Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE AND METHOD FOR CORRECTING AT LEAST ONE TRANSMISSION PARAMETER
Document Type and Number:
WIPO Patent Application WO/2019/068460
Kind Code:
A1
Abstract:
The invention relates to a method for correcting at least one transmission parameter for data transmission between a sensor unit (10) and a control unit, wherein a sensor timing signal (STS) is generated by a sensor oscillator (14) with a predetermined period, wherein the at least one transmission parameter is determined on the basis of the sensor timing signal (STS), and wherein a reference timing signal (RTS) is generated by a reference oscillator with a predefined reference period, and to a device (20) for executing the method. The sensor timing signal (STS) is here compared with the reference timing signal (RTS), wherein a deviation of the current period of the sensor timing signal (STS) from a reference period is determined on the basis of the comparison, and wherein the at least one transmission parameter is corrected on the basis of the deviation determined.

Inventors:
WALZ MICHEL (DE)
SCHOU FRANK (DE)
CONRADT JOERG (DE)
EWERT MARLON RAMON (DE)
GSCHWIND-SCHILLING RAINER (DE)
AJANOVIC MUSTAFA (DE)
HAIST KEVIN (DE)
HAUG MICHAEL (DE)
WEISS GUENTER (DE)
BOMMER DANIELA (DE)
ROZIC DARKO (DE)
Application Number:
PCT/EP2018/075275
Publication Date:
April 11, 2019
Filing Date:
September 19, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
H04L7/08; G01D5/244; G01R29/027; H03K5/19; H04Q9/00; B60R21/01; H03K5/26
Domestic Patent References:
WO2013083560A12013-06-13
Foreign References:
DE102012203664A12013-09-12
US20070177532A12007-08-02
EP0306059A21989-03-08
Other References:
NGUYEN THANG ET AL: "Verification methodology of sophisticated automotive sensor interfaces integrated in modern system-on-chip airbag system", IECON 2013 - 39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, IEEE, 10 November 2013 (2013-11-10), pages 2335 - 2340, XP032539722, ISSN: 1553-572X, [retrieved on 20131230], DOI: 10.1109/IECON.2013.6699495
BOSCH ET AL.: "Peripheral Sensor Interface Technical Specification V2.1", 1 January 2012 (2012-01-01), pages 1 - 59, XP055197813, Retrieved from the Internet [retrieved on 20150623]
Download PDF:
Claims:
Ansprüche

1. Verfahren zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit (10) und einem Steuergerät (30), wobei von einem Sensoroszillator (14) ein Sensortaktsignal (STS) mit einer vorgegebenen Periodendauer (T_STS) erzeugt wird, wobei der mindestens eine Übertragungsparameter basierend auf dem Sensortaktsignal (STS) bestimmt wird, und wobei ein von einem Referenzoszillator (32) mit einer vorgegebenen Referenzperiodendauer (T_ref) erzeugtes Referenztaktsignal (RTS) empfangen wird, dadurch gekennzeichnet, dass das Sensortaktsignal (STS) mit dem Referenztaktsignal (RTS) verglichen wird, wobei basierend auf dem Vergleich eine Abweichung (Delta_t) der aktuellen Periodendauer (T_STS) des Sensortaktsignals (STS) von einer Sollperiodendauer (T_STS_soll) ermittelt wird, und wobei der mindestens eine Übertragungsparameter basierend auf der ermittelten Abweichung (Delta_t) korrigiert wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Abhängigkeit von der Abweichung (Delta_t) ein Korrekturfaktor (KF) berechnet wird, welcher auf den mindestens einen Übertragungsparameter angewendet wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine Übertragungsparameter in einstellbaren Stufen an die ermittelte Abweichung (Delta_t) angepasst wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Korrekturfaktor (KF) um eine eingestellte Stufe reduziert wird, wenn die Abweichung (Delta_t) größer als ein vorgegebener Schwellwert ist, oder um die eingestellte Stufe erhöht wird, wenn die Abweichung (Delta_t) kleiner als der vorgegebenen Schwellwert ist, oder konstant bleibt, wenn die Abweichung (Delta_t) gleich dem vorgegebenen Schwellwert ist.

Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der mindestens eine Übertragungsparameter einen Sendestart- zeitpunkt (t_NS) und/oder eine Bitbreite (t_Bit) repräsentiert.

Vorrichtung (20) zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit (10) und einem Steuergerät (30), wobei ein Sensoroszillator (14) ein Sensortaktsignal (STS) mit einer vorgegebenen Periodendauer (T_STS) erzeugt und ausgibt, wobei der mindestens eine Übertragungsparameter basierend auf dem Sensortaktsignal (STS) bestimmt wird, und wobei ein Referenzoszillator (32) ein Referenztaktsignal (RTS) mit einer vorgegebenen Referenzperiodendauer (T_ref) erzeugt und ausgibt, gekennzeichnet durch einen Oszillatormonitor (22), welcher das Sensortaktsignal (STS) und das Referenztaktsignal (RTS) empfängt und das Verfahren zur Korrektur von mindestens einem Übertragungsparameter nach einem der Ansprüche 1 bis 5 ausführt.

