Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE AND METHOD FOR SEPARATING A GAS MIXTURE
Document Type and Number:
WIPO Patent Application WO/2010/141963
Kind Code:
A1
Abstract:
The invention relates to a device for separating a gas mixture into product gas and offgas by way of gas permeation, comprising at least two membrane units (1) and (2) and a condenser (3) connected upstream of the first membrane unit (1), which membrane units (1) and (2) have a gas inlet (1a, 2a), a retentate outlet (1b, 2b) and a permeate outlet (1c, 2c), wherein the retentate outlet (1b) of the first membrane unit (1) is connected to the gas inlet (2a) of the second membrane unit (2), the permeate outlet (2c) of the second membrane unit (2) is connected on the intake side to the condenser (3) or the gas supply leading into the condenser, and the condenser (3) is connected to the gas inlet (1a) of the first membrane unit (1), the connection in each case being by way of lines, product gas is obtained via the permeate outlet (2a) and offgas via the retentate outlet (1c), wherein the permeate outlet (4c) of an upstream membrane unit (1) is connected to the gas supply of the condenser (3) by way of lines, wherein at least one further membrane unit (5) is connected upstream of the membrane unit (4) by way of a line connection of the retentate outlet (5b) of the further membrane unit (5) to the gas inlet (4a) of the membrane unit (4), and additional product gas is obtained via the retentate outlet (4b) and additional offgas is obtained via the permeate outlet (5c). The present invention further relates to such a method.

Inventors:
SZIVACZ JOHANNES (AT)
HARASEK MICHAEL (AT)
Application Number:
PCT/AT2010/000117
Publication Date:
December 16, 2010
Filing Date:
April 16, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AXIOM ANGEWANDTE PROZESSTECHNIK GES M B H (AT)
SZIVACZ JOHANNES (AT)
HARASEK MICHAEL (AT)
International Classes:
B01D53/22; C10L3/10
Domestic Patent References:
WO1999006137A11999-02-11
Foreign References:
US4130403A1978-12-19
FR2917305A12008-12-19
US3208197A1965-09-28
US5064446A1991-11-12
EP0110858A11984-06-13
DE102004007548A12005-09-01
EP0329962A21989-08-30
US5032148A1991-07-16
GB2005152A1979-04-19
US6572678B12003-06-03
Other References:
AGRAWAL R ET AL: "Gas separation membrane cascades II. Two-compressor cascades", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM, NL LNKD- DOI:10.1016/0376-7388(95)00273-1, vol. 112, no. 2, 17 April 1996 (1996-04-17), pages 129 - 146, XP004041673, ISSN: 0376-7388
Attorney, Agent or Firm:
SONN & PARTNER (AT)
Download PDF:
Claims:
P a t e n t a n s p r ü c h e:

1. Vorrichtung zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation mit mindestens zwei Membranein- heiteη (1) und (2) und einem der ersten Membraneinheit (1) vorgeschalteten Verdichter (3), welche Membraneinheiten (1) und (2) einen Gaseingang (Ia, 2a), einen Retentatausgang (Ib, 2b) und einen Permeatausgang (Ic, 2c) aufweisen, wobei der Retentatausgang (Ib) der ersten Membraneinheit (1) mit dem Gaseingang (2a) der zweiten Membraneinheit (2), der Permeatausgang (2c) der zweiten Membraneinheit (2) ansaugseitig mit dem Verdichter (3) bzw. der in den Verdichter führenden Gaszufuhr und der Verdichter (3) mit dem Gaseingang (Ia) der ersten Membraneinheit (1) leitungsmäßig verbunden ist, Produktgas über Permeatausgang (2b) und Offgas über Retentatausgang (Ic) erhalten wird, dadurch gekennzeichnet, dass der Permeatausgang (4c) einer vorgeschalteten Membraneinheit (4) mit der Gaszufuhr des Verdichters (3) leitungsmäßig verbunden ist, wobei der Membraneinheit (4) noch mindestens eine weitere Membraneinheit (5) durch leitungsmäßige Verbindung des Retentatausganges (5b) der weiteren Membraneinheit (5) mit dem Gaseingang (4a) der Membraneinheit (4) vorgeschaltet ist und zusätzliches Produktgas über Retentatausgang (4b) und zusätzliches Offgas über Permeatausgang (5c) erhalten wird.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Retentatausgang (4b) der Membraneinheit (4) mit dem Retentatausgang (2b) der Membraneinheit (2) zum gemeinsamen Abzug von Produktgas leitungsmäßig verbunden ist.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Permeatausgang (5c) der Membraneinheit (5) mit dem Permeatausgang (Ic) der Membraneinheit (1) zum gemeinsamen Abzug von Offgas leitungsmäßig verbunden ist.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dem Gaseingang (5a) der Membraneinheit (5) ebenfalls ein Verdichter vorgeschaltet ist.

