Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE FOR NEEDLING A FIBROUS WEB
Document Type and Number:
WIPO Patent Application WO/2009/019111
Kind Code:
A1
Abstract:
The invention relates to a device for needling a fibrous web having at least one needle bar. The needle bar carries a needle board on the bottom thereof having a plurality of needles, the needle bar being guided by means of a moveably mounted bar carrier. The bar carrier is driven by a vertical drive in an oscillating manner in up and down movements. For straight guidance of the bar carrier, a guiding device is provided, which has at least one rocker held at the end by a rotary bearing of a machine frame. In order to obtain the straightest possible guide path in the bar carrier, according to the invention the opposite end of the rocker and the bar carrier are connected by a plurality of members of a coupling kinematic mechanism.

Inventors:
REUTTER TILMAN (AT)
PLUMP ANDREAS (AT)
MAYER ANDREAS (AT)
BU DANIEL (AT)
Application Number:
PCT/EP2008/059291
Publication Date:
February 12, 2009
Filing Date:
July 16, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OERLIKON TEXTILE GMBH & CO KG (DE)
REUTTER TILMAN (AT)
PLUMP ANDREAS (AT)
MAYER ANDREAS (AT)
BU DANIEL (AT)
International Classes:
D04H18/00
Foreign References:
AT400151B1995-10-25
GB2381276A2003-04-30
US6161269A2000-12-19
US20070006432A12007-01-11
Attorney, Agent or Firm:
KAHLHÖFER, Hermann (Karlstrasse 76, Düsseldorf, DE)
Download PDF:
Claims:

Patentansprüche

1. Vorrichtung zum Vernadeln einer Faserbahn (30) mit zumindest einem Nadelbalken (1), welcher an seiner Unterseite ein Nadelbrett (3) mit einer Viel- zahl von Nadeln (4) aufweist, mit einem beweglich gehalten Balkenträger

(2) zum Halten des Nadelbalkens (1), mit einem mit dem Balkenträger (2) verbundenen Vertikalantrieb (5) zum oszillierenden Antrieb des Balkenträgers (2) in einer Auf- und Abwärtsbewegung und mit einer Führungseinrichtung (12) zur Geradführung des Balkenträgers (2), wobei die Führungs- einrichtung (12) zumindest eine Schwinge (13) aufweist, die an einem Ende durch ein Drehlager (14) an einem Maschinengestell (15) gehalten ist, dadurch gekennzeichnet, dass das gegenüberliegende Ende der Schwinge (13) und der Balkenträger (2) über eine Koppelkinematik (16) mit mehreren Gliedern (17, 22) verbunden sind.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Glieder der Koppelkinematik (16) durch eine Anlenkstange (17) und ei- nen Gestellhebel (22) gebildet sind, wobei die Anlenkstange (17) durch ein

Drehgelenk (20) mit dem Balkenträger (2) verbunden ist und wobei der Gestellhebel (22) durch ein Drehlager (19, 23) an dem Maschinengestell (15) gehalten ist.

3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Gestellhebel als ein Kipphebel (18) ausgebildet ist, welcher in einem mittleren Bereich das Drehlager (19) aufweist, wobei der Kipphebel (18) mit einem Ende über ein Drehgelenk (21.1) mit der Anlenkstange (17) und mit dem gegenüberliegenden Ende durch ein zweites Drehgelenk (21.2) mit der Schwinge (13) verbunden ist.

4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Gestellhebel als eine zweite Schwinge (22) ausgebildet ist und dass die erste Schwinge (13) und die zweite Schwinge (22) jeweils über ein Drehge- lenk (24.1, 24.2) mit der Anlenkstange (17) verbunden sind.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Drehgelenke (24.1, 24.2) der Schwingen (13, 22) mit Abstand zueinan- der an der Anlenkstange (17) ausgebildet sind, wobei das Drehgelenk (20) zwischen dem Balkenträger (2) und der Anlenkstange (17) an einem freien Ende der Anlenkstange (17) oder in einem mittleren Bereich der Anlenkstange (17) ausgebildet ist.

6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Drehlager (23) der Schwinge (22) als ein Exzenterlager (25) am Umfang einer Exzenterwelle (26) ausgebildet ist, welche Exzenterwelle (26) mittels einer Bewegungseinrichtung (27) wahlweise antreibbar oder feststellbar ist.

7. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die beiden Drehlager (14, 23) der Schwingen (13, 22) mit Abstand zueinander oberhalb des Balkenträgers (2) angeordnet sind.

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die beiden Drehlager (14, 23) der Schwingen symmetrisch zu einer Balkenmitte des Balkenträgers (7) angeordnet sind.

9. Vorrichtung nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass der Balkenträger (2) das Drehgelenk (20) zur Anbindung der Anlenkstange (17) in seiner Balkenmitte aufweist.

10. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Drehlager (14) der Schwinge (13) als ein Exzenterlager (25) am Umfang einer Exzenterwelle (26) ausgebildet ist, welche Exzenterwelle (26) mittels einer Bewegungseinrichtung (27) wahlweise antreibbar oder feststellbar ist.

11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Vertikalantrieb (5) durch zwei Exzenterantriebe (6.1, 6.2) gebildet ist, die jeweils eine Kurbelwelle (9.1, 9.2) und eine über einen Pleuelkopf (10.1, 10.2) mit der Kurbelwelle verbundene Pleuelstange (7.1, 7.2) aufweisen, wobei die Pleuelstangen (7.1, 7.2) mit ihren Pleuelaugen (11.1, 11.2) über Drehgelenke (8.1, 8.2) mit dem Balkenträger (2) verbunden sind.

12. Vorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass die Schwinge (13) und die Glieder (17, 18, 22) der Koppelkinematik (16) zwischen den Pleuelstangen (7.1, 7.2) des Vertikalantriebes (5) oder neben den Pleuelstangen (7.1, 7.2) des Vertikalantriebes (5) angeordnet sind.

13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Vertikalantrieb (5) eine Phasenverstelleinrichtung (31) zur Phasenver- Stellung der beiden Kurbelwellen (9.1, 9.2) aufweist.

Description:

Vorrichtung zum Vernadeln einer Faserbahn

Die Erfindung betrifft eine Vorrichtung zum Vernadeln einer Faserbahn gemäß dem Oberbegriff des Anspruchs 1.

Zum Verfestigen und Strukturieren von gelegten Faserbahnen ist es bekannt, die Faserbahnen mit einer Vielzahl von Nadeln zu durchstoßen, wobei die Nadeln in einer oszillierenden Auf- und Abwärtsbewegung geführt sind. Da die Nadeln nicht glatt sondern mit in Einstichsrichtung geöffneten Widerhäkchen versehen sind, werden beim Einstechen der Nadeln in die Faserbahn einzelne Fasern der Faserbahn erfasst und innerhalb der Faserbahn umorientiert. Hierdurch entsteht der gewünschte Verfilzungs- und Verfestigungseffekt innerhalb der Faserbahn. Zur Führung der Vielzahl der Nadeln werden Vorrichtungen verwendet, bei welchen die Nadeln an einer Unterseite eines Nadelbalkens angeordnet sind. Der Nadelbalken wird über einen beweglichen Balkenträger gehalten, der mittels eines Vertikalantriebes zu einer oszillierenden Vertikalbewegung angetrieben wird. Damit die Nadeln bei der Vertikalbewegung möglichst gerade in die Faserbahn eingetaucht werden können, ist es weiterhin bekannt, dass an dem Balkenträger eine Führungseinrichtung angreift, durch welche die Vertikalbewegung des Balkenträgers geführt wird.

So ist beispielsweise aus der DE 44 31 055 Al eine Vorrichtung zum Vernadeln einer Faserbahn bekannt, bei welcher die Führungseinrichtung durch eine Schwinge gebildet ist, die mit einem Ende über ein Drehlager an einem Maschinengestell gehalten wird und die mit dem gegenüberliegenden freien Ende über ein Drehgelenk mit dem Balkenträger gekoppelt ist. Der Balkenträger wird somit auf eine durch die Schwinge vorbestimmte Führungsbahn geführt. Die Führungs- bahn des Balkenträgers ist hierbei kreisbogenförmig. Um trotzdem definierte

Einstichskanäle mit den Nadeln zu erzeugen, werden gekrümmte Nadeln eingesetzt, die der Führungsbahn des Balkenträgers angepasst sind.

Aus der US 4,241,479 ist eine weitere Vorrichtung zum Vernadeln einer Faser- bahn bekannt, bei welcher die Führungseinrichtung zur Geradführung des Balkenträgers durch zwei Schwingen gebildet wird, die gegenüber einem Maschinengestell in Stützlager gehalten werden. Die Stützlager weisen jeweils zumindest eine Zahnlücke auf, in welche das als Zahn ausgebildete Ende der Schwinge eingreift. Die bekannte Vorrichtung erfordert somit einen größeren Platzbedarf, um die nach außen ragenden Schwingen in dem Maschinengestell führen zu können. Zudem stellt sich die Schmierung und Abdichtung der Verzahnungen zwischen den Schwingen und den Stützlagern besonders problematisch dar.

Aus der EP 0 364 105 Al ist eine weitere Vorrichtung zum Vernadeln einer Fa- serbahn bekannt, bei welcher die Führungseinrichtung zumindest eine Führungsstange aufweist, die in einer an einem Maschinengestell gehaltenen Führungsbuche geführt ist. Ein freies Ende der Führungsstange ist mit dem Balkenträger verbunden, so dass der Balkenträger bei der Vertikalbewegung eine durch die Führungsstange und die Führungsbuchse vorbestimmte Führungsbahn einhält. Auch diese bekannte Vorrichtung basiert auf eine Gleitpaarung zweier Teile zur Führung des Balkenträgers, deren Schmierung und Abdichtung besonders problematisch sind und einen erhöhten apparativen Aufwand erfordern.

Die im Stand der Technik bekannten Führungseinrichtungen zur Geradführung des Balkenträgers lassen zudem nur einen Antrieb des Nadelbalkens in vertikaler Richtung zu. Umrüstungen der bekannten Vorrichtungen zur Ausführung einer horizontalen Bewegung des Balkenträgers sind nicht ausführbar bzw. mit erheblichem Aufwand verbunden.

Es ist nun Aufgabe der Erfindung, eine Vorrichtung zum Vernadeln einer Faserbahn der gattungsgemäßen Art mit einer Führungseinrichtung auszubilden, die

eine Geradführung des Balkenträgers in Längsrichtung mittels einer kompakten und einfachen Kinematik ermöglicht.

Ein weiteres Ziel der Erfindung ist es, die Führungseinrichtung zur Geradführung des Balkenträgers bei der erfindungsgemäßen Vorrichtung flexibel und betriebssicher zu gestalten.

Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung zum Vernadeln einer Faserbahn mit den Merkmalen nach Anspruch 1 gelöst.

Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale und Merkmalskombinationen der jeweiligen Unteransprüche definiert.

