combination of the monitoring controller and the electron beam controller may provide closed-loop feedback control of the electron beam generation apparatus. In some arrangements, the first plate may extend over the processing area in a direction non-orthogonal and nonparallel to the substrate.

[0036] In accordance with another aspect, a standard High Energy Beam Processing (HEBP) apparatus may be adapted by an inclusion of feedback sensors and a monitoring controller to enable in situ monitoring and feedback control of process features during use of the HEBP apparatus in a high energy beam fabrication process by the use of artifacts from the fabrication process. In this manner, feedback data associated with the fabrication process may be collected from any one or any combination of an entire processing area, a user-defined area within the processing area, and a user-defined point within the processing area. The feedback data from such locations may be collected any one or any combination of pre-melting, during melting, post-melting, and at-will. Utilizing the feedback data, various process features may be monitored and assessed. Such process features may be any one or any combination of a quality of a powder, a quality of a powder bed, a temperature stability of a liquid melt zone, topographical characteristics of the liquid melt zone, topographical characteristics of a solidified melted surface, a geometric deviation of the solidified melted surface when compared to a design, an indication of surface temperature of a topmost layer of the processing area, and chemical composition characteristics of the processing area. The indication of surface temperature of the topmost layer of the processing area may but is not limited to including any one or any combination of a temperature of the powder bed, a temperature of the liquid melt zone, and a temperature of the solidified melted surface. The chemical composition characteristics may be of any one or any combination of the powder, the powder bed, the liquid melt zone, and the solidified melted surface. The process artifacts collected may be any one or any combination of secondary electrons (SE), backscattered electrons (BSE), Auger electrons, x-rays, and thermal radiation. The adaptation of the HEBP apparatus may include additional machine elements for the collection and processing of the artifacts. The additional machine elements may include one or more detectors for the capture of all of the artifacts. In some such arrangements, the additional machine elements may include one or more systems to process the captured artifacts, to analyze the captured artifacts for monitoring purposes, and to utilize the captured artifacts in feedback control. [0037] In accordance with another aspect, an HEBP apparatus may have in situ feedback control capability and may include a build platform, a powder deposition system, an electron beam generation system, an electron sensor system that may include one or more electron sensors, a radiation sensor system that may include one or more radiation sensors, a vacuum chamber, a monitoring controller, and a process controller. The build platform may define a processing area. The powder deposition system may be configured to provide successive layers of a uniform powder bed on the build platform. The electron beam generation system may be configured for generating and directing or otherwise providing an electron beam. The electron sensor system may be suitable for providing an output upon incidence of a feedback electron signal on any one of the electron sensors. The radiation sensor system may be suitable for providing an output upon incidence of various types of feedback radiation on any one of the radiation sensors. The vacuum chamber may house the build platform, the powder deposition system, the electron beam generation system, the electron sensor, , and the radiation sensor. The monitoring controller may interpret any one or any combination of the feedback electron signal and the feedback radiation captured by the respective electron and radiation sensors and automatically generate corresponding process control commands. The process controller may be configured for setting process parameters for the HEBP apparatus and for executing the process control commands received from the monitoring controller to control the generation and directing of the electron beam by the electron beam generation system.

[0038] In some arrangements, the electron beam generation system may include a focus apparatus and a scan apparatus. In such arrangements, the focus apparatus may be configured for focusing the electron beam on the successive layers of the powder bed in order to sinter or fully melt the powder of the powder bed within a liquid melt zone or multiple liquid melt zones. In such arrangements, the scan apparatus may be configured for deflecting the electron beam across the processing area. In such arrangements, the vacuum chamber may further house either one or both of the focus apparatus and the scan apparatus. In such arrangements, the control of the generation and directing of the electron beam by the electron beam generation system may include the control of the provision of the electron beam by an electron beam generating apparatus of the electron beam generation system, control of the focus of the electron beam by the focus apparatus, and control of the deflecting of the electron beam by the scan apparatus.

[0039] In some arrangements, any the electron sensor system may include an electrically conductive sensing surface, electrical-noise filter plates, suitable ceramic components, an instrumentation amplifier, and suitable data loggers. The electrically conductive sensing surface may be configured for the capture of feedback electrons. The electrical-noise filter plates may be configured for noise reduction in the feedback electron signal. The suitable ceramic components may be configured for positioning the one or more electron sensors at a suitable location and may be configured for providing the electrical- noise filter plates with electrical insulation from the electrically conductive sensing surface. The instrumentation amplifier may be configured for providing a suitable signal-to-noise ratio in the feedback electron signal. The suitable data loggers may be configured for sampling and performing suitable signal conditioning to the feedback electron signal and process parameters for the scan apparatus process parameters. The electron sensor system may enclose the processing area to maximize the chance for capturing feedback electrons emitted from the processing area at a wide range of angles.

[0040] In some arrangements, the radiation sensor system may include one or more detectors that may have the capability of detecting electromagnetic radiation as individual photons. In some such arrangements, the radiation sensor system may include a system to measure any of energy and wavelength of the detected radiation within the process chamber.

[0041] In some arrangements, the electron sensor system may provide any one or any combination of in situ process monitoring via electronic imaging, in situ process monitoring via time- series signals, closed-loop control of the melting process, quality verification of the melting process, identification of deviations of the melting process from process specifications, and modifications of process parameters. The in situ process monitoring via electronic imaging may be used for quality verification for any one or any combination of a processing area prior to initiation of the high energy beam melting process, a powder bed prior to initiation of the melting process, and fabricated parts after the melting process. The in situ process monitoring via time-series signals may be used for quality verification of a liquid melt zone during the melting process. The closed-loop control of the melting process may be provided by detection of feedback electrons. The quality verification of the melting process may be provided by detection of the feedback electrons. The process parameters may be modified based on the identified process deviations.

[0042] In some arrangements, the radiation sensor system may provide any one or any combination of in situ process monitoring via electronic radiation detection, in situ process monitoring via electromagnetic radiation detection, and closed-loop control of an EBAM process by electromagnetic radiation detection. The in situ process monitoring via electromagnetic radiation detection may be used for chemical composition analysis. Such monitoring via electromagnetic radiation may include any one or any combination of processes to convert data from the radiation detection into process spectra, processes to analyze a composition of a powder bed in situ, and processes to analyze a composition of melted regions of a component in situ. The in situ process monitoring via electromagnetic radiation detection may be used for quality control by composition analysis and may include any one or any combination of processes to compare the process spectra with standard spectra or with other process spectra obtained by in situ measurements, and identification of differences between any one or any combination of the process spectra, layers, and melted and unmelted powder regions of the powder bed. The closed-loop control of the EBAM process may be provided by electromagnetic radiation detection and may include quantification of a chemical composition by radiation detection, identification of differences in composition between spectra obtained via in situ measurements during processing or by comparison with standard spectra, and modification of process parameters based on the identified differences in the composition.

