Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE FOR USE IN MANUAL CONTROL OF THE MOVEMENT OF A REAL OR IMAGINARY OBJECT
Document Type and Number:
WIPO Patent Application WO/1995/027890
Kind Code:
A1
Abstract:
In an apparatus for use in manual control of the movement of a real or imaginary object an operator applies forces and torques to a handle (7), and the apparatus emits corresponding signals. The handle is suspended on a support (5) by means of a suspension system (6), which comprises resilient suspension means (10) which are jointlessly connected by means of resilient connections (10) to both the support (5) and the handle (7) to obtain a jointless and solely elastically deformable suspension of the handle relative to the support. The suspension means (10) are preferably made integrally with fastening means (9, 12) which are fastened to the handle (7) and the support (5), respectively. The apparatus is provided with three pairs of sensor means (10) adapted to sense translation of the handle relative to the support in the direction of one axis (15, 17, 19) which is at right angles to an axis connecting the two means (10) of the pair, and rotation (16, 18, 20) of the handle relative to the support about a third axis perpendicular to both these axes. The sensor means (10) may comprise slits of variable width co-operating with light sources and light sensors.

Inventors:
NELTOFT PETER (DK)
Application Number:
PCT/DK1995/000152
Publication Date:
October 19, 1995
Filing Date:
April 11, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NELTOFT PETER (DK)
International Classes:
G01L5/16; G01L5/22; G05G9/047; G06F3/0338; (IPC1-7): G01L5/16; G06K11/06; H01H25/04
Domestic Patent References:
WO1991020022A11991-12-26
Foreign References:
US4876524A1989-10-24
EP0151479A21985-08-14
US4046005A1977-09-06
US5264768A1993-11-23
US4607159A1986-08-19
Download PDF:
Claims:
C L A I M S
1. An apparatus for manual control of the movement of a real or imaginary object and of the type, in which an operator applies forces and torques to a handle (1,7), the apparatus emitting signals corresponding to the momentary force and the momentary torque, the handle (1,7) being suspended on a support (5) by means of a suspension system (6) which returns the handle (1,7) to a neutral position when the handle is not subjected to forces or torques, the apparatus comprising sensor means for sensing the translation and rotation of the handle from the neutral position relative to the frame as well as means for transferring signals from the sensor means to a signal processing system, c h a r a c t e r i z e d in that the suspension system (6) comprises suspension means (25,26), including resilient suspension means, which are connected without joints, preferably connected by means of resilient connections, to both the support (5) and the handle (1,7) whereby a jointless and solely elastically deformable suspension of the handle from the support is attained.
2. An apparatus according to claim l, c h a r a c ¬ t e r i z e d in that the jointless connections are formed by constructing the suspension means (25,26) integrally with parts of the handle (1,7) and/or the support (5) ; respectively, preferably integrally with fastening means (9,12) which are fastened to the handle and/or the support, respectively.
3. An apparatus according to claim 2, c h a r a c ¬ t e r i z e d in that two fastening means (9,12) for fastening to the handle (1,7) and/or the support (5), respectively, are common for several, preferably two, suspension means (25,26).
4. An apparatus according to claims 2 or 3, c h a r ¬ a c t e r i z e d in that corresponding suspension means (25,26) and fastening means (9,12) are made from one and the same sheet (34), preferably a metal sheet and, in particular preferable, a sheet of spring steel.
5. An apparatus according to any of the claims 14, c h a r a c t e r i z e d in that the suspension means (25,26) are elongate and extend along a nonlinear curve, preferably a generally Lshaped curve.
6. An apparatus according to claims 4 or 5, c h a r ¬ a c t e r i z e d in that the sheet (34) comprises two suspension means (25,26) which are positioned in such a way within the sheet that the distance between the por¬ tions of each of the suspension means most remote from the second suspension means is substantially equivalent to the dimension of the sheet (34) in the same direction.
7. An apparatus according to any of the claims 16, in which the sensor means comprise a pair of sensor members (38) for sensing the translation and rotation of the handle (1,7) relative to the support (5), each pair of sensor members (38) being adapted to sense translation of the handle relative to the support in the direction of one axis (40) which is perpendicular to an axis (39) connecting the two members (38) of the pair, and rotation of the handle relative to the support around a third axis (41) which is perpendicular to both of these two axes, c h a r a c t e r i z e d in that the sensor members (38) comprise slits (30) of variable width, said slits being formed between two shutters (35,36) which are fixedly connected with the frame (5) and the handle (1,7), respectively, and which are adapted to cooperate with light sources (32) and light sensors (31) in the sensor members (38) in such way that the signal emitted from a light sensor (31) varies in unambiguous dependency of the width of the corresponding slit (30) .
8. An apparatus according to claim 7, c h a r a c ¬ t e r i z e d in that two shutters (35,36) forming a slit (30) are substantially plateshaped and positioned substantially in the same plane.
9. An apparatus according to claims 7 or 8, c h a r a c t e r i z e d in that the shutters (35,36) are made integrally with the fastening means (9,12).
10. An apparatus according to any of the claims 79, c h a r a c t e r i z e d in that the shutters (35,36) in a pair of sensor members (38) are made from the same sheet (34) as interrelated suspension means (25,26) and fastening means (9,12), preferably a metal sheet and in particular preferable a sheet of spring steel.
11. An apparatus according to claim 10, c h a r a c t e r i z e d in that in the sheet (34) means (27,28) are provided for engaging behind each other, said means delimiting the maximum width of each slit (30) between the shutters (35,36) .
12. An apparatus according to any of the claims 710, c h a r a c t e r i z e d in that a light source (32) and a light detector (31) associated with the shutters (35,36) of a sensor member (38) are fastened to one of the shutters (35,36) of the member (38).
13. An apparatus according to any of the claims 1012, c h a r a c t e r i z e d in that the parts in a pair of sensor members (38) are fastened to one of the shutters (35,36) of each of the means, the two members (38) con¬ stituting together with the sheet (34) a continuous sen¬ sor element (22) for sensing forces along one axis (40) in the plane of the sheet (34) and torques about axes (41) perpendicular to the plane of the sheet, said forces and torques acting between the fastening parts (9,12) of the sheet.
14. An apparatus according to claim 13, c h a r a c t e r i z e d in that the distance between the two sen¬ sor members (38) of a sensor element (22) is bigger than 80%, preferably bigger than 85% of the extension of the sensor element (22) in the direction of the axis (39) connecting the sensor members (38) .
15. An apparatus according to claims 13 or 14, c h a r a c t e r i z e d in comprising sensor elements (22) which are disposed in such a way that the planes of their sheets (34) are mutually perpendicular.
16. An apparatus according to any of the claims 1315, c h a r a c t e r i z e d in comprising three sensor elements (22) .
Description:
DEVICE FOR USE IN MANUAL CONTROL OF THE MOVEMENT OF A REAL OR IMAGINARY OBJECT.

