Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICES FOR RECONSTRUCTION AND TENSIONING OF A LENS CAPSULE
Document Type and Number:
WIPO Patent Application WO/2018/160800
Kind Code:
A1
Abstract:
Provided herein are devices used to reconstruct a natural lens capsule after a cataract surgery. The devices utilize substantially ring-shaped rigid and flexible components to contact the posterior and anterior surfaces of a capsule after cataract surgery to reconstruct capsular shape. Also provided are devices for tensioning a capsule after a cataract surgery. An elastic ring-like body is shaped to secure the rim of a capsulorhexis in a clip-like configuration. Alternatively the elastic ring-like body is formed with a lower component that depends from the body and a flexible ring-shaped body extending from the lower component similarly to the rigid and flexible components of the capsule reconstructing device.

Inventors:
PALLIKARIS IOANNIS (GR)
SAHIN ONURCAN (TR)
Application Number:
PCT/US2018/020392
Publication Date:
September 07, 2018
Filing Date:
March 01, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EYE PCR B V (NL)
ADLER BENJAMIN AARON (US)
International Classes:
A61F2/14; A61F9/007
Domestic Patent References:
WO2008108523A12008-09-12
WO2007082342A12007-07-26
WO2016195143A12016-12-08
Foreign References:
US20090018650A12009-01-15
RU2330634C22008-08-10
US20140180403A12014-06-26
EP0478929A11992-04-08
US20160220354A12016-08-04
Other References:
See also references of EP 3589236A4
Attorney, Agent or Firm:
ADLER, Benjamin, Aaron (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A device for reconstructing a natural lens capsule of an eye after a cataract surgery, comprising:

a rigid ring-shaped component comprising:

a distal end in contact with an anterior surface of the capsule; and a proximal end disposed against a Wieger's ligament in the eye;

a ring-shaped flexible component substantially concentric with said rigid component and flexibly fitted against an inner surface of the capsule, comprising:

a proximal end formed on an outer surface of the proximal end of the rigid component; and

a distal end extending away from said rigid component; and a groove disposed on an inner surface of the rigid component configured to receive haptics on an intraocular lens.

2. The device of claim 1 , further comprising a ledge formed from a top of the distal end of the rigid component.

3. The device of claim 2, wherein said ledge comprises a plurality of markers disposed on a top surface thereof configured to guide a toric lens alignment.

4. The device of claim 2, wherein said ledge has a width of about 0.1 mm to about 1 mm. 5. The device of claim 1 , wherein said proximal end of the rigid component has a thickness of about 0.2 mm to about 1 mm and said distal end of the rigid component has a thickness of about 0.1 mm to about 0.5 mm.

6. The device of claim 1 , wherein said ring-shaped rigid component comprises a silicon, an acrylic, a hydrogel, or a combination thereof.

7. The device of claim 1 , wherein said ring-shaped rigid component is substantially perpendicular to the anterior surface of the natural lens capsule.

8. The device of claim 1 , wherein said ring-shaped flexible component is configured to flex away from the rigid component when ciliary muscles are relaxed and zonules are tense, and flex toward the rigid component when the ciliary muscles are contracted and the zonules are relaxed.

9. The device of claim 1 , wherein said ring-shaped flexible component further comprises a plurality of gaps disposed around a circumference thereof.

10. The device of claim 9, wherein said gaps each have a width of about 0.1 mm to about 5 mm. 1 1 . The device of claim 1 , wherein said ring-shaped flexible component has a thickness of about 0.05 mm to about 0.75 mm.

12. The device of claim 1 , wherein said ring-shaped flexible component comprises a silicon, an acrylic, a hydrogel, or a combination thereof.

13. The device of claim 1 , wherein said ring-shaped rigid component and said ring-shaped flexible component form an angle of about 2 degrees to about 90 degrees when fitted inside the natural lens capsule. 14. A device for flexibly restoring tension for a natural lens capsule after a cataract surgery, comprising:

a ring-shaped rigid component comprising:

a distal end disposed in a supporting relationship with an anterior surface of the lens capsule; and

a proximal end disposed in a supporting relationship with a posterior surface of the capsule and disposed against a Wieger's ligament of the eye; and

a ledge formed from a top of the distal end of the rigid component;

a ring-shaped flexible component substantially concentric with said rigid component and flexibly fitted against an inner surface of the capsule, configured to flex away from said rigid component when ciliary muscles are relaxed and zonules are tense, and flex toward said rigid component when the ciliary muscles are contracted and the zonules are relaxed, said flexible component comprising:

a proximal end formed on an outer surface of the proximal end of the rigid component; and

a distal end extending away from said rigid component; and a groove disposed on an inner surface of the rigid component configured to receive haptics on an intraocular lens.

