Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE FOR THE TEMPORAL SHAPING OF THE AMPLITUDE AND PHASE OF ULTRASHORT LIGHT PULSES
Document Type and Number:
WIPO Patent Application WO/2014/162087
Kind Code:
A1
Abstract:
A device for the temporal shaping of the amplitude and phase of ultrashort pulses, comprising: - a birefringent waveguide 1 of main axis Δ consisting of a nematic liquid crystal 2 located between a photoconductive material 3 and a substrate 4, - two transparent electrodes, one of which 5 is located between said nematic liquid crystal 2 and said substrate 4, and the other 6 such that said photoconductive material 3 is located between said other electrode 6 and said nematic liquid crystal 2, and - projection optics 7 for projecting a programmable optical mask 8 onto said photoconductive material 3.

Inventors:
TOURNOIS PIERRE (FR)
FORGET NICOLAS (FR)
Application Number:
PCT/FR2014/050756
Publication Date:
October 09, 2014
Filing Date:
March 31, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FASTLITE (FR)
International Classes:
G02F1/01; G02F1/135
Foreign References:
EP1160614A22001-12-05
EP0221560A21987-05-13
Other References:
PAWEL MOSZCZYNSKI ET AL: "Model for simulation of photo-induced charges inside the hybrid LC cells.", PHOTONICS LETTERS OF POLAND, vol. 5, no. 1, 30 March 2013 (2013-03-30), XP055093869, DOI: 10.4302/plp.2013.1.05
VERLUISE F ET AL: "AMPLITUDE AND PHASE CONTROL OF ULTRASHORT PULSES BY USE OF AN ACOUSTO-OPTIC PROGRAMMABLE DISPERSIVE FILTER: PULSE COMPRESSION AND SHAPING", OPTICS LETTERS, THE OPTICAL SOCIETY, vol. 25, no. 8, 15 April 2000 (2000-04-15), pages 575 - 577, XP000951947, ISSN: 0146-9592
SANG-HEE SHIM ET AL: "How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 11, no. 5, 1 January 2009 (2009-01-01), pages 748, XP055032771, ISSN: 1463-9076, DOI: 10.1039/b813817f
JENNIFER P OGILVIE ET AL: "Use of coherent control for selective two-photon fluorescence microscopy in live organisms References and links", J. PHYS. CHEM. A J. CHEM. PHYS. SCIENCE NATURE OPT. EXPRESS J. PHYS. CHEM. A, 23 January 2006 (2006-01-23), pages 9369 - 9373, XP055093287, Retrieved from the Internet [retrieved on 20131213]
SCHENKEL B ET AL: "Pulse compression with supercontinuum generation in microstructure fibers", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA - B, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 22, no. 3, 1 March 2005 (2005-03-01), pages 687 - 693, XP002600275, ISSN: 0740-3224
NICOLAS FORGET ET AL: "Pulse-measurement techniques using a single amplitude and phase spectral shaper", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B, vol. 27, no. 4, 1 April 2010 (2010-04-01), pages 742 - 755, XP055093291, ISSN: 0740-3224, DOI: 10.1364/JOSAB.27.000742
D. KAPLAN; P. TOURNOIS: "Theory and Performance of the Acousto-Optic Programmable Dispersive Filter used for femto-second Laser Pulse Shaping", J. PHYS. IV FRANCE, vol. 12, 2002, pages 69,75
F.VERLUISE ET AL.: "Amplitude and phase control of ultrashoit pulses by use of an acousto-optic programmable dispersive filter : pulse compression and shaping", OPTICS LETTERS, vol. 25, no. 8, 2000, pages 575 - 577
SANG-HEE SHIM; M. ZANNI: "How to turn your pump-probe instrument into a multidimensional spectrometer : 2D IR and Vis spectroscopies via pulse shaping", PHYS.CHEM.CHEM.PHYS., pages 748 - 761
JENNIFER OGILVIE ET AL.: "Use of coherent control for selective two-photon fluorescence microscopy in live organisms", OPTICS EXPRESS, vol. 14, no. 2, 2006, pages 759 - 766
B. SCHENKEL ET AL.: "Pulse Compression with super-continuum generation in microstructure fibers", JOSA-B, vol. 22, no. 3, 2005, pages 687 - 693
N. FORGET ET AL.: "Pulse Measurement techniques using a single amplitude and phase shaper", JOSA-B, vol. 27, no. 4, 2010, pages 742 - 756, XP055093291, DOI: doi:10.1364/JOSAB.27.000742
Attorney, Agent or Firm:
CABINET MOUTARD (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Dispositif pour la mise en forme temporelle en amplitude et en phase d'impulsions ultra-brèves,

caractérisé en ce qu'il comprend :