[0043] In some arrangements, the radiation sensor system and the electron sensor system may be used in a combination. Some such combinations of radiation sensor and electron sensor systems may be used for quality assurance in which the combination may be used for indicating any one or any combination of build geometry tolerance and build chemical composition. Some such combinations of the radiation and the electron sensor systems may be used for closed-loop feedback control in which the combination may be used for process control by chemical composition analysis when the combination of the radiation sensor system and the electron sensor system are configured for indicating build chemical composition and for process control by any one or any combination of imaging of powder spreading and imaging of a build when the combination of the radiation sensor system and the electron sensor system are configured for indicating build geometry tolerance. Some such combinations of the radiation and the electron sensor systems may be used as a closed-loop feedback control system for verifying, during a high energy beam melting process, a quality of a liquid melt zone in fabricating a part and for applying corrective actions if necessary by modifying process parameters to maintain a process consistency. Some such combinations of the radiation and the electron sensor systems may be used as a closed-loop feedback control system for verifying, after the high energy beam melting process, the quality, e.g., dimensional tolerances, of the fabricated part and for applying corrective actions if necessary by modifying process parameters to maintain the process consistency.

[0044] In accordance with another aspect, a monitoring and feedback device for use in conjunction with an electron beam generation apparatus in assessing and providing feedback associated with a processing area and a build structure formed from at least a portion of a powder bed on a substrate within the processing area using the electron beam generation apparatus may include an electronic imaging device and a monitoring controller. The electronic imaging device may include a first plate configured to be electrically insulated from the electron beam generation apparatus. The first plate may include a feedback signal-capturing surface that electrically conducts an electronic imaging electrical signal upon impingement of impinging electrons emitted from the build structure. The first plate may extend either one of or both over and around the processing area. The monitoring controller may be configured for receiving and interpreting, by one or more processors, any one or any combination of the electronic imaging electrical signal electrically conducted by the feedback signal-capturing surface to assess the quality of the deposition of the powder bed within the processing area as well as to assess the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area. The monitoring controller further may be configured for transmitting, by one or more processors, one or more instructional electrical signals corresponding to first instructions and second instructions. The first instructions may be based on the assessed quality of the deposition of the powder bed when the monitoring controller assesses the quality of the deposition of the powder bed within the processing area. The second instructions may be based on the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed when the monitoring controller assesses the quality of the solidified surface of the build structure after sintering or melting a portion of the powder bed.

[0045] In some arrangements, the temperature measurement and electronic imaging device may be enclosed in a vacuum chamber or may be configured to be enclosed in a vacuum chamber. [0046] In some arrangements, the electronic imaging device further may include a second plate electrically insulated from the first plate. The second plate may provide an electrical noise-filtering surface confronting the first plate.

[0047] In some arrangements, the first plate may be configured to extend over the processing area in a direction non-orthogonal and nonparallel to the substrate.

[0048] In some arrangements, the electronic imaging device may further include a frame and a base opening. The frame may have a base defining a beam opening for receiving the electron beam upon deflection of the beam. The base opening may be opposite the beam opening and may be configured to overlay the substrate.

[0049] In some arrangements, the electronic imaging device may be a temperature measurement and electronic imaging device that further includes a thermal energy sensing device. The thermal energy sensing device may be electrically connected with the first plate. The thermal energy sensing device may be configured for electrically conducting a thermal energy sensing electrical signal upon receipt of thermal radiation emitted from the build structure. The monitoring controller may be configured for receiving and interpreting, by one or more processors, the thermal energy sensing electrical signal electrically conducted by the thermal energy sensing device to assess the temperature of the processing area. The monitoring controller may be further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to thermal energy instructions based on the assessed temperature of the powder bed within the processing area.

[0050] In some arrangements, the thermal energy sensing device may be a thermocouple. The thermocouple may include a first electrical resistor, a second electrical resistor, a thermocouple amplifier, an instrumentation amplifier, and a suitable data logger. The first electrical resistor may be electrically connected to the first plate. The second electrical resistor electrically may be connected to the second plate. The thermocouple amplifier may be electrically connected to the thermocouple. The thermocouple amplifier may provide a feedback electron signal corresponding to the thermal energy sensing electrical signal. The instrumentation amplifier may be electrically connected to each of the first and the second resistors. The instrumentation amplifier may provide a suitable signal-to-noise ratio to a feedback electron signal corresponding to the electronic imaging electrical signal. The suitable data logger may be configured for sampling and suitably conditioning the electronic imaging and the thermal energy sensing electrical signals.

[0051] In some arrangements, the monitoring and feedback device may further include an electromagnetic radiation detection device configured to be mounted in a housing providing vapor protection and thermal regulation. The electromagnetic radiation detection device may be configured for placement at least partially within a vacuum chamber and for electrically conducting a radiation detection electrical signal upon the detection of electromagnetic radiation emitted from the build structure. The monitoring controller may be configured for receiving and interpreting, by one or more processors, the radiation detection electrical signal electrically conducted by the electromagnetic radiation detection device to assess the chemical composition within the processing area. The monitoring controller may be further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to detected radiation instructions based on the assessed chemical composition within the processing area.

[0052] In some arrangements, the electromagnetic radiation detection device may be an energy dispersive x-ray detection device. In such arrangements, the electromagnetic radiation may be provided by x-rays.

[0053] In some arrangements, the radiation detection electrical signal may be convertible into spectra.

[0054] In some arrangements, the electronic imaging device may be a temperature measurement and electronic imaging device that further includes a thermal energy sensing device. The thermal energy sensing device may be electrically connected with the first plate. The thermal energy sensing device may be configured for electrically conducting a thermal energy sensing electrical signal upon receipt of thermal radiation emitted from the build structure. The monitoring controller may be configured for receiving and interpreting, by one or more processors, the thermal energy sensing electrical signal electrically conducted by the thermal energy sensing device to assess the temperature of the processing area. The monitoring controller may be further configured for transmitting, by one or more processors, an instructional electrical signal corresponding to thermal energy instructions based on the assessed temperature of the powder bed within the processing area. One or some combination of the electronic imaging electrical signal, the thermal energy sensing electrical signal, and the radiation detection electrical signal may indicate a respective one or some combination of a quality of the powder, a quality of the powder bed, a temperature stability of a liquid melt zone in the powder bed, topographical characteristics of the liquid melt zone, topographical characteristics of a solidified melted surface, any geometric deviation of the solidified melted surface when compared to the design, a surface temperature of any one or any combination of a topmost layer of the powder bed, the liquid melt zone, and the solidified melted surface in the processing area, and chemical composition characteristics of any one or any combination of the powder, the powder bed, the liquid melt zone, and the solidified melted surface.

[0055] In some arrangements, the thermal energy sensing device may be attached to the first plate.

[0056] In some arrangements, the impinging electrons may be any one or any combination of backscattered electrons and secondary electrons.

[0057] In some arrangements, any one or any combination of the quality of the deposition of the powder bed within the processing area, the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area, the temperature of the powder bed within the processing area, and the chemical composition within the processing area may be assessed within various locations. Such locations may be any of the whole processing area, a user- defined area within the process-area, and a user-defined point or set of points within the processing area.