5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Membraneinheiten (1) und (2) sowie die beiden Membraneinheiten (4) und (5) jeweils durch eine Membraneinheit (6) bzw. (7) mit einem Gaseingang (6a) bzw. (7a), einem Retentataus- gang (6b) bzw. (7b) und zwei Permeatausgängen (6c, 6c') bzw.

(7c, 7c') gebildet werden, wobei der Permeatausgang (6c') der Membraneinheit (6) ansaugseitig mit dem Verdichter (3) bzw. der in den Verdichter führenden Gaszufuhr und der Verdichter (3) mit dem Gaseingang (6a) der Membraneinheit (6) leitungsmäßig verbunden ist, Produktgas über Retentatausgang (6b) und Offgas über Permeatausgang (6c) erhalten wird, die Gaszufuhr des Verdichters

(3) mit dem Permeatausgang (7c') der vorgeschalteten Membraneinheit (7) leitungsmäßig verbunden ist, und zusätzliches Produktgas über Retentatausgang (7b) sowie zusätzliches Offgas über Permeatausgang (7c) erhalten wird.

6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Permeaträume der Membraneinheiten (6) und (7) jeweils im Bereich zwischen den Permeatausgängen (6c, 6c') und (7c, 7c') durch eine Wand (6d) und (7d) abgetrennt sind.

7. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass der Retentatausgang (7b) der Membraneinheit (7) mit dem Retentatausgang (6b) der Membraneinheit (6) zum gemeinsamen Abzug von Produktgas leitungsmäßig verbunden ist.

8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Permeatausgang (7c) der Membraneinheit (7) mit dem Permeatausgang (6c) der Membraneinheit (6) zum gemeinsamen Abzug von Offgas leitungsmäßig verbunden ist.

9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass dem Gaseingang (7a) der Membraneinheit (7) ebenfalls ein Verdichter vorgeschaltet ist.

10. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 9 zur Trennung eines hauptsächlich aus CH4/CO2 bestehenden Gasgemisches in CH4 als Produktgas und CO2 als Offgas.

11. Verfahren zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation, wobei das Retentat einer ers- ten Membraneinheit (1) als Feedgas einer zweiten Membraneinheit (2) verwendet wird, das Permeat der zweiten Membraneinheit (2) dem druckbeaufschlagten Feedgas der ersten Membraneinheit (1) beigemischt wird, das Retentat der zweiten Membraneinheit (2) als Produktgas und das Permeat der ersten Membraneinheit (1) als Offgas abgezogen wird, dadurch gekennzeichnet, dass als Feedgas der ersten Membraneinheit (1) das Permeat einer vorgeschalteten Membraneinheit (4) verwendet wird, für welche das Retentat einer weiteren vorgeschalteten Membraneinheit (5) als Feedgas verwendet wird, wobei das Retentat der Membraneinheit (4) als zusätzliches Produktgas und das Permeat der Membraneinheit (5) als zusätzliches Offgas gewonnen wird.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Retentat der Membraneinheiten (2) und (4) gemeinsam als Produktgas abgezogen wird.

13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Permeat der Membraneinheiten (1) und (5) gemeinsam als Offgas abgezogen wird.

14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das Feedgas der Membraneinheit (5) ebenfalls druckbeaufschlagt wird.

15. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass als die beiden Membraneinheiten (1) und (2) sowie die beiden Membraneinheiten (4) und (5) jeweils eine Membraneinheit (6) bzw.