- un guide d'onde biréfringent (1) d'axe principal (Δ) constitué d'un cristal liquide nématique (2) situé entre un matériau photoconducteur (3) et un substrat (4),

- deux électrodes transparentes situées l'une (5) entre ledit cristal liquide nématique (2) et ledit substrat (4), et l'autre (6) de sorte que ledit matériau photo conducteur (3) est situé entre cet autre (6) et ledit cristal liquide nématique (2), et

- d'une optique de projection (7) d'un masque optique programmable (8) sur ledit matériau photoconducteur (3).

2. Dispositif selon la revendication 1,

caractérisé en ce que le susdit matériau photoconducteur (3) est une couche de silicium amorphe a-Si:H ou un cristal mixte d'oxyde de bismuth et de silicium (BSO).

3. Dispositif selon la revendication 1,

caractérisé en ce que le susdit substrat (4) est une plaque de verre ou une plaque d'un matériau conducteur.

4. Dispositif selon la revendication 1,

caractérisé en ce que le susdit masque optique programmable (8) projeté sur le susdit matériau photoconducteur (3) est un réseau (13) de traits noirs et blancs à pas variable.

5. Dispositif selon la revendication 1,

caractérisé en ce que le susdit masque optique programmable (15) projeté sur le susdit matériau photoconducteur (3) est un réseau (16) de traits gris allant du noir au blanc à pas variable.

6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le susdit réseau (13) de traits noirs et blancs à pas variable est incliné d'un angle (a) par rapport à l'axe (Δ) du susdit guide d'onde biréfringent (1).

7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un polariseur (11) situé à la sortie du susdit guide d'onde biréfringent (1). 8. Procédé de compression et de codage temporel des impulsions, à hautes cadences, émises par les lasers femto-secondes,

caractérisé en ce qu'il utilise un dispositif selon l'une quelconque des revendications 1 à 7. 9. Procédé de génération des impulsions nécessaires à la spectroscopie résolue en temps et à la spectroscopie multidimensionnelle,

caractérisé en ce qu'il utilise un dispositif selon l'une quelconque des revendications 1 à 7. 10. Procédé de génération des impulsions nécessaires à la microscopie multi-photonique,

caractérisé en ce qu'il utilise un dispositif selon l'une quelconque des revendications 1 à 7. 11. Procédé de filtrage et de compression de super-continuum générés par des lasers femto-secondes, caractérisé en ce qu'il utilise un dispositif selon l'une quelconque des revendications 1 à 7.

12. Procédé permettant l'utilisation dans un appareil de mesure des impulsions ultra-courtes émises par les lasers femto-secondes,

caractérisé en ce qu'il utilise un dispositif selon l'une quelconque des revendications 1 à 7.

Description:
DISPOSITIF POUR LA MISE EN FORME TEMPORELLE EN AMPLITUDE ET EN PHASE D'IMPULSIONS LUMINEUSES ULTRA- BREVES.

La présente invention concerne un dispositif pour la mise en forme temporelle en amplitude et en phase d'impulsions lumineuses ultra-brèves.

Ce dispositif s'applique notamment aux impulsions lumineuses ultra -brèves générées par les oscillateurs femto-secondes nécessitant leur mise en forme temporelle en amplitude et en phase.