15. The device of claim 14, further comprising a plurality of markers disposed on a top surface of the ledge configured to guide toric lens alignment. 16. The device of claim 14, further comprising a plurality of gaps disposed around a circumference of said ring-shaped flexible component configured to improve flexibility thereof.

17. The device of claim 16, wherein said gaps each have a width of about 0.1 mm to about 5 mm.

18. The device of claim 14, wherein said ledge has a width of about 0.1 mm to about 1 mm. 19. The device of claim 14, wherein said proximal end of the rigid component has a thickness of about 0.2 mm to about 1 mm and said distal end of the rigid component has a thickness of about 0.1 mm to about 0.5 mm.

20. The device of claim 14, wherein said ring-shaped rigid component comprises a silicon, an acrylic, a hydrogel, or a combination thereof.

21 . The device of claim 14, wherein said ring-shaped rigid component is substantially perpendicular to the anterior surface of the natural lens capsule. 22. The device of claim 14, wherein said ring-shaped rigid component and said ring-shaped flexible component form an angle of about 0 degree to about 90 degrees when disposed inside the natural lens capsule.

23. A system for flexibly restoring tension for a natural lens capsule after a cataract surgery, comprising:

the device of claim 14; and

an elastic toroidal-shaped body with an opening formed therein around an outer perimeter of the toroidal-shaped body in a clip-like configuration. 24. The system of claim 23, wherein the elastic toroidal-shaped body comprises an upper portion with a tongue depending from a lower surface thereof and a lower portion with a groove disposed around an upper surface thereof configured to receive the tongue within the groove.

25. The system of claim 23, wherein the elastic toroidal-shaped body has an internal diameter of about 5 to 8 mm and an external diameter of about 6 mm to about 10 mm.

26. The device of claim 23, wherein the elastic ring-like body comprises a material with elastic properties substantially similar to the elastic properties at an anterior peripheral area of a capsule in a young human eye.

27. A device for tensioning a capsule of an eye after a cataract surgery, comprising:

an elastic ring-like body with an upper portion and a lower portion in a clip-like configuration formed by an opening into the ring-like body around an outer perimeter thereof.

28. The device of claim 27, wherein the upper portion comprises a tongue depending from a lower surface thereof and a lower portion with a groove disposed around an upper surface thereof configured to receive the tongue within the groove.

29. The device of claim 27, wherein the elastic ring-like body has an internal diameter of about 5 to 8 mm and an external diameter of about 6 mm to about 10 mm. 30. The device of claim 27, wherein the elastic ring-like body comprises a material with elastic properties substantially similar to the elastic properties at an anterior peripheral area of a capsule in a young human eye.

31 . A tensioning device for a natural capsule of an eye after a cataract surgery, comprising:

an elastic ring-shaped body comprising:

an upper component with an upper body portion and a lower body portion separated in a clip-like configuration by an opening formed therein around an inner perimeter thereof, and

a lower component formed to depend at an upper end from a lower surface of the lower body portion; and a flexible ring-shaped body substantially concentric with and extending outwardly from a lower end of the lower component.

32. The tensioning device of claim 31 , said lower component further comprising a groove disposed around an inner surface thereof configured to receive haptics on an intraocular lens.

33. The tensioning device of claim 31 , wherein the upper body portion comprises a tongue depending from a lower surface thereof and a lower portion with a groove disposed around an upper surface thereof configured to receive the tongue within the groove.

34. The tensioning device of claim 31 , wherein the flexible ring-shaped body comprises a continuous surface.

35. The tensioning device of claim 31 , wherein the flexible ring-shaped body comprises a plurality of gaps circumferentially disposed thereon.

36. The tensioning device of claim 35, wherein said plurality of gaps each have a width of about 0.1 mm to about 5 mm.

37. The tensioning device of claim 31 , wherein the elastic ring-shaped body has an internal diameter of about 5 to 8 mm and an external diameter of about 6 mm to about 10 mm.

38. The tensioning device of claim 31 , wherein the elastic ring-shaped body comprises a material with elastic properties substantially similar to the elastic properties at an anterior peripheral area of a capsule in a young human eye. 39. The tensioning device of claim 31 , wherein the lower component of the elastic ring-shaped body has a thickness of about 0.2 mm to about 1 mm at the upper end and has a thickness of about 0.1 mm to about 0.5 mm at the lower end.

40. The tensioning device of claim 31 , wherein the flexible ring-shaped body has a thickness of about 0.05 mm to about 0.75 mm.

41 . The tensioning device of claim 31 , wherein the flexible ring-shaped body comprises a silicon, an acrylic, a hydrogel, or a combination thereof.