[0058] In some arrangements, any one or any combination of the quality of the deposition of the powder bed within the processing area, the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area, the temperature of the powder bed within the processing area, and the chemical composition within the processing area may be assessed at various times. Such periods may be any one or any combination of before sintering or melting a portion of the powder bed, after sintering or melting a portion of the powder bed, and any time during sintering or melting of the powder bed.

[0059] In some arrangements, the second plate may be attached to the first plate by fasteners insulated from the first and the second plates by ceramic components.

[0060] In some arrangements, each of the first and the second plates may have one or more holes that may extend through either or both of the first and the second plates. The respective holes may provide mounting points for attachment of any one or any combination of the thermal energy sensing device, the fasteners attaching the first and the second plates, and other components attachable to the holes.

[0061] In accordance with another aspect, an electron beam and powder bed processing, monitoring, and feedback device for fabricating a build structure in a processing area may include an electron beam generation apparatus, a substrate, a vacuum chamber, an electronic imaging device, a monitoring controller, and an electron beam controller. The electron beam generation apparatus may be configured for generating and deflecting an electron beam over a powder bed within the processing area. The substrate may be configured for supporting a powder bed and the build structure during deflection of the electron beam. The electronic imaging device may be enclosed in the vacuum chamber and may include a first plate electrically insulated from the electron beam generation apparatus. The first plate may include a feedback signal-capturing surface that electrically conducts a first electrical signal upon impingement of impinging electrons emitted from the build structure. The first plate may extend either one or both of over and around the processing area. The monitoring controller may be configured for receiving and interpreting, by one or more processors the first electrical signal, using a first algorithm, to assess the quality of the deposition of the powder bed within the processing area and, using a second algorithm, to assess the quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed within the processing area. The monitoring controller may be further configured for transmitting, by one or more processors, one or more instructional electrical signals corresponding first instructions based on the assessed quality of the deposition of the powder bed when the monitoring controller assesses the quality of the deposition of the powder bed within the processing area and second instructions based on the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed when the monitoring controller assesses the quality of the solidified surface of the build structure after sintering or melting a portion of the powder bed. The electron beam controller may be configured for receiving and interpreting the one or more instructional electrical signals transmitted by the monitoring controller. The electron beam controller further may be configured for transmitting, based on the received and interpreted instructional electrical signals, electron beam controller electrical signals to modify settings of the electron beam generation apparatus. The modified settings of the electron beam generation apparatus may reduce or eliminate determined differences between any one or any combination of (i) the assessed quality of the deposition of the powder bed and a predefined quality of the deposition of the powder bed and (ii) the assessed quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed and a predefined quality of a solidified surface of the build structure after sintering or melting a portion of the powder bed.

[0062] In some arrangements, the first algorithm and the second algorithm may be the same algorithm.

[0063] In some arrangements, the electron beam generation apparatus may include an electron filament, a grid cup, a focus apparatus, and a scan apparatus. The electron beam may be generated from the electron filament. The grid cup may be configured for containing emitted electrons of the electron beam. The focus apparatus may be configured for focusing the electron beam. The scan apparatus may be configured for deflecting the electron beam over the powder bed within a processing area to sinter or melt at least a portion of the powder bed to form at least a portion of a build structure. In such arrangements, the electron beam controller may be configured for transmitting, based on the received and interpreted instructional electrical signals, any one or any combination of a grid cup electrical signal, a focus apparatus electrical signal, and a scan apparatus electrical signal. The grid cup electrical signal may be transmitted to grid cup electronics associated with the grid cup to modify settings on the grid cup. The focus apparatus electrical signal may be transmitted to focus apparatus electronics associated with the focus apparatus to modify settings on the focus apparatus. The scan apparatus electrical signal may be transmitted to scan apparatus electronics associated with the scan apparatus to modify settings on the scan apparatus. In such arrangements, the settings of the grid cup, the focus apparatus, and the scan apparatus may be modified when the corresponding grip cup electrical signal, focus apparatus electrical signal, and scan apparatus electrical signal are received to reduce or eliminate the determined differences.

[0064] In some arrangements, the electronic imaging device may include a second plate electrically insulated from the first plate. In such arrangements, the second plate may provide an electrical noise-filtering surface confronting the first plate.

[0065] In some arrangements, the electronic imaging device may be a temperature measurement and electronic imaging device. The temperature measurement and electronic imaging device further may include a thermocouple electrically connected with the first plate. The thermocouple may electrically conduct a thermal energy sensing electrical signal upon receipt of thermal radiation emitted from the build structure. The monitoring controller may be configured for receiving and interpreting, by one or more processors, using an algorithm different from the first and the second algorithms, the thermal energy sensing electrical signal electrically conducted by the thermocouple to assess the temperature of the processing area. The monitoring controller further may be configured for transmitting, by one or more processors, an instructional electrical signal corresponding to thermal energy instructions based on the assessed temperature of the powder bed within the processing area. The modified settings of the electron beam generation apparatus may reduce or eliminate determined differences between the assessed temperature of the powder bed within the processing area and a predefined temperature of the powder bed within the processing area.

[0066] In some arrangements, the electron beam and powder bed processing, monitoring, and feedback device further may include an electromagnetic radiation detection device. The electromagnetic radiation detection device may be mounted in a housing providing vapor protection and thermal regulation. The electromagnetic radiation detection device may be at least partially within the vacuum chamber and may electrically conduct a radiation detection electrical signal upon the detection of electromagnetic radiation emitted from the build structure. The monitoring controller may be configured for receiving and interpreting, by one or more processors, using an algorithm different from the first and the second algorithms, the radiation detection electrical signal electrically conducted by the electromagnetic radiation detection device to assess the chemical composition within the processing area. The monitoring controller further may be configured for transmitting, by one or more processors, an instructional electrical signal corresponding to detected radiation instructions based on the assessed chemical composition within the processing area. The modified settings of the electron beam generation apparatus may reduce or eliminate determined differences between the assessed chemical composition within the processing area and a predefined chemical composition within the processing area.

[0067] In some arrangements, the combination of the monitoring controller and the electron beam controller may provide closed-loop feedback control of the electron beam generation apparatus.

[0068] In some arrangements, the first plate may extend over the processing area in a direction non-orthogonal and nonparallel to the substrate.