D'une façon générale, on sait que la mise en forme temporelle en amplitude et en phase des impulsions ultra-brèves générées par les lasers femto-secondes est aujourd'hui réalisée au moyen des filtres acousto-optiques dispersifs programmables (AOPDF pour Acousto-Optic Progammable Dispersive Filters) tels que ceux décrits par D. Kaplan et P. Tournois dans : J. Phys. IV France 12 (2002) Pr 5 -69/75 « Theory and Performance of the Acousto-Optic Programmable Dispersive Filter used for femto-second Laser Puise Shaping ». La cadence de répétition de la mise en forme de ces filtres est limitée par le temps de propagation de l'onde acoustique dans la longueur du cristal constituant le filtre. Cette cadence maximale est généralement de l'ordre de 30 kHz, ce qui limite l'utilisation de ces filtres acousto-optiques aux impulsions amplifiées des lasers femto-secondes. Pour des cadences supérieures, telles que celles générées par les oscillateurs femto-secondes, qui sont de l'ordre de 80 MHz, ces filtres ne sont pas applicables. Pour réaliser des filtres applicables à ces oscillateurs, il est nécessaire que la réponse impulsionnelle programmable des filtres, qui détermine la mise en forme temporelle des impulsions, soit fixe et non " propagative " comme celle des AOPDFs.

Dans le cas des AOPDFs, la polarisation de l'onde optique polarisée dans un milieu biréfringent, tourne le long de la propagation de celle-ci, en des points différents suivant chacune des fréquences (ou longueurs d'onde) optiques contenues à l'intérieur des impulsions ultra-courtes.

La propagation, avant la rotation de la polarisation, se fait à une vitesse V déterminée par l'indice optique nj du mode de propagation utilisé avant la rotation et, après la rotation de la polarisation, à une vitesse v 2 déterminé par l'indice n 2 du mode de propagation utilisé après la rotation ; le temps mis par l'onde optique pour parcourir le milieu biréfringent dépend de la longueur d'onde ; la propagation est donc dispersive et programmable ; la rotation de la polarisation est assurée par une onde acoustique transversale programmable envoyée dans le milieu biréfringent. Le but de l'invention est de proposer un dispositif permettant la mise en forme temporelle en amplitude et en phase d'impulsions lumineuses ultra-brèves, selon une réponse impulsionnelle dudit dispositif programmable et fixe.

Le dispositif proposé reprend le principe de fonctionnement des AOPDFs, mais la programmation assurée par une onde acoustique est remplacée par une programmation électro-optique non " propagative ". Le dispositif devient alors un EOPDF pour « Electro-Optic Programmable Dispersive Filter ».

Le milieu biréfringent de propagation n'est plus un solide cristallin comme dans le cas des AOPDFs mais un cristal liquide nématique dont les molécules allongées sont orientées perpendiculairement à la propagation de l'onde optique polarisée. Lorsque les molécules sont alignées parallèlement aux parois du cristal liquide, la polarisation verticale de l'onde optique qui est perpendiculaire aux parois, se propage à une vitesse vi déterminée par l'indice optique n t du cristal liquide dans cette direction verticale, tandis que la polarisation parallèle aux parois se propage à une vitesse v 2 déterminée par l'indice optique n 2 du cristal liquide dans la direction horizontale.

Lorsque les molécules sont alignées perpendiculairement aux parois du cristal liquide, c'est la polarisation horizontale de l'onde optique qui se propage à la vitesse vi et la polarisation verticale de l'onde optique à la vitesse v 2 .

L'invention a pour objet un dispositif pour la mise en forme temporelle en amplitude et en phase d'impulsions ultra-brèves, comprenant :

- un guide d'onde biréfringent constitué d'un cristal liquide nématique situé entre un matériau photoconducteur et un substrat,

- deux électrodes transparentes situées l'une entre ledit cristal liquide nématique et ledit substrat, et l'autre au-dessus dudit matériau photoconducteur, et

- d'une optique de projection d'un masque optique programmable sur ledit matériau photoconducteur.

Avantageusement, le susdit matériau photoconducteur sera une couche de silicium amorphe -Si:H ou un cristal mixte d'oxyde de bismuth et de silicium (BSO).

Avantageusement, le susdit substrat sera une plaque de verre ou une plaque d'un matériau conducteur.

Avantageusement, le susdit masque optique programmable projeté sur le susdit matériau photoconducteur sera un réseau de traits noirs et blancs à pas variable. Avantageusement, le susdit réseau à pas variable du masque optique programmable sera constitué de traits gris allant du noir au blanc permettant de réaliser la programmation d'amplitude en plus de la programmation de phase assurée par le pas du masque.

Le dispositif selon l'invention pourra être appliqué à la compression et au codage temporel des impulsions, à hautes cadences, émises par les lasers femto-secondes, tel que décrit par F.Verluise et al. dans : Optics Letters, vol.25, n°8, (2000), p.575-577 « Amplitude and phase control of ultrashort puises by use of an acousto-optic programmable dispersive filter : puise compression and shaping ».

Une autre application envisagée du dispositif proposé pourra concerner la génération des impulsions nécessaires à la spectroscopie résolue en temps et à la spectroscopie multidimensionnelle, tels que décrit par Sang-Hee Shim et M. Zanni dans : Phys.Chem.Chem.Phys. n°l l, (2009), p. 748-761 « How to turn your pump-probe instrument into a multidimensional spectrometer : 2D IR and Vis spectroscopies via puise shaping ». Une autre application envisagée du dispositif proposé pourra concerner la génération des impulsions nécessaires à la microscopie multi-photonique, tel que décrit par Jennifer Ogilvie et al. dans : Optics Express, vol.14, n°2, (2006), p.759-766 « Use of cohérent control for sélective two-photon fluorescence microscopy in live organisms ».

Une autre application envisagée du dispositif proposé pourra concerner le filtrage et la compression de super-continuum générés par des lasers femto- secondes, tels que décrit par B. Schenkel et al. dans : JOSA-B, vol.22, n°3, (2005), p.687-693 « Puise Compression with super-continuum génération in microstructure fibers ». Une autre application envisagée du dispositif proposé pourra concerner l'utilisation dans un appareil de mesure des impulsions ultra-courtes émises par les lasers femtosecondes, tel que celui décrit par N. Forget et al. dans: JOSA-B, vol.27, n°4, (2010), p.742-756 « Puise Measurement techniques using a single amplitude and phase shaper ».

Un mode de mise en œuvre d'un dispositif selon l'invention est décrit ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :

La figure 1 est une représentation schématique de la structure d'un dispositif selon l'invention ;

La figure 2 est une représentation schématique de la structure du dispositif selon un autre mode de fonctionnement ;

La figure 3 est une représentation schématique du fonctionnement du dispositif selon l'invention avec un masque non incliné et un polariseur en sortie ; et La figure 4 est une représentation schématique du fonctionnement du dispositif selon l'invention avec un masque incliné et une séparation spatiale du faisceau de sortie.

Dans l'exemple représenté sur la figure 1, le dispositif selon l'invention comprend

- un guide d'onde biréfringent 1 d'axe principal Δ constitué d'un cristal liquide nématique 2 situé entre un matériau photoconducteur 3 de silicium amorphe (a-Si:H ) ou d'Oxyde mixte de Bismuth et de Silicium ( BSO), et un substrat 4,

- deux électrodes transparentes situées l'une 5 entre ledit cristal liquide nématique 2 et ledit substrat 4, et l'autre 6 de sorte que ledit matériau photoconducteur 3 est entre cet autre 6 et ledit cristal nématique 2, et

- d'une optique de projection 7 d'un masque optique programmable 8 constitué de traits noirs et blancs à pas variable Λ sur ledit matériau photoconducteur 3.

Un faisceau optique 9 est appliqué à l'entrée du guide d'onde biréfringent 1 selon une direction colinéaire à l'axe principal Δ dudit guide d'onde biréfringent 1 et de polarisation normale d'un plan médian P.

Les variations de tension induites dans le cristal liquide nématique 2 par le matériau photoconducteur 3 font tourner les molécules dans le plan perpendiculaire à la propagation optique située dans le plan P, créant ainsi un couplage entre les modes optiques d'indice n t et n 2 .

Pour que l'énergie du mode incident, à une longueur d'onde λ donnée du faisceau optique 9, soit transférée dans le mode de sortie à la même longueur d'onde, il faut, lorsque l'axe Δ du réseau du masque optique 8 projeté est parallèle à l'axe de la propagation optique, que sa période Λ soit donnée par :

2π 2π n. 2π n 2

= K = L soit Λ

À λ

Pour une longueur d'onde λ = 1 im et \n \ →¾| = 0.05, Λ= 20 μιη. La durée de programmation T qui correspond à la longueur temporelle de la réponse impulsionnelle du filtre EOPDF est, quant à elle, donnée par :

T I \ L

C L étant la longueur de la propagation dans le cristal liquide et c la vitesse de la lumière dans le vide. Pour une longueur L de 1 cm et \n \ -n 2 \ - 0.05, T = 1.7 picoseconde. La polarisation de la lumière dans le mode de sortie du faisceau 10 étant simultanément colinéaire et perpendiculaire à la polarisation de la lumière dans le mode d'entrée du faisceau optique 9, lorsque les deux modes ont le même axe de propagation parallèle à l'axe principal Δ dudit guide d'onde biréfringent 1, il est nécessaire de placer un polariseur 11 à la sortie du dispositif 1 pour sélectionner le mode de sortie constitué par le faisceau de sortie 12 de polarisation perpendiculaire à celle du faisceau optique d'entrée 9, avec le meilleur rapport signal à bruit possible.