Description:
DEVICES FOR RECONSTRUCTION AND TENSIONING OF A LENS CAPSULE

Cross-Reference to Related Applications

This international application claims benefit of priority under 35 U.S.C. ยง120 of pending non-provisional application U.S. Serial No. 15/446, 121 , filed March 1 , 2017, the entirety of which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to the fields of ophthalmology and surgical devices for operations on the eye. More specifically, the present invention relates to a device for functional and anatomical reconstruction of human lens capsules and for precise placement of an intraocular lens for any surgery that requires replacement and alignment of the crystalline lens. Description of the Related Art

An intraocular lens is a plastic lens that has substantially the same optical power as a natural lens it is intended to replace. Typically, during a cataract surgery, an ophthalmic surgeon removes a cataract impaired natural lens and replaces it with an artificial intraocular lens. There are generally three types of intraocular lenses including refractive lenses, diffractive lenses, and refractive-diffractive lenses. A refractive lens converges light towards a focal point on the optical axis by refraction, while a diffractive lens creates a diffraction pattern forming one focal point on the optical axis per diffraction order. A refractive-diffractive lens combines the features of both types. However, these purely refractive bi- or multi-focal lenses have some notable drawbacks. Firstly, their effectiveness is heavily dependent on the size and the centration of the pupil. Secondly, because they have several focal points, the resulting contrast is reduced. This may induce the formation of halos, in particular, in far vision, with reduced luminosity (see, for example, U.S. Patent No. 8,636,796 B2).

Moreover, posterior capsule opacification (PCO or after cataract) remains a common problem after cataract surgery with implantation of an intraocular lens. Posterior capsule opacification generally results from the transition from intracapsular cataract extraction (ICCE) to extracapsular cataract extraction (ECCE), where the posterior lens capsule is left intact during surgery. Patients with posterior capsule opacification suffer from decreased visual acuity, impaired contrast sensitivity, and glare disability. Clinically, components of posterior capsule opacification are identified as a regeneratory component and a fibrotic component with a regeneratory posterior capsule opacification component much more common than the fibrotic component.

Regeneratory posterior capsule opacification results from residual lens epithelial cells (LECs) from the lens equator region, the so-called E-cells, migrating and proliferating into the space between the posterior capsule and the intraocular lens and forming layers of lens material and Elschnig pearls. In contrast, fibrotic posterior capsule opacification is caused by LECs from the anterior capsule that undergoe transformation to myofibroblasts and gain access to the posterior capsule, causing whitening and wrinkling of the capsule. This can lead to decentration of the intraocular lens and hinder visualization of the peripheral retina. Findl et al. (J Cataract Refract Surg 2003; 29(1 ): 106-1 1 ) disclose that both components of posterior capsule opacification lead to a decrease in visual function when they affect the central region around the visual axis. A YAG or Nd laser, utilized in a YAG laser capsulotomy, is most commonly used to treat posterior capsule opacification. However, as disclosed in Georgalas et al. (Ther Clin Risk Manag. 2009; 5: 133-137) laser capsulotomy may lead to other complications, such as retinal detachment or intraocular pressure rise.

European Patent No. 507292 B1 describes the need of an "inhibiting device" for keeping the shape of the capsular bag substantially circular after a cataract extraction and inhibiting issues such as invasion of metamorphosed epithelial cells into a posterior capsular bag and further to inhibiting device wherein an intraocular lens can be retained in good state by forming a groove in the inner periphery thereof. He describes a steady circular shape of the device effective to inhibit capsular shrinking without referring to the actual diameter of the outer part of the ring.

US Publication No. 2006/0047339 A1 describes a device attached to natural lens capsule such that the lens capsule may be maintained in a configuration to avoid postoperative changes that are deleterious to vision. Single or dual optics system is provided, which may be accommodating. The role of the "postoperative contraction" of the empty capsule, in the displacement of the lens, resulting in optical changes and in induced astigmatism is emphasized. Therefore, there is a need to provide a device or apparatus and procedure to maintain the form of the lens capsule and to maintain the diameter a capsulotomy opening for the device.

International Application No. WO2007044604 A1 describes the "spatial relationship of structures within the eye, such as the distance from the a surface of the cornea to a posterior surface of the crystalline lens capsule and from the cornea or the posterior surface of the lens capsule" to the retina is measured preoperatively, for example by using ultrasound, partial coherence interferometry, optical coherence tomography or laser measuring techniques or by any other means known to the art, thus establishing the preoperative anatomical relationships. A surgical procedure, such as an intraocular lens implantation is performed and spacing means are provided to restore those premeasured spatial relationships or a predetermined new spacing. The spacing means may include, for example spacers, rings, inflatable structures or thick or multiple lenses. These means help with maintaining the normal depth of the patient ' s anterior and posterior capsule and prevent forward movement of the vitreous and retinal detachment that may occur as a result of such movement.

