Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE FOR PRODUCING A NON-THERMAL ATMOSPHERIC-PRESSURE PLASMA AND METHOD FOR THE FREQUENCY CONTROL OF A PIEZOELECTRIC TRANSFORMER
Document Type and Number:
WIPO Patent Application WO/2018/167163
Kind Code:
A1
Abstract:
The invention relates to a device for producing a non-thermal atmospheric-pressure plasma, comprising a piezoelectric transformer (1), a control circuit (11), which is designed to apply an alternating voltage having a control frequency to the piezoelectric transformer (1) as an input voltage, and a field probe (15), which is designed to measure a field intensity of an electric field produced by the piezoelectric transformer (1), the control circuit (11) being designed to adjust the control frequency in accordance with the measurement results of the field probe (15) in such a way that the field intensity is maximized. According to a further aspect, the invention relates to a method for the frequency control of a piezoelectric transformer.

Inventors:
WEILGUNI MICHAEL (AT)
NETTESHEIM STEFAN (DE)
Application Number:
PCT/EP2018/056424
Publication Date:
September 20, 2018
Filing Date:
March 14, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EPCOS AG (DE)
RELYON PLASMA GMBH (DE)
International Classes:
H01L41/04; H05H1/24
Foreign References:
DE102015112410A12017-02-02
DE102013103159A12014-10-02
DE19827948A12000-01-05
DE102013103159A12014-10-02
Attorney, Agent or Firm:
EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH (DE)
Download PDF:
Claims:
Patentansprüche

1. Vorrichtung zur Erzeugung eines nicht-thermischen

Atmosphärendruck-PIasmas ,

aufweisend

einen piezoelektrischen Transformator (1),

eine Ansteuerschaltung (11), die dazu ausgelegt ist, eine Wechselspannung mit einer Ansteuerfrequenz als Eingangsspannung an den piezoelektrischen Transformator (1) anzulegen, und

eine Feldsonde (15), die dazu ausgestaltet ist, eine Feldstärke eines von dem piezoelektrischen Transformator

(1) erzeugten elektrischen Feldes zu messen,

wobei die Ansteuerschaltung (11) dazu ausgestaltet ist, unter Berücksichtigung der Messergebnisse der Feldsonde

(15) die Ansteuerfrequenz derart anzupassen, dass die Feldstärke maximiert wird.

2. Vorrichtung gemäß Anspruch 1,

wobei der piezoelektrische Transformator (1) einen

Eingangsbereich (2) aufweist, an den die

Eingangsspannung anlegbar ist, und

wobei der piezoelektrische Transformator (1) einen

Ausgangsbereich (3) aufweist, in dem eine Hochspannung erzeugt wird, wenn an den Eingangsbereich (2) die

Eingangsspannung angelegt ist, wobei durch die

Hochspannung ein Plasma gezündet wird.

3. Vorrichtung gemäß dem vorherigen Anspruch,

wobei die Feldsonde (15) nahe dem Ausgangsbereich (3) angeordnet ist.

4. Vorrichtung gemäß einem der vorherigen Ansprüche, wobei die Feldsonde (15) mit einer Messeinheit (16) verbunden ist, die dazu ausgestaltet ist, einen

Spitzenwert der elektrischen Feldstärke und/oder einen Mittelwert der elektrischen Feldstärke zu bestimmen, wobei die Ansteuerschaltung (11) einen Regler (13) aufweist, der dazu ausgestaltet ist, die

Ansteuerfrequenz abhängig vom bestimmten Spitzenwert und/oder vom bestimmten Mittelwert zu variieren.

5. Vorrichtung gemäß einem der vorherigen Ansprüche,

wobei die Feldsonde (15) in eine Leiterplatte (20) integriert ist.

6. Vorrichtung gemäß dem vorherigen Anspruch,

wobei die Leiterplatte (20) eine Metallbeschichtung (23, 24) aufweist, die auf einer Seite der Leiterplatte (20) angeordnet ist, die von dem piezoelektrischen

Transformator (1) wegweist.

7. Vorrichtung gemäß Anspruch 5,

wobei die Leiterplatte (20) mehrlagig ist und die

Feldsonde (15) durch eine innere Lage der Leiterplatte (20) gebildet wird.

8. Vorrichtung gemäß einem der vorherigen Ansprüche,

wobei die Wechselspannung ein rechteckförmiges Signal oder ein dreieckförmiges Signal aufweist.

9. Vorrichtung gemäß einem der vorherigen Ansprüche,

wobei die Ansteuerschaltung (11) dazu ausgestaltet ist, beim Einschalten der Vorrichtung unter Berücksichtigung der Messergebnisse der Feldsonde (15) die Ansteuerfrequenz derart anzupassen, dass die Feldstärke maximiert wird, und

wobei die Ansteuerschaltung (11) dazu ausgestaltet ist, im laufenden Betrieb der Vorrichtung in festgelegten zeitlichen Abständen unter Berücksichtigung der

Messergebnisse der Feldsonde (15) eine Korrektur der Ansteuerfrequenz vorzunehmen, wobei die Ansteuerfrequenz erneut derart angepasst wird, dass die Feldstärke maximiert wird.

10. Vorrichtung gemäß einem der vorherigen Ansprüche,

die zur Erzeugung von angeregten Molekülen, Ionen oder Radikalen dient.

11. Vorrichtung gemäß einem der vorherigen Ansprüche,

die zur Erzeugung von OH-Radikalen und/oder Stickoxid und/oder Ozon dient.

12. Verfahren zur Frequenzregelung eines piezoelektrischen Transformators (1), umfassend die Schritte:

- Anlegen einer Wechselspannung an den

piezoelektrischen Transformator (1) mit einer Anfangs-Ansteuerfrequenz fo,

- Schrittweises Ändern der Ansteuerfrequenz, wobei

jeweils die Feldstärke eines von dem

piezoelektrischen Transformator (1) erzeugten elektrischen Feldes durch eine Feldsonde (15) ermittelt wird,

- Bestimmen der Ansteuerfrequenz, bei der sich die

maximale Feldstärke einstellt,

- Betrieb des piezoelektrischen Transformators (1) mit der bestimmten Ansteuerfrequenz, für die sich die maximale Feldstärke einstellt. Verfahren gemäß dem vorherigen Anspruch,

wobei die Bestimmung der Ansteuerfrequenz, bei der sich die maximale Feldstärke einstellt, im laufenden Betrieb der Vorrichtung in festgelegten zeitlichen Abständen wiederholt wird.