Vorrichtung (20) nach Anspruch 6, gekennzeichnet durch einen Zähler (24), welcher Pulse des Sensortaktsignals (STS) zählt, wobei der Oszillatormonitor (22) den Zähler (24) an einem Startzeitpunkt (t_start, t_start") startet, an welchem der Oszillatormonitor (22) einen ersten Synchronisationspuls (SP1) des Referenztaktsignals (RTS) empfängt, und den Zähler (24) an einem Stoppzeitpunkt (t_stop, t_stop', t_stop") anhält, an welchem der Oszillatormonitor (22) einen nachfolgenden zweiten Synchronisationspuls (SP2, SP2', SP2") empfängt.

Vorrichtung (20) nach Anspruch 7, dadurch gekennzeichnet, dass der Oszillatormonitor (22) einen Zählerstand (ZS) des Zählers (24) ausliest und mit einem Sollzählerstand (ZS_soll) vergleicht, welcher aus dem Verhältnis von Referenzperiodendauer (T_ref) zu Sollperiodendauer (T_STS_soll) des Sensortaktsignals (STS) berechnet ist. Vorrichtung (20) nach Anspruch 8, dadurch gekennzeichnet, dass der Oszillatormonitor (22) basierend auf dem Vergleich eine Abweichung (Delta_t) der aktuellen Periodendauer (T_STS) des Sensortaktsignals (STS) von einer Sollperiodendauer (T_STS_soll) ermittelt.

Vorrichtung (20) nach Anspruch 9, dadurch gekennzeichnet, dass der Oszillatormonitor (22) basierend auf einem vorgegebenen Toleranzbereich für die Abweichung (Delta_t) ein Akzeptanzfenster (AF) berechnet, welches nach unten durch einen ersten Zählerstand (ZS_min) und nach oben durch einen zweiten Zählerstand (ZS_max) begrenzt ist.

Vorrichtung (20) nach Anspruch 10, dadurch gekennzeichnet, dass der Oszillatormonitor (22) den Korrekturfaktor (KF) an die ermittelte Abweichung (Delta_t) anpasst und den mindestens einen Übertragungsparameter mit dem angepassten Korrekturfaktor (KF) korrigiert, wenn der ausgelesene aktuelle Zählerstand (ZS) innerhalb des Akzeptanzfensters (AF) liegt.

Vorrichtung (20) nach Anspruch 11, dadurch gekennzeichnet, dass der Oszillatormonitor (22) den zweiten Synchronisationspuls (SP2) als neuen ersten Synchronisationspuls (SP1) interpretiert und den Zähler (24) neu startet, wenn der ausgelesene aktuelle Zählerstand (ZS) innerhalb des Akzeptanzfensters (AF) liegt.

Vorrichtung (20) nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Oszillatormonitor (22) den zweiten Synchronisationspuls (SP2') als Störimpuls interpretiert, wenn der korrespondierende ausgelesene aktuelle Zählerstand (ZS) kleiner als der erste Zählerstand (ZS_min) ist.

Vorrichtung (20) nach Anspruch 13, dadurch gekennzeichnet, dass der Oszillatormonitor (22) den als Störimpuls interpretierten zweiten Synchronisationspuls (SP2') ignoriert und keine Anpassung des Korrekturfaktors (KF) und keine Korrektur des mindestens einen Übertragungsparameters durchführt.

15. Vorrichtung (20) nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass der Oszillatormonitor (22) den zweiten Synchronisationspuls (SP2") als neuen ersten Synchronisationspuls (SPl) interpretiert, wenn der korrespondierende ausgelesene aktuelle Zählerstand (ZS) größer als der zweite Zählerstand (ZS_max) ist.

16. Vorrichtung (20) nach Anspruch 15, dadurch gekennzeichnet, dass der Oszillatormonitor (22) in Reaktion auf den als neuer erster Synchronisationspuls (SPl) interpretierten zweiten Synchronisationspuls (SP2") den Zähler (24) neu startet und eine Korrektur des mindestens einen Übertragungsparameters mit einem bereits vorhandenen Korrekturfaktor (KF) durchführt.

Description:
Beschreibung

Titel

Vorrichtung und Verfahren zur Korrektur von mindestens einem Übertragungspa- rameter

Die Erfindung geht aus von einem Verfahren zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät nach der Gattung des unabhängigen Patentanspruchs 1. Gegenstand der vorliegenden Erfindung ist auch eine Vorrichtung zur Durchführung eines solchen Verfahrens.

Peripheral Sensor Interface 5 (PSI5) ist ein offener Standard. Aufbauend auf dem bisherigen PAS4 Protokoll unterstützt der PSI5 Standard Applikationen, in denen bis zu vier Sensoren pro Busknoten in unterschiedlichen Konfigurationen von einem Steuergerät abgefragt werden können. Auch eine bidirektionale Kommunikation zur Sensorkonfigurierung und Diagnose ist vorgesehen.