[0069] In accordance with another aspect, an HEBP apparatus with in situ feedback control capability may include a build platform, a powder deposition system, an electron beam generation system, an electron sensor system, a radiation sensor system, a vacuum chamber, a monitoring controller, and a process controller. The build platform may define a processing area. The powder deposition system may be configured for providing successive layers of a uniform powder bed on the build- platform. The electron beam generation system may be configured for generating and directing an electron beam. The electron sensor system may include an electron sensor. The electron sensor system may be suitable for providing an output upon incidence of a feedback electron signal on the electron sensor. The radiation sensor system may include a radiation sensor. The radiation sensor system may be suitable for providing an output upon incidence of feedback radiation on the radiation sensor. The vacuum chamber may house the build platform, the powder deposition system, the electron beam generation system, the electron sensor, and the radiation sensor. The monitoring controller may interpret either one or both of the feedback electron signal and the feedback radiation captured by the respective electron and radiation sensors. Upon such interpretation, the monitoring controller may automatically generate corresponding process control commands. The process controller may set process parameters for the HEBP apparatus and execute the process control commands received from the monitoring controller to control the generation and directing of the electron beam by the electron beam generation system. [0070] In some arrangements, the electron sensor system may include an electrically conductive sensing surface, electrical-noise filter plates, suitable ceramic components, an instrumentation amplifier, and suitable data loggers. The electrically conductive sensing surface may be configured for the capture of feedback electrons. The electrical-noise filter plates may be configured for noise reduction in the feedback electron signal. The suitable ceramic components may be configured for positioning the electron sensor at a suitable location and for providing the electrical-noise filter plates with electrical insulation from the electrically conductive sensing surface. The instrumentation amplifier may be configured for providing a suitable signal-to-noise ratio in the feedback electron signal. The suitable data loggers may be configured to sample and perform suitable signal conditioning to the feedback electron signal and the scan apparatus process parameters. The electron sensor system may enclose the processing area to maximize the chance for capturing feedback electrons emitted from the processing area at a wide range of angles.

[0071] In some arrangements, the radiation sensor system may include one or more detectors and a measurement system. The detectors may be configured for detecting electromagnetic radiation as individual photons. The measurement system may be configured for measuring either or both of an energy and a wavelength of the detected radiation within the process chamber.

BRIEF DESCRIPTION OF THE DRAWINGS

[0072] A more complete appreciation of the subject matter of the present invention and various advantages thereof may be realized by reference to the following detailed description, in which reference is made to the following accompanying drawings, in which:

[0073] FIG. 1 is a schematic illustration of an Electron Beam Additive Manufacturing (EBAM) apparatus;

[0074] FIG.2 is a schematic illustration of a primary electron beam/processing area interaction;

[0075] FIG. 3 is a schematic illustration of a feedback electron and thermal radiation collection system;

[0076] FIG. 4 is a high-level process flow diagram of an in situ EBAM monitoring and control process; and

[0077] FIG. 5A is a schematic illustration of a feedback radiation collection system;

[0078] FIGS. 5B and 5C are perspective and cross-sectional views an X-ray detection device of the feedback radiation collection system shown in FIG. 5A;

[0079] FIG. 6 is a plot of a feedback electron signal received from a user-defined region of interest within the EBAM apparatus as a function of time during an example of the EBAM monitoring and control process shown in FIG. 4;

[0080] FIG.7 is a plot of temperature measured within the EBAM apparatus as a function of time during an example of the EBAM monitoring and control process shown in FIG. 4.

[0081] FIGS. 8A-8F are feedback digital electronic images showing user-defined regions of interest with different spatial magnifications during examples of the EBAM monitoring and control process shown in FIG. 4; and [0082] FIGS. 9A-9F are feedback digital electronic images showing part-geometry deviation following examples of the EBAM monitoring and control process shown in FIG. 4.

DETAILED DESCRIPTION

[0083] Referring to the drawings, as shown in FIG.l, additive manufacturing device 1 is configured for use as a host machine in an Electron Beam Additive Manufacturing (EBAM) process which includes a Powder Bed Fusion (PBF) set-up and employs electromagnetic lenses as part of its scan apparatus. The EBAM apparatus may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. An example of an EBAM process which includes a PBF set-up and employs electromagnetic lenses as part of its scan apparatus to which the present invention could be applied is described in European Publication No. 2918396 Al, the disclosure of which is hereby incorporated by reference herein. As will be understood by those of ordinary skill in the art, an EBAM process with PBF set-up allows a complex objects, such as medical components with porous structures, to be formed in a progressive or layered manner using an electron beam.

[0084] Host machine 1 includes electron gun 10 contained in vacuum chamber 40 which maintains a substantially vacuum environment. In the example shown, gun 10 includes electron filament 11, grid cup 12, focus apparatus 13 and scan apparatus 14. While part of gun 10 may be positioned outside chamber 40 for access and electrical connectivity, as in the example shown, gun 10 is configured for generating and transmitting primary electron beam 15 within the vacuum environment, as well as for directing beam 15 towards powder bed 53. As further shown in FIG.l, powder bed 53 and fused layers 52 on substrate 51, which is positioned on build platform 50. Build platform 50 moves downward upon the completion of one layer to allow a successive power bed layer to be deposited onto the newly completed layer by powder deposition system 30.

[0085] Primary electron beam 15 is generated from electron filament 11 by means such as thermionic or field emission and accelerated toward powder bed 53 by an accelerated voltage, as will be understood by those with ordinary skill in the art. The kinetic energy of primary electron beam 15 is converted into heat upon interaction between beam 15 and powder bed 53. The heat generated by beam 15 is used to melt selective regions within EBAM processing area A. The amount of electrons emitted from electron filament 11 is controlled by grid cup 12. After passing through grid cup 12, the electrons then successively pass through focus apparatus 13 to form a focused primary beam 15 and are deflected via an electromagnetic lens to various locations on the powder bed 53 by scan apparatus 14. Host machine process controller 20, which controls the powder deposition and scanning process of host machine 1, sets the energy of the emitted electrons from electron filament 11 and enables grid cup 12 to contain the emitted electrons. In addition, host machine process controller 20 controls the operation of both focus apparatus 13 and scan apparatus 14.

[0086] A three-dimensional (3D) object is formed by progressively forming and cooling a liquid melt zone 54 into fused layers 52 on substrate 51. Liquid melt pool 54 is formed by beam-melting of electrically conductive powder 33, e.g., suitable powder such as but not limited to titanium or titanium alloys. Powder deposition system 30 includes powder container 32 which stores powder 33 and powder feeder 31 which uniformly deposits the powder, e.g., with a rake or a roller or other suitable powder delivery mechanisms having a controlled speed, on top of substrate 51 for the first layer 52 and then onto previous layers 52 for successive powder depositions. In this example, powder feeder 31 obtains powder 33 from powder containers 32 on opposite sides of substrate 51. While not shown in FIG.1 for simplicity, vacuum chamber 40 may be evacuated using a vacuum subsystem, e.g., turbo-molecular pump, ducts, valves etc., as understood by those skilled in the art. Sintering or full melting of electronically conductive powder 33 may be carried out based on a set of design data, e.g., computer-aided design (CAD) data or other 3D design files, imported to host machine process controller 20. In some arrangements, the 3D design data is divided into a set of successive 2D cross sections, i.e., slices, by host machine process controller 20 to create design data usable for the fabrication process. According to the information contained in the design data useable for the fabrication process, host machine process controller 20 commands primary electron beam 15 to sinter or fully melt selective regions on powder bed 53 by setting suitable process parameters on electron gun 10.