Die Erfindung besitzt den besonderen Vorteil, dass die Anlenkung des Balkenträ- gers gegenüber dem Maschinengestell durch eine im Drehlager geführte Schwinge erhalten bleibt. Die über die Schwinge vorbestimmte Führungsbahn lässt sich hierbei vorteilhaft durch die Zwischenschaltung einer Koppelkinematik umwandeln und den Erfordernissen der Vernadelung anpassen. So ist erfindungsgemäß das gegenüberliegende Ende der Schwinge über mehrere Glieder einer Koppelki- nematik mit dem Balkenträger verbunden. Die an dem Balkenträger wirksame Führungsbahn zur Geradführung des Nadelbalkens lässt sich somit durch das Zusammenwirken der Schwinge und der Koppelkinematik bestimmen.

Bei einer bevorzugten Weiterbildung der Erfindung werden die Glieder der Kop- pelkinematik durch eine Anlenkstange und einen Gestellhebel gebildet, wobei die Anlenkstange durch ein Drehgelenk mit dem Balkenträger verbunden ist und wobei der Gestellhebel durch ein Drehlager an dem Maschinengestell gehalten ist. Somit lässt sich die vertikale Bewegung des Balkenträgers ausschließlich durch drehbare Hebel der Führungseinrichtungen aufnehmen und führen. Die Drehbe- wegungen der Hebelmittel können vorteilhaft durch die Drehlager oder Drehgelenke ermöglicht werden, so dass die gesamte Führungseinrichtung eine einfache

Tribologie aufweist. Sowohl Drehlager als auch Drehgelenke lassen sich gegenüber der Umgebung in einfacher Art und Weise abdichten, so dass eine stabile und sichere Führung des Balkenträgers gewährleistet ist.

Je nach Ausbildung des Gestellhebels innerhalb der Koppelkinematik lassen sich unterschiedliche Führungsbahnen zur Geradführung des Balkenträgers realisieren. Bei einer ersten Variante ist der Gestellhebel als ein Kipphebel ausgebildet, welcher in einem mittleren Bereich das Drehlager aufweist. Mit einem Ende ist der Kipphebel über ein Drehgelenk mit der Anlenkstange und mit dem gegenüberlie- genden Ende durch ein zweites Drehgelenk mit der Schwinge verbunden. Die durch die Anlenkstange an dem Balkenträger bewirkte Führungsbahn lässt sich je nach Abstimmung der Längen der Anlenkstange und des Kipphebels annähernd gerade ausführen.

Um möglichst auf engem Raum eine gerade Führungsbahn des Balkenträgers zu erzeugen, ist gemäß einer bevorzugten Weiterbildung der Erfindung der Gestellhebel als eine zweite Schwinge ausgebildet, wobei die erste Schwinge und die zweite Schwinge jeweils über ein Drehgelenk mit der Anlenkstange verbunden sind. Durch Wahl der Positionen der Drehlager sowie der Längen der Schwingen lässt sich der Anlenkpunkt zwischen der Anlenkstange und dem Balkenträger über einen maximalen vertikalen Hub nahezu gerade ausführen. Diese Variante der Erfindung ist besonders geeignet, um hochqualitative Vernadelungen an Faserbahnen auszuführen. Die Vielzahl der Nadeln lassen sich an dem Nadelbalken exakt in einer vertikalen Auf- und Abwärtsbewegung zum Vernadeln der Faser- bahn führen, so dass eine sehr gleichmäßige Vernadelungsstruktur innerhalb der Faserbahn erzeugbar ist.

Die Anordnung der Schwingen lässt sich in Abhängigkeit von dem Maschinentyp, den Einbaumöglichkeiten sowie den gewünschten Führungseigenschaften frei wählen. So lassen sich beispielsweise die Drehgelenke der Schwingen mit Abstand zueinander an der Anlenkstange ausbilden, wobei das Drehgelenk zwischen

- A -

dem Balkenträger und der Anlenkstange an einem freien Ende der Anlenkstange oder in einem mittleren Bereich der Anlenkstange ausgebildet ist.

Besonders vorteilhaft lässt sich diese Erfindungsvariante derart weiterbilden, dass eines der Drehlager der Schwingen als ein Exzenterlager am Umfang einer Exzenterwelle ausgebildet ist, welche Exzenterwelle mittels einer Bewegungseinrichtung wahlweise antreibbar oder festhaltbar ist. Damit besteht die Möglichkeit, einen konstanten Horizontalhub an dem Balkenträger zu erzeugen. Hierzu lässt sich die Exzenterwelle mittels der Bewegungseinrichtung antreiben. Alternativ wird durch die Bewegungseinrichtung die Exzenterwelle bei Bedarf festgehalten, so dass lediglich die durch die Anlenkstange erzeugte Geradführung an dem Balkenträger wirksam ist.

Je nach Ausführung der Anlenkstange und Anbindung der Drehgelenke der Schwingen werden die beiden Drehlager der Schwingen bevorzugt mit Abstand zueinander oberhalb des Balkenträgers angeordnet. Damit lassen sich besonders kompakte und platzeinsparende Führungseinrichtungen realisieren.

Um die Führungsstabilität des Balkenträgers zu verbessern, lassen sich die beiden Drehlager der Schwingen gemäß einer vorteilhaften Weiterbildung der Erfindung symmetrisch zu einer Balkenmitte des Balkenträgers anordnen.

Hierzu wird zur Anbindung der Anlenkstange das Drehgelenk an den Balkenträger bevorzugt an der Balkenmitte angeordnet. Die Vertikalbewegung des Balken- trägers lässt sich somit sicher und stabil auf die Anlenkstange zur Geradführung übertragen.