In Airbag-Systemen werden beispielsweise Daten von Druck- oder Beschleunigungssensoren über strommodulierte Zweidraht- Busse ausgewertet, die über ein Manchester codiertes Protokoll mit dem Steuergerät kommunizieren. Im PSI5 Standard sind auch mögliche Betriebsarten festgelegt. Diese unterscheiden sich zunächst in synchrone und asynchrone Betriebsmodi. Bei den synchronen Betriebsmodi ergeben sich je nach Verschaltung der Sensoren mit der Steuereinheit die drei Betriebsarten: Parallel BUS Mode, in dem die Sensoren parallel geschaltet sind, Universal BUS Mode, in dem die Sensoren seriell verschaltet sind, und Daisy Chain BUS Mode. Kombiniert mit anderen Parametern, wie gesamte Anzahl der Zeitschlitze, Datenrate, Datenwortlänge, Parity- /CRC Überwachung, erlaubt der PSI5 Standard unterschiedliche Realisierungsmöglichkeiten. Weit verbreitet ist die Verwendung einer 10-Bit Datenwortlänge. Aufgrund von Oszillatortakttoleranzen auf einem Sensor ist die Anzahl an Bits, welche innerhalb eines PSI5 Kommunikationsmodus übertragen werden können begrenzt. Beispielsweise können lOBit Sensordaten innerhalb eines 125k Kommunikationsmodus in drei unterschiedlichen Kommunikationsslots übertragen werden, auch wenn der Oszillatortakt des Sensors über seine Lebensdauer um

±5% abweichen kann. Jedoch ist es bei bekannten Verfahren nicht möglich, innerhalb von vier Kommunikationsslots im 16Bit Modus bei 189k mit drei Busteilnehmern bei einer Oszillatorabweichung von ±5% zu kommunizieren, da es sonst zu Datenkollisionen auf dem Bus kommen kann.

Offenbarung der Erfindung

Das Verfahren zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät mit den Merkmalen des unabhängigen Patentanspruchs 1 und die Vorrichtung zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät mit den Merkmalen des unabhängigen Patentanspruchs 6 haben jeweils den Vorteil, dass durch Korrektur von mindestens einem Übertragungsparameter eine Übertragung mit dem PSI5 Standard in beliebigen Kommunikationsmodi über die Lebensdauer des Fahrzeugs fehlerfrei ermöglicht werden kann, auch wenn der Sensoroszillatortakt über die Lebensdauer des Fahrzeugs abweichen kann. Somit ermöglichen Ausführungsformen der vorliegenden Erfindung eine einwandfreie Datenübertragung über den PSI5 Standard auch dann, wenn der Oszillatortakt der Sensoreinheit in einem gewissen Rahmen gestört ist und bestimmte zeitlich sehr enge PSI5 Kommunikationsmodi realisiert werden sollen. Dadurch kann in vorteilhafter Weise die Sicherheit im Straßenverkehr erhöht werden, da Sensoreinheiten mit einem defekten Sensoroszillator in einem bestimmten Bereich trotzdem noch Daten übertragen können. Dadurch können Fehlnichtauslösungen minimiert werden.

Ausführungsformen der vorliegenden Erfindung stellen ein Verfahren zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät zur Verfügung. Von einem Sensoroszillator wird ein Sensortaktsignal mit einer vorgegebenen Periodendau- er erzeugt, wobei der mindestens eine Übertragungsparameter basierend auf dem Sensortaktsignal bestimmt wird. Zudem wird ein von einem Referenzoszillator mit einer vorgegebenen Referenzperiodendauer erzeugtes Referenztaktsignal empfangen. Hierbei wird das Sensortaktsignal mit dem Referenztaktsignal vergli- chen, wobei basierend auf dem Vergleich eine Abweichung der aktuellen Periodendauer des Sensortaktsignals von einer Sollperiodendauer ermittelt wird, und wobei der mindestens eine Übertragungsparameter basierend auf der ermittelten Abweichung korrigiert wird. Zudem wird eine Vorrichtung zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät vorgeschlagen. Ein Sensoroszillator erzeugt und gibt ein Sensortaktsignal mit einer vorgegebenen Periodendauer aus, wobei der mindestens eine Übertragungsparameter basierend auf dem Sensortaktsignal bestimmt wird. Ein Referenzoszillator erzeugt und gibt ein Referenztaktsignal mit einer vorgegebenen Referenzperiodendauer aus. Hierbei umfasst die Vorrichtung zur Korrektur von mindestens einem Übertragungsparameter einen Oszillatormonitor, welcher das Sensortaktsignal und das Referenztaktsignal empfängt und das Verfahren zur Korrektur von mindestens einem Übertragungsparameter ausführt.

Unter der Vorrichtung zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät kann vorliegend eine in der Sensoreinheit angeordnete Auswerte- und Steuereinheit verstanden werden, welche erfasste Sensorsignale verarbeitet bzw. auswertet. Die Auswerte- und Steuereinheit kann mindestens eine Schnittstelle aufweisen, die hard- und/oder softwaremäßig ausgebildet sein kann. Bei einer hardwaremäßigen Ausbildung können die Schnittstellen beispielsweise Teil eines sogenannten System-ASICs sein, der verschiedenste Funktionen der Auswerte- und Steuereinheit, wie beispielsweise die Funktion des Oszillatormonitors bein- haltet. Es ist jedoch auch möglich, dass der Oszillatormonitor und/oder die

Schnittstellen eigene, integrierte Schaltkreise sind oder zumindest teilweise aus diskreten Bauelementen bestehen. Bei einer softwaremäßigen Ausbildung können die Schnittstellen Softwaremodule sein, die beispielsweise auf einem Mikro- controller neben anderen Softwaremodulen vorhanden sind. Von Vorteil ist auch ein Computerprogrammprodukt mit Programmcode, der auf einem maschinen- lesbaren Träger wie einem Halbleiterspeicher, einem Festplattenspeicher oder einem optischen Speicher gespeichert ist und zur Durchführung der Auswertung verwendet wird, wenn das Programm von der Auswerte- und Steuereinheit ausgeführt wird.

