Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DIGITAL AROMA DISPERSION SYSTEM AND NETWORK
Document Type and Number:
WIPO Patent Application WO/2018/022562
Kind Code:
A1
Abstract:
The present invention is directed to a digital aroma system that provides a scented air on demand in a room or a vehicle. Fragrance cartridges are held in a fragrance module having a manifold and valves that are controlled by a processor. A user can select a specific fragrance and the processor can open valves to direct airflow through the fragrance cartridge associated with the requested fragrance.

Inventors:
KELSEN KEITH (US)
Application Number:
PCT/US2017/043632
Publication Date:
February 01, 2018
Filing Date:
July 25, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INHALIO INC (US)
International Classes:
A61L9/00; A61L9/14; A61L9/015; A61L9/04; A61L9/12
Domestic Patent References:
WO2015195548A12015-12-23
WO2013021114A12013-02-14
Foreign References:
US5565148A1996-10-15
US20050278224A12005-12-15
US20080093474A12008-04-24
JP2016097208A2016-05-30
US20100044453A12010-02-25
Attorney, Agent or Firm:
TOMITA, Paul, K. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method for using digital aroma system comprising:

providing a fragrance module comprising a plurality of dry fragrance cartridges each having a cartridge housing and a plurality of substrates infused with fragrance molecules within the cartridge housing, a processor and valves controlled by the processor for selectively transmitting air through the plurality of dry fragrance cartridges wherein each of the plurality of dry fragrance cartridges has a different fragrance and fragrance molecules in the fragrance cartridges have different molecular weights;

selecting a first fragrance through a user interface;

transmitting a first control signal from the user interface to the processor;

opening a first valve to create a first flow path through a first dry fragrance cartridge

associated with the first fragrance;

directing air through the first flow path and the first dry fragrance cartridge;

transmitting some of the dry fragrance from the first dry fragrance cartridge to an outlet; selecting a second fragrance with the input of the user interface;

transmitting a second control signal from the user interface to the processor;

opening a second valve to create a second flow path through a second dry fragrance cartridge associated with the second fragrance;

directing the air through the second flow path and the second dry fragrance cartridge; and transmitting some of the dry fragrance from the second dry fragrance cartridge to the outlet.

2. The method for using digital aroma system of claim 1 wherein a first air flow rate through the first dry fragrance cartridge is faster than a second air flow rate through the second dry fragrance cartridge.

3. The method for using digital aroma system of claim 2 wherein a first molecular weight of the dry fragrance molecules in the first fragrance cartridge is lower than a second molecular weight of the dry fragrance molecules in the second fragrance cartridge. The method for using digital aroma system of claim 2 wherein the dry fragrance molecules in the first fragrance cartridge is a citrus type fragrance and the dry fragrance molecules in the second fragrance cartridge is a tobacco type fragrance.

The method for using digital aroma system of claim 1 wherein a first air flow duration through the first dry fragrance cartridge is longer than a second air flow duration through the second dry fragrance cartridge.

The method for using digital aroma system of claim 5 wherein a first fragrance strength of the dry fragrance molecules in the first dry fragrance cartridge is weaker than a second fragrance strength of the dry fragrance molecules in the second dry fragrance cartridge.

The method for using digital aroma system of claim 1 further comprising:

determining a volume of a room that the digital aroma system is being used within;

adjusting a first air flow duration through the first dry fragrance cartridge and a second air flow duration through the second dry fragrance cartridge based upon the volume of the room.

A method for using digital aroma system comprising:

providing a fragrance module comprising a plurality of cartridge slots each having an radio frequency identification (RFID) reader, plurality of dry fragrance cartridges each having a cartridge housing and a plurality of substrates infused with fragrance molecules within the cartridge housing, a processor and valves controlled by the processor for selectively transmitting air through the plurality of dry fragrance cartridges wherein each of the plurality of dry fragrance cartridges has a different fragrance and fragrance molecules in the fragrance cartridges have an RFID tag;

reading the RFID tag for each of the dry fragrance cartridges by the RFID reader at each of the plurality of cartridge slots;

displaying a plurality of fragrances on a user interface;

selecting a first fragrance on the user interface;

transmitting a first control signal from the user interface to the processor;

opening a first valve to create a first flow path through a first dry fragrance cartridge

associated with the first fragrance; directing air through the first flow path and the first dry fragrance cartridge; transmitting some of the dry fragrance from the first dry fragrance cartridge to an outlet; selecting a second fragrance with the input of the user interface and transmitting a second control signal from the user interface to the processor;

opening a second valve to create a second flow path through a second dry fragrance cartridge associated with the second fragrance;

directing air through the second flow path and the second dry fragrance cartridge; and transmitting some of the dry fragrance from the second dry fragrance cartridge to the outlet.

9. The method for using digital aroma system of claim 8 wherein a first air flow rate through the first dry fragrance cartridge is faster than a second air flow rate through the second dry fragrance cartridge.

10. The method for using digital aroma system of claim 9 wherein a first molecular weight of the dry fragrance molecules in the first fragrance cartridge is lower than a second molecular weight of the dry fragrance molecules in the second fragrance cartridge.

