Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE AND METHOD FOR ISOLATING BIOLOGICAL OR CHEMICAL TARGETS
Document Type and Number:
WIPO Patent Application WO/2010/133776
Kind Code:
A2
Abstract:
The present invention relates to a device for collecting and concentrating biological or chemical targets with a view to detecting same, wherein the device includes a reaction chamber (1) in which functionalized magnetic beads (2) are placed, an ultrasonic agitation system (3), a magnetic field (4) that can be activated (ON position) or inactivated (OFF position), and a fluid movement system (5) for feeding (51) and discharging (52) a portion or the entirety of the contents of the reaction chamber. The invention also relates to a method for capturing biological or chemical targets implementing said device.

Inventors:
DURIN GUILLAUME (FR)
CHABAUD SYLVAINE (FR)
DELATTRE CYRIL (FR)
JARY DOROTHEE (FR)
Application Number:
PCT/FR2010/000374
Publication Date:
November 25, 2010
Filing Date:
May 17, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COMMISSARIAT ENERGIE ATOMIQUE (FR)
DURIN GUILLAUME (FR)
CHABAUD SYLVAINE (FR)
DELATTRE CYRIL (FR)
JARY DOROTHEE (FR)
International Classes:
B03C1/02; G01N33/543; C12M1/26; C12N1/02; C12Q1/24; C12Q1/68; G01N33/569; G01N33/68
Domestic Patent References:
WO2008131554A12008-11-06
Foreign References:
US20030153028A12003-08-14
US20060141450A12006-06-29
US20050013741A12005-01-20
US6159378A2000-12-12
US4628037A1986-12-09
Other References:
STACHOWIAK JC ET AL., ANAL CHEM., vol. 79, no. 15, 2007, pages 5763 - 70
BORTHWICK ET AL., JOURNAL OF MICROBIOLOGICAL METHODS, vol. 60, 2005, pages 207 - 216
BELGRADER ET AL., ANALITICAL CHEMISTRY, vol. 71, no. 19, 1999, pages 4232 - 4236
DEPONTE ET AL., ANAL. BIOANAL. CHEM., vol. 379, 2004, pages 419 - 426
ERGIN ET AL., MICROBIAL CELL FACTORIES, vol. 6, 2007, pages 18
STEINGROEWER ET AL., J. MAGNETISM MAGNET. MATERIAL, vol. 311, 2007, pages 295 - 299
AIM ET AL., J. OF VIROLOGY, vol. 79, no. 1, 2005, pages 622 - 625
Attorney, Agent or Firm:
BERNSTEIN, Claire et al. (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Dispositif automatique de traitement d'échantillon liquide d'un volume V supérieur ou égal à 10 ml, comprenant une chambre réactionnelle, d'un volume v compris entre 10 μl et 5 ml, dans laquelle sont placées des billes magnétiques fonctionnalisées permettant la capture de cibles biologiques ou chimiques en quantité telle que le rapport entre la surface de capture des billes sur le volume de la chambre réactionnelle est compris entre 0,2 et 200 m2/l, ladite chambre réactionnelle étant équipée : d'un système d'agitation non invasif permettant une dispersion homogène desdites billes ; d'un champ magnétique pouvant être activé ou inactivé ; d'un système de déplacement de fluide pour l'introduction et l'évacuation de tout ou partie du contenu de la chambre réactionnelle.

2. Dispositif selon la revendication 1, caractérisé en ce que la chambre réactionnelle a un volume de préférence compris entre 50 et 500 μl, et vaut préférentiellement environ 100 μl.

3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la chambre réactionnelle est revêtue d'une surface hydrophobe choisie parmi le téflon, l'ETFE, le PFA et le PTFE. 4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit d'un système d'agitation non invasif est un système d'agitation par ultrasons.

5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit champ magnétique est produit par un aimant permanent ou un électroaimant.

6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites billes magnétiques fonctionnalisées ont un diamètre compris entre 0,5 et 10 μm.

7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre un système de collecte d'échantillon liquide constitué d'un système fluidique de prélèvement de l'échantillon tel qu'une pompe et d'un réservoir de stockage en amont de la chambre réactionnelle.

8. Procédé de capture de cibles biologiques ou chimiques susceptibles d'être présentes dans un échantillon liquide de volume V supérieur ou égal à 10 ml avec d'un dispositif selon l'une quelconque des revendications 1 à 7 comprenant les étapes de : a) prélèvement d'une fraction de volume v dudit échantillon liquide ; b) mise en contact de ladite fraction avec des billes magnétiques fonctionnalisées dans la chambre réactionnelle dudit dispositif où le champ magnétique est désactivé ; c) dispersion homogène des billes à l'aide du système d'agitation non invasif pendant une durée d'au moins 5 secondes ; d) capture des billes à l'aide du champ magnétique activé ; e) évacuation de ladite fraction ; f) renouvellement des étapes a) à e) un nombre de fois n tel que n est compris entre 1 et V/v. 9. Procédé de capture selon la revendication 8, caractérisé en ce que n = V/v.