Unter einer Sensoreinheit wird vorliegend eine Baueinheit verstanden, welche mindestens ein Sensorelement umfasst, welches eine physikalische Größe bzw. eine Änderung einer physikalischen Größe direkt oder indirekt erfasst und vorzugsweise in ein elektrisches Sensorsignal umwandelt. So kann die Sensoreinheit beispielsweise als Beschleunigungssensor oder als Drucksensor oder als Drehratensensor mit entsprechenden Sensorelementen ausgeführt werden. Die Sensoreinheit kann beispielsweise zur Detektion von Fußgängerunfällen in einem Fahrzeugstoßfänger verbaut werden. Für die Erkennung von Seitencrashes kann die Sensoreinheit bei einer Ausführung als Beschleunigungssensor an der B-, C- oder D- Säule des Fahrzeugs oder bei einer Ausführung als Drucksensor in der Fahrzeugtür verbaut werden. Für die Erkennung von Frontcrashs kann die Sensoreinheit als Beschleunigungssensor in einem Zentralsteuergerät oder entlang eines Biegequerträgers des Fahrzeugs verbaut werden. Für die Erkennung von Überschlägen bzw. Schleudern kann die Sensoreinheit als Drehratensensor im Zentralsteuergerät oder in einem separaten Gehäuse auf einem Fahrzeugmitteltunnel verbaut werden. Die von Sensoreinheiten ausgegebenen Signale werden von Algorithmen innerhalb des Steuergeräts weiterverarbeitet. Erkennt ein solcher Algorithmus, dass ein Fußgängeraufprall, ein Seitencrash, ein Frontcrash oder ein Überschlag stattgefunden hat, so wird in Abhängigkeit des erkannten Unfallszenarios eine Auslöseentscheidung für aktive Rückhaltemittel (z.B. Air- bag) im Fahrzeug getroffen und diese Rückhaltemittel aktiviert, um bei einem Fußgängeraufprall den Fußgänger bzw. bei einem Crashfall die Fahrzeuginsassen zu schützen.

Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruch 1 angegebenen Verfahrens zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät und der im unabhängigen Patentanspruch 6 angegebenen Vorrichtung zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät möglich.

Besonders vorteilhaft ist, dass in Abhängigkeit von der Abweichung ein Korrekturfaktor berechnet werden kann, welcher auf den mindestens einen Übertragungsparameter angewendet werden kann.

In vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens kann der mindestens eine Übertragungsparameter in einstellbaren Stufen an die ermittelte Abweichung angepasst werden. Dadurch erfolgt die Anpassung des mindestens einen Übertragungsparameters, welcher beispielsweise eine Sendestartzeit und/oder eine Bitbreite repräsentieren kann, nicht schlagartig sondern mit Hilfe eines langsamen Reglers. Ein solcher langsamer Regler bietet den Vorteil, dass die Anpassung der Übertragungsparameter langsam und nicht sprungartig erfolgt. Die Datenübertragung wird somit stabiler. Die Anpassung der Übertragungsparameter erfolgt mit Hilfe des Korrekturfaktors. Der Korrekturfaktor kann beispielsweise um eine eingestellte Stufe reduziert werden, wenn die Abweichung größer als ein vorgegebener Schwellwert ist. Zudem kann der Korrekturfaktor um die eingestellte Stufe erhöht werden, wenn die Abweichung kleiner als der vorgegebene Schwellwert ist. Des Weiteren kann der Korrekturfaktor konstant bleiben, wenn die Abweichung gleich dem vorgegebenen Schwellwert ist. Als Schwellwert kann beispielsweise der Wert 0 vorgegeben werden.

In vorteilhafter Ausgestaltung kann die erfindungsgemäße Vorrichtung einen Zähler umfassen, welcher Pulse des Sensortaktsignals zählt. Hierbei kann der Oszillatormonitor den Zähler an einem Startzeitpunkt starten, an welchem der Oszillatormonitor einen ersten Synchronisationspuls des Referenztaktsignals empfängt, und den Zähler an einem Stoppzeitpunkt anhalten, an welchem der Oszillatormonitor einen nachfolgenden zweiten Synchronisationspuls empfängt. Der Einsatz des Zählers ermöglicht eine besonders einfache und kostengünstige Implementierung der erfindungsgemäßen Vorrichtung zur Korrektur von mindestens einem Übertragungsparameter. So kann der Oszillatormonitor einen Zählerstand des Zählers auslesen und mit einem Sollzählerstand vergleichen, welcher aus dem Verhältnis von Referenzperiodendauer zu Sollperiodendauer des Sensortaktsignals berechnet ist. Der Sollzählerstand kann beispielsweise vom Oszil- latormonitor oder vorab berechnet und in einem nichtflüchtigen Speicher in der Sensoreinheit gespeichert werden. Basierend auf dem Vergleich kann der Oszillatormonitor eine Abweichung der aktuellen Periodendauer des Sensortaktsignals von einer Sollperiodendauer ermitteln.