The invention relates to an apparatus for manual control of a real or imaginary object and is of the type disclosed in the preamble of claim 1.

Apparatuses of this type may be used in the same way as a commonly known "joystick". The operator grasps the handle of the apparatus and thereby applies forces which both in respect of direction and size reproduce the move-ment which the operator wants a controlled object to perform. As a function hereof the apparatus emits signals which contain unambiguous information - both in respect of direction and size - about the strain applied by the operator to the handle and which can therefore be util¬ ized by the controlled object or by an intermediate control system for operating accordingly.

A joystick often has a substantial degree of movability and is generally used with a so high translational or angular movement of the handle of the joystick that it can distinctly be felt by the operator. The emitted signal is hereby proportional to the movement of the handle, and the joystick is most often biased by a relatively weak return spring towards its neutral posi- tion. Apparatuses of the type mentioned by way of intro¬ duction may contrary to this be designed in such a way that the handle is rigid or nearly rigid relative to the rest of the apparatus. Hereby a strain applied by the hand of the operator will not entail any noticeable or visible movement of the handle relative to the rest of the apparatus. Admittedly, even so rigid a construction will always move more or less when a force or a torque is applied, but the movement may be so small that it is not noticeable to the operator. In EP-B 227.432, US-A 5,222,400 and WO 93/4348 such an apparatus is disclosed, in which six arms in the form of leaf springs and radially positioned in three mutually