Eine besonders hohe Flexibilität für den Einsatz der erfindungsgemäßen Vorrichtung ist durch die Weiterbildung der Erfindung gegeben, bei welcher das Drehla- ger der Schwinge als ein Exzenterlager am Umfang einer Exzenterwelle ausgebildet ist, die mittels einer Bewegungseinrichtung wahlweise antreibbar oder fest-

stellbar ist. Dadurch lässt sich wahlweise ein überlagerter Horizontalhub an dem Balkenträger ausführen, so dass je nach Anforderung die Faserbahn entweder ohne Horizontalhub mit festgestellter Exzenterwelle oder mit Horizontalhub mit bewegter Exzenterwelle vernadelbar ist.

Um eine qualitativ hochwertige Vernadelung der Vliesbahn zu erhalten, wird der Vertikalantrieb vorzugsweise gemäß einer Weiterbildung der Erfindung derart ausgeführt, dass zwei über separate Exzenterantriebe angetriebene Pleuelstangen mit dem Balkenträger verbunden sind. Hierzu weisen die Exzenterantriebe jeweils eine Kurbelwelle auf, die über einen Pleuelkopf mit der Pleuelstange verbunden ist. Die Pleuelstangen sind mit ihren Pleuelaugen über Drehgelenke mit dem Balkenträger verbunden. Ein derartiger Vertikalantrieb bietet eine hohe Flexibilität in Einstellung und Führung des Nadelbalkens, um unterschiedliche Faserbahnen mit unterschiedlichen Fasern produktspezifisch zu vernadeln.

Bei der Ausbildung eines derartigen Vertikalantriebes wird die Schwinge und die Koppelkinematik der Führungseinrichtung bevorzugt zwischen den Pleuelstangen des Vertikalantriebes angeordnet, um eine sehr enge Maschinenteilung zu erhalten. Alternativ besteht jedoch auch die Möglichkeit, die Schwinge und die Kop- pelkinematik neben den Pleuelstangen des Vertikalantriebes anzuordnen, um beispielsweise eine Seitenanordnung der Führungseinrichtung zu ermöglichen.

Die erfmdungsgemäße Vorrichtung wird zur Realisierung großer Arbeitsbreiten mit entsprechend langen Nadelbrettern vorteilhaft auch mit mehreren in einer Ma- schine aneinander gereihten Vertikalantrieben ausgeführt, die gemeinsam an einen Balkenträger angreifen. Dabei ist vorzugsweise jedem der Vertikalantriebe eine Geradführung zugeordnet, deren Schwingen jeweils über eine Koppelkinematik mit dem Balkenträger verbunden sind.

Eine überlagerte Horizontalbewegung des Nadelbalkens lässt sich auch vorteilhaft durch die Weiterbildung der Erfindung realisieren, bei welcher der Vertikalantrieb

eine Phasenverstelleinrichtung zur Phasenverstellung der beiden Kurbelwellen aufweist. In diesem Fall können die Kurbelwellen um einen Phasenwinkel versetzt angetrieben werden, so dass der Balkenträger eine Kippbewegung ausführt, die durch den vertikalen Abstand an den Nadeln neben der Vertikalbewegung auch zu einer Horizontalbewegung führt. Diese Weiterbildung ist insbesondere vorteilhaft, um kleine, stufenlos, einstellbare Horizontalhübe an dem Nadelbalken auszuführen.

Zur weiteren Erläuterung der Erfindung werden nachfolgend einige Ausführungs- beispiele unter Hinweis auf die beigefügten Figuren beschrieben.

Es stellen dar:

Fig. 1 schematisch eine Seitenansicht eines ersten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung

Fig. 2 schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung Fig. 3 schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung Fig. 4 schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung Fig. 5 schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung

In Fig. 1 ist ein erstes Ausführungsbeispiel der erfmdungsgemäßen Vorrichtung zum Vernadeln einer Faserbahn dargestellt. Das Ausführungsbeispiel der erfindungsgemäßen Vorrichtung nach Fig. 1 zeigt einen Balkenträger 2, der an seiner Unterseite einen Nadelbalken 1 hält. Der Nadelbalken 1 trägt an seiner Unterseite ein Nadelbrett 3 mit einer Vielzahl von Nadeln 4. Dem Nadelbrett 3 mit den Na- dein 4 ist eine Bettplatte 29 und ein Abstreifer 28 zugeordnet, wobei zwischen der Bettplatte 29 und dem Abstreifer 28 eine Faserbahn 30 mit im wesentlichen kon-

stanter Vorschubsgeschwindigkeit geführt wird. Die Bewegungsrichtung der Faserbahn 30 ist hierbei durch einen Pfeil gekennzeichnet.