(7) mit zwei Permeatausgängen (6c, 6c') bzw. (7c, 7c') verwendet wird, wobei das an Produktgas reichere bzw. an Offgas ärmere der beiden Permeate in der Membraneinheit (6) unter Druckbeaufschlagung im Kreislauf geführt und das an Produktgas reichere bzw. an Offgas ärmere der beiden Permeate der Membraneinheit (7) als Feedgas für die Membraneinheit (6) verwendet wird, wobei Produktgas als Retentat der Membraneinheiten (6) und (7) sowie Offgas als das andere Permeat der Membraneinheiten (6) und (7) gewonnen wird.

16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass das Retentat der Membraneinheiten (6) und (7) gemeinsam als Produkt- gas abgezogen wird.

17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass das an Offgas reichere bzw. an Produktgas ärmere der beiden Permeate der Membraneinheiten (6) und (7) gemeinsam als Offgas abgezogen wird.

18. Verfahren nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass das Feedgas der Membraneinheit (7) ebenfalls druckbeaufschlagt wird.

Description:
Vorrichtung und Verfahren zur Äuftrennunq eines Gasgemisches

Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation.

Bei Gaspermeationsmembraneinheiten erfolgt die Trennung von Produktgas und Offgas mittels Permeation, wobei beispielsweise ein Produktgas-angereichertes Retentat und ein Offgas-angerei- chertes Permeat gewonnen werden können. Die Konzentrationen an Produktgas im Retentat und Offgas im Permeat sind von den jeweils angewendeten Prozess-Parametern abhängig, generell ist für eine erhöhte Produktgas-Qualität immer ein erhöhter Energieeinsatz erforderlich (höherer Druck, niedrigere Ausbeute in Bezug auf eingesetztes Feedgas, etc.)- Verbesserte Verfahren zur Steigerung der Produktgas-Ausbeute oder zur effizienteren Nutzung von Energie im Zuge eines derartigen Verfahrens sind daher wünschenswert. Auch ist es wünschenswert, die bei der Errichtung einer Gaspermeationsanlage anfallenden Investitionskosten möglichst gering zu halten.

Bisher sind Vorrichtungen zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation derart aufgebaut, dass das druckbeaufschlagte Feedgas in einer Membraneinheit in das Retentat und in das Permeat aufgetrennt werden, wobei beispielsweise das Retentat das Produktgas und das Permeat das Offgas enthält. Nachteil dieser einstufigen Lösung sind niedrige Produktgasqualität und niedrige Produktgasausbeute, die mit einem erhöhten Energiebedarf verbunden ist. Weiters ist diese Vorrichtung nur für sehr selektive Membranen wirtschaftlich einsetzbar.

Verbesserte Vorrichtungen zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation sind derart aufgebaut, dass das Permeat einer ersten Membraneinheit druckbeaufschlagt als Feedgas für eine zweite Membraneinheit verwendet wird, wobei die Retentatströme der beiden Membraneinheiten das Produktgas und der Permeatstrom der zweiten Membraneinheit das Offgas enthalten. Der Anlage kann gegebenenfalls noch ein Verdichter vorgeschaltet werden, wenn das Feedgas nicht druckbeaufschlagt vorhanden ist. Der Vorteil dieser Vorrichtung ist eine verbesserte Produktgasausbeute. Nachteil dieser Lösung sind die weiterhin niedrige Produktgasqualität und ein aufgrund der er- forderlichen Verdichtung des Gases für die zweite Membraneinheit erhöhter Energiebedarf. Weiters ist diese Vorrichtung nur für sehr selektive Membranen wirtschaftlich einsetzbar.