L'optique de projection 7 du masque optique programmable 8 est constituée de traits noirs et blancs à pas variable Λ sur ledit matériau photoconducteur 3. Cette succession de traits noirs et blancs peut être représentée par une succession de créneaux 13 dont la période est Λ, et permet de réaliser la programmation de phase du faisceau optique 9.

Dans l'exemple représenté sur la figure 2, le dispositif selon l'invention comprend :

- le guide d'onde biréfringent 1 d'axe principal Δ constitué du cristal liquide nématique 2 situé entre le matériau photoconducteur 3 et le substrat 4,

- les deux électrodes transparentes situées l'une 5 entre ledit cristal liquide nématique 2 et ledit substrat 4, et l'autre 6 au-dessus dudit matériau photoconducteur 3, et

- d'une optique de projection 14 d'un masque optique programmable 15 constitué d'une succession de traits noirs puis gris et blancs à pas variable Λ sur ledit matériau photoconducteur 3. Le faisceau optique 9 est appliqué à l'entrée du guide d'onde biréfringent 1 selon une direction colinéaire à l'axe principal Δ dudit guide d'onde biréfringent 1 et de polarisation normale au plan médian P. Les variations de tension induites dans le cristal liquide nématique 2 par le matériau photoconducteur 3 font tourner les molécules dans le plan perpendiculaire à la propagation optique située dans le plan P, créant ainsi un couplage entre les modes optiques d'indice ni et n 2 . La polarisation de la lumière dans le mode de sortie du faisceau 10 étant simultanément colinéaire et perpendiculaire à la polarisation de la lumière dans le mode d'entrée du faisceau optique 9, lorsque les deux modes ont le même axe de propagation parallèle à l'axe principal Δ dudit guide d'onde biréfringent 1, il est nécessaire de placer un polariseur 11 à la sortie du dispositif 1 pour sélectionner le mode de sortie constitué par le faisceau de sortie 12 de polarisation perpendiculaire à celle du faisceau optique d'entrée 9, avec le meilleur signal à bruit possible.

L'optique de projection 14 du masque optique programmable 15 est constituée de traits noirs puis gris et blancs à pas variable Λ sur ledit matériau photoconducteur 3.

Cette succession de traits noirs puis gris et blancs peut-être représentée par une succession de sinusoïdes 16 dont la période est Λ, et permet de réaliser la programmation d'amplitude en plus de la programmation de phase du faisceau optique 9.

La figure 3 est une représentation schématique du fonctionnement du dispositif selon l'invention avec un masque 13 non incliné par rapport à l'axe Δ et un polariseur en sortie 11. La figure 4 est une représentation schématique du fonctionnement du dispositif selon l'invention avec un masque incliné 17 et une séparation spatiale du faisceau de sortie. Pour éviter d'avoir à placer, à la sortie du dispositif 1, un polariseur 11, dont le contraste peut ne pas être parfait, l'axe du réseau de traits pourra être incliné d'un angle a par rapport à l'axe de la propagation du mode d'entrée parallèle à l'axe principal Δ dudit guide d'onde biréfringent 1. Dans ces conditions, le pas du réseau est donné par :

Icosa

A = - r

et l'axe de propagation du mode de sortie Δ' est incliné d'un petit angle Θ par rapport à l'axe de propagation du mode d'entrée qui est donné par :

Pour λ 2°. Ainsi, pour une longueur d'interaction de 1 cm, l'axe du mode de sortie est déplacé, dans le plan perpendiculaire à la propagation, d'environ 350 μιη par rapport à l'axe du mode d'entrée, ce qui permet de séparer le mode de sortie du mode d'entrée sans avoir recours à un polariseur.