orthogonal pairs are slidably seated in the handle, the arms of each pair extending along one and the same axis and the arms in combination connecting the handle with the support. For detecting the movements of the handle the appa¬ ratus is provided with three pairs of sensing means for sensing the translation and the rotation of the handle relative to the support. The sensing means is in respect of each arm provided with a light source and a light sensor which are fastened to the frame by means of sus¬ pensions, as well as a movable shutter fastened to the remote end of the arm. Each pair of sensing means can thus sense displacement of the handle relative to the frame in the direction of one axis perpendicular to the axis which connects the two means of the pair, and rota¬ tion of the handle relative to the support about a third axis perpendicular to both these axes.

Said slidable seating is firstly a condition for the translatory movability of the handle when the arms are arranged in the above-mentioned way; the arms are in practice not deformable in their longitudinal direction, and each pair of arms would otherwise oppose translatory movement of the handle along this axis.

Secondly, the slidable seating is a prerequisite for using arms in form of leaf springs, as they are prac¬ tically not deformable in the direction transverse to the longitudinal axis of the arm and transversely to the desired direction of deformation; each pair of arms which extends along the same axis would otherwise oppose both rotation of the handle about one of the axis perpendicu¬ lar to said axis and translatory movement of the handle along the second one of the axes perpendicular to said axis.

Such a slidable seating has been obtained by pro- viding the end of each leaf spring (arm) with a ball engaging a slot in the handle in form of a slit-shaped interspace between two plane-parallel walls, said

interspace having the same diameter as that of the ball and extending in the plane of the leaf spring in ques¬ tion.

The slidable seating of the arms is theoretically ideal in respect of providing a correct resolution of the forces and torques applied by the operator to the handle into unambiguously corresponding deflections of the six leaf springs, but entails, however, several considerable, practical drawbacks. One considerable drawback of the construction is that it is mechanically complicated, as it consists of many mechanical components which are to be assembled when the apparatus is manufactured, which makes the manufac¬ ture difficult. It is in this connection a particular drawback that the apparatus cannot be divided into subassemblies or groups of components which in a simple way can be exchanged when repairing. The apparatus is, to judge from the publications, to be assembled from the inside and towards the outside, all its individual parts having to be mounted in a fixed order.

Another considerable drawback is that the sliding bearing, where the leaf springs engage the shell of the ball - unless it has been manufactured with a precision which is practically nearly unattainable - would cause an undesired mechanical play. The play may also occur under use by wear and tear of the bearing parts, a possible high precision in the bearing thus being ruined. This precision may also be ruined by the fact that apparently some of the interspaces are positioned in zones, where the ball-shaped handle is divided in two parts.

The play may i.a. cause the ball to "rattle" where it is engaging the ball shell, such that the whole con¬ struction, when exposed to vibrations, has unpredictable mechanical resonance frequencies and strong resonance oscillations. The apparatus then becomes unfit for use in a vibration-filled environment. The play may also have the effect that it becomes unclear to the user where the

neutral position ends and the starting of a movement begins. Furthermore, the presence of play will have the effect that the obtained movement of the periphery of the ball as a consequence of the application of a given torque or a given force becomes bigger than it was before the play arose.

Finally, it is a substantial drawback in this prior art apparatus that it, to judge from the publications, will be very vulnerable for an unintentional overloading. Even though there seems to be rigid arms limiting the deflection of the afore-mentioned arms, this limitation takes place some distance from the ends of these movable arms, and the remote part of the arms with the ball is thus completely unprotected against overloading. From WO-PA 95/3527 an apparatus of the same type is known, in which three arms which are placed radially in the same plane and connect the handle with the support are slidably seated in the handle.

This slidable seating is primarily also in this case likewise a condition for translatory mobility in certain directions of the handle with this arrangement of the arms: the arms are in practice not deformable in their longitudinal direction, and each arm would other¬ wise oppose translatory movement of the handle along its longitudinal direction.