Verfahren gemäß einem der Ansprüche 12 oder 13,

wobei bei dem schrittweisen Ändern der Ansteuerfrequenz die Ansteuerfrequenz ausgehend von der Anfangs- Ansteuerfrequenz fo schrittweise um eine Schrittweite Afi erhöht oder reduziert wird, bis sich die

Ansteuerfrequenz einstellt, bei der sich für die

Schrittweite Afi die maximale Feldstärke einstellt, wobei anschließend ausgehend von dieser Ansteuerfrequenz die Ansteuerfrequenz schrittweise um eine Schrittweite Af2 erhöht oder reduziert wird, bis sich die

Ansteuerfrequenz einstellt, bei der sich für die

Schrittweite Af2 die maximale Feldstärke einstellt, wobei Af2 kleiner als Afi ist.

Verfahren gemäß einem der Ansprüche 12 bis 14,

wobei der piezoelektrische Transformator (1) zur

Erzeugung eines nicht-thermischen Atmosphärendruck- Plasmas eingesetzt wird.

Verfahren gemäß einem der Ansprüche 12 bis 15,

wobei das Plasma zur Erzeugung von angeregten Molekülen,

Ionen oder Radikalen genutzt wird.

Verfahren gemäß einem der Ansprüche 12 bis 16,

wobei das Plasma zur Erzeugung von OH-Radikalen und/oder

Stickoxid und/oder Ozon genutzt wird.

Description:
Beschreibung

Vorrichtung zur Erzeugung eines nicht-thermischen

Atmosphärendruck-Plasmas und Verfahren zur Frequenzregelung eines piezoelektrischen Transformators

Die Erfindung betrifft eine Vorrichtung zur Erzeugung eines nicht-thermischen Atmosphärendruck-Plasmas sowie ein

Verfahren zur Frequenzregelung eines piezoelektrischen

Transformators.

Piezoelektrische Transformatoren, insbesondere

Transformatoren vom Rosen-Typ, können zur Erzeugung von

Plasma eingesetzt werden. Bei der Plasmagenerierung wird die maximale Effizienz erreicht, wenn der piezoelektrische

Transformator mit einer Frequenz angesteuert wird, die der Serienresonanzfrequenz des Transformators entspricht. Die Serienresonanzfrequenz ist jedoch nicht konstant, sondern hängt von verschiedenen Parametern ab. Wird an einer

ausgangsseitigen Stirnseite des Transformators ein Plasma gezündet, so wirkt dieses als Last mit dem Transformator zusammen und beeinflusst dabei die Impedanz des

Transformators. Dadurch kommt es zu einer Verschiebung der Serienresonanz gegenüber einem Betrieb des Transformators im Leerlauf, bei dem die angelegte Spannung zur Zündung eines Plasmas nicht ausreicht. Auch die Arbeitsumgebungen,

beispielsweise das verwendete Prozessgas oder die Temperatur des Transformators, beeinflussen die Serienresonanzfrequenz. Ferner kann auch die an dem Transformator angelegte

Eingangsspannung die Serienresonanzfrequenz beeinflussen. Für die Auffindung der jeweiligen Serienresonanzfrequenz, die zu einer maximalen Ausgangsspannung führt, sind deshalb

Informationen vom Bauteil erforderlich.

Da der piezoelektrische Transformator zur Zündung eines Plasmas ausgelegt ist, kann die Spannung an der Ausgangsseite des Transformators nicht abgegriffen werden, um auf diese Weise eine Maximierung der Ausgangsspannung herbeizuführen. Dabei könnte die Spannung entweder mittels einer starren Lötverbindung, die an die Ausgangsseite aufgebracht ist, oder mittels eines leitfähigen Gummis, das an die Ausgangsseite angepresst wird, abgegriffen werden. Das Abgreifen der

Ausgangsspannung würde eine Schwingung des Transformators dämpfen und so die Hochspannung herabsetzen. Außerdem würde es zu der Gefahr einer Plasmazündung an der abgreifenden Leitung führen.

DE 10 2013 103 159 AI schlägt vor, ein an den

piezoelektrischen Transformator angelegtes Eingangssignal zur Regelung des piezoelektrischen Transformators zu verwenden und auf diese Weise die optimale Arbeitsfrequenz zu finden. Dabei ist eine Auswertung der Phaseninformation des

Eingangssignals erforderlich. Eine solche Lösung ist mit einem nicht unerheblichen schaltungstechnischen Aufwand verbunden. Außerdem eignet sich eine solche Lösung nur für sinusförmige Eingangssignale.

Aufgabe der vorliegenden Erfindung ist es daher, eine

verbesserte Vorrichtung zur Erzeugung eines nicht-thermischen Atmosphärendruck-Plasmas bereitzustellen. Eine weitere

Aufgabe der Erfindung ist es ein verbessertes Verfahren zur Frequenzregelung eines piezoelektrischen Transformators anzugeben . Die Aufgaben werden durch die Gegenstände der unabhängigen Ansprüche gelöst.

Es wird eine Vorrichtung zur Erzeugung eines nicht- thermischen Atmosphärendruck-Plasmas vorgeschlagen, die einen piezoelektrischen Transformator, eine Ansteuerschaltung und eine Feldsonde aufweist. Die Ansteuerschaltung ist dazu ausgelegt, eine Wechselspannung mit einer Ansteuerfrequenz als Eingangsspannung an den piezoelektrischen Transformator anzulegen. Die Feldsonde ist dazu ausgestaltet, eine

Feldstärke eines von dem piezoelektrischen Transformator erzeugten elektrischen Feldes zu messen. Die

Ansteuerschaltung ist dazu ausgestaltet, unter

Berücksichtigung der Messergebnisse der Feldsonde die

Ansteuerfrequenz derart anzupassen, dass die Feldstärke maximiert wird.

Eine Maximierung der Feldstärke des vom piezoelektrischen Transformator erzeugten elektrischen Feldes ist

gleichbedeutend mit einer Maximierung der im Ausgangsbereich des piezoelektrischen Transformators erzeugten Spannung.