10. Procédé de détection de cibles biologiques ou chimiques comprenant les étapes a) à f) du procédé de capture selon la revendication 8 ou 9, caractérisé en ce qu'il comprend en outre les étapes : g) d'élution desdites cibles et h) de détection desdites cibles éluées à l'étape g).

1 1. Procédé de détection de cibles biologiques selon la revendication 10, caractérisé en ce que l'étape h) consistent la Iy se desdites cibles et en la détection des acides nucléiques libérés lors de la lyse.

Description:
DISPOSITIF ET PROCEDE D'ISOLEMENT DE CIBLES BIOLOGIQUES OU

CHIMIQUES

La présente invention concerne le domaine de la détection de cibles biologiques ou chimiques à partir de prélèvement d'échantillon liquide.

Plus précisément, le but de la présente invention est de répondre au besoin de collecte et/ou de concentration de cibles biologiques ou chimiques et être ainsi utile dans le cadre de la détection d'éléments indésirables comme des micro-organismes pathogènes ou des polluants chimiques dans des échantillons tels que des eaux de rivières, des fluides de tours aéro-réfrigérantes, de réseaux d'eau sanitaire ou potable etc .. Les cibles biologiques ou chimiques peuvent être présentes en quantité très faible dans les échantillons et leur détection n'est alors possible que par le prélèvement de volumes importants (supérieurs à 50 ml).

Par cible biologique ou chimique, on entend des micro-organismes, c'est- à-dire des virus enveloppés ou non enveloppés, des bactéries végétatives à Gram positif et négatif, des bactéries sous forme sporulée, des protozoaires, des champignons microscopiques et des levures, du microplancton, du pollen, des cellules animales et des cellules végétales ; on entend également des molécules chimiques (engrais, médicaments, molécules chimiques polluantes telles que des sous-produits de l'industrie chimique, produits phytosanitaires...) ou biochimiques (antigène, protéine, hormones ou composé perturbateur du système endocrinien...).

Il est connu d'utiliser des billes magnétiques fonctionnalisées, c'est-à- dire portant à leur surface des molécules capables de se lier à des cibles recherchées, comme système de capture destiné à isoler et/ou détecter des cibles biologiques ou chimiques et divers procédés de capture de cibles par des billes magnétiques ont déjà été décrits ; en effet, l'avantage de l'utilisation des billes magnétiques fonctionnalisées est qu'elles présentent une grande surface de capture, qu'elles peuvent être facilement récupérées à l'aide d'un aimant et éventuellement réutilisées après élution des cibles capturées. En particulier, la Demande de Brevet US 2003/015028 décrit une méthode de capture peu spécifique de micro-organismes à l'aide d'un support solide sur lequel est lié un nutriment, notamment un glucide, desdits micro-organismes ; le support solide est de préférence des billes magnétiques. Le fonctionnement de cette méthode réside dans le choix du nutriment permettant la capture des micro-organismes.

La Demande de Brevet US 2006/0141450 décrit une méthode de capture de cellules, organites ou virus présents dans des échantillons d'origine physiologique utilisant les propriétés d'adsorption paramagnétique peu spécifiques de billes magnétiques.

Les méthodes qui précèdent visent le traitement d'échantillons ayant un volume d'environ 1 ml, elles ne sont pas adaptées au traitement d'échantillons de volume supérieur à 50 ml.

La Demande Internationale WO 2008/131554 décrit un dispositif adapté à la détection de micro-organismes pathogènes à partir d'échantillons alimentaires ; ce dispositif comporte un flacon Erlenmeyer de 500 ml positionné sur un support agitateur équipé d'un champ magnétique. La mise en œuvre de ce dispositif prévoit une étape préalable de culture de l'échantillon dans un milieu de culture sélectif adapté à la croissance des micro-organismes recherchés ; ensuite, ces micro-organismes sont capturés à l'aide de particules magnétiques sur lesquelles sont greffés des anticorps se liant aux micro-organismes recherchés. Cette méthode très spécifique de détection de microorganismes résout le problème de la faible quantité de cibles biologiques dans l'échantillon par l'étape de culture qui permet la multiplication des micro-organismes recherchés et en facilite ainsi la détection. Si elle peut s'adapter au traitement d'échantillons ayant un volume de quelques dizaines de millilitres, sa mise en œuvre reste néanmoins limitée en terme de volume des échantillons car se pose alors le problème de l'obtention d'une bonne dispersion des billes magnétiques de capture au sein de l'échantillon ; enfin un tel dispositif est difficilement automatisable ; il ne permet pas le traitement en série de plusieurs échantillons. Les mêmes limites s'appliquent au dispositif d'agitation et de séparation de billes magnétiques décrit dans la Demande de Brevet US 2005/0013741 ; ce dispositif comporte deux aimants permanents positionnés de part et d'autre d'un récipient contenant des billes magnétiques ; ces aimants sont mobiles verticalement ; en fonction du mouvement qui leur est imprimé, ils peuvent soit agiter les billes afin de les mettre ou de les maintenir en suspension, soit les regrouper pour les séparer de l'échantillon. Ce dispositif vise des récipients d'un volume maximum de quelques dizaines de millilitres. Le problème rencontré lors du traitement de volumes plus importants est la difficulté d'obtenir une bonne dispersion des billes magnétiques et de les récupérer ensuite. Enfin, le dispositif Pathatrix de Matrix Microscience propose la capture de cibles telles que des micro-organismes pathogènes dans des échantillons de 250 ml par une circulation en boucle de l'échantillon dans un circuit tubulaire dans lequel des billes magnétiques fonctionnalisées de capture sont immobilisées sur un aimant plan. Les billes étant immobilisées, ce dispositif conduit à un faible rendement de capture qui ne permet notamment pas de détecter des cibles présentes à une faible concentration.