Goldberg (Clin Ophthalmol. 201 1 ; 5:1 -7) states that "the crossing zonules cradle, shape stabilize the posterior lens. In the model, the anterior vitreous zonule is inserted in the Wieger's ligament, and the PIZ-LE zonule anchors the lens equator to the posterior insertion zone. The crossing zonules and Wieger's ligament maintain lens placement while the anterior and posterior zonules provide reciprocal accommodation and disaccommodation. Wieger's ligament representing the mid-peripheral zone of the posterior capsule is the most important area for stabilizing the lens position during the accommodation.

US Publication No. 2010/0204790 A1 describes an intraocular lens device having a ring shape fixation platform, which can create a "frame" in which the intraocular lens of the present invention can be attached ... and conclude the discovery of the present invention makes possible a surgical method for insertion and subsequent removal and exchange of an intraocular lens with reduced risk of injury to the eye or loss of sight.

Based on the Market Scope Report (2015 Comprehensive Report on the Global Intraocular Lens Market, June 2015), the premium intraocular lens market is going to reach the 9.3 % of the global number and the 34% of the total revenues of the global intraocular lens market. The multifocal and Toric lOLs will dominate the premium intraocular lens market at the market share of almost 90%. Toric and multifocal are very sensitive to the exact centration and positioning inside the capsule.

Several patents and publications, including US Patent No. 9,339,375 B2,

US4710194, US Publication No. 2005/0085,907, US Publication No. 2005/0209692, US Publication No. 2010/0204790, US Publication No. 2010/0228344, US Publication No. 201 1/0082543 and European Application No. 037.390A2, disclose a variety of intracapsular rings for different purposes. However, these works describe rings that either have one standard size or a variety of sizes without any adjustability for accommodation. These devices generally comprise a ring and an optical system adapted to the ring. Some of the devices comprise a deformable ring that under the pressure of the ciliary body changes the shape of the central optical part and mimics an accommodation mechanism.

None of the previous works in the field take into consideration the modern theory of accommodation and the preservation of continuous change of the shape of the capsule, due to the complexity of zonular traction regarding the multifocal and toric intraocular lens, which are already in the market and expected to improve rapidly in the near future. Therefore, there is a recognized need in the art for a device and method for reconstructing the capsule. Particularly, the prior art is deficient in devices that enable precise placement and alignment of the intraocular lens post-surgically. The present invention fulfills this long- standing need and desire in the art.

SUMMARY OF THE INVENTION

The present invention is directed to a device for reconstructing a natural lens capsule of an eye after a cataract surgery. The device comprises a ring-shaped rigid component. The rigid component comprises a distal end in contact with an anterior surface of the capsule and a proximal end disposed on a posterior surface of the capsule and against a Wieger's ligament in the eye. A ring-shaped flexible component substantially concentric with the rigid component is flexibly fitted against an inner surface of the capsule. The ring-shaped flexible component comprises a proximal end formed on an outer surface of the proximal end of the rigid component, and a distal end extending away from the rigid component. A groove is disposed on an inner surface of the rigid component configured to receive haptics on an intraocular lens. The present invention is directed to a related device further comprising a ledge formed from a top of the distal end of the rigid component.

The present invention also is directed to a device for flexibly restoring tension for a natural lens capsule after a cataract surgery. The device comprises a ring-shaped rigid component comprising a distal end disposed in supporting relationship with an anterior surface of the lens capsule, a proximal end disposed in supporting relationship with a posterior surface of the lens capsule and disposed against a Wieger's ligament of the eye, and a ledge formed from a top of the distal end of the rigid component. A ring-shaped flexible component substantially concentric with the rigid component is flexibly fitted against an inner surface of the capsule. The flexible component is configured to flex away from the rigid component when ciliary muscles are relaxed and zonules are tense, and flex toward the rigid component when the ciliary muscles are contracted and the zonules are relaxed. The ring-shaped flexible component comprises a proximal end formed on an outer surface of the proximal end of the rigid component, and a distal end extending away from the rigid component. A groove is disposed on an inner surface of the rigid component, configured to receive haptics on an intraocular lens. The present invention is directed to a related device further comprising a plurality of markers disposed on a top surface of the ledge configured to guide toric lens alignment. The present invention is directed to another related device further comprising a plurality of gaps disposed around a circumference of said ring-shaped flexible component configured to improve flexibility thereof.

The present invention is directed further to a system for flexibly restoring tension for a natural lens capsule after a cataract surgery. The system comprises the device for flexibly restoring tension for a natural lens capsule as described herein and an elastic toroidal-shaped body with an opening formed therein around an inner perimeter of the toroidal-shaped body in a clip-like configuration.

The present invention is directed further still to a device for tensioning a capsule of an eye after a cataract surgery. The device comprises an elastic ring-like body with an upper portion and a lower portion in a clip-like configuration formed by an opening into the ring-like body around an outer perimeter thereof.