Secondly, the slidable seating is presumably a prerequisite for unambiguously detecting the deflection of the arms. This cannot, however, be said with certain¬ ty, as the publication is very unclear in this respect. The slidable seating has here been obtained by shaping the end of each arm (which has the shape of a thin rod) as a part of a spherical surface engaging a circular cylindrical bore with radial axis in the handle.

This slidable seating entails also in this case several considerable, practical drawbacks of the same kind as described above.

Even though this construction is less complicated

than the one described above, it also comprises many mechanical elements which have to be assembled during the manufacture of the apparatus, which to judge from the publication has to take place from the inside towards the outside, all its individual parts having to be mounted in a certain order of succession.

The invention provides an apparatus of the type mentioned by way of introduction, in which apparatus the above-mentioned drawbacks have been eliminated, and sim- ultaneously a good precision, reproducibility and resis¬ tance towards vibrations have been obtained, and which apparatus is particularly simple and cheap to manufac¬ ture.

This is obtained according to the invention by means of the features mentioned in the characterizing clause of claim 1. By connecting the suspension elements to both the support and the handle without the use of joints or bearings a jointless and solely elastically deformable suspension of the handle relative to the sup- port is obtained, the resiliency being attained by the suspension elements themselves and/or their connections to the support and/or the handle, respectively, being resilient. As there are no joints or bearings demanding a high precision and being subject to wear and tear during use or by vibrational stress, the above-mentioned draw¬ backs have been eliminated, the suspension means at the same time becoming simpler and cheaper to manufacture.

By the subject matter of claims 2-4 a particularly simple and cheap embodiment of the jointless connections is obtained and a safe control of the two fastening means relative to each other during the handling of the suspen¬ sion means prior to their being mounted in the apparatus. The subject matter of claim 5 ensures in a simple and cheap way the deformability of the suspension means in all directions and such that they do not oppose move¬ ment of the handle with respect to the support in the longitudinal directions of the elements.

By the subject matter of claim 6 is attained that the suspension elements are placed as remote as possible from each other within the possibilities given by the outer dimensions of the apparatus. Hereby a lesser sensi- tivity to torque compared to the sensitivity to transla¬ tory forces is obtained. Tests have shown that practi¬ cally all test persons underestimate the torque they apply to such an apparatus compared to applied transla¬ tory strain, and such a reduced sensitivity is therefore desirable.

Moreover, this measure makes the elastic deforma¬ tions correspondingly bigger by rotation of the handle, whereby an improved repetitive accuracy is attained and a better defined neutral position of the handle. By the subject matter of the characterizing clause of claims 7 and 8 a considerable reduction of the unde¬ sirable light diffusing from the light source in one sensor means to the light sensor in a second sensor means is obtained. Hereby a time multiplexing of the light of the various sensor means in the apparatus may be avoided. By the subject matter of claims 9 and 10 a particu¬ larly cheap embodiment of the shutters is obtained and at the same time a good reproducibility in their position relative to the fastening parts. By the subject matter of claim 11 a stop for the movement of the shutters when they are moved away from each other is attained in a simple and cheap way. Tests and calculations have shown that these stops are strong enough to withstand even a sturdy person about to fall grasping the handle of the apparatus.

By the subject matter of claim 12 a simple and cheap mounting of light source and light sensor with good reproducibility is obtained.

By the subject matter of claim 13 a sensor element is obtained which constitutes one component which is easy and safe to handle/ simple to mount and which can be quickly replaced for repair, the apparatus according to

the invention becoming particularly simple to assemble during the manufacture and to disassemble for repair.

By the subject matter of claim 14 a more safe sens¬ ing of the rotation of the handle is obtained. By the subject matter of claims 15 and 16 is obtained that by means of the sensing elements according to claim 13 forces and torques along several mutually perpendicular axes can be sensed.

The invention will be described in detail in the following by means of embodiments with reference to the drawing, in which

Fig. 1 shows a preferred embodiment of an apparatus according to the invention,

Fig. 2 schematically shows a sensor element with two transducers for the apparatus according to Fig. 1,

Fig. 3 is a schematic, exploded view of the interior structure of the apparatus according to Fig. 1,

Fig. 4 more detailed shows the sensor element according to Fig. 2,

Fig. 5 is a sectional view according to the line V- V in Fig. 4 at a larger scale, and

Fig. 6 shows the detail VI in Fig. 4 at a larger scale. Identical reference numbers are used for correspon¬ ding parts in all figures.

Fig. 1 shows a preferred embodiment of an apparatus according to the invention. A ball-shaped handle 1 is suspended on a support 5, the lower part of which is visible in Fig. 1. The support 5 is fastened to a base not shown which is stationary and stable relative to the operator.

The apparatus according to the invention may for instance be used for control of a machine which can move in three dimensions, such as an excavator or the like, an operator pressing or twisting by a simple application of strain by the hand the handle of the apparatus in the

direction and with the strength desired for the movement. For control of such machines it is a substantial advantage of the apparatus that it is without bearings and joints, as these would substantially increase the risk of damage to the apparatus when used in cases, where strong vibrations may occur.

The apparatus may besides be used in a similar way in every case where a person is to control apparatuses, such as robot arms or manipulator arms, machine tools for processing in three dimensions, such as milling in con¬ nection with "fast prototyping", or movable objects, including imaginary objects which are shown on a computer display or the like. The apparatus will also be suitable in programming robots which are to simulate the movements of an operator.

The apparatus can also be used for control of vehicles, such as helicopters, manned or remote-con¬ trolled submarines and other crafts movable in three dimensions. The applicability of the apparatus within other fields will be understood by a person skilled in art.

The suspension of the handle 1 is disposed in such a way that the handle 1 can be moved slightly in all directions, both by translation and by rotation. The possible movements are, however, preferably so small that the operator does not perceive them when the apparatus is operated manually. The suspension is as far as possible ideally elastic, i.e. there is a proportional and unam¬ biguous relationship between the strain applied to the handle by the operator and the resulting movement of the handle.

For sensing the strain applied to the handle by the operator it is thus sufficient to sense the resulting movements of the handle which may be resolved in dis- placement (translation) and turning (rotation) .

For detecting these movements - which as previously mentioned preferably are very small - sensor elements 22

like the one shown schematically i Fig. 2 are used in the embodiment shown. The sensor element 22 comprises two displacement sensor means and two suspension elements. These are in the figure shown schematically as the two hatched areas 10.

The sensor element 22 is substantially plane, ex¬ tending in the plane of the drawing and is provided with two fastening parts, viz. an outer fastening part 12 and an inner fastening part 9, by means of which the sensor element can be fastened to the support and/or the handle, respectively, (or the reverse) . In the embodiment shown the fastening parts 9, 12 are provided with bolt holes 23, 24 for the fastening.

By means of the sensor element 22 shown in Fig. 2, forces can be detected in the direction 11, which is in the plane of the drawing, and torques in the direction of rotation 14, i.e. about axes perpendicular to the plane of the drawing. The strains are to be applied to the sensor element between the two fastening parts 9, 12, for instance such that the fastening part 12 is kept station¬ ary and the strain, which is to be sensed, is applied to the second fastening part 9.

The resilient suspension elements, which are part of the two hatched areas 10, will deform if the sensor element is subjected to said strains, such that both suspension elements will deform by pull or pressure in opposite directions, if a torque in the rotational direc¬ tion 14 is applied to the sensor element.

The deformations are sensed by the displacement sensor means arranged together with the suspension means which emits a signal which is preferably electrical, when subjected to such a strain. The displacement sensor means in the areas 10 are preferably constructed in such a way that by deformation in the direction 11 they emit a sig- nificantly stronger signal than by deformation in other directions.

The person skilled in the art will realize that the

pairs of suspension elements and displacement sensor means in practice constitute force transducers, and the function of the apparatus is easier to understand, if the hatched areas 10 are regarded as ideal force transducers. Reference is now made to Fig. 3, which schemati¬ cally shows the interior structure of an embodiment of the apparatus according to the invention. In the main the apparatus comprises a support 5, a construction 6 with three sensor elements 22 and a handle 7 which the oper- ator grasps. These three major parts 5, 6, and 7 are for the sake of clearness shown disassembled from each other in Fig. 2.

The three sensor elements 22 are in Fig. 3 further¬ more designated by the letters A, B. and C, and are placed in mutually perpendicular planes. Three mutually perpendicular axes 15, 17, 19 are normals to these planes.

When looking at Fig. 3 it will be realized that the sensor element 22A can sense forces in the direction 19 and torques 20 about the axis 15; the sensor element 22B can sense forces in the direction 15 and torques 16 about the axis 7; and the sensor element 22C can sense forces in the direction 17 and torques 18 about the axis 19.

As a force in any direction may be resolved in force components in the three directions 15, 17, 19, and a torque about any axis may be dissolved in torque compo¬ nents in the three rotational directions 16, 18, 20 (i.e. in torque components about the three axes 17, 19, 15), any compound application of force and torque may be detected by the sensor elements 22 and dissolved in com¬ ponents in three said mutually perpendicular directions.

By means of suitable data processing, for instance in a computer, the resolution into components may be transformed from or to any desired coordinate system, Cartesian, non-orthogonal or polar. There is thus no practical limitation of the orientation of the three sensor elements shown in Fig. 3.

When assembling the apparatus according to the invention, the handle 7 is displaced downwards in Fig. 3, such that the triangular pyramid apex 8 abuts all three interior fastening parts 9, and the support 5 is dis- placed upwards in the figure, the frustum 21 of a tri¬ angular pyramid abutting all three outer fastening parts 12. The interior fastening parts 9 are fastened to the handle 7 and the outer fastening parts 12 are fastened to the support 5. The fastening may take place in any suit- able way, for instance by means of screws, which are screwed into the pyramid 8 and the frustum 21 of the pyramid through the bolt holes 23 or 24, respectively. Gluing, soldering, moulding in place or welding may also be used. The handle 7 is practically usable as the embodi¬ ment shown in Fig. 3, but a different and better design might easily be possible. In a practical embodiment the handle 7 may have the shape as a ball shell encompassing so much of the construction 6, that only the connection to the support 5 is not encompassed, and internally being provided with a triangular pyramid with the same shape as the pyramid 8 shown in Fig. 3. Hereby, the apparatus assumes the preferred embodiment shown in Fig. 1.

It appears from Fig. 3 that assembly and disassem- bly of the apparatus according to the invention may be performed in a very simple way. The sensor elements 22 may thus be screwed one by one onto the support 5, whereafter the handle is screwed onto the sensor elements. When the handle 1 is ball-shaped, as shown in Fig. l, it is preferably shaped as an upper part of a ball, which on its bottom side has the triangular pyramid 8, in addition to a bottom part of a ball shell with an opening for the support 5, the lower part being placeable on the support from below and fastenable to the upper part in any way after the assembly of the apparatus.

A preferred embodiment of a sensor element 22 accord-ing to the invention is shown in Fig. 4. The mech-

anical part of the sensor element is in this embodiment cut from a single plate 34, preferably a plate of spring steel, the dimensions of which can be seen from Fig. 4.

The cutting is most preferably made by laser beam or water-jet cutting.

In this embodiment the suspension elements are elongate and substantially L-shaped, each comprising two straight portions 25 and 26. The portions 25 are made integrally with the interior fastening part 9 and the portions 26 integrally with the outer fastening part 12. Each portion 25 has the effect of a resilient, bendable bar.

It is important that the suspension elements are flexible in all directions, as they would otherwise oppose movement of the handle 1 in certain directions.

This flexibility in all directions is exactly ensured by the L-shape 25,26 shown in Fig. 4.

The plate 34 of the sensor element is designed with a right-angled cut-out 42 which makes it possible to place the three sensor elements 22 orthogonally in the mutual engagement shown in Fig. 3, the cuttings 42 engag¬ ing each other.

Portions 35, 36 of the interior fastening part 9 and the outer fastening part 12, respectively, are posi- tioned oppositely and form two slits 30 in between them. These portions 35,36 constitute shutters. Together with photo-electric means 37 the shutters 35,36 constitute two sensor means 38.