[0087] Still referring to FIG.l, to achieve an in situ process monitoring and control system for the EBAM process, host machine process controller 20 may be electrically connected to one or multiple sensors 70, as in the example shown, to detect and measure one or more specific process features of interest of powder bed 53 and liquid melt zone 54. The information received by sensors 70 corresponding to the process features of interest is relayed to monitoring controller 72, which is connected to host machine process controller 20 as a set of sensor data 71. Monitoring controller 72 receives sensor data 71 and performs one or more algorithms, represented collectively as algorithm 100 in FIGS. 1 and 4, to interpret the sensor data relative to user-defined parameters. Such parameters may be or may correspond to any of a quality of deposited powder 33, a quality of powder bed 53, a temperature stability of liquid melt zone 54, topographical characteristics of liquid melt zone 54, topographical characteristics of a solidified melted surface 65 (see FIG. 2), dimensional parameters for assessing any geometric deviations of solidified melted surface 65, a temperature of powder bed 53, a temperature of liquid melt zone 54, a temperature of solidified melted surface 65, a chemical composition of powder 33, a chemical composition of powder bed 53, a chemical composition of liquid melt zone 54, and a chemical composition of solidified melted surface 65. Monitoring controller 72 transmits an electrical signal to host machine process controller 20 to modify final process parameters 21-24 for the EBAM process as needed. For example, monitoring controller 72 may transmit an electrical signal host machine process controller 20 to either of or both of alter the powder deposition rate of powder feeder 31 and electron beam properties by modifying the settings of electron gun 10.

[0088] Monitoring controller 72 may be configured to operate as an integrating system which consists of components responsible for process data collection and process data analysis. For process data collection, high-speed data acquisition boards may be used for real-time acquisition of large volumes of process data associated with the high-speed time-series feedback signal and feedback radiation as well as the digital electronic images generated from electronic imaging. For process data analysis, a desktop computer may be used to operate tailored software for interpreting the feedback signal and feedback radiation, interpreting the digital electronic image generation, and also sending corresponding process control commands to host machine process controller 20 of EBAM host machine 1. Monitoring controller 72 may include sufficient read only memory (ROM), random access memory (RAM), electronically-erasable programmable read only memory (EEPROM), etc., of a size and speed sufficient for executing algorithm 100 as set forth below. Monitoring controller 72 may also be configured or equipped with other required computer hardware, such as a high-speed clock, requisite Analogue-to- Digital (A/D) and Digital-to-Analogue (D/A) circuitries, any necessary input or output circuitries and devices (I/O), as well as appropriate electrical signal conditioning and/or buffer circuitry. Any algorithms resident in EBAM host machine 1 or accessible thereby, including algorithm 100, as described below, may be stored in memory and automatically executed to provide the respective functionality.

[0089] In the example shown in FIG. 1, algorithm 100, which may be embodied as a single algorithm or multiple algorithms, is automatically executed by monitoring controller 72 to interpret sensor data 71 and by host machine process controller 20 on host machine 1 to modify process parameters during the EBAM process. Interpretation of sensor data 71 by monitoring controller 72 identifies an appropriate action to be taken and determines any input parameters, transmitted as the set of input parameters 73 from monitoring controller 72 to host machine process controller 20, requiring modification in order to maintain consistency, and in some arrangements accuracy within predetermined limits within the EBAM process. A closed-loop process feedback control is formed between monitoring controller 72, working with host machine process controller 20, and EBAM host machine system components, e.g., gun 10, powder deposition system 30, etc., to allow for a real-time modification to the final control parameters 21-24.

[0090] The process features of interest to be monitored across the processing area, as indicated by arrow A in FIG. 1, during the EBAM process are linked to various sensors 70. In one embodiment, multiple sensors 70 may be integrated into EBAM host machine 1 and operated independently or in combination with each other depending on the particular application. Sensors 70 may include, by way of example, an electronic imaging device equipped with an electronically conductive surface or surfaces for capturing the feedback electron signal, which may be but is not limited to being provided by SE and BSE, and feedback thermal radiation emanating from an in-process part being fabricated and convert them into digital electronic images from BSE and SE for in situ process monitoring purposes. Sensors 70 may also include a feedback radiation device, which may be but is not limited to being configured for receiving and detecting X-rays, to enable process control by chemical composition analysis.

[0091] As further shown in FIG. 1 , in some arrangements, at least one of sensors 70 may be mounted inside vacuum chamber 40. As shown in FIG. 3, in some such arrangements, sensors 70 may be a temperature measurement and electronic imaging device 200 to monitor processing area A. In the example of FIG. 3, device 200 is configured and installed in EBAM host machine 1 to be electrically insulated from the rest of the host machine by the use of suitable ceramic components 203 due to their suitable electrical and thermal insulation ability. The temperature measurement and electronic imaging device may take many possible forms of design. In the example shown in FIG.3, temperature measurement and electronic imaging device 200 captures the feedback thermal radiation signal from the topmost surface of processing area A via a suitable type of thermocouple 207 attached to feedback signal-capturing surface 201 of device 200. The EBAM process is carried out in a vacuum environment within vacuum chamber 40 of host machine 1. The heat generated from the interaction between primary electron beam 15 and processing area A is transferred to device 200 through thermal radiation and convection. As a result, measurement of the heat transferred to device 200 in the form of temperature gives an indication of temperature of the topmost surface of processing area A. The feedback thermal signal captured by thermocouple 207, in the form of electrical voltage 303, may be transmitted from the inside of vacuum chamber 40 to a location external to the vacuum through the use of vacuum feed- through, as will be understood by those of ordinary skill in the art. There may be many possible embodiments for electrical signal conditioning. Referring to FIG. 3, in one of the possible embodiments, measured thermocouple voltage 303 is amplified by an appropriate thermocouple amplifier 208. Thermocouple amplifier output voltage 307 may be sampled by data logger 206. Data logger 206 output voltage, in the form of sensor data 71, can then be processed by monitoring controller 72 for in situ temperature analysis of the topmost surface of processing area A.