The present invention is directed further still to a tensioning device for a natural capsule of an eye after a cataract surgery. The tensioning device comprises an elastic ring-shaped body and a flexible ring-shaped body substantially concentric with and extending outwardly from a lower end of the lower component. The elastic ring-shaped body comprises an upper component with an upper body portion and a lower body portion separated in a clip-like configuration by an opening formed therein around an inner perimeter thereof and a lower component formed to depend at an upper end from a lower surface of the lower body portion. The present invention is directed to a related tensioning device where the lower component of the elastic ring-shaped body further comprises a groove disposed around an inner surface thereof configured to receive haptics on an intraocular lens.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention. These embodiments are given for the purpose of disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the matter in which the above-recited features, advantages and objects of the invention, as well as others which will become clear, are attained and can be understood in detail, more particular descriptions and certain embodiments of the invention briefly summarized above are illustrated in the appended drawings. These drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate preferred embodiments of the invention and therefore are not to be considered limiting in their scope.

FIG.1 depicts the structure of a capsule and Wieger's ligament with (left side) and without (right side) contraction of ciliary body.

FIG. 2 is a cross sectional view of the device showing the flexible component of the device in free form (right side) and fitted against the side surface of a capsule of an eye (left side).

FIG. 3 is a cross sectional view of the device showing the proximal end of the device is disposed in the capsule and against Wieger's ligament.

FIG. 4 is a cross sectional view of the device showing the diameter of the anterior surface of the capsule is greater than the posterior surface thereof.

FIG. 5 is a cross sectional view of the device showing an intraocular lens is placed in the device by inserting the haptics thereof into a groove disposed on the inner surface of the rigid component.

FIG. 6 is a cross sectional view of the device showing an asymmetric intraocular lens is placed in the device.

FIG. 7 is a cross sectional view from the side of the device showing the rigid component and the flexible component.

FIG. 8 is a top view of the device showing a plurality of markers as the indicators for toric intraocular lens alignment is disposed on the top surface of the rigid component.

FIG.9 is a top view of the device showing a plurality of gaps disposed along the circumference of the flexible component to improve the flexibility thereof.

FIG. 10 is a cross-sectional view of one embodiment of the elastic ring-like tensioning device.

FIG. 11 is the cross-sectional view of FIG. 2 further illustrating in cross-section the positioning of the elastic ring-like tensioning device when securing the rim of the capsulorhexis.

FIG. 12 is a cross sectional view of another embodiment of the tensioning device showing the disposition of the elastic ring-shaped body and the flexible ring-shaped body in relation to the rim of the capsulorhexis and the capsule.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the following terms and phrases shall have the meanings set forth below. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art. As used herein, the term, "a" or "an" may mean one or more. As used herein in the claim(s), when used in conjunction with the word "comprising", the words "a" or "an" may mean one or more than one. As used herein "another" or "other" may mean at least a second or more of the same or different claim element or components thereof. The terms "comprise" and "comprising" are used in the inclusive, open sense, meaning that additional elements may be included.

As used herein, the term "or" in the claims refers to "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and "and/or".

As used herein, the term "about" refers to a numeric value, including, for example, whole numbers, fractions, and percentages, whether or not explicitly indicated. The term "about" generally refers to a range of numerical values (e.g., +/- 5-10% of the recited value) that one of ordinary skill in the art would consider equivalent to the recited value (e.g., having the same function or result). In some instances, the term "about" may include numerical values that are rounded to the nearest significant figure.

As used herein, the term "distal end" refers to an end that is away from the posterior surface of the capsule; the term "proximal end" refers to an end that is toward the posterior surface of the capsule.

As used herein, the terms "substantially ring-like", "ring-like" and "toroidal-shaped" are interchangeable and refer to a three-dimensional shape of the devices described herein, for example, similar to or like a donut.

In one embodiment of the present invention, there is provided a device for reconstructing a natural lens capsule of an eye after a cataract surgery, comprising a ring- shaped rigid component comprising: a distal end in contact with an anterior surface of the capsule; and a proximal end disposed against a Wieger's ligament in the eye; a ring- shaped flexible component substantially concentric with the rigid component and flexibly fitted against an inner surface of the capsule, comprising: a proximal end formed on an outer surface of the proximal end of the rigid component; and a distal end extending away from the rigid component; and a groove disposed on an inner surface of the rigid component configured to receive haptics on an intraocular lens.

Further to this embodiment the device further may comprise a ledge formed from a top of the distal end of the rigid component. In this further embodiment, the ledge may comprise a plurality of markers disposed on a top surface thereof, configured to guide a toric lens alignment. Also in this furtherembodiment the ledge may have a width of about 0.1 mm to about 1 mm wide.