The sensor element 22 can sense forces along an axis 40 positioned in the plane of the plate 34 and per¬ pendicular to an axis 39 connecting the two sensor means 38. The axis 40 corresponds to the direction 11 in Fig. 2. Moreover, the sensor element 22 can sense torques about axes 41 which are perpendicular to the axes 39 and 40. Torques about the axes 41 correspond to torques in the rotational direction 14 in Fig. 2.

The structure of the sensor means 38 is shown more

detailed in Figs. 5 and 6.

Fig. 5 is a sectional view along the line V-V in Fig. 4. An optical transducer, more precisely a light emitter 32, such as a light-emitting diode LED, is in a manner not shown in detail mounted on the bottom side of the sensor element 22 fastened to one of the two shutters 35, 36 opposite the slit 30 between the shutters. A sec¬ ond optical transducer, more precisely a light-sensitive electronic component 31, such as a photodiode, is in the same way mounted on the top side of the sensor element 22, opposite the light-emitting diode LED 32. The diode emits a beam of light 33, which impinges on the photodiode 31 through the slit 30.

It is important that the distance between the sen- sor means is as big as possible to attain large signals and subsequently a high signal-to-noise ratio by rotation of the handle 1. This is made possible by use of so small components (light-emitting diodes 32 and photodiodes 31) as possible. Particularly suitable are SMD components (Surface Mounted Devices) , as they are small in them¬ selves. Suitable types are for instance the light-emit¬ ting diode Siemens LS S260-DO and the photodiode Siemens BP 104 S.

When the outer fastening part 12 and the interior fastening part 9 are pressed together (in direction towards each other) with a force in the direction 11, the portions 25 will deflect outwards, exerting a reaction spring force. By the deflection of 25 the slits 30 between the shutter 36 on the outer fastening part 12 and the shutter 35 on the interior fastening part 9 become narrower. When the force applied is suspended, the de¬ flection of 25 will cease and the slit 30 will regain its original width. Contrary to this the slit 30 will become wider, if the applied force mentioned above goes in the opposite direction (pulls the fastening parts 9,12 apart) .

The photodiode 31 acts in this connection as a

light meter measuring the light passing through the slit 30. When the width of the slit is reduced on account of an applied force, as described above, the width of the light bundle 33 is reduced, whereby the amount of light falling on the photodiode 31 - and consequently its out¬ put signal - is correspondingly reduced. Contrary to this the output signal from the photodiode 31 is increased when the width of the slit 30 is increased.

Fig. 6 shows the slit 30 between the shutter 36 on the outer fastening part 12 and the shutter 35 on the interior fastening part 9. The slit will in itself limit the movement of the two fastening parts, when they are moved towards each other, the slit simply closing when the shutters get in contact with each other. Limitation of the movement away from each other of the two fastening parts is in a similar way made by two means 27,28 made in the plate 34 and engaging each other behind, a second slit being formed between them. This limitation of the mutual movement of the two fastening means has by tests and calculations proved most effective, as it in itself can resist a force applied by a sturdy person about to fall and then grasping the handle of the apparatus.

When a force perpendicular to the axis 40 is applied to the fastening parts, i.e. not in the desired working direction of the sensor element 22, the portion 25 and/or the portion 26 of the suspension element will deflect in a direction which is dependent on the direc¬ tion of the force. Hereby the shutters 35 and 36, which are opposite each other on each their side of the slit 30, will be displaced relative to each other, but in such directions that the effective distance between the shut¬ ters - and consequently the light transmittance - is only insignificantly changed.

Even though the suspension elements in the above embodiment are shown in the same number (six) as the sensor means and positioned immediately next to them, there is no-thing preventing the suspension elements from

being diffe-rently constructed or from being present in a different number. The flexible suspension system is constituted by a flexible column extending along the vertical symmetry axis of the apparatus. The sensor elements may then have a similar construction as described above provided that cut-outs be made in the interior fastening parts 9 around the symmetry axis of the apparatus.




 
Previous Patent: STRESS SENSOR

Next Patent: PRESSURE INDICATOR