In weiterer vorteilhafter Ausgestaltung der erfindungsgemäßen Vorrichtung kann der Oszillatormonitor basierend auf einem vorgegebenen Toleranzbereich für die Abweichung ein Akzeptanzfenster berechnen, welches nach unten durch einen ersten Zählerstand und nach oben durch einen zweiten Zählerstand begrenzt werden kann. Die typischen Toleranzen des Sensortaktsignals liegen über Lebensdauer bei ca. ± 3,5 %. Eine obere Grenze für Oszillatortaktabweichungen in den einzelnen Sensoreinheiten liegt gemäß PSI5 Standard derzeit bei ± 5 %. Die Toleranz des Referenztaktsignals liegt bei ± 1 %. Das Akzeptanzfenster kann somit mit einem zusätzlichen Sicherheitsabstand vorgegeben werden. So kann das Akzeptanzfenster beispielsweise mit einer äußeren Grenze von ± 10 % vorgegeben werden. Die äußere Grenze des beispielhaften Akzeptanzfensters ergibt sich aus der Toleranz des Sensoroszillators von ± 5 %, der Toleranz des Referenztaktsignals von ± 1 % und dem Sicherheitsabstand, der beispielhaft einen Wert von ± 4 % aufweist. Der Sicherheitsabstand wird so gewählt, dass eine Übertragung von Daten in einen Auslösealgorithmus von Rückhaltesystemen zu keiner nennenswerten Abweichung von Auslösezeiten führt.

In weiterer vorteilhafter Ausgestaltung der erfindungsgemäßen Vorrichtung kann der Oszillatormonitor den Korrekturfaktor an die ermittelte Abweichung anpassen und den mindestens einen Übertragungsparameter mit dem angepassten Korrekturfaktor korrigieren, wenn der ausgelesene aktuelle Zählerstand innerhalb des Akzeptanzfensters liegt. Außerdem kann der Oszillatormonitor den zweiten Synchronisationspuls als neuen ersten Synchronisationspuls interpretieren und den Zähler neu starten, wenn der ausgelesene aktuelle Zählerstand innerhalb des Akzeptanzfensters liegt. Zudem kann der Oszillatormonitor den zweiten Synchronisationspuls als Störimpuls interpretieren, wenn der korrespondierende ausgelesene aktuelle Zählerstand kleiner als der erste Zählerstand ist. In diesem Fall kann der Oszillatormonitor den als Störimpuls interpretierten zweiten Synchronisationspuls ignorieren und keine Anpassung des Korrekturfaktors und kei- ne Korrektur des mindestens einen Übertragungsparameters durchführen. Des Weiteren kann der Oszillatormonitor den zweiten Synchronisationspuls als neuen ersten Synchronisationspuls interpretieren, wenn der korrespondierende ausgelesene aktuelle Zählerstand größer als der zweite Zählerstand ist. In diesem Fall kann der Oszillatormonitor in Reaktion auf den als neuer erster Synchronisati- onspuls interpretierten zweiten Synchronisationspuls den Zähler neu starten und eine Korrektur des mindestens einen Übertragungsparameters mit einem bereits vorhandenen Korrekturfaktor durchführen. Dadurch wird die Datenübertragung bei Ausführungsformen der vorliegenden Erfindung in vorteilhafter Weise noch robuster gegenüber EMV Störungen von außen, welche künstliche oder fehlende Synchronisationspulse bewirken können. Zudem kann dadurch in vorteilhafter

Weise verhindert werden, dass eine EMV-Störung zu einer Änderung des Korrekturfaktors führen kann.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird der nachfolgenden Beschreibung näher erläutert. In der Zeichnung bezeichnen gleiche Bezugszeichen Komponenten bzw. Elemente, die gleiche bzw. analoge Funktionen ausführen.

Kurze Beschreibung der Zeichnungen

Fig. 1 zeigt ein schematisches Blockdiagramm einer Sensoranordnung in einem Fahrzeug.

Fig. 2 zeigt ein schematisches Blockdiagramm einer Sensoreinheit der Senso- ranordnung aus Fig. 1 mit einem Ausführungsbeispiel einer erfindungsgemäßen

Vorrichtung zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit und einem Steuergerät .

Fig. 3 zeigt eine schematische Darstellung eines ersten Zeitstrahls für ein erfin- dungsgemäßes Verfahren zur Korrektur von mindestens einem Übertragungsparameter, wobei ein zweiter Synchronisationspuls innerhalb eines Akzeptanzfensters empfangen wird.

Fig. 4 zeigt eine schematische Darstellung eines zweiten Zeitstrahls für das er- findungsgemäße Verfahren zur Korrektur von mindestens einem Übertragungs- Parameter, wobei der zweite Synchronisationspuls vor dem Akzeptanzfenster empfangen wird.

Fig. 5 zeigt eine schematische Darstellung eines dritten Zeitstrahls für das erfindungsgemäße Verfahren zur Korrektur von mindestens einem Übertragungsparameter, wobei der zweite Synchronisationspuls nach dem Akzeptanzfenster empfangen wird.

Ausführungsformen der Erfindung

Wie aus Fig. 1 und 2 ersichtlich ist, umfasst eine Sensoranordnung 3 für ein Fahrzeug 1 im dargestellten Ausführungsbeispiel ein Steuergerät 30 mit einem Referenzoszillator 32, welcher ein Referenztaktsignal RTS mit einer vorgegebenen Referenzperiodendauer T_ref erzeugt und ausgibt, mehrere Busknoten 5, von denen zwei Busknoten 5 dargestellt sind und mehrere Sensoreinheiten 10, welche jeweils als periphere Airbagsensoren ausgeführt und mit einem der Busknoten 5 verbunden sind. Im dargestellten Ausführungsbeispiel sind jeweils vier Sensoreinheiten 10 mit einem der Busknoten 5 verbunden. In der dargestellten Sensoranordnung 3, welche Teil eines Personenschutzsystems des Fahrzeugs 1 ist, sind die einzelnen Sensoreinheiten 10, Busknoten 5 und das Steuergerät 30 über strommodulierte Zweidrahtbusse miteinander verbunden und kommunizieren über den PSI5 Standard. Dadurch kann das Steuergerät 30 die von den Sensoreinheiten 10 erfassten Druck- oder Beschleunigungsdaten oder Drehratendaten empfangen und auswerten.