In both embodiments, the proximal end of the rigid component may have a thickness of about 0.2 mm to about 1 mm. Also, the distal end of the rigid component may have a thickness of about 0.1 mm to about 0.5 mm. In addition, the rigid component may be made of or may comprise, but are not limited to, silicon, acryl, poly(methyl methacrylate), hydrogel, or a combination thereof.

Also in both embodiments, the ring-shaped rigid component may be substantially perpendicular to the anterior surface of the natural lens capsule. In both embodiments the ring-shaped flexible component may be configured to flex away from the rigid component, when ciliary muscles are relaxed and zonules are tense, and to flex toward the rigid component, when the ciliary muscles are contracted and the zonules are relaxed.

Further to both embodiments, the ring-shaped flexible component may comprise a plurality of gaps disposed around a circumference thereof. Also, the gaps each may have a width of about 0.1 mm to about 5 mm. In addition, the ring-shaped flexible component may have a thickness of about 0.05 mm to about 0.75 mm. Furthermore the ring-shaped flexible component may be made of or may comprise, but are not limited to, silicon, acryl, poly(methyl methacrylate), hydrogel, or a combination thereof. Further still in this embodiment, the ring-shaped rigid component and the ring-shaped flexible component form an angle of about 2 degree to about 90 degree when fitted inside the natural lens capsule.

In another embodiment of the present invention, there is provided a device for flexibly restoring tension for a natural lens capsule after a cataract surgery, comprising: a ring-shaped rigid component comprising: a distal end disposed in a supporting relationship with an anterior surface of the capsule and; a proximal end disposed in a supporting relationship with an posterior surface of the capsule and disposed against a Wieger's ligament of the eye; and a ledge formed from a top of the distal end of the rigid component; a ring-shaped flexible component substantially concentric with the rigid component and flexibly fitted against an inner surface of the capsule, configured to flex away from the rigid component when ciliary muscles are relaxed and zonules are tense, and flex toward the rigid component when the ciliary muscles are contract and the zonules are relaxed, the flexible component comprising: a proximal end formed on an outer surface of the proximal end of the rigid component; and a distal end extending away from the rigid component; and a groove disposed on an inner surface of the rigid component configured to receive haptics on an intraocular lens.

Further to this embodiment, the device may comprise a plurality of markers disposed on a top surface of the ledge configured to guide toric lens alignment. In another further embodiment the device may comprise a plurality of gaps disposed around a circumference of the ring-shaped flexible component configured to improve flexibility thereof. In this further embodiment, the gaps each may have a width of about 0.1 mm to about 5 mm wide. In all embodiments, the ledge may have a width about 0.1 to about 1 mm. Also, the proximal end of the rigid component may have a thickness of about 0.2 mm to about 1 mm and the distal end of the rigid component may have a thickness of about 0.1 mm to about 0.5 mm. In addition the ring-shaped rigid component may be made of or may comprise, but are not limited to, silicon, acryl, poly(methyl methacrylate), hydrogel, or a combination thereof. Furthermore, the ring-shaped rigid component may be substantially perpendicular to the anterior surface of the natural lens capsule. Further still, the ring-shaped rigid component and the ring-shaped flexible component form an angle of about 2 degrees to about 90 degrees when disposed inside the natural lens capsule.

In yet another embodiment of the present invention there is provided a system for flexibly restoring tension for a natural lens capsule after a cataract surgery, comprising the device for restoring tension as described supra; and an elastic toroidal-shaped body with an opening formed therein around an inner perimeter of the toroidal-shaped body in a cliplike configuration.

In this embodiment the elastic toroidal-shaped body may comprise an upper portion with a tongue depending from lower surface thereof and a lower portion with a groove disposed around an upper surface thereof configured to receive the tongue within the groove. Also, in this embodiment the elastic toroidal-shaped body may have an internal diameter of about 5 to 8 mm and an external diameter of about 6 mm to about 10 mm. In addition the elastic ring-like body may comprise a material with elastic properties substantially similar to the elastic properties at an anterior peripheral area of a capsule in a young human eye.

In yet another embodiment of the present invention there is provided a device for tensioning a capsule of an eye after a cataract surgery, comprising an elastic ring-like body with an upper portion and a lower portion in a clip-like configuration formed by an opening into the ring-like body around an outer perimeter thereof.

In this embodiment the upper portion may comprise a tongue depending from lower surface thereof and a lower portion with a groove disposed around an upper surface thereof configured to receive the tongue within the groove. Also in this embodiment the elastic ring-like body may have an internal diameter of about 5 to 8 mm and an external diameter of about 6 mm to about 10 mm. In addition the elastic ring-like body may comprise a material with elastic properties substantially similar to the elastic properties at an anterior peripheral area of a capsule in a young human eye.