[0092] Referring now to FIGS. 2 and 3, device 200 in the example shown also captures the feedback electron signal generated from electron-specimen interaction and provided by feedback electrons, such as but not limited to secondary electrons (SE) and backscattered electrons (BSE), which are received via frame 200A and feedback signal-capturing surface 201 of device 200 and attached to the frame. Frame 200A and feedback signal-capturing surface 201 are made of an electrically conductive material, which preferably may be stainless steel, mild steel, silver, copper, titanium, nickel, or a combination thereof. In other arrangements, the signal-capturing surface could be made of other materials. Surface 201, as in the example shown in FIG. 3, is electrically connected to frame 200A and may be configured and positioned within EBAM host machine 1 to enclose the entirety of processing area A. In this manner, the chances of capturing the feedback signal emitted from either of an in-process part being fabricated and the processing area surface, even when the signal travels at various angles with respect to substrate 51, is enhanced. The captured feedback electron signal, in the form of electrical current 301, may be transmitted from the inside of vacuum chamber 40 to a location external to the vacuum through the use of vacuum feed-through, as will be understood by those of ordinary skill in the art. There may be many possible embodiments for electrical signal conditioning. Referring to FIG. 3, in one possible embodiment, signal current 301 may be converted to a corresponding electrical voltage by passing the current through electrical resistor 204B having a predefined resistance. EBAM host machine 1, with reference to the example shown in FIG.l, creates a certain level of electrical noise throughout the EBAM process. In some embodiments, noise-filtering plates, such as noise-filtering plates 202, may also be installed to help provide a suitable signal-to-noise Ratio (SNR) for further processing. Still referring to FIG. 3, as in the example shown, noise-filtering plates 202 may be mounted onto corresponding feedback signal-capturing surfaces 201 with the use of suitable ceramic components 203 for electrical insulation. Similar to the treatment of signal current 301, noise current 302 may be converted to a corresponding electrical voltage by passing the current through electrical resistor 204A having a predefined resistance. Any electrical noise present during the EBAM process may be experienced by both the feedback signal- capturing surfaces 201 and the corresponding noise-filtering plates 202. Therefore, both signal voltage 305 and noise voltage 304 may be fed to instrumentation amplifier 205 in order to amplify the difference between the two voltages to a suitable level and generate instrumentation amplifier output voltage 306, which is an amplified feedback signal with the electrical noise removed, i.e., feedback signal with a suitable SNR.

[0093] Referring to FIGS. 1-3, in electronic imaging of either of an in-process part being fabricated and the processing area surface, electron beam scan apparatus control parameter 23, in the form of electrical voltage, generated by host machine process controller 20 is also required for digital electronic image generation, as understood by those of ordinary skill in the art. Instrumentation amplifier output voltage 306, carrying topographical details of the area which primary electron beam 15 encountered, is used to define pixel intensities in a digital electronic image while scan apparatus control parameter 23 is used to allocate the pixel intensities to the corresponding pixels in the image.

[0094] As depicted schematically in FIG. 2, when primary electron beam 15 interacts with regions in processing area A with different topography, different strengths of feedback electron signals and feedback radiation signals are generated. When primary electron beam 15 moves from location A to location B as demonstrated in FIG. 2, the beam moves from interacting with liquid melt zone 54 and/or solidified melted surface 65 to powder bed 53. Due to differences in topography between the two regions, feedback electron signal with strength A (SE 64A and BSE 63 A), feedback thermal radiation with strength A (62 A) and feedback X-rays with strength A (61 A) are generated from location A while feedback electron signal with strength B (SE 64B and BSE 63B), feedback thermal radiation with strength B (62B) and feedback X-rays with strength B (6 IB) are generated from location B. The strength difference between the feedback electron signals leads to different signal levels of the output voltage 306 and thus results in differences in pixel intensity in the digital electronic image. With regard to data acquisition, data logger 206 with a suitable data acquisition speed may be used to sample both instrumentation amplifier output voltage 306 and scan apparatus control parameter 23 and perform analog-to-digital conversion (ADC) on the signals. The data logger output voltage, in the form of sensor data 71, may then be processed by monitoring controller 72 for digital electronic image generation. The topographical details in a digital electronic image are minimally affected by electrical noise coming from the Heat Affected Zone (HAZ) when compared to optical images generated from radiation with wavelength either in the visible or infrared region as their source of illumination. As a result, the digital electronic image generated gives higher spatial resolution around the EBM-manufactured part boundaries. Moreover, electronic imaging provides flexibility in scanning different regions of interest and allowing various image magnifications to be defined without compromising the spatial resolution of the digital electronic image.

[0095] Referring to both FIGS. 1 and 4, the high level process flow diagram demonstrates an in situ EBAM process monitoring and feedback control process 400 using electronic imaging for processing area quality verification and part-geometry analysis. In particular, FIG. 4 depicts an EBAM process on one particular layer. An EBAM host machine which includes a PBF set-up and employs electromagnetic lenses as part of its scan apparatus, such as EBAM host machine 1, is considered relative to the discussion of the process shown in FIG. 4. During the EBAM process, in step 400A, EBAM host machine 1 prepares the powder bed layer for the EBAM process. In subsequent step 401, pre-melt monitoring via electronic imaging of processing area A is optionally carried out to verify the quality of the powder deposition based on the feedback electron signal received by feedback signal-capturing surface 201. During this step, pre-melt electronic imaging may be used to quantify processing area abnormality, such as detached metallization formed from vaporized metal and non-uniformity of the deposited powder bed.

[0096] Referring to FIGS. 1 and 4, pre-melt monitoring is then followed by step 402, in which the electron beam is sent to carry out melting across selective areas according to the design data. In step 403 following step 402, post-melt monitoring via electronic imaging of processing area A is optionally carried out to verify fabricated part geometry relative to pre-defined part geometry (which may include dimensional tolerances) again based on the feedback electron signal received by feedback signal- capturing surface 201. During this step, post-melt electronic imaging may be used to assess the quality of the solidified melted surface 65 by quantifying related topographical features, such as porosity within solidified melted surfaces 65 and deviation in part geometry and the quality of the powder deposition.

[0097] During electronic imaging, the electron beam is sent to raster-scan the user-defined region of interest across processing area A in order to generate a digital electronic image or multiple digital electronic images, as known to those skilled in the art. In the example shown in FIGS. 1 and 4, digital electronic images may be generated at high rate due to the short reaction time of the electron beam scan apparatus when the beam is raster-scanning the regions of interest. As a result, a real-time, in situ process monitoring and feedback control system can be achieved on the EBAM host machine. Still referring to FIG. 1 and 5, monitoring controller 72 executes algorithm 100 to carry out either of pre-melt and post-melt monitoring. Once the digital electronic images are generated, monitoring controller 72 also analyses and interprets the digital electronic images to determine whether the quality of processing area A meets preset specifications. Corrective actions may be carried out if the process specifications are not met. The final process parameters 21-24, which are responsible for both the electron beam properties and the action of powder deposition, may be modified by both monitoring controller 72 and host machine process controller 20 in order to maintain the EBAM process consistency.

[0098] Referring again to FIG. 3, apart from being used for electronic imaging, in another preferred embodiment, electronic imaging device 200 may be used as an integrated sensor to provide a time-series feedback signal for real-time in situ EBAM process monitoring. During melting of deposited powder, upon interactions between a primary beam, such as beam 15, and the powder bed, a feedback signal, which may be but is not limited to being provided by SE and BSE, is generated as discussed previously herein and may be captured by any of the feedback signal-capturing surfaces 201. In this preferred arrangement, the feedback signal is then converted to electrical voltage and passed through an instrumentation amplifier 205 for electrical signal conditioning. This analog signal may be sampled and digitized by data logger 206 as discussed previously herein regarding the generation of digital electronic images. As well as being used to form digital electronic images, in this instance, the data logger output voltage, in the form of sensor data 71 which is a time-series signal, may also be used by monitoring controller 72 directly to monitor the EBAM melting process. The magnitude of the feedback signal is influenced by the primary beam properties set to carry out the melting process, such as the beam current and the beam focus. Thus, by monitoring and analyzing the feedback signal in the form of a time-series signal obtained from the EBAM melting process, monitoring controller 72 may be used to assess the quality of the liquid melt zone. Corrective actions may be carried out if the process specifications are not met. The final process parameters 21-24, which are responsible for both the electron beam properties and the action of powder deposition, may be modified by both monitoring controller 72 and host machine process controller 20 to maintain the EBAM process consistency.