Wie aus Fig. 1 und 2 weiter ersichtlich ist, umfassen die einzelnen Sensoreinheiten 10 jeweils ein Sensorelement 12, einen Sensoroszillator 14, welcher ein Sensortaktsignal STS mit einer vorgegebenen Periodendauer T_STS erzeugt und ausgibt, und eine Vorrichtung 20 zur Korrektur von mindestens einem Übertragungsparameter für eine Datenübertragung zwischen einer Sensoreinheit 10 und einem Steuergerät 30. Der mindestens eine Übertragungsparameter wird basierend auf dem Sensortaktsignal STS bestimmt. Im dargestellten Ausführungsbeispiel repräsentiert ein erster Übertragungsparameter einen Sendestartzeitpunkt t_NS und ein zweiter Übertragungsparameter repräsentiert eine Bitbreite t_Bit. Im dargestellten Ausführungsbeispiel ist die Vorrichtung 20 zur Korrektur von mindestens einem Übertragungsparameter als anwendungsspezifische integrierte Schaltung (ASIC) ausgeführt, welche mindestens eine Rechnereinheit bzw. mindestens einen MikroController umfasst und erfasste Sensorsignale verarbeitet und auswertet.

Wie aus Fig. 2 weiter ersichtlich ist, umfasst die Vorrichtung 20 zur Korrektur von mindestens einem Übertragungsparameter einen Oszillatormonitor 22, welcher das Sensortaktsignal STS und das Referenztaktsignal RTS empfängt und ein erfindungsgemäßes Verfahren zur Korrektur von mindestens einem Übertragungsparameter ausführt. Hierbei wird das Sensortaktsignal STS in einem ersten Schritt mit dem Referenztaktsignal RTS verglichen, wobei basierend auf dem Vergleich eine Abweichung Delta_t der aktuellen Periodendauer T_STS des Sensortaktsignals STS von einer Sollperiodendauer T_STS_soll ermittelt wird, und wobei der mindestens eine Übertragungsparameter basierend auf der ermittelten Abweichung Delta_t korrigiert wird.

Das Verfahren zur Korrektur von mindestens einem Übertragungsparameter kann beispielsweise in Software oder Hardware oder in einer Mischform aus Software und Hardware in den einzelnen Sensoreinheiten 10 implementiert sein.

Im dargestellten Ausführungsbeispiel weist das Referenztaktsignal RTS eine Frequenz von 2 kHz und eine Referenzperiodendauer T_ref von δθθμε ± 1 % auf. Das Sensortaktsignal STS weist im dargestellten Ausführungsbeispiel eine Frequenz von 18 MHz und eine Sollperiodendauer T_STS_soll von 0,0555 is auf. Für die Erkennung der Abweichung Delta_t des Sensortaktsignals STS der Sensoreinheit 10 relativ zum Referenztaktsignal RTS des Steuergeräts 30 wird somit die Abweichung Delta_t gemäß Gleichung (1) berechnet.

DeltaJ = T_ref - N * T_STS mit N = T_ref / T_STS_soll (1)

Für die oben angegebenen Werte ergibt sich für den Faktor N ein Wert von 9.000. In Abhängigkeit der Abweichung Delta_t des Sensortaktsignals STS und des Referenztaktsignal RTS erfolgt in einem weiteren Schritt eine proportionale Anpassung der auf dem PSI5 Standard basierenden Sendestartzeitpunkte t_NS und der Bitbreiten t_Bit in der jeweiligen Sensoreinheit 10 vor einer Datenübertragung. Auf diese Weise kommt es zu keiner Datenkollision auf dem PSI5 Übertragungsbus, auch wenn das Sensortaktsignal STS der Sensoreinheit 10 im dargestellten Ausführungsbeispiel um bis zu ± 10 % vom Nominalfall abweichen kann. Die typischen Toleranzen des Sensortaktsignals STS liegen über Lebensdauer bei ± 3,5 %. Die erlaubte obere Grenze für Abweichungen des Sensortaktsignals STS in der jeweiligen Sensoreinheit 10 liegt gemäß PSI5 Standard bei ± 5 %. Der Bereich für die Korrektur des mindestens einen Übertragungsparameters startet bei dem dargestellten Ausführungsbeispiel bei einer Abweichung Del- ta_t von ± 0 % und endet bei einer Abweichung Delta_t von ca. ± 10 %. Dies entspricht auch einem in Fig. 3 bis 5 dargestellten Akzeptanzfenster AF, in welchem die jeweilige Sensoreinheit 10 zweite Synchronisationspulse SP2 des Steuergeräts 30 als gültig akzeptiert. Die äußere Grenze von ± 10 % für die Abweichung Delta_t ergibt sich aus der gemäß PS 15 Standard erlaubten Toleranz von ± 5 % für das Sensortaktsignal STS, aus einer Toleranz von ± 1 % des Referenztaktsignals RTS und einem Sicherheitsabstand von hier ± 4 %. Der Sicherheitsabstand wurde so gewählt, dass eine Übertragung von Daten in einen Airbagalgo- rithmus zu keiner nennenswerten Abweichung von Auslösezeiten führt. Die Anpassung der Sendestartzeitpunkte t_NS und der Bitbreiten t_Bit erfolgt im