In yet another embodiment of the present invention there is provided a tensioning device for a natural capsule of an eye after a cataract surgery, comprising an elastic ring-shaped body that comprises an upper component with an upper body portion and a lower body portion separated in a clip-like configuration by an opening formed therein around an inner perimeter thereof, and a lower component formed to depend at an upper end from a lower surface of the lower body portion; and a flexible ring-shaped body substantially concentric with and extending outwardly from a lower end of the lower component. Further to this embodiment the lower component may comprise a groove disposed around an inner surface thereof configured to receive haptics on an intraocular lens.

In both embodiments the upper body portion may comprise a tongue depending from a lower surface thereof and a lower portion with a groove disposed around an upper surface thereof configured to receive the tongue within the groove. Also in this embodiment the elastic ring-shaped body body may have an internal diameter of about 5 to 8 mm and an external diameter of about 6 mm to about 10 mm. In addition the lower component of the elastic ring-shaped may have a thickness of about 0.2 mm to about 1 mm at the proximal end and has a thickness of about 0.1 mm to about 0.5 mm at the distal end. Furthermore, the flexible ring-shaped body may have a thickness of about 0.05 mm to about 0.75 mm.

In both embodiments the elastic ring-shaped body may comprise a material with elastic properties substantially similar to the elastic properties at an anterior peripheral area of a capsule in a young human eye. Also, the flexible ring-shaped body may comprise a silicon, an acrylic, a hydrogel, or a combination thereof.

In one aspect of both embodiments the flexible ring-shaped body may comprise a continuous surface. In another aspect the flexible ring-shaped body may comprise a plurality of gaps circumferentially disposed thereon. In this aspect the plurality of gaps each have a width of about 0.1 mm to about 5 mm.

Provided herein are devices for reconstruction of the capsule 1 after a cataract surgery. Also provided are devices for tensioning the capsule after the cataract surgery that may be used alone or with the capsule reconstruction devices. As described below, the invention provides a number of advantages and uses, however such advantages and uses are not limited by such description. Embodiments of the present invention are better illustrated with reference to the Figure(s), however, such reference is not meant to limit the present invention in any fashion. The embodiments and variations described in detail herein are to be interpreted by the appended claims and equivalents thereof.

As shown in FIG. 1 , the lens of the eye switches between flattened 2a or convex 2b when the ciliary muscles relaxe or contract to adjust vision focus. More specifically, when an eye is looking at objects at a far distance, the ciliary muscles are relaxed 3a and the zonules 4a are tensed, resulting in the lens being flattened. When the ciliary muscles are contracted 3b and the zonules are relaxed 4b, the lens of the eye is in a convex shape 2b, providing more refractive power. Therefore, a concentric rings-shaped device 5 is used to accommodate the flexibility of the dynamic structure of an eye.

As shown FIG. 2, the device has a V-shaped cross sectional surface. The device comprises a rigid component 9 and a flexible or deformable component 7 (without tension) or 7' (with tension) disposed outside of or posterior to the rigid component. A proximal end of the flexible component is formed at the outer surface of at the proximal end of the rigid component. When it is placed in a natural lens capsule, the rigid component 9 supports the lens capsule while the flexible component 7' fits against and contacts the side surface of the lens capsule, configured to contract or relax with the contraction or relaxation of the capsule. Generally, the rigid component may be perpendicular to the anterior surface of the lens capsule.

FIG. 3 illustrates that when the device is placed into the natural lens capsule, the proximal end of the rigid component is disposed against Wieger's Ligament 8. The outer surface of the flexible component is in direct contact with the inner surface of the capsule. The flexible component is under constant pressure from the capsule. It blocks any fibroblast and lens epithelial cells migrating to the posterior capsule. Preferably, the angle between the rigid component and the flexible component is about 0 degrees to about 90 degrees when the capsule contracts and relaxes. The rigid component and the flexible component individually may be made of biocompatible materials, such as, but not limited to, silicon, an acrylic, such as poly(methyl methacrylate), hydrogel or a combination thereof. The thickness of the rigid and flexible components define the parameters of flexibility and rigidity.

As shown in FIG. 4, the top portion 10 of the rigid component, which is in contact with the anterior of the capsule, is thinner than the bottom portion 6 thereof, which is in contact with the posterior of the capsule. A ledge 18 is formed at the distal end of the top portion of the rigid component. The diameter of the top portion 10 of the rigid component may be greater than or substantially the same as that of the bottom portion 6 thereof. This conical-like shape of the rigid component creates a better visual field for surgeons and allows them to see the groove 11 during the eye surgery, providing easy access for placing and aligning the lens 13. Preferably, the thickness of the rigid component may be from 0.1 mm to 1 mm. The thickness of the flexible component may be from 0.05 mm to 0.75 mm.