Ainsi, il ressort de ce qui précède qu'aucun dispositif de l'état de la technique ne permet une détection sensible de cibles présentes en faible quantité dans un échantillon liquide de grand volume par un traitement automatisé. L'objet de l'invention se rapporte à un dispositif automatique de traitement d'échantillon liquide d'un volume V supérieur ou égal à 10 ml, de préférence à 50 ml et encore préférentiellement à 500 ml, comprenant une chambre réactionnelle, d'un volume v compris entre 10 μl et 5 ml, dans laquelle sont placées des billes magnétiques fonctionnalisées permettant la capture de cibles biologiques ou chimiques en quantité telle que le rapport entre la surface de capture des billes sur le volume de la chambre réactionnelle est compris entre 0,2 et 200 m 2 /l, de préférence entre 0,2 et 20 m 2 /l et de façon encore préférée entre 0,2 et 10 m 2 /l, ladite chambre réactionnelle étant équipée : d'un système d'agitation non invasif permettant une dispersion homogène desdites billes ; - d'un champ magnétique pouvant être activé (position ON) ou inactivé (position OFF) ; d'un système de déplacement de fluide pour l'introduction et l'évacuation de tout ou partie du contenu de la chambre réactionnelle.

La Figure 1 est une représentation schématique du dispositif selon l'invention comprenant une chambre réactionnelle (1) dans laquelle sont placées des billes magnétiques fonctionnalisées (2), un système d'agitation par exemple, un bain à ultrasons (3), un champ magnétique (4) pouvant être activé (position ON) ou inactivé (position OFF) et un système de déplacement de fluide (5) pour l'introduction (51) et l'évacuation (52) de tout ou partie du contenu de la chambre réactionnelle. La chambre réactionnelle a un volume de préférence compris entre 50 et

500 μl, et de manière encore préférée 100 μl.

Elle peut se présenter sous la forme d'un réservoir ou bien d'un système tubulaire tel que par exemple un capillaire. De préférence, la chambre réactionnelle est revêtue d'une surface hydrophobe de manière à éviter l'adhérence des billes de capture sur ses parois intérieures ; cette surface hydrophobe est choisie parmi le téflon, l'ETFE (éthylène trifluoroéthylène), le PFA (résine copolymère de perfluoroalkoxy) et le PTFE (polytétrafluoroéthylène). Par « échantillon liquide », on entend un prélèvement d'eau industrielle

(par exemple, provenant de circuit de refroidissement), d'eau environnementale (cours d'eau...), ou encore d'eau potable destinée à la consommation humaine ou animale, et par extension tout échantillon dans lequel la ou les cibles biologiques ou chimiques à détecter sont en solution ou en suspension. Cet échantillon peut lui-même avoir été obtenu à partir d'un prélèvement ou autre échantillon susceptible de contenir les cibles biologiques ou chimiques recherchées, par exemple un produit alimentaire, un fluide corporel, un prélèvement d'air, obtenu par traitement physique et/ou chimique, et/ou biologique selon toute méthode adaptable par l'homme du métier.

Le dispositif selon l'invention présente une capacité de capture à de très faibles concentrations en cibles, il est donc particulièrement adapté au traitement d'échantillons liquides susceptibles de ne contenir qu'une très faible quantité de cibles biologiques ou chimiques ; en particulier, s'agissant de cibles biologiques, le dispositif selon l'invention est ainsi capable de détecter des cibles biologiques présentes en une quantité inférieure ou égale à 100 unités par litre d'échantillon, de préférence, en une quantité inférieure ou égale à 10 unités par litre d'échantillon, de façon encore préférée, en une quantité égale à une unité par litre d'échantillon.