Weiters sind Vorrichtungen bekannt, wobei das Retentat einer ersten Membraneinheit als Feedgas einer zweiten Membraneinheit verwendet wird, das Permeat der zweiten Membraneinheit dem druckbeaufschlagten Feedgas der ersten Membraneinheit beigemischt wird, das Retentat der zweiten Membraneinheit als Produktgas und das Permeat der ersten Membraneinheit als Offgas abgezogen wird. Da hier das Permeat der zweiten Membraneinheit sozusagen im Kreislauf geführt wird, muss die Dimension der Anlage und aller nötigen Teile (Kompressoren, Leitungen, Membraneinheiten, Kälteabscheider, Schwefelfeinabscheider etc.) entsprechend dem Volumsstrom des im Kreislauf geführten Permeats der ersten Membraneinheit vergrößert werden. Bei einem angenommenen Volumsstrom an Feedgas von 100 m 3 /h und Beimischung von 80 mVh an Permeat der zweiten Membraneinheit zu diesem Feedgas ergibt sich vor dem Kompressor ein Gesamtvolumsstrom von 180 m 3 /h, gemäß welchem die Anlage zu dimensionieren ist. Vorteil dieses Verfahren ist, dass eine höhere Ausbeute an Produktgas erzielt werden kann, auch können aufgrund der zweistufigen Ausführung weniger selektive Membranen eingesetzt werden, nachteilig ist dabei die um den Faktor 1,2 bis 2,5 nötige übergroße Auslegung der Anlage und ein aufgrund der Rückführung erhöhter Energiebedarf.

Die Aufgabe der vorliegenden Erfindung besteht daher darin, eine Vorrichtung und ein Verfahren zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation zur Verfügung zu stellen, welches eine erhöhte Produktgas-Ausbeute und/ oder einen effizienteren Energieeinsatz ermöglicht.

Die Erfindung geht dabei von einer Vorrichtung zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation mit mindestens zwei Membraneinheiten (1) und (2) und einem der ersten Membraneinheit (1) vorgeschalteten Verdichter (3) aus, welche Membraneinheiten (1) und (2) einen Gaseingang (Ia, 2a), einen Retentatausgang (Ib, 2b) und einen Permeataus- gang (Ic, 2c) aufweisen, wobei der Retentatausgang (Ib) der ersten Membraneinheit (1) mit dem Gaseingang (2a) der zweiten Membraneinheit (2), der Permeatausgang (2c) der zweiten Membraneinheit (2) ansaugseitig mit dem Verdichter (3) bzw. der in den Verdichter führenden Gaszufuhr und der Verdichter (3) mit dem Gaseingang (Ia) der ersten Membraneinheit (1) leitungsmäßig verbunden ist, Produktgas über Retentatausgang (2b) und Offgas über Permeatausgang (Ic) erhalten wird.

Bei einer solchen Vorrichtung ist erfindungsgemäß vorgesehen, dass der Permeatausgang (4c) einer vorgeschalteten Membraneinheit (4) mit der Gaszufuhr des Verdichters (3) leitungsmäßig verbunden ist, wobei der Membraneinheit (4) noch mindestens eine weitere Membraneinheit (5) durch leitungsmäßige Verbindung des Retentatausganges (5b) der weiteren Membraneinheit (5) mit dem Gaseingang (4a) der Membraneinheit (4) vorgeschaltet ist und zusätzliches Produktgas über Retentatausgang (4b) und zusätzliches Offgas über Permeatausgang (5c) erhalten wird. Durch eine solche Vorrichtung können die feedseitig ersten beiden Membraneinheiten (5,6) kleiner ausgelegt werden als im Stand der Technik, ein Austausch dieser beiden, erfahrungsgemäß am schnellsten kontaminierten Membraneinheiten ist somit billiger. Die anderen beiden Membraneinheiten (1, 2) haben eine praktisch unbegrenzte Standzeit, da alle Verunreinigungen bereits ausgeschieden wurden. Günstig ist hiebei, wenn der Retentatausgang (4b) der Membraneinheit (4) mit dem Retentatausgang (2b) der Membraneinheit (2) zum gemeinsamen Abzug von Produktgas leitungsmäßig verbunden ist. Die Kombination der beiden Produktgasleitungen bringt dabei anlagetechnische Vorteile, weil nach außen nur eine Produktgasleitung geführt werden muss und beispielsweise zur Qualitätskontrolle nur ein Produktgasstrom analysiert werden muss.

Auch ist günstig, wenn der Permeatausgang (5c) der Membran- einheit (5) mit dem Permeatausgang (Ic) der Membraneinheit (1) zum gemeinsamen Abzug von Offgas leitungsmäßig verbunden ist. Auch die Kombination der beiden Offgasleitungen bringt anlagetechnische Vorteile, weil nach außen nur eine Offgasleitung geführt werden muss.