An dem Balkenträger 2 greift ein Vertikalantrieb 5 an. Durch den Vertikalantrieb 5 wird der Balkenträger 2 in vertikaler Richtung oszillierend bewegt, so dass der Nadelbalken 1 mit dem Nadelbrett 3 eine Auf- und Abwärtsbewegung ausführt. Der Vertikalantrieb 5 ist in diesem Ausführungsbeispiel durch zwei parallel angeordnete Exzenterantriebe 6.1 und 6.2 gebildet. Die Exzenterantriebe 6.1 und 6.2 weisen zwei parallel nebeneinander angeordnete Kurbelwellen 9.1 und 9.2 auf, die oberhalb des Balkenträgers 2 angeordnet sind. Die Kurbelwellen 9.1 und 9.2 weisen jeweils mindestens einen Exzenterabschnitt zur Aufnahme mindestens einer Pleuelstange auf. In Fig. 1 sind die an einem Balkenträger 2 angeordneten Pleuelstangen 7.1 und 7.2 gezeigt, die mit ihren Pleuelköpfen 10.1 und 10.2 an den Kurbelwellen 9.1 und 9.2 gehalten sind. Die Pleuelstangen 7.1 und 7.2 sind mit ihren gegenüberliegenden Pleuelaugen 11.1 und 11.2 durch zwei Pleueldrehgelenke 8.1 und 8.2 mit dem Balkenträger 2 verbunden. Die Kurbelwelle 9.1 bildet mit der Pleuelstange 7.1 und die Kurbelwelle 9.2 mit der Pleuelstange 7.2 jeweils einen der Exzenterantriebe 6.1 und 6.2, um den Balkenträger 2 in einer Auf- und Abwärtsbewegung zu führen. Die Kurbelwellen 9.1 und 9.2 werden gleich- oder ge- gensinnig synchron angetrieben, so dass der Balkenträger 2 zumindest annähernd parallel geführt ist.

Zur Führung der Vertikalbewegung des Balkenträgers 2 ist eine Führungseinrichtung 12 vorgesehen, die in diesem Ausführungsbeispiel eine Schwinge 13 auf- weist, die über ein Drehlager 14 mit einem Maschinengestell 15 verbunden ist. Das freie Ende der Schwinge 13 ist über eine Koppelkinematik 16 mit dem Balkenträger 2 verbunden. Die Koppelkinematik 16 ist in diesem Ausführungsbeispiel durch eine Anlenkstange 17 und eine zweite Schwinge 22 gebildet. Die zweite Schwinge 22 ist im Abstand zu der ersten Schwinge 13 durch ein zweites Drehlager 23 mit dem Maschinengestell 15 drehbar gehalten. Das freie End der ersten Schwinge 13 und das freie Ende der zweiten Schwinge 22 sind im Abstand

zueinander jeweils über ein Drehgelenk 24.1 und 24.2 mit der Anlenkstange 17 gekoppelt. Die Drehgelenke 24.1 und 24.2 sind an einem Endabschnitt der Anlenkstange 17 ausgebildet. Mit dem gegenüberliegenden Endabschnitt ist die Anlenkstange 17 durch ein Drehgelenk 20 mit dem Balkenträger 2 verbunden. Das Drehgelenk 20 ist in der Balkenmitte des Balkenträgers 2 ausgebildet.

Die Schwinge 13 und die Glieder der Koppelkinematik 16 sind oberhalb des Balkenträgers 2 angeordnet. Hierzu sind die Drehlager 14 und 23 an dem Maschinengestell 15 zwischen den Pleuelstangen 7.1 und 7.2 des Vertikalantriebes 5 ange- ordnet. Dadurch ergibt sich eine sehr kompakte und schmale Bauweise. Der Vertikalantrieb 5 und die Führungseinrichtung 12 bilden somit eine kompakte Baueinheit oberhalb des Balkenträgers 2.

Die Position der Drehlager 14 und 23 sowie die Längen der ersten Schwinge 13 und der zweiten Schwinge 22 sind derart gewählt, dass die Anlenkstange 17 am Anlenkpunkt des Balkenträgers 2, der durch das Drehgelenk 20 bestimmt ist, eine gerade Führung des Balkenträgers 2 in vertikaler Richtung über den gesamten Hub des Vertikalantriebes 5 ausführt. Die Geradführung des Balkenträgers 2 wird vorteilhaft gegenüber dem Maschinengestell 15 ausschließlich durch Drehbewe- gungen der Teile der Führungseinrichtungen 12 realisiert. Die Drehlager 14 und 23 sowie die Drehgelenke 24.1, 24.2 und 20 lassen sich reibungsarm ausführen, so dass eine insgesamt reibungsarme Geradführung des Balkenträgers 2 vorliegt, die keine zusätzlichen Drehmomente durch den Vertikalantrieb 5 erfordern. Der Einsatz der Drehlager 14 und 23 und Drehgelenke 20, 24.1, 24.2 besitzen zudem den Vorteil, dass handelsübliche Schmiersysteme einsetzbar sind, die gegenüber der Umgebung einer Abdichtung aufweisen, so dass keine Schmiermittelreste in die Umgebung gelangen könnten.

Im Betrieb werden die Kurbelwellen 9.1 und 9.2 des Vertikalantriebes 5 vorzugs- weise mit entgegengesetztem Drehsinn und gleichen Drehzahlen angetrieben.

Durch die Pleuelstangen 7.1 und 7.2 wird die Bewegung der Kurbelwellen 9.1

und 9.2 auf den Balkenträger 2 übertragen, der eine Auf- und Abwärtsbewegung ausführt. Die vertikale Bewegung des Balkenträgers 2 wird über die Anlenkstange 17 der Führungseinrichtung 12 aufgenommen und auf die Schwingen 13 und 22 übertragen. Die an den Drehlagern 14 und 23 fixierten Schwingen 13 und 22 füh- ren eine Drehbewegung aus. Die Kinematik der Schwinge 13, der Schwinge 22 und der Anlenkstange 17 ist derart gewählt, dass das freie Ende der Anlenkstange 17 mit dem Drehgelenk 20 sich auf einer Vertikalen bewegt. Damit wird der Balkenträger 2 auf einer geraden Führungsbahn während des gesamten Hubes des Vertikalantriebes 5 gehalten.