Rahmen der Erfindung nicht schlagartig sondern mit Hilfe einer langsamen Regelfunktion. Eine solche langsame Regelfunktion bietet den Vorteil, dass die Anpassung der Sendestartzeitpunkte t_NS und der Bitbreiten t_Bit langsam und nicht sprungartig erfolgt. Die Datenübertragung wird somit stabiler. Um ein Ein- schwingen der Regelfunktion innerhalb einer ersten Initialisierungsphase der

Sensoreinheit 10 zu ermöglichen, und somit eine fehlerfreie Datenübertragung von Sensorstatusdaten schon in einer zweiten Initialisierungsphase zu gewährleisten, wird eine minimale Regelgeschwindigkeit in der ersten Initialisierungsphase auf mindestens 60 % / s eingestellt. Hierbei dauert die erste Initialisie- rungsphase mindestens 50 ms. Das Steuergerät 30 startet die Übertragung des

Referenztaktsignals RTS ca. 10 ms nach dem Einschalten. Für das Einschwingen des Referenztaktsignals RTS werden weitere 5 ms vorgesehen. Somit stehen in der ersten Initialisierungsphase noch 35 ms bzw. 70 Synchronisationspulse SP1, SP2 für das Einschwingen der Regelfunktion zur Verfügung. Mit einer kleinsten Regelrate von 2 % / 0,035 s ergibt sich eine Regelrate von 57,1 % / s. Mit einer maximal erlaubten Abweichung Delta_t des Sensortaktsignal STS von 5 % ergibt sich eine Regelrate von 57,1 % / s * 1,05 % = 60,0 % / s. Nach der ersten Initialisierungsphase wird die Regelfunktion für die Sendestartzeitpunkte t_NS und Bitbreiten t_Bit langsamer betrieben. Hierzu können verschiedene Re- gelraten RR in einem nicht näher dargestellten Speicher abgelegt werden. Für das dargestellte Ausführungsbeispiel sind beispielsweise die folgenden Werte für die Regelrate RR abgespeichert: ± 0,0625 % / s, ± 0,03215 % / s, ± 0,125 % / s, ± 0,25 % / s, ± 0,5 % / s, ± 1 % / s, ± 2 % / s, ± 4 % / s. Die Anpassung des mindestens einen Übertragungsparameters bzw. der Sendestartzeitpunkte t_NS und der Bitbreiten t_Bit an die ermittelte Abweichung Del- ta_t erfolgt mit Hilfe eines Korrekturfaktors KF in einstellbaren Stufen. Das bedeutet, dass der Korrekturfaktor KF sich über die Zeit in Abhängigkeit der eingestellten Regelrate RR als Stufe ergibt (KF = ZRR). Hierbei wird der Korrekturfak- tor KF um die eingestellte Regelrate RR reduziert, wenn die ermittelte Abweichung Delta_t größer als ein vorgegebener Sollwert von beispielsweise 0 ist. Ist die ermittelte Abweichung Delta_t kleiner als der vorgegebene Sollwert, dann wird der Korrekturfaktor KF um die Regelrate RR erhöht. Ist die ermittelte Abweichung Delta_t gleich dem vorgegebenen Sollwert, dann wird der Korrekturfaktor KF nicht verändert und bleibt konstant.

Der Korrekturfaktor KF wird gemäß Gleichung (2) auf den Sendestartzeitpunkt t_NS und gemäß Gleichung (3) auf die Bitbreite t_Bit angewendet. t_NS, KF = (KF * t_NS) + t_NS (2) t_Bit,KF = (KF * t_Bit) + t_Bit (3)

Im dargestellten Ausführungsbeispiel umfasst die Vorrichtung 20 zur Korrektur von mindestens einem Übertragungsparameter einen Zähler 24, welcher Pulse des Sensortaktsignals STS zählt. Nachfolgend wird unter Bezugnahme auf Fig. 3 bis 5 die Funktionsweise der Vorrichtung 20 zur Korrektur von mindestens einem Übertragungsparameter aus Fig. 2 beschrieben. Der Oszillatormonitor 22 startet den Zähler 24 an einem Startzeitpunkt t_start, t_start", an welchem der Oszilla- tormonitor 22 einen ersten Synchronisationspuls SP1 des Referenztaktsignals RTS empfängt. Der Oszillatormonitor 22 hält den Zähler 24 an einem Stoppzeitpunkt t_stop, t_stop', t_stop" an, an welchem der Oszillatormonitor 22 einen nachfolgenden zweiten Synchronisationspuls SP2, SP2', SP2" empfängt. Der Oszillatormonitor 22 liest dann einen Zählerstand ZS des Zählers 24 aus und vergleicht diesen mit einem Sollzählerstand ZS_soll, welcher aus dem Verhältnis von Referenzperiodendauer T_ref zu Sollperiodendauer T_STS_soll des Sensortaktsignals STS berechnet ist. Mit den o.g. Werten ergibt sich ein Sollzählerstand ZS_soll von 9.000. Somit kann der Oszillatormonitor 22 basierend auf einem Vergleich des Sollzählerstands ZS_soll und des aktuellen Zählerstands ZS die Abweichung Delta_t der aktuellen Periodendauer T_STS des Sensortaktsignals STS von der Sollperiodendauer T_STS_soll gemäß Gleichung (4) ermitteln.