[0099] Referring to FIGS. 1, 2 and 5A-5C, as primary electron beam 15 irradiates powder bed

53, electromagnetic radiation is emitted as a consequence of electron-matter interactions. Various design configurations for detecting the feedback radiation are possible. One of sensors 70 may be an energy dispersive X-ray detection device 15, as shown in FIG. 5A, to enable chemical composition quantification during the EBAM process as with energy dispersive X-ray spectroscopy (EDS) in Scanning Electron Microscopes (SEM). The region of interest is scanned by the electron beam in a raster pattern. As the beam interacts with powder bed 53, characteristic X-rays are released. The detection device then converts the energies of X-rays to electrical signals which, after processing, are then plotted as energy against count. From comparison with a database or historical data, chemicals are thus identified and quantified. Referring to FIGS. 5B and 5C, X-ray detection device 16 may be mounted in housing 27 providing vapor protection and thermal regulation and may include X-ray sensor 29 for capturing X-rays as well as vacuum feedthrough 28 for the X-ray sensor and a cable attached to the sensor. As shown, X- ray detection device 16 may be attached to device 200 by way of housing 27. X-ray detection device 16 may be mounted within vacuum chamber 40 in FIG. 1 or partially within it, with direct view of processing area A. In a preferred embodiment, X-ray detection device 16 may have the capability to detect the energy of the electromagnetic radiation exiting powder bed 53, for example by means of a detector and amplifier system. A signal corresponding to the captured electromagnetic radiation may be transmitted in the form of electrical current 308 from the inside of vacuum chamber 40 to a location external to the vacuum through the use of vacuum feed-through 28, as will be understood by those of ordinary skill in the art. There may be many possible embodiments for electrical signal conditioning. Similar to the treatment of signal current 301, current 308 may be converted to a corresponding electrical voltage by passing the current through electrical resistor 209 having a predefined resistance. Signal voltage 309 may be fed to instrumentation amplifier 210 in order to amplify the voltage to a suitable level and generate instrumentation amplifier output voltage 310. Data logger 211 with a suitable data acquisition speed may be used to sample output voltage 310 and perform analog-to-digital conversion (ADC) on the signal. In this manner, the captured feedback radiation then may be transmitted from data logger 211 as sensor data 74 to monitoring controller 72 and processed using algorithm 100. The collected data may be evaluated, for example by constructing spectra, and energy peaks observed may be used to identify composition in the scanned region. By comparing spectra between the melted and powder regions, between layers or with a specified composition, deviations may be identified and used to make process alterations. Data from algorithm 100 is transmitted as a set of input parameters 73 to host machine process controller 20. Final process parameters 21-24, which are responsible for both the electron beam properties and the action of powder deposition, may be modified by both monitoring controller 72 and host machine process controller 20 to maintain the EBAM process consistency.

[0100] APPLICATION EXAMPLES

[0101] Example 1 : Use of Feedback Electron Signal for Observation and Study of the Electron

Beam Additive Manufacturing Process

[0102] An in situ monitoring system, such as device 200 configured to operate EBAM process monitoring and feedback control process 400 on host machine 1, may be used to observe and study the interactions between the primary electron beam and processing area, melt zone, powder bed and the solidified melted surface for quality verification. A few experiments were carried out using such a system, in which the primary electron beam was sent to raster-scan across a 200mm x 200mm x 2mm (Width (W) x Depth (D) x Height (H)) stainless steel plate with a 200mm x 50mm x 2mm (W x D x H) aluminum plate placed on top. A feedback electron sensor in the monitoring system captured the feedback electrons from the processing area during the beam scan while a data logger sampled the obtained signal and relayed the data to a monitoring controller. FIG. 6 is a plot of typical feedback electron signals received from a user-defined region of interest within the EBAM host machine as a function of time. Experimental results showed that interactions between the primary electron beam and the different metallic plates generated different feedback electron yield. Region A in the plot shows the signal level obtained when the primary beam scanned across the aluminum plate while region B shows that when the primary beam scanned across the stainless steel plate. The difference in signal level for the two regions in the plot indicates that the monitoring system is capable of differentiating various metallic materials within the processing area. Results have shown that the in situ monitoring system is capable of monitoring the EBAM process by continuously comparing the feedback electron signal obtained, with a suitable set of reference feedback electron data, in a layer upon layer fashion.

[0103] Example 2: Use of Feedback Thermal Radiation Signal for Observation and Study of the

Electron Beam Additive Manufacturing Process

[0104] The in situ monitoring system may be used to observe and study the temperature of the processing area, melt zone, powder bed and the solidified melted surface for quality verification. During an experimental build, an EBAM host machine pre-heated its processing area before fabricating a predefined design in a layer upon layer fashion. A feedback thermal radiation sensor in the monitoring system captured the feedback thermal radiation irradiated from the processing area throughout the build while a data logger sampled the obtained signal and relayed the data to a monitoring controller. FIG. 7 is a plot of feedback thermal radiation signals received from a user-defined region of interest within the EBAM host machine as a function of time. The plot shows that the feedback thermal radiation captured by the sensor gives a pattern which reflects the host machine building steps. Point C shows the temperature measured by the sensor when pre-heating started, point D shows such temperature when preheating finished, and point E shows such temperature when the build finished. The pattern in the plot implies that the monitoring system can use the temperature data obtained from its sensor as an indication to indirectly estimate the processing area temperature throughout the build. Results have shown that such an in situ monitoring system can monitor the EBAM process by continuously comparing the feedback thermal radiation signal obtained with a suitable set of reference feedback thermal radiation data, in a layer upon layer fashion.

[0105] Example 3: Use of Electronic Imaging for Observation and Study of the Electron Beam

Additive Manufacturing Process

[0106] The in situ monitoring system can be used to observe and study the EBAM process by carrying out electronic imaging. A feedback electron sensor, such as device 200, in the monitoring system captures the feedback electrons from the processing area during electronic imaging while a data logger samples the obtained signal and relays the data to a monitoring controller. The monitoring controller runs algorithms to generate digital electronic images from the data relayed from the data logger. The digital electronic images generated allow quality evaluation of the deposition of powder in the powder bed, anomaly detection in the processing area, and geometry deviation quantification of the solidified melted surface. Various sets of experiments were carried out to verify the electronic imaging capability of the monitoring system.