Gemäß einer bevorzugten Ausführungsform wird dem Gaseingang (5a) der Membraneinheit (5) ebenfalls ein Verdichter vorgeschaltet. Durch das Vorsehen eines weiteren Verdichters (etwa wenn das Feedgas nicht unter Druck bereitsteht) ist ein kontinuierlicher Mengenstrom möglich und es wird die erforderliche Druckbeaufschlagung des Feedgases sicher gestellt.

Eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung sieht vor, dass die beiden Membraneinheiten (1) und - A -

(2) sowie die beiden Membraneinheiten (4) und (5) jeweils durch eine Membraneinheit (6) bzw. (7) mit einem Gaseingang (6a) bzw.

(7a), einem Retentatausgang (6b) bzw. (7b) und zwei Permeataus- gängen (6c, 6c') bzw. (7c, 7c') gebildet werden, wobei der Per- meatausgang (6c') der Membraneinheit (6) ansaugseitig mit dem Verdichter (3) bzw. der in den Verdichter führenden Gaszufuhr und der Verdichter (3) mit dem Gaseingang (6a) der Membraneinheit (6) leitungsmäßig verbunden ist, Produktgas über Retentatausgang (6b) und Offgas über Permeatausgang (6c) erhalten wird, die Gaszufuhr des Verdichters (3) mit dem Permeatausgang (7c') der vorgeschalteten Membraneinheit (7) leitungsmäßig verbunden ist, und zusätzliches Produktgas über Retentatausgang (7b) sowie zusätzliches Offgas über Permeatausgang (7c) erhalten wird. Durch diese Anordnung ist es möglich, in jeder Membraneinheit mehrere (zumindest zwei) Abtrennungsstufen vorzusehen und gleichzeitig die Anzahl der leitungsmäßigen Verbindungen und dadurch kostenintensive Investitionen innerhalb der Vorrichtung zu vermindern.

Weiters wird dabei erfindungsgemäß vorgesehen, dass die Per- meaträume der Membraneinheiten (6) und (7) jeweils im Bereich zwischen den Permeatausgängen (6c, 6c') und (7c, 7c') durch eine Wand (6d) und (7d) abgetrennt sind. Die Abtrennung verhindert dabei, dass sich die beiden Permeatströme (welche unterschiedliche Konzentrationen an Offgas und Produktgas aufweisen) wieder miteinander vermischen, bevor sie aus den jeweiligen Permeatausgängen austreten. Zusätzlich wird durch diese Abtrennungen erreicht, dass die Permeaträume in einem beliebigen Verhältnis aufgeteilt werden können und damit die gewünschten Membranflächen den einzelnen Permeaträumen beliebig zugeordnet werden können. Auch eine mehrfache Auftrennung der Permeaträume ist denkbar, wobei durch selektive Kombination der verschiedenen Permeatströme die Zusammensetzung der beiden Offgasströme hinsichtlich ihrer Konzentrationen an Offgas und Produktgas beein- flusst werden kann.

Günstig ist dabei, wenn der Retentatausgang (7b) der Membraneinheit (7) mit dem Retentatausgang (6b) der Membraneinheit

(6) zum gemeinsamen Abzug von Produktgas leitungsmäßig verbunden ist. Auch hier bringt die Kombination der beiden Produktgasleitungen anlagetechnische Vorteile, weil nach außen nur eine Produktgasleitung geführt werden muss und beispielsweise zur Qualitätskontrolle nur ein Produktgasstrom analysiert werden muss .

Vorzugsweise ist dem Gaseingang (7a) der Membraneinheit (7) ebenfalls ein Verdichter vorgeschaltet. Durch das Vorsehen eines weiteren Verdichters (etwa wenn das Feedgas nicht unter Druck bereitsteht) ist ein kontinuierlicher Mengenstrom möglich und es wird die erforderliche Druckbeaufschlagung des Feedgases sichergestellt .

Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird die genannte Vorrichtung zur Trennung eines hauptsächlich aus CH 4 /CO 2 bestehenden Gasgemisches in CH 4 als Produktgas und CO 2 als Offgas eingesetzt.

Noch ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Verfahren zur Auftrennung eines Gasgemisches in Produktgas und Offgas mittels Gaspermeation, wobei das Retentat einer ersten Membraneinheit (1) als Feedgas einer zweiten Membraneinheit (2) verwendet wird, das Permeat der zweiten Membraneinheit (2) dem druckbeaufschlagten Feedgas der ersten Membraneinheit (1) beigemischt wird, das Retentat der zweiten Membraneinheit (2) als Produktgas und das Permeat der ersten Membraneinheit (1) als Offgas abgezogen wird, wobei erfindungsgemäß vorgesehen ist, dass als Feedgas der ersten Membraneinheit (1) das Permeat einer vorgeschalteten Membraneinheit (4) verwendet wird, für welche das Retentat einer weiteren vorgeschalteten Membraneinheit (5) als Feedgas verwendet wird, wobei das Retentat der Membraneinheit (4) als zusätzliches Produktgas und das Permeat der Membraneinheit (5) als zusätzliches Offgas gewonnen wird.

Günstig ist dabei, wenn das Retentat der Membraneinheiten (2) und (4) gemeinsam als Produktgas abgezogen wird.

Vorzuziehen ist auch, wenn das Permeat der Membraneinheiten

(1) und (5) gemeinsam als Offgas abgezogen wird.

Weiters ist günstig, wenn das Feedgas der Membraneinheit (5) ebenfalls druckbeaufschlagt wird.

Vorzugsweise werden als die beiden Membraneinheiten (1) und

(2) sowie die beiden Membraneinheiten (4) und (5) jeweils eine Membraneinheit (6) bzw. (7) mit zwei Permeatausgängen (6c, 6c') bzw. (7c, 7c') verwendet, wobei das an Produktgas reichere bzw. an Offgas ärmere der beiden Permeate in der Membraneinheit (6) unter Druckbeaufschlagung im Kreislauf geführt und das an Produktgas reichere bzw. an Offgas ärmere der beiden Permeate der Membraneinheit (7) als Feedgas für die Membraneinheit (6) verwendet wird, wobei Produktgas als Retentat der Membraneinheiten (6) und (7) sowie Offgas als das andere Permeat der Membraneinheiten (6) und (7) gewonnen wird.

Günstig ist dabei, wenn das Retentat der Membraneinheiten (6) und (7) gemeinsam als Produktgas abgezogen wird.

Vorzugsweise wird das an Offgas reichere bzw. an Produktgas ärmere der beiden Permeate der Membraneinheiten (6) und (7) gemeinsam als Offgas abgezogen.

Weiters ist günstig, wenn das Feedgas der Membraneinheit (7) ebenfalls druckbeaufschlagt wird. Die Vorteile dieser Ausführungsformen des erfindungsgemäßen Verfahrens wurden bereits bei der jeweiligen Beschreibung der zugehörigen Vorrichtung erläutert.

Gemäß einem letzten Aspekt der vorliegenden Erfindung wird das erfindungsgemäße Verfahren zur Trennung eines hauptsächlich aus CH 4 /CO 2 bestehenden Gasgemisches in CH 4 als Produktgas und CO 2 als Offgas verwendet.

Die vorliegende Erfindung wird nun unter Bezugnahme auf die beiliegenden Figuren näher erklärt. Dabei zeigen:

Fig. 1 ein Blockschaltbild einer erfindungsgemäßen Vorrichtung mit zwei Membraneinheiten (1) und (2), einem der ersten Membraneinheit (1) vorgeschalteten Kompressor bzw. Verdichter (3) und zwei weiteren Membraneinheiten (4) und (5),

Fig. 2 ein Blockschaltbild einer erfindungsgemäßen Vorrichtung mit zwei Membraneinheiten (6 und 7), einem der Membraneinheit (6) vorgeschalteten Kompressor (3), wobei jede Membraneinheit zwei Permeatausgänge aufweist;

Fig. 3 eine Volumenstrombilanz der Vorrichtung gemäß Fig. 1; sowie

Fig. 4 und 5 Volumenstrombilanzen von Vorrichtungen gemäß dem Stand der Technik.