Die Vorrichtung macht Gebrauch von den hohen elektrischen Feldstärken, die in der Umgebung des Ausgangsbereichs des piezoelektrischen Transformators erzeugt werden. Eine

Vermessung dieser Feldstärke kann vorgenommen werden, ohne dabei die Arbeit des Transformators durch ein Abgreifen einer Leistung im Ausgangsbereich des Transformators zu

beeinflussen. Insbesondere kann eine Vermessung der

Feldstärke vorgenommen werden, ohne eine Schwingung des piezoelektrischen Transformator dadurch zu dämpfen. Das von der Feldsonde gemessene Signal kann proportional zu der Spannung sein, die im Ausgangsbereich des

piezoelektrischen Transformators erzeugt wird. Auf eine aufwendige eingangsseitige Impedanz- und/oder Phasenmessung kann somit verzichtet werden. Dadurch kann eine Schaltung zur Frequenzregelung des Transformators vereinfacht werden.

Darüber hinaus kann eine Frequenzanpassung mittels Messung der elektrischen Feldstärke unabhängig von der Signalform der Eingangsspannung angewendet werden. Es ist beispielsweise nicht erforderlich, dass es sich bei der Eingangsspannung um ein sinusförmiges Signal handelt. Vielmehr kann die

Eingangsspannung jedes periodische Signal sein,

beispielsweise kann es sich bei der Eingangsspannung um ein Rechtecksignal oder ein Dreiecksignal handeln.

Die Feldsonde kann in ein Gehäuse der Vorrichtung zur

Erzeugung eines nicht-thermischen Atmosphärendruck-Plasmas integriert sein. Die Feldsonde kann in unmittelbarer Nähe zu dem piezoelektrischen Transformator angeordnet sein.

Beispielsweise kann der Abstand zwischen dem

piezoelektrischen Transformator und der Feldsonde kleiner als 5 cm sein. Vorzugsweise kann der Abstand zwischen dem

piezoelektrischen Transformator und der Feldsonde kleiner als 1 cm sein. Zwischen der Feldsonde und dem piezoelektrischen Transformator kann ein Spalt verbleiben.

Die Feldsonde kann durch eine Metallfläche gebildet werden, wobei ein von dem piezoelektrischen Transformator erzeugtes elektrisches Wechselfeld eine Wechselspannung in der

Metallfläche erzeugt. Die Vorrichtung kann eine Messeinheit aufweisen, die dazu ausgestaltet ist, diese Spannung zu messen und daraus auf die Feldstärke rückzuschließen. Der piezoelektrische Transformator kann einen Eingangsbereich aufweisen, an den die Eingangsspannung anlegbar ist. Der piezoelektrische Transformator kann einen Ausgangsbereich aufweisen, in dem eine Hochspannung erzeugt wird, wenn an dem Eingangsbereich die Eingangsspannung angelegt ist, wobei durch die Hochspannung ein Plasma gezündet wird. Insbesondere kann es sich bei dem Transformator um einen Rosen-Typ

Transformator handeln. Der Transformator kann von einem

Prozessgas umgeben sein. Bei der Plasmazündung kann durch die erzeugte Hochspannung eine Anregung oder eine Ionisation von Molekülen oder Atomen des Prozessgases bewirkt werden. Ferner können Radikale aus dem Komponenten des Prozessgases gebildet werden. Im Falle von Umgebungsluft als Prozessgas werden insbesondere OH-Radikale, Stickoxide und Ozon im Plasma erzeugt.

Die Feldsonde kann nahe dem Ausgangsbereich des

piezoelektrischen Transformators angeordnet sein.

Beispielsweise kann der Abstand zwischen der Feldsonde und dem Ausgangsbereich zwischen 0,1 mm und 1 cm betragen.

Zwischen der Feldsonde und dem Ausgangsbereich ist ein

SpaltSpalt angeordnet. Der Spalt kann mit dem Prozessgas gefüllt sein. Dadurch, dass die Feldsonde nahe des

Ausgangsbereichs angeordnet ist, kann sichergestellt werden, dass das von der Feldsonde gemessene elektrische Feld eine

Feldstärke aufweist, die proportional zu der Ausgangsspannung des piezoelektrischen Transformators ist. Ist die Feldsonde nahe dem Ausgangsbereich angeordnet, so kann sichergestellt werden, dass das von dem piezoelektrischen Transformator erzeugte elektrische Feld für die elektrische Feldstärke an diesem Ort den dominierenden Effekt darstellt und etwaige andere elektrische Felder, die eine Messung der Feldstärke durch die Feldsonde als Störeffekte beeinflussen könnten, vernachlässigt werden können.

Die Feldsonde kann mit einer Messeinheit verbunden sein, die dazu ausgestaltet ist, einen Spitzenwert der elektrischen Feldstärke und/oder einen Mittelwert der elektrischen

Feldstärke zu bestimmen. Die Ansteuerschaltung kann einen Regler aufweisen, der dazu ausgestaltet ist, die

Ansteuerfrequenz abhängig vom bestimmten Spitzenwert und/oder vom bestimmten Mittelwert zu variieren. Die Messeinheit und die Ansteuerschaltung können auf einer einzigen Leiterplatte ausgebildet sein. Die Messeinheit und die Ansteuerschaltung können durch einen einzigen Mikrochip gebildet werden. Die Feldsonde kann in eine Leiterplatte integriert sein. Die Leiterplatte kann ein nicht-leitendes Trägermaterial

aufweisen. Das nicht-leitende Material der Leiterplatte kann für eine Isolierung zwischen der Feldsonde und dem

piezoelektrischen Transformator sorgen. Dementsprechend können Plasmazündungen zwischen dem Transformator und der

Feldsonde vermieden werden. Die Feldsonde kann entweder auf einer Unterseite der Leiterplatte, die vom piezoelektrischen Transformator weg weist, oder in einer inneren Lage einer mehrlagigen Leiterplatte angeordnet sein.