DeltaJ = (ZS_soll - ZS) * T_STS_soll (4)

Basierend auf dem vorgegebenen Toleranzbereich von ±10% für die Abweichung Delta_t berechnet der Oszillatormonitor 22 das Akzeptanzfenster AF, welches nach unten durch einen ersten Zählerstand ZS_min von hier 8.100 und nach oben durch einen zweiten Zählerstand ZS_max von hier 9.900 begrenzt ist. Der Oszillatormonitor 22 korrigiert den mindestens einen Übertragungsparameter basierend auf der ermittelten Abweichung Delta_t, wenn der ausgelesene aktuelle Zählerstand ZS innerhalb des Akzeptanzfensters AF liegt.

Wie aus Fig. 3 weiter ersichtlich ist, empfängt der Oszillatormonitor 22 zum Startzeitpunkt t_start den ersten Synchronisationspuls SP1 und startet den Zähler 24. Zum Stoppzeitpunkt t_stop empfängt der Oszillatormonitor 22 den zweiten Synchronisationspuls SP2 innerhalb des Akzeptanzfensters AF. Das bedeutet, dass der ausgelesene aktuelle Zählerstand ZS zwischen dem ersten Zählerstand ZS_min von hier 8.100 und dem zweiten Zählerstand ZS_max von hier 9.900 liegt. Daher interpretiert der Oszillatormonitor 22 die beiden Synchronisationspulse SP1, SP2 als gültiges Synchronisationspulspaar. Daher passt der Oszillatormonitor 22 den Korrekturfaktor KF an die ermittelte Abweichung Delta_t an und korrigiert den mindestens einen Übertragungsparameter mit dem angepassten Korrekturfaktor KF. Zudem interpretiert der Oszillatormonitor 22 den zweiten Synchronisationspuls SP2 als neuen ersten Synchronisationspuls SP1 und startet den Zähler 24 neu, wenn der ausgelesene aktuelle Zählerstand ZS innerhalb des Akzeptanzfensters AF liegt. Da Fig. 3 einen optimalen Zustand mit einer Abweichung Delta_t von 0 zeigt, entspricht der ausgelesene aktuelle Zählerstand ZS dem Sollzählerstand ZS_soll, so dass der verwendete Korrekturfaktor KF konstant bleibt.

Wie aus Fig. 4 weiter ersichtlich ist, empfängt der Oszillatormonitor 22 zum Startzeitpunkt t_start den ersten Synchronisationspuls SPl und startet den Zähler 24. Zum Stoppzeitpunkt t_stop' empfängt der Oszillatormonitor 22 den zweiten Synchronisationspuls SP2' außerhalb des Akzeptanzfensters AF. Bei der Darstellung gemäß Fig. 4 liegt der ausgelesene Zählerstand ZS unter dem ersten Zählerstand ZS_min von hier 8.100. Daher interpretiert der Oszillatormonitor 22 den zweiten Synchronisationspuls SP2' als Störimpuls und die beiden Synchronisationspulse SPl, SP2' als ungültiges Synchronisationspulspaar. Da es sich in diesem Fall um einen Störimpuls handelt, wird dieser vom Oszillatormonitor 22 ignoriert und es erfolgt keine Anpassung des Korrekturfaktors KF und auch keine Korrektur des mindestens einen Übertragungsparameters. Zudem werden nach dem zweiten Synchronisationspuls SP2' keine Daten an das Steuergerät 30 übertragen.

Wie aus Fig. 5 weiter ersichtlich ist, empfängt der Oszillatormonitor 22 zum Startzeitpunkt t_start den ersten Synchronisationspuls SPl und startet den Zähler 24. Zum Stoppzeitpunkt t_stop" empfängt der Oszillatormonitor 22 den zweiten Synchronisationspuls SP2" außerhalb des Akzeptanzfensters AF. Bei der Darstellung gemäß Fig. 5 liegt der ausgelesene Zählerstand ZS über dem zweiten Zählerstand ZS_max von hier 9.900. In diesem Fall wird der empfangene zweite Synchronisationspuls SP2" vom Oszillatormonitor 22 akzeptiert. Der Oszillatormonitor 22 interpretiert jedoch den zweiten Synchronisationspuls SP2" als neuen ersten Synchronisationspuls SPl. Das bedeutet der zweite Synchronisationspuls SP2" dient als neuer Startzeitpunkt t_start für die Referenztaktmessung bzw. für den Zähler 24 in der Sensoreinheit 10. Der bereits vorhandene Korrekturfaktor KF bleibt jedoch unverändert und der Oszillatormonitor 22 führt eine Korrektur des mindestens einen Übertragungsparameters mit dem bereits vorhandenen Korrekturfaktor KF durch. Ausführungsformen der vorliegenden Erfindung bieten den weiteren Vorteil, dass die Datenübertragung noch robuster gegenüber EMV Störungen von außen ist. Schließlich soll im Fall einer EMV Störung keine Anpassung des Korrekturfaktors durchgeführt werden.