De façon à éviter toute contamination exogène, les échantillons liquides sont préférentiellement prélevés ou préparés dans des conditions de grande propreté avec du matériel stérile. Dans le cas de l'analyse de la qualité microbiologique de l'air, les échantillons liquides sont préparés selon des techniques connues de l'homme du métier (Stachowiak JC et al, Anal Chem. 2007 ;79(15):5763-70).

Il n'existe aucune limite théorique au volume maximum dudit échantillon liquide ; dans la pratique, il ne dépasse généralement pas 10 1. Le système de déplacement de fluide pour l'introduction et l'évacuation de tout ou partie du contenu de la chambre réactionnelle permet d'introduire une fraction d'échantillon liquide dans la chambre réactionnelle en vue de la capture des cibles biologiques ou chimiques puis d'évacuer cette fraction d'échantillon liquide après l'étape de capture. Ce système permet également d'introduire les billes magnétiques fonctionnalisées au début et de les évacuer à la fin du traitement de l'échantillon liquide.

Concrètement, ce système de déplacement de fluide consiste de préférence en un système de régulation de pression (Fluigent) ou une pompe (53) telle qu'une pompe à piston, une pompe à membrane ou une pompe péristaltique.

Le système d'agitation permettant une dispersion homogène des billes est non invasif, c'est-à-dire qu'il ne nécessite pas l'introduction d'un accessoire d'agitation dans la chambre réactionnelle évitant ainsi le risque de contaminer l'échantillon liquide.

Il peut s'agir d'un système d'agitation des billes magnétiques fonctionnalisées par un champ magnétique mobile mis en œuvre par un ou plusieurs aimants en rotation ; par la mise en mouvement des billes en provoquant un aller-retour du contenu de la chambre réactionnelle à l'aide du système de déplacement de fluide ; ou encore par une agitation par ultrasons.

Le système d'agitation est de préférence une agitation par ultrasons (ondes élastiques dont la fréquence est comprise entre 15 kHz et quelques centaines de MHz) mise en œuvre par transmission des ultrasons par de l'eau dans un bain à ultrasons ou directement par un transducteur à ultrasons (Borthwick et al. (2005) Journal of microbiological methods 60, 207-216; Belgrader et al (1999) Analitical chemistry 71 (19), 4232-4236). Le bain à ultrasons a une puissance comprise entre 5 et 100 W/l, de préférence 40 W/l et une puissance effective comprise entre 50 et 400 W. Un bain à ultrason utilisable pour le dispositif selon l'invention est le laveur ultrason S-line de la société Fisher Scientific.

Le dispositif selon l'invention peut optionnellement comprendre un système d'agitation par ultrasons et un autre système d'agitation non invasif des billes magnétiques fonctionnalisées.

Le champ magnétique est produit par un aimant permanent ou un électroaimant.

A titre d'exemple non limitatif, on peut utiliser un aimant de dimensions L x l x p = 20 x l3 x l0 mm et ayant comme caractéristiques un grade néodyme fer bore (NdFeB) magnétisation N38 et un revêtement Nickel/Cuivre/Nickel.

Les caractéristiques des électroaimants sont par exemple les suivantes : électroaimants tirants 12Vcc 10 W et 1,8 mm de course. Lorsqu'un aimant permanent est utilisé, il doit pouvoir être positionné à la fois à proximité de la chambre réactionnelle pour attirer les billes magnétiques fonctionnalisées (position ON) et à une distance de la chambre réactionnelle suffisante pour qu'il n'exerce plus de force d'attraction sur les billes (position OFF) ; le passage entre ces deux positions peut être obtenu par différents moyens de déplacement de l'aimant permanent.

Lorsqu'un électroaimant est utilisé, il est positionné contre ou à proximité de la chambre réactionnelle et est soit en mode de fonctionnement (ON) afin d'attirer les billes magnétiques fonctionnalisées, soit inactif (OFF), il n'exerce alors plus de force d'attraction sur les billes magnétiques fonctionnalisées.

L'efficacité de l'attraction magnétique des billes magnétiques fonctionnalisées par l'aimant ou l' électroaimant peut être améliorée en ajoutant dans la chambre réactionnelle une mousse métallique telle que décrite dans le Brevet US 6,159,378, de préférence, les mousses métalliques de nickel. De façon usuelle, les billes magnétiques sont des microsphères possédant un diamètre allant du nanomètre à quelques micromètres ; de préférence, les billes magnétiques fonctionnalisées utilisées dans le dispositif selon l'invention ont un diamètre compris entre 0,5 et 10 μm, et de façon encore préférée, d' 1 μm de diamètre. On veillera à choisir des billes d'une dimension supérieure ou égale à celle de la ou des cibles biologiques ou chimiques.

Le caractère magnétique des billes permet de les contrôler dans un récipient à l'aide d'un aimant. Les billes ne possèdent pas de propriété magnétique en absence d'un champ magnétique extérieur, ce qui évite la formation d'agrégats et permet leur réutilisation. Tout type de billes magnétiques connu de l'homme du métier peut être utilisé dans le dispositif selon l'invention ; à ce titre, on peut citer les billes magnétiques fonctionnalisées commercialisées par les sociétés Dynal ou Chemicell.

On peut également citer les billes magnétiques fonctionnalisées pour la capture de cibles biologiques décrites dans le brevet US 4,628,037. Les billes magnétiques sont fonctionnalisées, c'est-à-dire que leur surface externe est recouverte de molécules ayant la propriété de se lier de façon plus ou moins spécifique avec une ou plusieurs cibles biologiques ou chimiques ; ces molécules sont appelées matériau de capture. La surface des billes recouverte par le matériau de capture constitue la surface de capture. De préférence, cette surface de capture est comprise entre 1.10 '3 et l0.10 "2 m 2 .

Différents types de liaisons entre le matériau de capture et les cibles peuvent intervenir : - les interactions électrostatiques : les cibles sont capturées en fonction des charges présentes à leur surface. Les surfaces de capture contiennent des groupements terminaux échangeurs d'anions ou de cations de force plus ou moins importante. Il peut s'agir de carboxyle, sulfone, phosphate, di-éthyl-amino-éthyl (DEAE), poly-lysine, poly- éthylène imine (PEI) et plus généralement de polymères chargés (Deponte et al. Anal. Bioanal. Chem. 2004 ; 379 : 419-426) ; les interactions hydrophobes : les cibles sont capturées selon la différence d'hydrophobicité de surfaces. Par exemple, les régions hydrophobes de cibles telles que protéines, peptides ou acides nucléiques en milieu aqueux se lient préférentiellement à un matériau de capture hydrophobe tel qu'une chaine hydrocarbonée de 1 (méthyl) à 18 (octadécyl) atomes de carbone ; les liaisons covalentes : des groupes terminaux fonctionnels greffés sur les billes permettent de lier de façon covalente les ligands cibles ; il s'agit notamment de groupe aminé, hydroxyle, thiol, polyglutaraldéhyde.... ; les liaisons d'affinité : les billes sont recouvertes de ligands permettant des liaisons hautement spécifiques et sélectives telles que des interactions entre un antigène et un anticorps, une hybridation entre deux fragments nucléotidiques, entre la biotine et la streptavidine... (Ergin et al. Microbial CeIl Factories 2007 ; 6 :18 ; Steingroewer et al. J. Magnetism Magnet. Material 2007 ; 31 1 :295-299 ; Aim et al. J. of Virology 2005 79(1) :622-625). Le choix du matériau de capture est fait en fonction de la ou des cible(s) biologique(s) ou chimique(s) recherchée(s).

Selon une variante du dispositif selon l'invention, les billes magnétiques sont fonctionnalisées avec deux ou plus matériaux de capture différents permettant la capture de deux ou plus de cibles. On utilise soit des billes magnétiques recouvertes par plusieurs matériaux de capture différents; soit plusieurs types de billes magnétiques, chaque type de billes étant recouvert d'un matériau de capture différent.

Les billes magnétiques fonctionnalisées sont introduites dans la chambre réactionnelle en quantité telle que le rapport entre la surface de capture sur le volume de l'échantillon est compris entre 0,2 et 200 m 2 /l, de préférence, entre 0,2 et 20 m 2 /l, de façon encore préférée, entr 0,5 et 10 m 2 /l et tout préférentiellement, entre 1 et 5 m 2 /l, par exemple 2,8 m 2 /l.

A titre d'exemple, dans le cas de billes de 1 μm de diamètre fonctionnalisées avec du PEI (Chemicell), on pourra utiliser un nombre de billes compris entre 9.10 et 9.10 représentant une surface de capture comprise entre 2,83.10 " m 2 et 2,83.10 "2 m 2 .

Le dispositif selon l'invention présente l'avantage de permettre le traitement d'échantillons liquides de grand volume, supérieur ou égal à 10 ml, de préférence à 50 ml et encore préférentiellement à 500 ml, tout en gardant une chambre réactionnelle de petite taille (au maximum de quelques millilitres) permettant ainsi de conserver les avantages d'une capture de cibles biologiques ou chimiques en petit volume, c'est-à-dire : un moindre encombrement et coût faible du dispositif grâce à sa petite taille ; - une plus grande facilité et vitesse de récupération des billes magnétiques ;

- une plus grande facilité de dispersion et de mélange des billes magnétiques ; une diminution du volume de réactifs nécessaires et du temps consacré au traitement des billes magnétiques après capture ; une augmentation de la sensibilité de détection des cibles ; - une forte concentration des cibles capturées.

Ce dispositif est également avantageux en ce qu'il offre un bon rapport surface de capture par rapport au volume de la chambre réactionnelle et un large éventail de matériaux de capture choisi en fonction des cibles biologiques ou chimiques recherchées ; enfin, les billes magnétiques fonctionnalisées peuvent être récupérées et réutilisées.

Le traitement automatisé d'échantillons liquides de grands volumes par le dispositif selon l'invention remplace avantageusement les techniques habituelles de traitement de ce type d'échantillons telles que la filtration ou l'ultrafiltration.

Ce dispositif permet ainsi de prélever une fraction d'échantillon susceptible de contenir des cibles biologiques ou chimiques, de capturer lesdites cibles et de concentrer afin de les traiter pour confirmer voire quantifier leur présence.

Ainsi automatisé, ce dispositif peut être positionné à l'endroit de l'échantillonnage afin qu'il réalise des prélèvements et analyses réguliers. Le dispositif selon l'invention peut être complété par un système de collecte d'échantillon liquide constitué d'un système fluidique de prélèvement de l'échantillon (61) tel qu'une pompe et d'un réservoir de stockage (62) de l'échantillon en amont de la chambre réactionnelle (Figure 2). Le système de collecte d'échantillon liquide est relié soit directement, soit via un ou plusieurs réservoirs intermédiaires, au système de déplacement de fluide permettant l'introduction d'une fraction de l'échantillon liquide dans la chambre réactionnelle (51).

La présente invention se rapporte encore à un procédé de capture de cibles biologiques ou chimiques susceptibles d'être présentes dans un échantillon liquide de volume V supérieur ou égal à 10 ml, de préférence à 50 ml et encore préférentiellement à 500 ml, à l'aide d'un dispositif selon l'invention comprenant les étapes de : a) prélèvement d'une fraction de volume v dudit échantillon liquide ; b) mise en contact de ladite fraction avec des billes magnétiques fonctionnalisées dans la chambre réactionnelle dudit dispositif où le champ magnétique est désactivé ; c) dispersion homogène des billes à l'aide du système d'agitation non invasif pendant une durée d'au moins 5 seconde, de préférence comprise entre 15 seconde et 10 minutes, de façon encore préférée, d'envi son 30 secondes ; d) capture des billes à l'aide du champ magnétique activé ; e) évacuation de ladite fraction ; f) renouvellement des étapes a) à e) un nombre de fois n tel que n est compris entre 1 et V/v, de préférence n = V/v.

L'automatisation du procédé selon l'invention est programmée et contrôlée par un système informatique approprié.

Le traitement des cibles biologiques ou chimiques capturées sur les billes magnétiques fonctionnalisées peut être réalisé dans la chambre réactionnelle du dispositif selon l'invention ou bien dans un réservoir relié au système de déplacement de fluide permettant l'évacuation du contenu de la chambre réactionnelle (52). Dans le cas de cibles biologiques, ce traitement consiste en :

- l'élution des cibles biologiques à l'aide d'un tampon d'élution que l'homme du métier en fonction de ladite cible puis

- l'analyse biologique ou biochimique des cibles ainsi éluées. L'analyse biologique ou biochimique peut par exemple consister en la culture sur milieux sélectifs des cibles biologiques éluées lorsqu'il s'agit de microorganismes et leur caractérisation ; ou encore la détection par anticorps des cibles biologiques... Selon une variante préférée, les cibles biologiques éluées sont lysées afin de libérer leurs acides nucléiques. Les méthodes de lyse sont largement connues de l'homme du métier, il peut s'agir d'une lyse chimique à l'aide d'un tampon de lyse contenant des détergents comme le dodécylsulfate de sodium (SDS), le dodécylsulfate de lithium (LiDS), le sarcosyl ou des agents chaotropiques tels que l' hydrochlorure de guanidium (GHCl), le thiocyanate de guanidium (GTC), l'iodure de sodium (NaI), le perchlorate ..., d'une lyse enzymatique à l'aide de la protéinase K ou du lysozyme... ou encore d'une lyse mécanique par exemple par couplage de l'effet des billes et des ultrasons ou par gradient thermique. Puis les acides nucléiques obtenus sont analysés, par exemple par PCR ou hybridation. Selon cette variante, une seconde étape de purification et de concentration des acides nucléiques obtenus peut également être mise en œuvre avec le dispositif selon l'invention comprenant des billes magnétiques fonctionnalisées à l'aide d'un matériau de capture d'acides nucléiques.

Dans le cas de cibles chimiques, le traitement consiste en : - l'élution des cibles chimiques à l'aide d'un tampon d'élution d'élution que l'homme du métier en fonction de ladite cible puis l'analyse des cibles récupérées par des techniques chimique classiques telles que la résonance magnétique nucléaire, la chromatographie, la spectroscopie UV ou IR, l' électrochimie... Lorsque les cibles sont de nature biochimique, la détection est réalisée par les techniques à la disposition de l'homme du métier qu'il choisit en fonction de la cible biochimique, par exemple, un couplage de la cible avec un antigène marqué radioactivement ou par fluorescence etc..

Ainsi, l'invention se rapporte aussi à un procédé de détection de cibles biologiques ou chimiques comprenant les étapes a) à f) du procédé de capture ci-avant caractérisé en ce qu'il comprend en outre les étapes : g) d'élution desdites cibles ; et h) de détection desdites cibles éluées à l'étape g). Lorsque le procédé de détection selon l'invention vise des cibles biologiques, l'étape h) peut consister en la lyse desdites cibles et en la détection des acides nucléiques libérés lors de la lyse.

Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions qui ressortiront de la description qui va suivre, qui se réfèrent à des exemples de mise en œuvre de la présente invention, ainsi qu'aux figures annexées dans lesquelles :

La Figure 1 est une représentation schématique du dispositif selon l'invention. La Figure 2 est une représentation schématique du dispositif selon l'invention comprenant en outre un système de collecte d'échantillon liquide.

La Figure 3 illustre le montage du dispositif selon l'invention utilisé dans l'exemple qui suit ; ledit dispositif comprend deux montages identiques en parallèle constitués chacun d'une chambre réactionnelle (1), les deux chambres réactionnelles sont positionnées dans un bain à ultrason (3) équipé d'un aimant (4), elles sont reliées, d'une part, à un récipient poubelle (7) via une pompe (53) et, d'autre part, à un réservoir (9) contenant l'échantillon, l'alimentation en échantillon des chambres réactionnelles se faisant par des électrovannes (8).

Les Figures 4 à 7 sont des histogrammes représentant et comparant la quantité d'unités génomiques identifiées dans des échantillons selon le procédé de l'invention (N) ou présentes initialement dans les échantillons (NO).

Exemple : capture de bactéries dans un échantillon d'eau de rivière

Instrumentation

Deux dispositifs identiques ont été disposés sur des voies parallèles (Figure 3).

La circulation des fluides est assurée par une pompe péristaltique Ismatec IPC-N reliée à des tubes flexibles en PFA d'un diamètre externe de 1,6 mm et d'un diamètre interne de 1 mm. Ces tubes flexibles font office de chambre réactionnelle dans laquelle sont stockées les billes magnétiques. Le contrôle des billes est réalisé par un aimant. La position de l'aimant est contrôlée par le bras d'un électroaimant ; dans sa position ON, l'aimant est en contact avec le flexible, dans la position OFF, il en est éloigné. La zone du flexible servant de chambre réactionnelle et où sont positionnées les billes est plongée dans un bain à ultrasons dont la fonction est de disperser les agrégats formés par les billes après leur capture dans le champ magnétique.

En aval, le tube flexible est relié à une vanne 6 voies (Upchurch V- 1471- DC) permettant de sélectionner le liquide en entrée.

Le contrôle de l'ensemble de ces composants est automatisé et réalisé à l'aide d'un logiciel LabView de la société Nation Instrument.

Principe de fonctionnement de l'instrumentation pour la capture de cibles sur un volume de 20 ml L'échantillon complet d'un volume V de 20 ml est stocké dans un réservoir.

Une quantité équivalente à un volume de 10 μl, soit 1,8.10 8 billes de 1 μm de diamètre sont introduites dans le tube flexible au niveau de l'aimant en position ON. Une fraction de volume v de 100 μl est prélevée dans l'échantillon avec la pompe.

Ce volume v est positionné dans le flexible au niveau des billes ; l'aimant est alors mis en position OFF ; les ultrasons sont allumés et permettent la dispersion des billes dans la fraction de volume v. Les ultrasons sont ensuite éteints ; l'échantillon est déplacé dans le tube flexible dans le but de remettre en suspension les billes éventuellement déposées sur la paroi par action des ultrasons.

Les billes sont laissées en contact avec l'échantillon pendant 45 secondes permettant la capture des cibles. L'aimant est alors positionné sur ON, les billes sont alors capturées par le champ magnétique et s'agrègent contre la paroi intérieure du flexible. L'échantillon est poussé par la pompe en direction d'une poubelle à une vitesse de 300 μl/min et une nouvelle fraction de volume v de l'échantillon est positionnée dans la chambre réactionnelle où se trouvent les billes. Ce cycle de capture est répété 50 à 100 fois.

Elution des cibles

Le système comportant plusieurs vannes, il est possible de sélectionner une nouvelle entrée reliée à un réservoir contenant le tampon d'élution (voire de lyse si nécessaire). Par action de la pompe, ce tampon est positionné au niveau de la zone de stockage des billes.

L'aimant étant en position OFF, les ultrasons sont appliqués pour assurer la dispersion des billes dans le tampon. Les cibles sont alors éluées de la surface des billes et éventuellement lysées.

L'aimant est ensuite mis en position ON ; les billes s'agrègent et sont retenues alors que l'échantillon de tampon d'élution et, éventuellement, de lyse comprenant les cibles est récupéré grâce à la pompe. Protocole détaillé Le principe de cette capture a été mis en œuvre sur deux échantillons liquides, l'un de 20 ml de tampon Tris-HCl 10 mM pH 8 et l'autre de 10 ml d'une eau de rivière (Rhône) prélevée le jour même, ces deux échantillons ont été dopés avec des cibles : des cellules d'Escherichia coli et de Bacillus subtilis à environ 10 6 unités génomiques (correspond à environ 10 6 bactéries). Les billes magnétiques utilisées sont des billes super paramagnétiques recouvertes d'une couche de polyéthylèneimine (SiMAG-PEI Chemicell) qui permet des interactions de type électrostatiques avec les cibles (cellules bactériennes) ; en effet, les bactéries sont globalement chargées négativement et le PEI est un échangeur fort d'anion. Le rapport surface de billes/volume de la fraction d'échantillon est de 2,8 m 2 /l. Pour prélever les 20 ml de Tris-HCl 1O mM pH8, il est nécessaire de réaliser 100 cycles de 100 μl sur les deux dispositifs montés en parallèle. Selon le même calcul, il faudra réaliser 50 cycles pour traiter les 10 ml d'eau de rivière.

Afin d'évaluer l'efficacité de ce système de capture, 100 μl des échantillons préparés sont additionnés de 10 6 unités génomiques et traités en un cycle afin d'obtenir une efficacité de capture de référence.

A la fin du cycle de capture, les billes sont récupérées dans 100 μl de Tris-HCl 1O mM. Puis l'extraction d'ADN est réalisée directement sur les billes : la lyse des cellules est réalisée à 37°C dans un tampon de lyse (5M de guanidine-HC, 20 mM de Tris pH 8, 1% sarcosyl). Après 10 minutes d'incubation, le mélange est placé deux minutes dans un bain à ultrasons à 37°C. Les billes sont regroupées à l'aide d'un aimant et le surnageant est récupéré et placé dans 4 fois son volume de solution guanidine HCl 3 M, Tris-HCl 20 mM, éthanol 80% (v/v) pH 4 ; l'ADN est alors capturé sur 2,5 μl de billes magnétiques fonctionnalisées avec du silanol (SiMAG-Silanol, Chemicell). Après deux rinçages avec une solution de NaCl 2 mM, Tris-HCl 10 mM, éthanol 75% (v/v), l'ADN purifié est élue dans 10 μl de Tris-HCl 1O mM, pH 8 après 2 minutes dans un bain à ultrasons.

Le protocole d'extraction et de purification d'ADN peut également être réalisé de façon automatique avec le dispositif instrumental ayant servi à l'étape précédente de capture.

La quantité d'ADN extraite (N) est déterminée par PCR quantitative et est exprimée en unité génomique. Pour cela, 5 μl de suspension d'ADN extrait sont mélangés à 5 μl des réactifs de PCR suivants : amorces 0,3 μM, GoId Taq polymerase 2,5 U, BSA (l,4 mg/ml), tampon IX (livré avec l'AmpliTaq Gold® DNA Polymerase d'Applied Biosystems), MgCl 2 3 M, dNTP 200 μM, bétaïne 0,65 mM.

Les amorces utilisées ont pour séquence : Escheήchia coli (16S ribosomal RNA gène) CoIiTQF Forward 5'-CATGCCGCGTGTATGAAGAA coliTQR Reverse 5'-CGGGTAACGTCAATGAGCAAA

Sonde 5'-TATTAACTTTACTCCCTTCCTCCCCGCTGAA

Bacillus subtilis (16S ribosomal RNA gène)

BacFbis Forward bis 5'-ACGTGGGTAACCTGCCTGTAAG

BacRbis Reverse bis 5'-TAGCCGAAGCCACCTTTTATGT Sonde 5'-TACCGGATGGTTGTTTGAACCGCATGGT

Le nombre d'unités génomiques présentes initialement dans l'échantillon (NO) est déterminé par PCR en mélangeant 5 μl de l'échantillon liquide de départ préalablement passé aux ultrasons pendant 10 minutes avec 5 μl du mélange de réactifs de PCR décrit ci-avant. Résultats détection des cibles dans les échantillons de tampon Tris-HCl

Les résultats obtenus (Figures 4 et 5) montrent que les écarts observés entre la quantité d'ADN capturée par le dispositif selon l'invention (N) et la quantité d'ADN présente dans l'échantillon de départ correspondant (NO) sont inférieurs à 0,41oglO, ce qui signifie que la quasi-totalité des cellules initialement présentes ont été capturées. détection des cibles dans les échantillons d'eau de rivière De la même façon, les résultats obtenus (Figure 6 et 7) montrent que les écarts observés entre la quantité d'ADN capturée par le dispositif selon l'invention (N) et la quantité d'ADN présente dans l'échantillon de départ correspondant (NO) sont inférieurs à 0,21oglO, ce qui montre là encore que la quasi-totalité des cellules initialement présentes ont été capturées.