FIG. 5 illustrates that a ring-shaped groove 11 is disposed on the inner surface of the rigid component and is configured to fit or receive and to secure the haptics 12 on the intraocular lens. The groove 11 keeps the lens well aligned in the center of the capsule. Once the haptics 12 on the lens 13 are placed in the groove 11 , the groove 11 removably secures the haptics 12 and prevents the lens 13 from tilting or twisting. FIG. 6 shows that an intraocular lens with asymmetric haptics 14 is placed into the ring-shaped groove 11. This is used to fit premium intraocular lens in a patient's eye with higher angle kappa, in case of a pupil eccentricity in regards to the optical axis, where this eccentricity is greater than 0.2 mm.

FIG. 7 and FIG. 8 illustrate the corresponding parts in a side view shown in and a top view, respectively, of the device. Particularly, FIG. 8 shows a plurality of markers 16 disposed on the top surface of the ledge formed on the rigid component.

In FIG. 9 a plurality of gaps, as represented by 17a and 17b, is disposed along the circumference of the flexible component to improve the flexibility thereof. These gaps divide the flexible component into plurality of discontinuous sections, as represented by 7a and 7b.

FIG. 10 depicts the elastic ring-like body of the tensioning device 20. The device is an elastic substantially ring-like or toroidal-shaped body with a clip-like configuration. The ring-like body has an upper portion 22 or upper body portion and a lower portion 24 or lower body portion. An opening 26 into the ring-like body around the outer perimeter enables the clip-like action of the device. The upper portion comprises a tongue 22a that depends downwardly from the inner surface thereof. The lower portion comprises a groove 24a disposed around the inner surface thereof that is positioned to receive the tongue therein.

The elastic ring-like device is positioned around the peripheral capsulorhexis rim whereby the rim is secured between the tongue and groove and the device can be secured adjacent to the peripheral capsulorhexis rim. The elastic ring-like device is secured to the capsule with a clip or clip-like structure (see FIG. 12) or a bioadhesive material or other securing means to ensure the device is firmly fixed to or secured within the capsule. When secured to the peripheral capsulorhexis rim, the elastic ring causes the capsule to pull the external elastic part of the peripheral capsulorhexis rim toward the center.

The elastic ring-like body is made of one or more materials with elastic properties similar to or equivalent to those of the natural capsule, particularly, in a young human eye in the given anterior peripheral area of the capsule. The elastic ring-like body has an internal diameter of about 5 to 8 mm and an external diameter of about 6 to 10 mm.

With continued reference to FIG. 2, FIG. 1 1 illustrates in cross-section the use of the elastic ring-like device 20 with the lens capsule reconstructing device 1. The elastic ring-like device remains secured to the peripheral capsulorhexis rim whether the flexible component of the lens capsule reconstructing device is without tension 7 or with tension 7'.

FIG. 12 depicts a tensioning device 30 including a clip-like structure to secure the device within the capsular bag after a cataract surgery. The tensioning device comprises the elastic ring-shaped body 20 as an upper component, a lower component 32 and a flexible ring-shaped body 36.

The lower component extends at the upper end 32a from the lower surface of the lower body portion 24 such that when the peripheral capsulorhexis rim is secured by the elastic ring-shaped body, the lower end 32b of the lower component is positioned against the anterior surface of the capsule. The lower component of the device comprises a groove 34 that is circumferentially disposed around the inner surface thereof and is configured to receive haptics on an intraocular lens. The lower component of the elastic ring-shaped body has a thickness of about 0.2 mm to about 1 mm at the upper end and has a thickness of about 0.1 mm to about 0.5 mm at the lower end. The lower component may be made of the same one or more elastic materials as is the elastic ring-shaped body 20.

The flexible ring-shaped body 36 is substantially concentric with the upper 20 and lower 32 components of the tensioning device and flexibly extends upwardly from the lower end 32b of the lower component. When the tensioning device is placed within the capsule, the outer surface 36a of the flexible ring-shaped body is in direct contact with the inner surface of the capsule. The flexible ring-shaped body is under constant pressure from the capsule. The angle between the lower component and the flexible ring-shaped body can vary between 0 degrees and about 90 degrees when the capsule contracts and relaxes. The flexible ring-shaped body may have a thickness of about 0.05 mm to about 0.75 mm and comprises biocompatible materials, for example, but not limited to, a silicon, an acrylic, a hydrogel or a combination thereof. The surface of the flexible ring-shaped body may be continuous or may comprise a plurality of gaps circumferentially disposed thereon similar to the gaps 17a,b on the flexible component 7 of the lens reconstructing device 1. Each of the plurality of gaps may have a width of about 0.1 mm to about 5 mm.

The present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.