Die Leiterplatte kann eine Metallbeschichtung aufweisen, die auf einer Seite der Leiterplatte angeordnet ist, die von dem piezoelektrischen Transformator weg weist. Bei der

Metallbeschichtung kann es sich um eine Kupferbeschichtung handeln. Die Metallbeschichtung kann eine Sondenfläche ausbilden. Durch ein von dem piezoelektrischen Transformator erzeugtes elektrisches Wechselfeld kann in der Sondenfläche eine Spannung induziert werden. Die Sondenfläche kann mit der Messeinheit verbunden werden, wobei die Messeinheit dazu ausgestaltet ist, die in der Sondenfläche induzierte Spannung zu vermessen. Die Metallbeschichtung kann ferner eine

Massenfläche ausbilden, die mit einem Referenzpotential, insbesondere der Masse, verbunden ist.

Die Leiterplatte kann mehrlagig sein, wobei die Feldsonde durch eine innere Lage der Leiterplatte gebildet werden kann. Als innere Lage kann dabei eine Lage bezeichnet werden, die zwischen zwei Lagen eines nicht-leitenden Trägermaterial angeordnet ist. Durch die Ausbildung der Feldsonde durch eine innere Lage kann eine besonders hohe Ortsauflösung der

Messung erreicht werden. Die Wechselspannung kann ein dreieckförmiges Signal oder ein rechteckförmiges Signal aufweisen. Signale dieser Art lassen sich besonders einfach erzeugen und ermöglichen

dementsprechend die Verwendung eines simplen Treibers zur Ansteuerung. Da zur Bestimmung der optimalen Arbeitsfrequenz des piezoelektrischen Transformators nicht auf

Phaseninformationen zurückgegriffen werden muss, kann es sich bei der Wechselspannung um jedes beliebige periodische Signal handeln. Es ist insbesondere nicht zwangsläufig erforderlich, dass es sich bei der Wechselspannung um ein Sinussignal handelt.

Die Ansteuerschaltung kann dazu ausgestaltet sein, beim

Einschalten der Vorrichtung unter Berücksichtigung der

Messergebnisse der Feldsonde die Ansteuerfrequenz derart anzupassen, dass die Feldstärke maximiert wird. Die

Ansteuerschaltung kann ferner dazu ausgestaltet sein, im laufenden Betrieb der Vorrichtung in festgelegten zeitlichen Abständen unter Berücksichtigung der Messergebnisse der Feldsonde eine Korrektur der Ansteuerfrequenz vorzunehmen, wobei die Ansteuerfrequenz erneut derart angepasst wird, dass die Feldstärke maximiert wird. Während des laufenden Betriebs können sich die

Arbeitsbedingungen ändern, wodurch die Serienresonanzfrequenz des piezoelektrischen Transformators und damit seine optimale Arbeitsfrequenz verschoben wird. Hierfür kann beispielsweise eine Temperaturänderung oder eine Last in der Nähe des

Transformators sorgen. Durch die Wiederholung der Anpassung der Ansteuerfrequenz in periodischen zeitlichen Abständen im laufenden Betrieb kann sichergestellt werden, dass die

Ansteuerfrequenz stets auf die optimale Arbeitsfrequenz angepasst wird.

Die Vorrichtung kann zur Erzeugung von angeregten Molekülen, Ionen oder Radikalen dienen. Die Vorrichtung kann zur

Erzeugung von OH-Radikalen und/oder Stickoxid und/oder Ozon dienen .

Gemäß einem weiteren Aspekt betrifft die vorliegende

Erfindung ein Verfahren zur Frequenzregelung eines

piezoelektrischen Transformators. Dabei kann es sich um den oben beschriebenen Transformator handeln. Dementsprechend kann jedes funktionelle oder strukturelle Merkmal, das im

Zusammenhang mit dem Transformator offenbart wurde, auch auf das Verfahren zutreffen. Umgekehrt kann jedes Merkmal, das im Zusammenhang mit dem Verfahren offenbart wird, auch auf den Transformator zutreffen.

Das Verfahren umfasst die folgenden Schritte:

- Anlegen einer Wechselspannung an den piezoelektrischen

Transformator mit einer Anfangs-Ansteuerfrequenz fo, - schrittweises Ändern der Ansteuerfrequenz, wobei jeweils die Feldstärke eines von dem piezoelektrischen Transformator erzeugten elektrischen Feldes durch eine Feldsonde ermittelt wird,

- Bestimmen der Ansteuerfrequenz, bei der sich die maximale Feldstärke einstellt,

- Betrieb des piezoelektrischen Transformators mit der bestimmten Ansteuerfrequenz, für die sich die maximale

Feldstärke einstellt.

Ein Vorteil des Verfahrens ist die geringe Trägheit eines Regelalgorithmus, der die Frequenz, mit der der Transformator betrieben wird, regelt. Würde als Regelgröße stattdessen ein Spulenstrom verwendet werden, wäre die Trägheit des

Regelalgorithmus deutlich größer.

Die Schritte können dabei in der hier angegebenen Reihenfolge durchgeführt werden. Das Verfahren kann somit ermöglichen, die Frequenz des piezoelektrischen Transformators stets auf seine

Serienresonanzfrequenz und somit seine optimale

Arbeitsfrequenz zu regeln. Wie bereits oben diskutiert, ermöglicht es das Verfahren, eine Regelung der

Ansteuerfrequenz unabhängig von der Signalform des

Ansteuersignais vorzunehmen. Das Verfahren kann durchgeführt werden, ohne dabei eine Schwingung des piezoelektrischen Transformators zu dämpfen. Darüber hinaus kann das Verfahren mit einer recht einfach gestalteten Ansteuerschaltung

durchgeführt werden.

Die Bestimmung der Ansteuerfrequenz, bei der sich die

maximale Feldstärke eingestellt, kann im laufenden Betrieb der Vorrichtung in festgelegten zeitlichen Abständen

wiederholt werden. Auf diese Weise können Änderungen der Arbeitsbedingungen der Vorrichtung berücksichtigt werden und die Ansteuerfrequenz kann stets auf den optimalen Wert eingestellt werden.

Bei dem schrittweisen Ändern der Ansteuerfrequenz kann die Ansteuerfrequenz ausgehend von der Anfangs-Ansteuerfrequenz fo schrittweise um eine Schrittweite Afi erhöht oder

reduziert werden, bis sich die Ansteuerfrequenz einstellt, bei der sich für die Schrittweite Afi die maximale Feldstärke einstellt, wobei anschließend ausgehend von dieser

Ansteuerfrequenz die Ansteuerfrequenz schrittweise um eine Schrittweite Af 2 erhöht oder reduziert wird, bis sich die Ansteuerfrequenz einstellt, bei der sich für die Schrittweite Af 2 die maximale Feldstärke einstellt, wobei Af 2 kleiner als Afi ist. Dementsprechend kann die schrittweise Anpassung zunächst mit großen Schrittweiten und dann mit zunehmend geringer werdenden Schrittweiten durchgeführt werden.

Dadurch, dass zunächst große und später kleiner werdende Schrittweiten verwendet werden, kann die optimale

Ansteuerfrequenz schnell gefunden werden.

Der piezoelektrische Transformator, dessen Frequenz mit dem oben beschriebenen Verfahren geregelt wird, kann zur

Erzeugung eines nicht-thermischen Atmosphärendruck-Plasmas eingesetzt werden.

Das Plasma kann zur Erzeugung von angeregten Molekülen, Ionen oder Radikalen genutzt werden. Das Plasma kann zur

Erzeugung von OH-Radikalen und/oder Stickoxid und/oder Ozon genutzt werden. Die Feldsonde kann in einen durchschlagsfesten Isolator eingebettet sein. Der durchschlagsfeste Isolator kann dabei insbesondere dazu ausgestaltet sein, einen Durchschlag zwischen dem Transformator und der Feldsonde zu verhindern. Der durchschlagsfeste Isolator, in den die Feldsonde

eingebettet ist, kann Stoffschlüssig mit dem

piezoelektrischen Transformator verbunden sein. Die

Stoffschlüssige Verbindung kann beispielsweise eine

Klebeverbindung sein. Durch die Stoffschlüssige Verbindung kann es ermöglicht werden, die Feldsonde in unmittelbarer

Nähe zu dem piezoelektrischen Transformator anzuordnen. Auf diese Weise kann ein vom Transformator erzeugtes Feld besonders genau vermessen werden. Im Folgenden wird die vorliegende Erfindung anhand der

Figuren näher beschrieben.

Figur 1 zeigt einen piezoelektrischen Transformator in einer perspektivischen Ansicht.

Figur 2 zeigt ein Diagramm, in dem der Impedanzverlauf und der Verlauf der Ausgangsspannung des piezoelektrischen

Transformators dargestellt sind. Figur 3 zeigt schematisch eine Vorrichtung zur Erzeugung eines nicht-thermischen Atmosphärendruck-Plasmas.

Figur 4 zeigt eine Feldsonde. Figur 5 zeigt eine Leiterplatte, in die eine Feldsonde integriert ist, in einem Querschnitt. Figur 6 zeigt die Unterseite der in Figur 5 gezeigten

Leiterplatte .

Figur 7 zeigt ein Ersatzschaltbild.

Figur 1 zeigt einen piezoelektrischen Transformator 1 in einer perspektivischen Ansicht. Der piezoelektrische

Transformator 1 kann insbesondere in einem Plasmagenerator zur Erzeugung von nichtthermischem Atmosphärendruck-Plasma eingesetzt werden.

Ein piezoelektrischer Transformator 1 ist eine Bauform eines Resonanztransformators, welcher auf Piezoelektrizität basiert und im Gegensatz zu den herkömmlichen magnetischen

Transformatoren ein elektromechanisches System darstellt. Der piezoelektrische Transformator 1 ist beispielsweise ein

Transformator vom Rosen-Typ.

Der piezoelektrische Transformator 1 weist einen

Eingangsbereich 2 und einen Ausgangsbereich 3 auf, wobei der Ausgangsbereich 3 sich in einer Längsrichtung z an den

Eingangsbereich 2 anschließt. Im Eingangsbereich 2 weist der piezoelektrische Transformator 1 Elektroden 4 auf, an die eine Wechselspannung angelegt werden kann. Die Elektroden 4 erstrecken sich in der Längsrichtung z des piezoelektrischen Transformators 1. Die Elektroden 4 sind in einer

Stapelrichtung x, die senkrecht zu der Längsrichtung z ist, abwechselnd mit einem piezoelektrischen Material 5 gestapelt. Das piezoelektrische Material 5 ist dabei in Stapelrichtung x polarisiert.

Die Elektroden 4 sind im Innern des piezoelektrischen

Transformators 1 angeordnet und werden auch als Innenelektroden bezeichnet. Der piezoelektrische Transformator 1 weist eine erste Seitenfläche 6 und eine zweite Seitenfläche 7, die der ersten Seitenfläche 6

gegenüberliegt, auf. Auf der ersten Seitenfläche 6 ist eine erste Außenelektrode 8 angeordnet. Auf der zweiten

Seitenfläche 7 ist eine zweite Außenelektrode (nicht gezeigt) angeordnet. Die innenliegenden Elektroden 4 sind in

Stapelrichtung x abwechselnd entweder mit der ersten

Außenelektrode 8 oder der zweiten Außenelektrode elektrisch kontaktiert.

Der Eingangsbereich 2 kann mit einer geringen Wechselspannung angesteuert werden, die zwischen den Elektroden 4 angelegt wird. Aufgrund des piezoelektrischen Effekts wird die

eingangsseitig angelegte Wechselspannung zunächst in eine mechanische Schwingung umgewandelt. Die Frequenz der

mechanischen Schwingung ist dabei wesentlich von der

Geometrie und dem mechanischen Aufbau des piezoelektrischen Transformators 1 abhängig.

Der Ausgangsbereich 3 weist piezoelektrisches Material 9 auf und ist frei von innenliegenden Elektroden. Das

piezoelektrische Material 9 im Ausgangsbereich 3 ist in der Längsrichtung z polarisiert. Bei dem piezoelektrischen

Material 9 des Ausgangsbereichs 3 kann es sich um das gleiche Material wie bei dem piezoelektrischen Material 5 des

Eingangsbereichs 2 handeln, wobei sich die piezoelektrischen Materialien 5 und 9 in ihrer Polarisationsrichtung

unterscheiden können. Im Ausgangsbereich 3 ist das

piezoelektrische Material 9 zu einer einzigen monolithischen Schicht geformt, die vollständig in der Längsrichtung z polarisiert ist. Dabei weist das piezoelektrische Material 9 im Ausgangsbereich 3 nur eine einzige Polarisationsrichtung auf .

Wird an die Elektroden 4 im Eingangsbereich 2 eine

Wechselspannung angelegt, so bildet sich innerhalb des piezoelektrischen Materials 5, 9 eine mechanische Welle aus, die durch den piezoelektrischen Effekt im Ausgangsbereich 3 eine Ausgangsspannung erzeugt. Der Ausgangsbereich 3 weist eine ausgangsseitige Stirnseite 10 auf. Im Ausgangsbereich 3 wird somit eine elektrische Spannung zwischen der Stirnseite 10 und dem Ende der Elektroden 4 des Eingangsbereichs 2 erzeugt. An der ausgangsseitigen Stirnseite 10 wird dabei eine Hochspannung erzeugt. Dabei entsteht auch zwischen der ausgangseitigen Stirnseite und einer Umgebung des

piezoelektrischen Transformators eine hohe

Potentialdifferenz, die ausreicht, um ein starkes

elektrisches Feld zu erzeugen, dass ein Prozessgas ionisiert.

Auf diese Weise erzeugt der piezoelektrische Transformator 1 hohe elektrische Felder, die in der Lage sind, Gase oder

Flüssigkeiten durch elektrische Anregung zu ionisieren. Dabei werden Atome oder Moleküle des jeweiligen Gases bzw. der jeweiligen Flüssigkeit ionisiert und bilden ein Plasma. Es kommt immer dann zu einer Ionisation, wenn die elektrische Feldstärke an der Oberfläche des piezoelektrischen

Transformators 1 die Zündfeldstärke des Plasmas

überschreitet. Als Zündfeldstärke eines Plasmas wird dabei die Feldstärke bezeichnet, die zur Ionisation der Atome oder Moleküle erforderlich ist.

Figur 2 zeigt ein Diagramm, in dem der Impedanz- und

Spannungsverlauf des piezoelektrischen Transformators 1 dargestellt ist. Die Kurve Zin(log) zeigt den Verlauf der Eingangsimpedanz des piezoelektrischen Transformators 1 in Abhängigkeit von der Frequenz der angelegten Eingangsspannung aufgetragen auf einer logarithmischen Skale. Die Kurve

Zin(log) erreicht bei der Serienresonanzfrequenz des

piezoelektrischen Transformators 1 ein Minimum. Ferner erreicht die Kurve Zin(log) ein Maximum bei der

Parallelresonanzfrequenz des piezoelektrischen Transformators 1. In Figur 2 ist ferner die Kurve Vout(lin) gezeigt, die den Verlauf der Ausgangsspannung, die an der ausgangsseitigen Stirnseite 10 des piezoelektrischen Transformators 1 erzeugt wird, in Abhängigkeit von der Frequenz der angelegten

Eingangsspannung angibt. Die Ausgangsspannung erreicht ihr Maximum bei der Serienresonanzfrequenz des piezoelektrischen Transformators 1. Dementsprechend wird die höchste Effizienz bei der Plasmaerzeugung erreicht, wenn die Frequenz der

Eingangsspannung, die an den piezoelektrischen Transformator 1 angelegt wird, der Serienresonanzfrequenz des

piezoelektrischen Transformators 1 entspricht.

Die Serienresonanzfrequenz ist jedoch keineswegs konstant, sondern hängt vielmehr von zahlreichen Parametern ab.

Insbesondere kann durch ein von dem piezoelektrischen

Transformator 1 gezündetes Plasma eine Last gebildet werden, die die Impedanz des Transformators 1 beeinflusst und

dementsprechend zu einer Änderung der Serienresonanzfrequenz des Transformators 1 führen kann. Darüber hinaus ist die Serienresonanzfrequenz auch von der Arbeitsumgebungen

abhängig, in der der piezoelektrische Transformator 1 eingesetzt wird. Beispielsweise können das verwendete

Prozessgas und die Temperatur des piezoelektrischen

Transformators 1 die Serienresonanzfrequenz beeinflussen. Figur 3 zeigt eine schematische Darstellung einer Vorrichtung zur Erzeugung eines nicht-thermischen Atmosphärendruck- Plasmas, die den piezoelektrischen Transformator 1 aufweist. Die Vorrichtung weist ferner eine Ansteuerschaltung 11 auf, die dazu ausgelegt ist, eine Wechselspannung mit einer

Ansteuerfrequenz als Eingangsspannung an den

piezoelektrischen Transformator 1 anzulegen. Ziel der

vorliegenden Erfindung ist es nunmehr, es zu ermöglichen, die Ansteuerfrequenz stets so anzupassen, dass der

piezoelektrische Transformator 1 bei seiner aktuellen

Serienresonanzfrequenz betrieben wird. Die Ansteuerschaltung 11 weist einen Treiber 12 und einen Regler 13 auf. Der

Treiber 12 ist dazu ausgestaltet, die Eingangsspannung an den piezoelektrischen Transformator 1 anzulegen. Der Treiber 12 ist mit den Außenelektroden 8, 14 des piezoelektrischen

Transformators 1 verbunden. Der Regler 13 ist dazu

ausgestaltet, den Treiber 12 anzusteuern und dabei

insbesondere die Ansteuerfrequenz der Eingangsspannung festzulegen.

Die Vorrichtung weist ferner eine Feldsonde 15 auf, die dazu ausgestaltet ist, eine Feldstärke des von dem

piezoelektrischen Transformator 1 erzeugten elektrischen Feldes zu messen. Die Feldsonde 15 ist in unmittelbarer Nähe zu dem Ausgangsbereich 3 des piezoelektrischen Transformators 1 angeordnet. Die Feldsonde 15 stellt ein der

Ausgangsspannung proportionales Signal bereit.

Dementsprechend kann über die von der Feldsonde 15 bestimmte Feldstärke unmittelbar auf die an der ausgangsseitigen

Stirnseite 10 des piezoelektrischen Transformators 1 erzeugte Hochspannung geschlossen werden. Durch die Messung der elektrischen Feldstärke mittels der Feldsonde 15 kann es ermöglicht werden, die Ansteuerfrequenz stets auf eine optimale Ansteuerfrequenz einzuregeln. Bei der optimalen Ansteuerfrequenz ist die Effizienz der Vorrichtung hinsichtlich der Plasmaerzeugung maximiert.

Die Feldsonde 15 ist ferner mit einer Messeinheit 16

verbunden, die dazu ausgestaltet ist, die von der Feldsonde 15 erfassten Signale auszuwerten. Dabei kann die Messeinheit 16 dazu ausgestaltet sein, einen Spitzenwert der von der Feldsonde 15 gemessenen elektrischen Feldstärke und/oder einen Mittelwert der elektrischen Feldstärke zu bestimmen. Die Messeinheit 16 weist einen mit einem Referenzpotential verbundenen Widerstand 17 sowie einen mit dem

Referenzpotential verbundenen Kondensator 18 auf. In einer alternativen Ausführungsform kann entweder auf den Widerstand 17 oder auf den Kondensator 18 verzichtet werden.

Ferner weist die Messeinheit 16 einen Gleichrichter 19 auf. Das von der Feldsonde 15 erfasste Signal ist ein

Wechselstromsignal, dessen Frequenz der Ansteuerfrequenz der an den piezoelektrischen Transformator 1 angelegten

Eingangsspannung entspricht. Der Gleichrichter 19 ist dazu ausgestaltet, das Signal gleichzurichten. Dementsprechend ist der Gleichrichter 19 dazu ausgestaltet, ein von der Feldsonde 15 an die Messeinheit 16 übermitteltes Wechselstromsignal in ein Gleichstromsignal zu wandeln.

Die Messeinheit 16 ist mit der Ansteuerschaltung 11

verbunden. Insbesondere ist die Messeinheit 16 mit dem Regler 13 der Ansteuerschaltung 11 verbunden. Der Regler 13 kann ein Regelkreis sein, der beispielsweise auf einem Microcontroller ausgebildet ist. Der Regler 13 ist dazu ausgestaltet, festzulegen, mit welcher Ansteuerfrequenz der Treiber 12 den piezoelektrischen Transformator 1 ansteuert.

Der Regler 13 kann dazu ausgestaltet sein, beginnend von einer Anfangsansteuerfrequenz fo , die so gewählt ist, dass sie in jedem Fall kleiner ist als die Serienresonanzfrequenz des piezoelektrischen Transformators 1, die Ansteuerfrequenz schrittweise zu erhöhen. Dabei wird für jede gewählte

Ansteuerfrequenz f n die jeweilige elektrische Feldstärke v(f n ) ermittelt. Der Regler 13 kann dazu ausgestaltet sein, die Ansteuerfrequenz schrittweise um eine feste Schrittweite Afi zu erhöhen. Dabei nimmt die Ansteuerfrequenz nacheinander die Werte fo , fi=fo+Afi , f 2 =fi+Afi , f 3 =f 2 +Afi usw. an. Der

Regler 13 ist dazu ausgestaltet die Ansteuerfrequenz zu erhöhen bis ein lokales Spannungsmaximum v max , n =max (v (f n ) , v max , n _ i ) bestimmt wurde.

Ist das lokale Spannungsmaximum v max , n gefunden worden, kann eine weitere Anpassung der Ansteuerfrequenz mit einer

reduzierten Schrittweite Af 2 vorgenommen werden. Als

Ausgangswert für die weitere Anpassung wird eine Anfangs- Ansteuerfrequenz f n (max ) -i gewählt, die nahe der Frequenz f n (max) des lokalen Spannungsmaximums ist und unter dieser Frequenz liegt. Die reduzierte Schrittweite Af 2 kann beispielsweise halb so groß sein wie die Schrittweite Af 1 . Bei der weiteren Anpassung werden somit für die Ansteuerfrequenz nacheinander die Werte f n (max) -l , -l + Af 2 , f 2 = fl + Af 2 , f 3 =f2 + Af 2 usw.

gewählt. Dabei wird wieder ein lokales Spannungsmaximum der elektrischen Feldstärke mit einer nun verbesserten

Frequenzauflösung bestimmt. Dieses Prinzip kann wiederholt werden, bis ein Maximum mit der gewünschten Frequenzauflösung gefunden ist. Alternativ ist es auch möglich, dass die

Anfangsansteuerfrequenz fo so gewählt wird, dass sie in jedem Fall größer ist als die Serienresonanzfrequenz des

piezoelektrischen Transformators 1. In diesem Fall kann der Regler eine schrittweise Verringerung der Ansteuerfrequenz vornehmen und in gleicher Weise die optimale Ansteuerfrequenz ermitteln. Auch in diesem Fall kann die schrittweise

Anpassung mehrmals vorgenommen werden, wobei bei jedem

Anpassungszyklus die Schrittweite verringert wird.

Die Anpassung der Ansteuerfrequenz kann erstmals beim

Einschalten der Vorrichtung vorgenommen werden. Ferner könnte diese Anpassung im laufenden Betrieb der Vorrichtung in regelmäßigen zeitlichen Abständen wiederholt werden. Dadurch könnte mitberücksichtigt werden, dass bei sich verändernden Arbeitsbedingungen auch eine Veränderung der Impedanz des Transformators 1 und somit der Serienresonanzfrequenz

erfolgt . Die Feldsonde 15 ist auf einer Leiterplatte 20 integriert. Die Leiterplatte ist parallel zu dem Ausgangsbereich 4 des piezoelektrischen Transformators 1 angeordnet, wobei zwischen der Leiterplatte 20 und dem piezoelektrischen Transformator 1 ein Spalt 21 ist. Die Leiterplatte 20 kann sich in

Längsrichtung z über die ausgangsseitige Stirnseite 10 des

Ausgangsbereichs 3 hinaus erstrecken. In die entgegengesetzte Richtung kann die Leiterplatte 20 in den Eingangsbereich 2 hineinragen . Figur 4 zeigt die Unterseite der Leiterplatte 20.

Die Leiterplatte 20 weist eine Schicht aus einem nicht ¬ leitenden Trägermaterial 22 auf. Bei dem nicht-leitenden Trägermaterial 22 kann es sich beispielsweise um FR4 oder ein anderes isolierendes Material handeln. Die Feldsonde 15 ist durch eine Metallisierung der Seite der Leiterplatte 20, die vom piezoelektrischen Transformator 1 wegweist, ausgebildet. Dadurch wird sichergestellt, dass es nicht zu einer

Plasmazündung zwischen dem Transformator 1 und der Feldsonde 15 kommt, da die Leiterplatte 20 als Isolator wirkt. Der Spalt 21 sowie die Leiterplatte 20, die zwischen der

Feldsonde 15 und dem Transformator 1 angeordnet sind, wirken jeweils als Kapazität.

Auf der dem Transformator 1 abgewandten Seite der

Leiterplatte 20 befindet sich eine Metallbeschichtung . Bei der Metallbeschichtung kann es sich um eine

Kupferbeschichtung handeln. Die Metallbeschichtung ist in eine Massefläche 23 und eine Sondenfläche 24 unterteilt. Die Massefläche 23 und die Sondenfläche 24 sind durch eine Fläche des isolierenden Trägermaterials getrennt. Durch die Anordnung der Metallbeschichtung auf der von dem Transformator 1 wegweisenden Seite der Leiterplatte 20 kann ein Zünden des Plasmas gegen die Metallbeschichtung

unterbunden werden. Insbesondere ist die Leiterplatte 20 in einem Abstand von dem Transformator 1 angeordnet, der groß genug ist um ein Zünden zur Unterseite der Leiterplatte 20 zu verhindern .

Die Massenfläche 23 ist mit einem Referenzpotential,

beispielsweise einer Erdung, verbunden. Die Sondenfläche 24 ist mit der Messeinheit 16 verbunden. Die Massenfläche 23 und die Sondenfläche 24 sind über den Widerstand 17, der als diskretes Bauelement auf der Unterseite der Leiterplatte 20 angeordnet ist, miteinander verbunden. Alternativ oder ergänzend zu dem Widerstand 17 können die Massenfläche 23 und die Sondenfläche 24 auch durch einen Kondensator verbunden werden. Wird durch den piezoelektrischen Transformator 1 ein elektrisches Feld erzeugt, induziert das Feld eine Spannung in der Sondenfläche 24. Die Messeinheit 16 ist dazu

ausgestaltet, die induzierte Spannung zu messen.

Der Spalt 21 zwischen dem Transformator 1 und einer Oberseite der Leiterplatte 20, die dem Transformator 1 zugewandt ist, bildet einen Kondensator. Ferner bildet die Leiterplatte 20 gegenüber der Sondenfläche 24 ebenfalls einen Kondensator. Die Kapazitäten der beiden Kondensatoren bilden zusammen mit dem Widerstand 17, der als diskretes Bauelement auf der Unterseite der Leiterplatte 20 angeordnet ist, einen

Spannungsteiler. Über den Spannungsteiler ist die

Sondenfläche 24 definiert an Masse angebunden und die in der Sondenfläche 24 induzierte Wechselspannung steht für eine Messung zur Verfügung. Die Figuren 5 bis 7 zeigen ein zweites Ausführungsbeispiel einer Leiterplatte 20, in die eine Feldsonde 15 integriert ist. Dabei zeigt Figur 5 einen Querschnitt durch die

Leiterplatte 20. Figur 6 zeigt eine Leiterplatte 20 in einer Ansicht von unten, wobei eine Metallisierung einer inneren Schicht der Leiterplatte 20 dargestellt ist und die auf der Unterseite der Leiterplatten 20 angeordneten diskreten

Komponenten dargestellt sind. Figur 7 zeigt ein

Ersatzschaltbild der Leiterplatte 20. Die Leiterplatte 20 ist mehrlagig, insbesondere vierlagig. Die Leiterplatte weist drei Lagen des nicht-leitenden

Trägermaterials 22 auf. Ferner sind diskrete Bauelemente auf der Unterseite der Leiterplatte 20 angeordnet. Die Sondenfläche 24 wird durch eine Metallschicht in einer inneren Lage der mehrlagigen Leiterplatte 20 gebildet. In der inneren Lage der mehrlagigen Leiterplatte 20 ist ferner eine zweite Metallfläche 25 angeordnet, die von der Sondenfläche 24 durch das nicht-leitende Trägermaterial 22 getrennt ist. Ferner ist in der inneren Lage eine Massefläche 23

angeordnet. Die Massefläche 23 ist mit dem Referenzpotential, beispielsweise der Erdung verbunden. Die Sondenfläche 24 ist mit der Messeinheit 16 verbunden. Die Sondenfläche 24, die zweiten Metallfläche 25 und die Massefläche 23 können

insbesondere aus Kupfer bestehen.

Auf der Unterseite der mehrlagigen Leiterplatte 20, die von dem piezoelektrischen Transformator 1 wegweist, sind diskrete Bauelemente angeordnet. Bei den diskreten Bauelementen handelt es sich um zwei Dioden 26, einen Widerstand 17 und einen Kondensator 18. Dem in Figur 7 gezeigten

Ersatzschaltbild ist zu entnehmen, wie die Sondenfläche 24, die zweite Metallfläche 25, die Massefläche 23 und die diskreten Bauelemente miteinander verschaltet sind. Die diskreten Bauelemente können einen Gleichrichter bilden.

Dementsprechend kann der Gleichrichter 19 in die Leiterplatte 20 integriert sein. Alternativ oder ergänzend können die diskreten Bauelemente einen Siebkondensator bilden. Ein

Siebkondensator, auch Glättungskondensator genannt, ist ein parallel zum Lastwiderstand gelegter Kondensator, der hinter einer Gleichrichterschaltung die Restwelligkeit der

gleichgerichteten Spannung vermindert. Das zweite Ausführungsbeispiel ermöglicht eine verbesserte Ortsauflösung der Messung. Bezugs zeichenliste

1 piezoelektrischer Transformator

2 Eingangsbereich

3 Ausgangsbereich

4 Elektrode

5 piezoelektrisches Material

6 erste Seitenfläche

7 zweite Seitenfläche

8 Außenelektrode

9 piezoelektrisches Material

10 ausgangsseitige Stirnseite

11 AnsteuerSchaltung

12 Treiber

13 Regler

14 Außenelektrode

15 Feldsonde

16 Messeinheit

17 Widerstand

18 Kondensator

19 Gleichrichter

20 Leiterplatte

21 Spalt

22 nicht-leitendes Trägermaterial

23 Massefläche

24 Sondenfläche

25 zweite Metallfläche

26 Diode x Stapelrichtung

z Längsrichtung