Bei dem Ausführungsbeispiel nach Fig. 1 sind die Glieder der Koppelkinematik 16 zur Anbindung der Schwinge 13 an dem Balkenträger 2 beispielhaft als Anlenkstange und einer zweiten Schwinge ausgebildet. Grundsätzlich lassen sich die Glieder der Koppelkinematik 16 durch andere Hebelgeometrien realisieren.

Das in Fig. 2 dargestellte Ausführungsbeispiel der erfindungsgemäßen Vorrichtung stellt nur eine weitere Möglichkeit dar, um die über ein Drehlager am Maschinengestell fixierte Schwinge über eine Koppelkinematik mit dem Balkenträger zur Geradführung des Balkenträgers zu verbinden.

Das Ausführungsbeispiel nach Fig. 2 ist im Aufbau und Ausgestaltung des Vertikalantriebes 5, des Balkenträgers 2 sowie der durch den Balkenträger 2 gehaltenen Einrichtungen identisch zu dem vorgenannten Ausführungsbeispiel, so dass zu der vorhergehenden Beschreibung Bezug genommen wird. Gegenüber dem Ausfüh- rungsbeispiel nach Fig. 1 ist bei dem Ausführungsbeispiel nach Fig. 2 die Führungseinrichtung 12 im Wesentlichen seitlich neben den Pleuelstangen 7.1 und 7.2 angeordnet. Die Führungseinrichtung 12 weist hierzu eine Schwinge 13 auf, die an einem Drehlager 14 gegenüber einem Maschinengestell 15 fixiert ist. Die Schwinge 13 ist drehbar in dem Drehlager 14 gehalten.

Zur Anbindung der Schwinge 13 an dem Balkenträger 2 ist die Koppelkinematik 16 durch einen Kipphebel 18 und eine Anlenkstange 17 gebildet. Der Kipphebel

18 ist seitlich oberhalb des Balkenträgers 2 an einem Drehlager 19 im Maschinengestell 15 gehalten. Der Kipphebel 18 ist gelenkig an dem Drehlager 19 fixiert, so dass ein freies oberes Ende und ein freies unteres Ende relativ zu dem Drehlager

19 verschwenkbar sind. Das obere freie Ende des Kipphebels 18 ist über ein Drehgelenk 21.2 mit dem freien Ende der Schwinge 13 gelenkig verbunden. Das untere Ende des Kippehebels 18 ist über das Drehgelenk 21.1 gelenkig mit der Anlenkstange 17 gekoppelt. Die Anlenkstange 17 ragt mit einem freien Ende bis zur Mitte des Balkenträgers 2 und ist dort über das Drehgelenk 20 gelenkig mit dem Balkenträger 2 verbunden.

Die vertikale Bewegung des Balkenträgers 2, der durch den Vertikalantrieb 5 angetrieben ist, wird über die Anlenkstange 17 in eine durch die Kinematik der Füh- rungseinrichtung 12 bestimmte Führungsbahn gehalten. Je nach Länge der Anlenkstange 17 lässt sich der Balkenträger 2 auf eine annähernden geraden Führungsbahn führen. Auch hierbei wird die translatorische Bewegung des Balkenträgers 2 allein durch Drehbewegungen der Teile der Führungseinrichtung 15 geführt.

Das in Fig. 2 dargestellt Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist besonders geeignet, um den Balkenträger wahlweise überlagert mit einem Horizontalhub anzutreiben. Hierzu wird das Drehlager 14 der Schwinge 13 durch ein Exzenterlager und eine Exzenterwelle ersetzt, die über eine Bewegungseinrich- tung zur Einleitung eines Horizontalhubes an der Schwinge 13 angetrieben wird. Damit lässt sich die Geradführung zur übertragung eines Horizontalhubes nutzen. Für den Fall, dass der Balkenträger nur mit einer oszillierenden Vertikalbewegung angetrieben werden soll, wird die Exzenterwelle festgestellt, so dass das Exzenterlager ausschließlich als Drehlager der Schwinge wirkt. An der Schwinge wird somit keine Horizontalbewegung mehr eingeleitet.

In Fig. 3 ist ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung schematisch in einer Seitenansicht dargestellt. Das Ausführungsbeispiel nach Fig. 3 ist im Wesentlichen identisch zu dem Ausführungsbeispiel nach Fig. 1, so dass an dieser Stelle nur die Unterschiede erläutert werden und ansonsten Bezug zu der vorgenannten Beschreibung genommen wird.

Bei dem in Fig. 3 dargestellten Ausführungsbeispiel sind an dem Balkenträger 2 jeweils zwei Nadelbalken 1.1 und 1.2 gehalten, die jeweils an ihren Unterseiten ein Nadelbrett 3 und eine Mehrzahl von Nadeln 4 tragen. Der Balkenträger 2 ist mit einem Vertikalantrieb 5 gekoppelt, der identisch zu dem vorgenannten Ausführungsbeispiel ausgebildet ist. Zur Geradführung des Balkenträgers 2 ist eine Führungseinrichtung 12 vorgesehen, die aus einer ersten Schwinge 13 und einer zweiten Schwinge 22 besteht. Die erste Schwinge 13 ist über das Drehlager 14 an dem Maschinengestellt 15 fixiert. Das Drehlager 14 ist hierzu seitlich neben dem Balkenträger 2 angeordnet. Die zweite Schwinge 22 ist an einem Drehlager 23 gehalten, das auf der gegenüberliegenden Seite des Balkenträgers 2 an dem Maschinengestell 15 angeordnet ist. Die erste Schwinge 13 sowie die zweite Schwinge 22 ragen gegenüberliegend jeweils zur Balkenmitte des Balkenträgers 2. Im mittleren Bereich des Balkenträgers 2 ist eine Anlenkstange 17 vorgesehen, die im mittleren Bereich über ein Drehgelenk 20 mit dem Balkenträger 2 verbunden ist. Die freien Enden der Anlenkstange 17 sind über die Drehgelenke 24.1 und 24.2 mit der ersten Schwinge 13 und mit der zweiten Schwinge 22 gekoppelt.

Bei der in Fig. 3 dargestellten Führungseinrichtung 12 weisen die Schwingen 13 und 22 eine gleiche Länge auf. Um an dem Anlenkpunkt der Anlenkstange 17 gegenüber dem Balkenträger 2 eine resultierende Führungsbahn durch die Drehbewegungen der Schwinge 13 und 22 zu erhalten, sind die Schwingen 13 und 22 in unterschiedlichen Winkellagen relativ zum Balkenträger 2 angeordnet. Somit lässt sich eine an dem Anlenkpunkt der Anlenkstange 17, der durch das Drehge- lenk 20 bestimmt ist, eine annähernd gerade Führungsbahn während der Vertikalbewegung des Balkenträgers 2 erzeugen.

Durch die symmetrische Anordnung der Führungseinrichtung 12 sowie der beidseitigen Anlenkung an dem Maschinengestell 15 durch die Drehlager 14 und 23 wird eine sehr stabile Führung des Balkenträgers 2 erreicht.

Die vorgenannten Ausführungsbeispiele der erfindungsgemäßen Vorrichtungen sind zum Vernadeln einer Faserbahn geeignet, bei welcher die Nadeln in einer vertikalen Auf- und Abwärtsbewegung geführt werden. Die Geradführung des Balkenträgers bewirkt dabei, dass die Nadeln eine möglichst exakte Vertikalbe- wegung ausführen.

Für den Fall, dass die Nadeln zum Vernadeln der Faserbahn neben der reinen Vertikalbewegung eine überlagerte Horizontalbewegung ausführen müssen, lässt sich die Führungseinrichtung 12 vorteilhaft derart erweitern, das wahlweise der BaI- kenträger 2 neben der Auf- und Abwärtsbewegung eine Hin- und Herbewegung ausführt. In Fig. 4 ist ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung schematisch in einer Seitenansicht dargestellt. Das Ausführungsbeispiel ist identisch zu dem Ausführungsbeispiel nach Fig. 1, so dass zu der vorgenannten Beschreibung Bezug genommen wird und nachfolgend nur die Unterschiede er- läutert werden.

Gegenüber dem Ausführungsbeispiel nach Fig. 1 ist bei dem Ausführungsbeispiel nach Fig. 4 innerhalb der Führungseinrichtung 12 das Drehlager der zweiten Schwinge 22 durch ein Exzenterlager 25 ersetzt. Das Exzenterlager 25 ist an einer Exzenterwelle 26 ausgebildet, die bei Rotation die Schwinge 22 antreibt. Die Exzenterwelle 26 ist mit einer Bewegungseinrichtung 27 gekoppelt, durch welche die Exzenterwelle 26 wahlweise in ihrer Lage festgehalten oder angetrieben werden kann.

Bei feststehender Exzenterwelle 26 ist die Schwinge 22 durch das Exzenterlager 25 fixiert und lässt sich nur in einer Drehbewegung um das Exzenterlager 25 her-

um führen. In dieser Situation wirkt die Anlenkstange 17 gegenüber dem Balkenträger 2 ausschließlich zur Führung der Vertikalbewegung des Balkenträgers. Das freie Ende der Anlenkstange 17 wird im Drehgelenk 20 hierzu bevorzugt auf einer Vertikalen geführt, so dass der Balkenträger 2 eine gerade Führung während des Vertikalhubes erhält.

Für den Fall, dass die Bewegungseinrichtung 27 die Exzenterwelle 26 antreibt, wird der Balkenträger 2 in einem konstanten Horizontalhub überlagert zu der Vertikalbewegung angetrieben. Die Anlenkstange 17 wirkt als Schubstange und führt den Balkenträger 2 über das Drehgelenk 20 in eine überlagert horizontale Bewegung. Der Balkenträger 2 und damit der Nadelbalken 11 führen eine elliptische Bewegung aus. Die Drehzahl der Exzenterwelle 26 sowie die Drehzahl der Kurbelwellen 9.1 und 9.2 des Vertikalantriebes 5 sind in diesem Fall gleich, so dass sich ein von der Exzentrizität der Exzenterwelle 26 abhängiger horizontaler Hub an dem Nadelbalken 1 einstellt.

Bei dem in Fig. 4 dargestellten Ausführungsbeispiel könnte zur Realisierung einer überlagerten Horizontalbewegung an dem Balkenträger 2 alternativ auch das Drehlager 14 der Schwinge 13 durch ein Exzenterlager an einer Exzenterwelle ausgebildet sein, so dass bei Antrieb der Exzenterwelle über die Schwinge 13 eine horizontale Bewegungskomponente eingeleitet wird. Die zweite Schwinge 22 wäre an einem Drehlager am Maschinengestell geführt. Es wäre jedoch auch möglich, dass beide Schwingen an Exzenterwellen gehalten sind, wobei die Exzenterwellen durch eine Bewegungseinrichtung wahlweise antreibbar oder fixierbar wären.

Die erfmdungsgemäße Vorrichtung zum Vernadeln einer Faserbahn bietet somit eine hohe Flexibilität zur Führung und zum Antrieb eines Nadelbalkens. Insbesondere lassen sich reine vertikale Vernadelungen zur Herstellung hochwertiger Faserprodukte mit gleichmäßiger Faserstruktur realisieren.

In Fig. 5 ist ein weiteres Ausführungsbeispiel der erfmdungsgemäßen Vorrichtung schematisch in einer Seitenansicht dargestellt. Das Ausführungsbeispiel nach Fig. 5 ist mit Ausnahme des Vertikalantriebs 5 identisch zu dem Ausführungsbeispiel nach Fig. 1 ausgeführt, so dass an dieser Stelle nur die Unterschiede der Vertikal- antriebe erläutert werden und ansonsten Bezug zu der vorgenannten Beschreibung genommen wird.

Bei dem in Fig. 5 dargestellten Ausführungsbeispiel ist dem Vertikalantrieb 5 eine Phasenverstelleinrichtung 31 zugeordnet. Die Phasenverstelleinrichtung 31 weist zwei Stellmotoren 33.1 und 33.2 auf, die den Kurbelwellen 9.1 und 9.2 zugeordnet sind. Die Stellmotoren 33.1 und 33.2 sind mit einer Steuereinrichtung 32 verbunden. über die Steuereinrichtung 32 lassen sich die Stellmotoren 33.1 und 33.2 unabhängig voneinander aktivieren, um die Kurbelwellen 9.1 und 9.2 in ihren Lagern zu verdrehen. Somit lässt sich eine Phasenlage zwischen den Kurbelwel- len 9.1 und 9.2 beliebig einstellen. Neben der reinen vertikalen Auf- und Abwärtsbewegung des Nadelbalkens 1 lässt sich dadurch eine überlagerte Horizontalbewegung an dem Balkenträger 2 ausführen. So wird bei Phasengleichheit der Kurbelwellen 9.1 und 9.2 sowie einem synchronen Antrieb beider Kurbelwellen eine annähernd vertikale Auf- und Abwärtsbewegung ausgeführt. Bei einem Ver- satz der Phasenlagen der Kurbelwellen 9.1 und 9.2 wird über die Pleuelstangen 7.1 und 7.2 an dem Balkenträger 2 eine Schiefstellung eingeleitet, die bei fortschreitender Bewegung eine in Bewegungsrichtung der Faserbahn 30 gerichtete Bewegungskomponente erzeugt. Die Größe der Phasenverstellung zwischen der Kurbelwelle 9.1 und 9.2 ist direkt proportional zu einer Hublänge der Horizontal- bewegung. Der Hub der Horizontalbewegung lässt sich also über den Phasendiffe- renzwinkel der Kurbelwellen 9.1 und 9.2 stufenlos einstellen.

Die Phasenverstelleinrichtung 31 könnte alternativ auch durch einen Stellmotor und eine auf die Kurbelwellen 9.1 und 9.2 einwirkendes Verstellgetriebe gebildet sein. Wesentlich hierbei ist, dass die Kurbelwellen 9.1 und 9.2 um einen Phasenwinkel versetzt zueinander angetrieben sind, um neben der Vertikalbewegung

auch eine Horizontalbewegung zum Vernadeln der Faserbahn ausfuhren zu können.

Die Führung der Bewegung des Balkenträgers erfolgt auch in diesem Fall durch die Führungseinrichtung 12, die wie in dem Ausführungsbeispiel nach Fig. 1 durch die Schwinge 13 und die aus einer Anlenkstange 17 und der zweiten Schwinge 22 gebildeten Koppelkinematik 16 erfolgt.

Die in den Figuren 1 bis 4 dargestellten Ausführungsbeispiele der erfmdungsge- mäßen Vorrichtung zum Vernadeln einer Faserbahn sind in der Ausgestaltung und in dem Aufbau der Führungseinrichtung zur Geradführung des Balkenträgers beispielhaft. Grundsätzlich kann die Koppelkinematik auch mehr als zwei Glieder aufweisen, um die Schwinge mit dem Balkenträger zu koppeln. Ebenso können an einem Balkenträger mehrere Vertikalantriebe gleichzeitig angreifen. Hierbei kann jedem der Vertikalantriebe oder einer Gruppe von Vertikalantrieben eine von mehreren Geradführungen zugeordnet sein.

Bezugszeichenliste

1.1, 1.2 Nadelbalken

2 Balkenträger 3 Nadelbrett

4 Nadel

5 Vertikalantrieb 6.1, 6.2 Exzenterantrieb 7.1, 7.2 Pleuelstangen 8.1, 8.2 Pleueldrehgelenk

9.1, 9.2 Kurbelwelle

10.1, 10.2 Pleuelkopf

11.1, 11.2 Pleuelauge

12 Führungseinrichtung 13 Erste Schwinge

14 Drehlager (erste Schwinge)

15 Maschinengestell

16 Kopp elkinematik

17 Anlenkstange 18 Kipphebel

19 Drehlager

20 Drehgelenk (Anlenkstange / Balkenträger)

21.1 Drehgelenk (Kipphebel / Anlenkstange)

21.2 Drehgelenk (Kipphebel / Schwinge) 22 Zweite Schwinge

23 Drehlager (zweite Schwinge)

24.1 Drehgelenk (Anlenkstange / Balkenträger)

24.2 Drehgelenk (Anlenkstange / zweite Schwinge) 25 Exzenterlager 26 Exzenterwelle

27 Bewegungseinrichtung

28 Absteifer

29 Bettplatte

30 Faserbahn

31 Phasenverstelleinrichtung 32 Steuereinrichtung

33.1, 33.2 Stellmotor