[0107] One of the experiments concerned monitoring area and spatial magnification in electronic imaging. A design was first fabricated by an EBAM host machine. The monitoring system then carried out electronic imaging with various user defined settings. FIGS. 8A-8F show the experimental setup and results. FIG. 8A shows the processing area of the EBAM host machine containing a fabricated part. FIGS. 8B-8F show 8-bit grey scale digital electronic images generated from the monitoring system during the experiment. FIG. 8B shows an image having a size of 1800 pixel x 1800 pixel, covering a monitoring area of 180mm x 180mm in the processing area, and having a spatial magnification of 2.7. FIGS. 8C and 8D show two images having a size of 1800 pixel x 1800 pixel, covering a monitoring area of 60mm x 60mm in the processing area, and having a spatial magnification of 8.0. FIG. 8E show an image having a size of 1800 pixel x 1800 pixel, covering a monitoring area of 10mm x 10mm in the processing area and having a spatial magnification of 48.0. FIG. 8F shows an image having a size of 1800 pixel x 1800 pixel, covering a monitoring area of 5mm x 5mm in the processing area, and having a spatial magnification of 95.0. FIGS. 8B-8F demonstrate that the monitoring system is capable of generating digital electronic images with various spatial magnifications. In addition, FIGS. 8C and 8D show that the system is capable of carrying out electronic imaging across various locations of interest in the processing area. Moreover, FIGS. 8B-8D show that there is a difference in pixel intensity between the solidified melted surface, region F, and the powder bed, region G, as shown. The difference in pixel intensity gave rise to an image contrast, which thus distinguished the two regions. Results have shown that the in situ monitoring system may be used to carry out electronic imaging with user-defined settings in spatial magnification and monitoring area. In addition, the success in obtaining a contrast between the solidified melted surface and the powder bed shows that the monitoring controller may be used to distinguish the two regions for monitoring purposes.

[0108] In another arrangement, the quality of the deposition of powder and anomalies in the processing area may be detected. In one example, a design may be fabricated by the EBAM host machine. During the build cycles, the monitoring system may carry out electronic imaging to monitor the powder deposition steps of each layer throughout the whole build. 8-bit grey scale Digital electronic images, which may be of an 8-bit grey scale, may be generated from the monitoring system. In one example, such images may all have a size of 1800 pixel x 1800 pixel, cover a monitoring area of 180mm x 180mm in the processing area, and have a spatial magnification of 2.7. The monitoring system may be capable of assessing the quality of powder deposition. Further, the monitoring system may be capable of detecting detached metallization. In some arrangements, the in situ monitoring system may be configured to monitor the EBAM process by continuously comparing the digital electronic images generated by the system with a suitable set of reference images in a layer upon layer fashion.

[0109] Another experiment concerned analysis of part-geometry post-EBAM process while using the in situ monitoring system. A design was first fabricated by the EBAM host machine. The monitoring system then carried out electronic imaging across a user-defined processing and monitoring area. FIGS. 9A-9F shows the experimental setup and results. FIG. 9A shows the design to be fabricated by the EBAM host machine. FIG. 9B is a binary digital virtual image generated from a cross section which was sliced out from the design. This virtual image has a size of 1800 pixel x 1800 pixel and covers a 60mm x 60mm area in the virtual space. FIG. 9C is a digital electronic image generated from the processing area by the monitoring system. This image has a size of 1800 pixel x 1800 pixel, covers the same 60mm x 60mm area in the processing area as the virtual image in FIG. 9B. FIG. 9D is a binary digital image obtained from carrying out noise reduction, histogram equalization, and thresholding on FIG. 9C. FIG. 9E is the result of an image analysis. FIG. 9B was overlaid on top of FIG. 9D and the differences between the two images are shown in white in FIG. 9E. FIG. 9F is the output of a local thickness analysis using FIG. 9E. The different colors in the image represent different levels of deviation in different areas when comparing the two images in FIGS. 9B and 9D. FIGS. 9A-9F show that the in situ monitoring system can carry out part geometry analysis (post-EBAM process) to evaluate the geometry deviation in the part fabricated by the EBAM process. Results have shown that the in situ monitoring system can monitor the EBAM process by continuously comparing the digital electronic images generated with a suitable set of reference images in a layer upon layer fashion.

[0110] In another arrangement, part geometry may be analyszed during an EBAM process while using the in situ monitoring system. The monitoring system may carry out electronic imaging across a user-defined monitoring area while a design is being fabricated by the EBAM host machine. In one example, a design may be fabricated by the EBAM host machine. A binary digital virtual image may be generated from a cross section sliced out from a design layer while the layer is being fabricated. A virtual image, which in this example may have a size of 1800 pixel x 1800 pixel and may cover a 60mm x 60mm area in the virtual space, may be formed. A digital electronic image of the processing area may be generated by the monitoring system once the fabrication of the layer is completed. In this example, the image may have a size of 1800 pixel x 1800 pixel and may cover the same 60mm x 60mm area in the processing area as the virtual image. A binary digital image may be obtained from carrying out noise reduction, histogram equalization, and thresholding. Differences between the virtual and digital electronic images may be assessed using the binary digital image. For example, using a local thickness analysis, different colors in the binary digital image represent different levels of deviation in different areas when comparing the virtual and the digital electronic images. The in situ monitoring system may monitor the EBAM process by continuously comparing the digital electronic images generated with a suitable set of reference images in a layer upon layer fashion. In this manner, the in situ monitoring system may carry out part geometry analysis (during an EBAM process) to evaluate the geometry deviation in the part fabricated by the EBAM process.

[0111] Example 4: Use of Feedback Radiation Signal for Observation and Study of the Electron

Beam Additive Manufacturing Process

[0112] The in situ monitoring system can be used to observe and study the X-ray radiation emissions of the processing area, melt zone, powder bed, and the solidified melted surface for quality verification. In one example, the primary electron beam may be deflected to raster-scan across a 200mm x 200mm x 2mm (W x D x H) stainless steel plate with a 200mm x 50mm x 2mm (W x D x H) aluminum plate placed on top. A feedback radiation sensor in the monitoring system may be configured to capture the feedback radiation from the processing area during the beam scan while a data logger samples the obtained signal and relays the data to the monitoring controller. Feedback radiation signals received from a user-defined region of interest within the EBAM host machine may be plotted as a function of time. Interactions between the primary electron beam and different materials generate different feedback radiation yields when so plotted. In this manner, differences in signal levels for various regions in plots can be used to identify differences between materials and to evaluate and verify the chemical composition of materials present in the processing area of the EBAM host machine. The in situ monitoring system can monitor the EBAM process by continuously comparing the feedback radiation signal obtained with a suitable set of reference feedback radiation data, in a layer upon layer fashion.

[0113] It is to be understood that the disclosure set forth herein includes any possible combinations of the particular features set forth above, whether specifically disclosed herein or not. For example, where a particular feature is disclosed in the context of a particular aspect, arrangement, configuration, or embodiment, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects, arrangements, configurations, and embodiments of the invention, and in the invention generally.

[0114] Furthermore, although the invention disclosed herein has been described with reference to particular features, it is to be understood that these features are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications, including changes in the sizes of the various features described herein, may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention. In this regard, the present invention encompasses numerous additional features in addition to those specific features set forth in the claims below. Moreover, the foregoing disclosure should be taken by way of illustration rather than by way of limitation as the present invention is defined by the claims set forth below: