Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE AND METHOD FOR PRODUCING DEFINED PROPERTIES OF GRADIENT LAYERS IN A SYSTEM OF MULTILAYERED COATINGS IN SPUTTERING INSTALLATIONS
Document Type and Number:
WIPO Patent Application WO/2018/072774
Kind Code:
A1
Abstract:
Device and method for producing defined properties of gradient layers in a system of multilayered coatings in sputtering installations with the following features: a) a pair of cathodes arranged in a common process chamber and consisting of a first cathode body and a second cathode body is supplied with direct current by means of a common power supply, wherein, before entering the process chamber, the direct current is converted into a series of pulses comprising alternating positive and negative pulses with interpulse periods in between, b) an arrangement for controlling the length of the individual pulses and the duration of the respective interpulse periods.

Inventors:
FIUKOWSKI JOERG (DE)
KLEIDEITER GERD (DE)
Application Number:
PCT/DE2017/000348
Publication Date:
April 26, 2018
Filing Date:
October 18, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GRENZEBACH MASCHB GMBH (DE)
International Classes:
C23C14/34; C23C14/35; H01J37/34
Domestic Patent References:
WO2013083238A12013-06-13
Foreign References:
DE102012109691A12014-02-06
US20140231243A12014-08-21
US20110038187A12011-02-17
US20070181417A12007-08-09
US20150021167A12015-01-22
DE102004014323A12005-10-20
DE10356357B42010-05-06
Download PDF:
Claims:
Patentansprüche

Anspruch 1 :

Vorrichtung zur Herstellung definierter Eigenschaften von Gradientenschichten in einem System mehrlagiger Beschichtungen bei Sputter - Anlagen mit den folgenden Merkmalen: a) ein in einem gemeinsamen Prozessraum angeordnetes Kathodenpaar, bestehend aus einem ersten Kathodenkörper und einem zweiten Kathodenkörper, wird mittels einer gemeinsamen Stromversorgung mit Gleichstrom versorgt, wobei der Gleichstrom vor dem Eintritt in den Prozessraum in eine Impulsfolge mit abwechselnd positiven und negativen Impulsen mit zwischenliegenden Impulspausen umgewandelt wird, b) eine Anordnung zur Steuerung der Länge der einzelnen Impulse und der Dauer der jeweiligen Impulspausen,

c) eine Anordnung zur Justierung der beiden Kathoden in der Weise, dass sich ein gemeinsamer Abscheidebereich auf dem zu beschichtenden Substrat ergibt.

d) ein gemeinsames Prozessgas - System das die Grundversorgung des Prozessgases liefert, wobei jedem Kathoden körper ein separates symmetrisch angeordnetes segmentiertes Prozessgassystem zugeordnet ist.

Anspruch 2:

Vorrichtung nach Anspruch 1 ,

dadurch gekennzeichnet,

dass der erste Kathodenkörper mit einem anderen Targetmaterial bestückt ist als der zweite Kathodenkörper.

Anspruch 3:

Vorrichtung nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

dass bei der Verwendung von Kathodenkörpern in der Form von Rohren die Orientierung der Magnetfelder der einzelnen Rohrkathoden gesteuert werden kann. Anspruch 4;

Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

dass über dem Kathodenpaar jeweils mindestens eine, bzw. mehrere Turbomolekular - Pumpen angeordnet sind.

Anspruch 5:

Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

dass die Kathodenanordnungen aus Planarkathoden und Rohrkathoden bestehen.

Anspruch 6:

Verfahren zur Herstellung definierter Eigenschaften von

Gradientenschichten in einem System mehrlagiger Beschichtungen bei Sputter - Anlagen mit den folgenden Verfahrensmerkmalen: a) in der Anlage für das jeweilige Beschichtungsverfahren wird der Gleichstrom oder Mittelfrequenz - Generator (10) ersetzt durch einen bipolaren Pulsgenerator (21 ), wobei bis zu 30% Prozessenergie eingespart wird,

b) der Ausgang der den positiven Puls liefert wird, jeweils entsprechend der Beschichtungsaufgabe mit einer der beiden Kathoden verbunden,

c) der Ausgang der den negativen Puls liefert wird, jeweils entsprechend der Beschichtungsaufgabe mit der anderen der beiden Kathoden verbunden,

d) die Steuerung der Dauer der jeweiligen Pulse erfolgt entsprechend der betreffenden Beschichtungsaufgabe.

Anspruch 7:

Verfahren nach Anspruch 6,

dadurch gekennzeichnet,

dass die Pausen zwischen den einzelnen Pulsen den Sputter - Prozess unterbrechen. Anspruch 8:

Computerprogramm mit einem Programmcode zur Durchführung der Verfahrensschritte nach einem der Ansprüche 6 oder 7, wenn das Programm in einem Computer ausgeführt wird.

Anspruch 9.

Maschinenlesbarer Träger mit dem Programmcode eines Computerprogramms zur Durchführung des Verfahrens nach einem der Ansprüche 6 oder7, wenn das Programm in einem Computer ausgeführt wird.

Description:
Vorrichtung und Verfahren zur Herstellung definierter Eigenschaften von Gradientenschichten in einem System mehrlagiger Beschichtungen bei Sputter - Anlagen.

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung definierter Eigenschaften von Gradientenschichten in einem System mehrlagiger

Beschichtungen bei Sputter - Anlagen.

Die magnetfeldunterstützte Kathodenzerstäubung ( Magnetron Sputtering ) hat Eingang gefunden in viele Bereiche der modernen Oberflächentechnik.

Ausgehend von Anwendungen in der Mikroelektronik ist die magnetfeldunterstützte Kathodenzerstäubung heute als industrielles Beschichtungsverfahren für

Architekturglas, Flachbildschirme, Brillengläser, Bandmaterialien, Werkzeug, dekorative Gegenstände und funktionelle Bauteile etabliert. Dabei werden funktionelle Bauteile oft mit Korrosionsschutz oder Hartstoffschichten aus Nitriden wie TiN, TaN, VN, ZrN oder Karbonitriden wie TiCN in Ein - oder Mehrlagentechnik versehen. Zunehmend finden auch superharte Schichten auf Basis von Nano - Mehrlagenschichten mit Härtewerten bis zu 50 GPa Anwendung. In der

Automobilindustrie sind reibungs - und verschleißmindernde Metall - Kohlestoff Schichten bestens bewährt.

Die größten Vakuum - Beschichtungsanlagen, und damit oftmals auch die Anlagen mit dem höchsten Energiebedarf, sind die typischen horizontalen In-Line-Anlagen für die Architekturglas - Beschichtung.

Aus der DE 103 56 357 B4 ist zum Stand der Technik ein wärmebehandelbares Sonnen - und Wärmeschutzschichtsystem und ein Verfahren zu dessen Herstellung bekannt. Dieser Druckschrift liegt die Aufgabe zugrunde, ein mittels

Vakuumbeschichtung auf Glas aufbringbares Sonnenschutzsystem und ein

Verfahren zu dessen Herstellung darzustellen, welches variabel wärmebehandelbar ist und dabei unter Beibehaltung der chemischen und mechanischen Beständigkeit keine sichtbare Farbverschiebung aufweist.

Der Anspruch 1 betrifft hierbei ein wärmebehandelbares und mittels

Vakuumbeschichtung auf Glas aufbringbares Sonnen - und Wärmeschutzsystem welches zumindest eine Metallschichtanordnung sowie jeweils eine unterhalb davon positionierte, angrenzende untere und eine oberhalb davon positionierte, obere dielektrische Schichtanordnung aufweist. Gekennzeichnet ist dieses System dadurch, dass sowohl zumindest eine Metallschichtanordnung (4) als auch zumindest eine obere (2) und zumindest eine untere (3), dielektrische

Schichtanordnung als Mehrschichtanordnung ausgeführt sind, in welcher innerhalb der Metallschichtanordnung (4) eine aus zumindest einer Einzelschicht bestehende Metallschicht (8) von einer oberen (9) und einer unteren (7) Zwischenschicht aus dem unterstöchiometrischen nitridierten oder oxidierten Metall der Metallschicht (8) eingebettet ist und in welcher sowohl die untere (3) als auch die obere (2)

dielektrische Schichtanordnung eine stöchiometrische Schicht (5,11) eines Metalloder Halbleiteroxids oder Metall- oder Halbleiternitrids oder eines Nitrids, Oxids oder Oxynitrids von Silizium aufweisen, wobei innerhalb der dielektrischen

Schichtanordnung (2,3) die Schichten derart posit9iionert sind, dass im Vergleich zur benachbarten Schicht die Schichtmit dem höheren Sauerstoff- oder Stickstoffdefizit des Metall- oder Halbleiteroxids, des Metall- oder Halbleiternitrids oder des Nitrids, Oxids oder Oxynitrids von Silizium stets auf der der Metallschicht (8) zugewandten Seite liegt.

Aus der WO 2013 / 083238 A1 ist ein reaktiver Sputterprozess bekannt. Dieser betrifft nach den Angaben im Anspruch 1 ein Verfahren zum reaktiven Sputtern bei dem mittels lonenbeschuss Material aus der Oberfläche eines ersten Targets herausgeschlagen wird und in die Gasphase übergeht, wobei an das Target pulsweise negative Spannung dergestalt angelegt wird dass es an der

Targetoberfläche zu einem elektrischen Strom mit einer Stromdichte von größer als 0,5 A/cm 2 kommt so dass das in die Gasphase übergehende Material zumindest teiweise ionisiert ist und bei dem ein Reaktivgasfluss aufgebaut wird und Reaktivgas mit dem Material der Targetoberfläche reagiert, dadurch gekennzeichnet, dass die Dauer eines Spannungspulses so gewählt wird, das während des Spannungspulses die Targetoberfläche an der oder den Stellen an denen der Strom fließt die meiste Zeit zumindest teilweise mit einer Verbindung aus Reaktivgas und Targetmaterial bedeckt ist und diese Bedeckung am Ende des Spannungspulses geringer ist als am Anfang des Spannungspulses und somit die Targetoberfläche am Ende des

Spannungspulses in einem zweiten Zwischenzustand ist.

Bei diesem bekannten Verfahren ist die Leistungsdichte sehr hoch, was die

Anforderungen an die Kühlung relativ stark erhöht. Außerdem ist die Variabilität des Gradienten einer eventuellen Schutzschicht sehr eingeschränkt. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren anzugeben mit denen der Aufbau mehrlagiger Beschichtungssysteme bei Sputter - Anlagen leicht und energiesparend möglich ist, wobei die Variabilität des Gradienten einer Schutzschicht auf einfache Weise zu erreichen ist.

Diese Aufgabe wird durch die Vorrichtung nach Anspruch 1 ,

Vorrichtung zur Herstellung definierter Eigenschaften von Gradientenschichten in einem System mehrlagiger Beschichtungen bei Sputter - Anlagen mit den folgenden Merkmalen:

a) ein in einem gemeinsamen Prozessraum angeordnetes Kathodenpaar, bestehend aus einem ersten Kathodenkörper und einem zweiten Kathodenkörper, wird mittels einer gemeinsamen Stromversorgung mit Gleichstrom versorgt, wobei der Gleichstrom vor dem Eintritt in den Prozessraum in eine Impulsfolge mit abwechselnd positiven und negativen Impulsen mit zwischenliegenden Impulspausen umgewandelt wird, b) eine Anordnung zur Steuerung der Länge der einzelnen Impulse und der Dauer der jeweiligen Impulspausen,

c) eine Anordnung zur Justierung der beiden Kathoden in der Weise, dass sich ein gemeinsamer Abscheidebereich auf dem zu beschichtenden Substrat ergibt.

d) ein gemeinsames Prozessgas - System das die Grundversorgung des Prozessgases liefert, wobei jedem Kathodenkörper ein separates symmetrisch angeordnetes segmentiertes Prozessgassystem zugeordnet ist.

Beansprucht wird außer dem ,

dass der erste Kathodenkörper mit einem anderen Targetmaterial bestückt ist als der zweite Kathodenkörper.

Ebenfalls beansprucht wird ,

dass bei der Verwendung von Kathodenkörpern in der Form von Rohren die Orientierung der Magnetfelder der einzelnen Rohrkathoden gesteuert werden kann.

Und beansprucht wird, dass über dem Kathodenpaar jeweils mindestens eine, bzw. mehrere Turbomolekular - Pumpen angeordnet sind.

Und es wird beansprucht

dass die Kathodenanordnungen aus Planarkathoden und Rohrkathoden bestehen. Bzw. das Verfahren nach Anspruch 6 gelöst.

Verfahren zur Herstellung definierter Eigenschaften von

Gradientenschichten in einem System mehrlagiger Beschichtungen bei Sputter - Anlagen mit den folgenden Verfahrensmerkmalen: a) in der Anlage für das jeweilige Beschichtungsverfahren wird der Gleichstrom oder Mittelfrequenz - Generator (10) ersetzt durch einen bipolaren Pulsgenerator (21 ), wobei bis zu 30% Prozessenergie eingespart wird,

b) der Ausgang der den positiven Puls liefert wird, jeweils entsprechend der Besch ichtungsaufgabe mit einer der beiden Kathoden verbunden,

c) der Ausgang der den negativen Puls liefert wird, jeweils entsprechend der Beschichtungsaufgabe mit der anderen der beiden Kathoden verbunden,

d) die Steuerung der Dauer der jeweiligen Pulse erfolgt entsprechend der betreffenden Beschichtungsaufgabe.

Beansprucht wird außer dem,

dass die Pausen zwischen den einzelnen Pulsen den Sputter - Prozess unterbrechen. Und ein Computerprogramm mit einem Programmcode zur Durchführung der Verfahrensschritte , wenn das Programm in einem Computer ausgeführt wird. Und ein

Maschinenlesbarer Träger mit dem Programmcode eines Computerprogramms zur Durchführung des Verfahrens nach einem der Ansprüche 6 oder7, wenn das Programm in einem Computer ausgeführt wird.

Die erfindungsgemäße Vorrichtung wird im Folgenden näher beschrieben.

Es zeigen im Einzelnen:

Fig.1 : den prinzipiellen Aufbau eines Schichtstapels

Fig.2 :eine Darstellung einer herkömmlichen Beschichtungsstation

Fig.3: die Darstellung einer erfindungsgemäßen Beschichtungsstation Fig.4: den typischen Signalverlauf eines erfindungsgemäß verwendeten Pulsgenerators

Fig.5: einige Beispiele über Ersatzmöglichkeiten herkömmlicher Anlagen

Fig.1 zeigt den prinzipiellen Aufbau eines Schichtstapels einer Niedrigenergie - Beschichtung eines Substrats, zum Beispiel einer Glasfläche als eine einfache Silberschicht ( Single Low - E ) für die verbesserte Wärmedämmung in Fenstern. Diese Beschichtungen werden typischerweise nicht nur auf Glassubstraten

aufgebracht sondern auch auf Folien. Neben den typischen Schichtstapeln die nur eine reflektierende Einzelschicht ( Silberschicht, meist aus Ag ) enthalten, gibt es auch qualitativ hochwertige Mehrfachsysteme die zwei, drei oder mehrere

reflektierende Einzelschichten ( Silberschichten, Ag ) enthalten ( sog. Double - Low - E oder Triple - Low - E). Diese Beschichtungen, sowie deren temperbare

Beschichtungen werden mittlerweile mit graduierten asymmetrischen Metall - Schutzschichten ( sogenannte Blocker ) ausgestattet..

Bei diesen Schichtstapeln erhöht sich dann entsprechend der Anzahl der

Schutzschichten die Anzahl der dielektrischen Schichten. Auf das eigentliche

Substrat, beispielsweise eine zu beschichtende Glasfläche 6, folgt eine dielektrische Grundschicht 5. Diese Grundschicht 5 kann aus mehreren dielektrischen Materialien zusammengesetzt sein. Auf diese Grundschicht wird eine untere Blockierschicht 4 aufgebracht. Auf diese Blockierschicht 4 wird eine metallische Funktionsschicht 3, beispielsweise aus Silber, Golf oder Kupfer aufgebracht, worauf eine obere

Blockierschicht 2 folgt. Den Abschluss bildet meist eine dielektrische Außenschicht 1. Diese Außenschicht 1 kann aus mehreren dielektrischen Materialien zusammengesetzt sein. Optional kann auf die dielektrische Außenschicht 1 eine abschließende Schutzschicht ( Top - Coat ) aufgebracht werden.

Um die angestrebten Eigenschaften der metallischen Funktionsschicht 3 zu erreichen, bzw. zu sichern, müssen die Blockierschichten 2 und 4 weitestgehend metallisch und wenig reaktiv im Kontakt mit der Funktionsschicht 3 sein. Das wird durch die Zugabe von Sauerstoff und / oder Stickstoff erreicht.

In der Regel wird hierbei als Metall Silber verwendet. Die einzelnen

Beschichtungsstationen sind symmetrisch aufgebaut. Der Schichtstapel enthält immer eine Metallschicht die geschützt werden muss vor den unmittelbar folgenden reaktiven Abscheidungsprozessen und für den anschließenden Temperprozess. Die Blockierschichten 2 und 4 erhöhen darüber hinaus die mechanische und chemische Stabilität ( Haftung und Korrosion ) des Schichtstapels. Auch dafür haben sich gradierte Schutzschichten als vorteilhaft erwiesen. Das heißt, die Struktur (

Stöchiometrie ) der jeweiligen Schutzschicht ändert sich mehr oder weniger mit der Dicke der Schutzschicht.

Fig.2 zeigt eine Darstellung des Aufbaus einer herkömmlichen Beschichtungsstation in Kompartmentbauweise.

Als Basis dient hier ein Kessel 17 der mit einem Kesseldeckel 11 versehen ist und in dem auf Transportrollen 13 das jeweilige Substrat 12 befördert wird. In der ersten und in der letzten Kammer gleitet das Substrat 12 in einem, von einem Tunneldeckel 7 abgedeckten, verringerten Raum. In der mittleren Kammer sind am Kesseldeckel ( Kathodendeckel ) 11 eine linke Kathode 18 und eine rechte Kathode 16 an jeweils einem Lagerblock 8 , hier als Rohrkathode ausgeführt, angebracht. Weiter sind in dieser Kammer der linke Gaseinlasskanal 19 und der rechte Gaseinlasskanal 15, sowie die linke Spritzblende 20 ( Sputterblende ) und die rechte Spritzblende 14 ( Sputterblende ) als Sputterprozessbereichs - Abschirmung ( Maske ) zu sehen. Die beiden Kathoden (Dual - Kathode) werden von einer Gleichstromquelle 9 mit Energie versorgt. Dabei liefert ein typischer MF - Generator 10 einen sinusförmigen Wechselstrom mit einer Frequenz im Bereich von 10 kHz bis etwa 100 kHz.

Fig.3 zeigt die Darstellung des Aufbaus der Beschichtungsstation für den

erfindungsgemäßen Sputter - Vorgang.

Die Anlage nach der Fig.3 entspricht in der rein mechanischen Ausstattung der Anlage wie sie in der Fig.2 beschrieben wurde. Hier wurden deshalb lediglich der linke Gaseinlasskanal 19, der rechte Gaseinlasskanal 15 und die linke Kathode 18 und die rechte Kathode 16 ( Rohrkathode ) bezeichnet.

Die Gleichstromquelle 9 ist ebenfalls typisch für viele Sputterprozesse und wird z.B. für das Abscheiden der IR - reflektierenden Funktionsschicht ( Ag) an

Einzelkathoden genutzt.

Der Unterschied zu dem in der Fig.2 dargestellten herkömmlichen Sputter - Vorgang liegt darin, dass der von einer Gleichstromquelle 9 gelieferte Gleichstrom von einem Pulsgenerator 21 in einen so genannten bi - polaren Puls verwandelt wird, wie er in der Fig.4 beschrieben wird.

Fig.4 zeigt den typischen Signalverlauf eines erfindungsgemäß verwendeten bi - polaren Pulsgenerators.

Ein solcher Pulsgenerator 21 ist in der Lage in einer Pulsperiode zwei verschiedene pulsartige Spannungsverläufe zu erzeugen und diese jeweils auf eine der beiden Kathoden zu schicken. Hierbei kann die Pulsbreite unabhängig voneinander in der Breite variiert werden. Das bedeutet, dass mit dem erfindungsgemäßen Verfahren die Beschichtungs - Energie während einer Pulsperiode nach Belieben auf die beiden Kathoden 18 und 16 verteilt werden kann. Die von der Gleichstromquelle 9 gelieferte Energie kann somit auf beide Kathoden im Bereich zwischen 5% und 95% verteilt werden.

In der Fig.4 ist beispielhaft der linke ( positive ) Puls der linken Kathode 18 und der rechte ( negative ) Puls der rechten Kathode 16 zugeordnet, wobei die jeweilige Pulsbreite im Wesentlichen dem jeweiligen Energieanteil der auf beide Kathoden gelieferten Gesamtenergie einer Pulsperiode entspricht.

Eine Pulsperiode ist in der Fig.4 mit 23 bezeichnet, wobei hier auch ersichtlich ist, dass in den Pulspausen auf keine der beiden Kathoden Energie geliefert wird. Eine solche Pulspause ist in der Fig.4 mit Leerlauf 22 ( Time off ) bezeichnet.

Die von der Gleichstromquelle 9 gelieferte Spannung 24 kann bis zu 1000 Volt und mehr betragen, so dass sich die Spannungshöhe jedes Pulses im Bereich zwischen U= -1000 V und U= + 1000 V ergibt.

Mit der beschriebenen Vorrichtung ist es nicht nur möglich gradierte Schichten in nahezu beliebiger Abstufung zu erzeugen, sondern auch stark strukturierte

Schichtaufbauten herzustellen ohne die Beschichtungsanlage in ihrem generellen Aufbau zu verändern.

Während es bei herkömmlichen Anlagen für die Erzeugung gradierter Schichten notwendig ist, dass die beiden Gaseinlässe 19 und 15 asymmetrisch betrieben werden, das heißt, dass beide Gaseinlässe mit unterschiedlichen Gaszufuhren betrieben werden, was die Qualität der Beschichtung und die Regelbarkeit beeinträchtigt, wird die Art und die Dicke der Bereiche der zusammengesetzten, ineinander verlaufenden. ( gradierten ) Beschichtung erfindungsgemäß über den Pulsgenerator gesteuert. Bei herkömmlichen Beschichtungsanlagen sind zur Erzeugung gradierter Schichten mehrere Beschichtungsstationen erforderlich. Außerdem ist die Variabilität des Gradienten extrem eingeschränkt und eine Veränderung von Einstellungen erfordert meist den Umbau der gesamten Anlage. Die erfindungsgemäße bi - polare

Pulssteuerung macht all dies nicht nur überflüssig, sondern erweitert auch die Möglichkeiten der gesamten Beschichtungstechnik.

Die Applikation der Pulssteuerung für eine Gradientenschicht erlaubt es auch sensible Leistungsbereiche ( Niedrigenergieeintrag auf die Funktionsschicht ) mit einem Gradienten der oberen Blockerschicht auszuführen.

Damit kann man die Beeinträchtigung der Eigenschaften der Funktionsschicht durch zu hohen Energieeintrag vermeiden. Das heißt, die Anlage kann bis zu 30%

Prozessenergie einsparen. Auch wird die Anlage im Aufbau vereinfacht und spart somit Herstellungs - und Energiekosten. Durch die Energieeffizienz wird der C02 - Ausstoß reduziert.

Fig.5 zeigt einige Beispiele über Ersatzmöglichkeiten herkömmlicher Anlagen.

So ist in der Fig. 5a eine herkömmliche Anlage für Beschichtungen mit einer

Mittelfrequenz ersetzt durch eine Beschichtungsanlage mit bi - polarer

Impulssteuerung Die duale Rotationskathode ( Dual Magnetron ) mit Magnetbar 25 entspricht der herkömmlichen Form in allgemeiner Anwendungen der Fig.5b ist eine herkömmliche Anlage, die mittels zweier Gleichstromquellen betrieben wird, ersetzt durch eine Beschichtungsanlage mit bi - polarer Impulssteuerung.

In der Fig.5c ist eine herkömmliche Anlage, die mittels zweier separater

Gleichstromquellen betrieben wird, ersetzt durch eine Beschichtungsanlage mit jeweils einer separaten bi - polaren Impulssteuerung.

Die Fig. 5d zeigt eine Kombination von einer Planarkathode 26 und einer

Rohrkathode 16. So können die Darstellungen der Fig.5a, Fig.5b, und Fig.5c auch mit Planarkathoden 26 und / oder mit Kombinationen in der, in der Fig. 5c gezeigten, Variante ausgestattet werden. Über den Kathoden können auch je nach Prozess , zur Effizienzsteigerung ( aus Gründen der Übersichtlichkeit hier nicht näher bezeichnet) , Turbomolekular-Pumpen angeordnet sein. Bezugszeichenliste Dielektrische Außenschicht

äußere Blockierschicht

Silberschicht (Gold oder Kupfer)

Untere Blockierschicht

dielektrische Grundschicht (Innenschicht )

Substrat, zum Beispiel Glas

Tunneldeckel

Kathoden - Lagerbock

DC - Quelle

MF - Generator ( MF = Mittelfrequenz )

Kesseldeckel

Substrat

Transportrollen

rechtes Spritzblech, Sputter - Bereichsabschirmung rechter Gaseinlass

rechte Kathode

Kessel, Wanne

linke Kathode

linker Gaseinlass

linke Spritzblende

Pulsgenerator

Leerlauf (time off )

eine Periode, 2 Frequenzen

Spannung (1000 Volt

Magnetbar