Alle Membraneinheiten weisen einen Gaseingang (Ia, 2a, 4a, 5a) , einen Retentatausgang (Ib, 2b, 4b, 5b) und einen Permeat- ausgang (Ic, 2c, 4c, 5c) auf, wobei der Retentatausgang (Ib) der ersten Membraneinheit (1) mit dem Gaseingang (2a) der zweiten Membraneinheit (2) verbunden ist. Da Produktgas hier als Retentat gewonnen wird, bedeutet dies, dass von der Membraneinheit (1) Produktgas zur weiteren Reinigung als Feedgas in die Membraneinheit (2) verbracht wird. In der Membraneinheit (2) anfal- lendes Offgas wird dann über der Permeatausgang (2c) dem Verdichter (3) bzw. der in den Verdichter führenden Gaszufuhr an- saugseitig zugeführt, sodass über Verdichter (3) , Gaseingang (Ia), Retentatausgang (Ib), Gaseingang (2a) und Permeatausgang (2c) in der zweiten Membraneinheit (2) abgetrenntes Offgas im Kreislauf geführt wird. Dadurch erhöht sich zwar der Massenstrom in den Membraneinheiten (1) und (2), im Unterschied zum Stand der Technik wird aber der Verdichter (3) mit Permeat aus dem Permeatausgang (4c) einer vorgeschalteten Membraneinheit (4) gespeist, wobei der Membraneinheit (4) noch mindestens eine weitere Membraneinheit (5) derart vorgeschaltet ist, dass der Retentatausgang (5b) mit dem Gaseingang (4a) verbunden ist. Produktgas wird dabei über die Retentatausgänge (2b) und (4b) gesammelt und abgeführt, Offgas über die Permeatausgänge (Ic) und (5c) .

Bei Betrachtung der Volumenstrombilanz einer derartigen erfindungsgemäßen Ausführungsform (Fig. 3) fällt auf, dass bei einem angenommenen Eingangsstrom von 100 mVh insgesamt 60 m 3 /h Produktgas und 40 m 3 /h Offgas gewonnen werden können, während bei den Verfahren des Standes der Technik 60 mVh Produktgas und 40 m 3 /h Offgas (Fig. 4) bzw. 55 m 3 /h Produktgas und 45 m 3 /h Offgas (Fig. 5) anfallen. Im Vergleich mit dem Stand der Technik gemäß Fig. 4 bedeutet dies weiters, dass beim erfindungsgemäßen Verfahren die Membraneinheiten (5) und (4) auf einen Produktstrom von 100 m 3 /h bzw. 80 m 3 /h ausgelegt werden können, während die Membraneinheiten (1) und (2) überhaupt nur für 50 m 3 /h bzw. 30 m 3 /h dimensioniert sein müssen. Demgegenüber müssen die Membran- einheiten (sowie alle anderen nicht gezeigten Anlageteile, wie Leitungen, Membraneinheiten, Kälteabscheider, Schwefelfeinabscheider etc.) in Fig. 4 für 180 m 3 /h bzw. 140 m 3 /h dimensioniert sein. Es ist also klar ersichtlich, dass durch die Vorschaltung von mindestens zwei Membraneinheiten das Verfahren des Standes der Technik in wesentlich kleineren Dimensionen und gleichen Ausbeuten durchgeführt werden kann.

In Fig. 2 wird eine weitere erfindungsgemäße Ausführungsform gezeigt, wobei die beiden Membraneinheiten (1) und (2) durch eine Membraneinheit (6) bzw. (7) mit zwei Permeatauslässen (6c, 6c') bzw. (7c, 7c') ersetzt wurde. Die Membraneinheiten (6, 7) weisen darüber hinaus je einen Gaseingang (6a, 7a), einen Retentatausgang (6b, 7b) und gegebenenfalls eine Trennwand (6d, 7d) im Permeatraum auf, um die Permeatströme unterschiedlicher Konzentration zu trennen.




 
Previous Patent: FORCED STEERING SYSTEM

Next Patent: PULL-OUT GUIDE FOR DRAWERS