11. The method for using digital aroma system of claim 9 wherein the dry fragrance molecules in the first fragrance cartridge is a citrus type fragrance and the dry fragrance molecules in the second fragrance cartridge is a tobacco type fragrance.

12. The method for using digital aroma system of claim 8 wherein a first air flow duration

through the first dry fragrance cartridge is longer than a second air flow duration through the second dry fragrance cartridge.

13. The method for using digital aroma system of claim 12 wherein a first fragrance strength of the dry fragrance molecules in the first dry fragrance cartridge is weaker than a second fragrance strength of the dry fragrance molecules in the second dry fragrance cartridge.

14. The method for using digital aroma system of claim 8 further comprising:

determining a volume of a room that the digital aroma system is being used within; adjusting a first air flow duration through the first dry fragrance cartridge and a second air flow duration through the second dry fragrance cartridge based upon the volume of the room.

15. A method for using digital aroma system comprising:

providing a fragrance module comprising a plurality of dry fragrance cartridges each having a cartridge housing and a plurality of substrates infused with fragrance molecules within the cartridge housing, a remote fragrance sensor, a processor and valves controlled by the processor for selectively transmitting air through the plurality of dry fragrance cartridges wherein each of the plurality of dry fragrance cartridges has a different fragrance;

selecting a first fragrance through a user interface;

transmitting a first control signal from the user interface to the processor;

opening a first valve to create a first flow path through a first dry fragrance cartridge

associated with the first fragrance;

directing air through the first flow path and the first dry fragrance cartridge;

transmitting some of the dry fragrance from the first dry fragrance cartridge to an outlet; detecting a first concentration of the dry fragrance from the first dry fragrance cartridge by the remote fragrance sensor;

transmitting the first concentration from the remote fragrance sensor to the processor;

adjusting the air through the first flow path and the first dry fragrance cartridge based upon the first concentration;

selecting a second fragrance with the input of the user interface;

transmitting a second control signal from the user interface to the processor;

opening a second valve to create a second flow path through a second dry fragrance cartridge associated with the second fragrance;

directing the air through the second flow path and the second dry fragrance cartridge;

transmitting some of the dry fragrance from the second dry fragrance cartridge to the outlet; detecting a second concentration of the dry fragrance from the first dry fragrance cartridge by the remote fragrance sensor;

transmitting the second concentration from the remote fragrance sensor to the processor; and adjusting the air through the second flow path and the second dry fragrance cartridge based upon the second concentration.

16. The method for using digital aroma system of claim 15 wherein a first air flow rate through the first dry fragrance cartridge is faster than a second air flow rate through the second dry fragrance cartridge.

17. The method for using digital aroma system of claim 16 wherein a first molecular weight of the dry fragrance molecules in the first fragrance cartridge is lower than a second molecular weight of the dry fragrance molecules in the second fragrance cartridge.

18. The method for using digital aroma system of claim 16 wherein the dry fragrance molecules in the first fragrance cartridge is a citrus type fragrance and the dry fragrance molecules in the second fragrance cartridge is a tobacco type fragrance.

19. The method for using digital aroma system of claim 15 wherein a first air flow duration through the first dry fragrance cartridge is longer than a second air flow duration through the second dry fragrance cartridge.

20. The method for using digital aroma system of claim 19 wherein a first fragrance strength of the dry fragrance molecules in the first dry fragrance cartridge is weaker than a second fragrance strength of the dry fragrance molecules in the second dry fragrance cartridge.

21. The method for using digital aroma system of claim 15 further comprising:

determining a volume of a room that the digital aroma system is being used within;

adjusting a first air flow duration through the first dry fragrance cartridge and a second air flow duration through the second dry fragrance cartridge based upon the volume of the room.

Description:
DIGITAL AROMA DISPERSION SYSTEM AND NETWORK

Cross Reference To Related Applications

[0001] This patent application claims priority to PCT Application No.

PCT/US2016/043926, "Digital Aroma Cassette Cartridge And Matrix Dispersion System For Remote Controls" filed 25 July 2016, PCT Application No. PCT/US2016/046395, "Fragrance Cartridge And Chamber System" filed 10 August 2016, and PCT Application No.

PCT/US2016/053090, "Digital Aroma Dispersion System And Devices" filed 22 September 2016, all of which are hereby incorporated by reference in its entirety.

Background

[0002] Fragrance systems exist for commercial and home applications. In some embodiments, fragrance systems provide aromas, which can elicit various emotional feelings that can improve moods and increase feelings of happiness. Machines exist which distribute fragrances for commercial and home applications. For example, scented oils have been used to emit fragrances. However, many scented oils such as pine oil, lavender oil, geranium oil, etc. include monoterpenes, which may be carcinogens. Some studies have shown the rats and mice that had scented oils injected into their throats resulted in kidney tumors. Most of these systems use heat to heat the oil for dispersion, which may cause the oils to become carcinogenic when atomized and delivered in the atmosphere. What is needed is an improved fragrance system, which does not use scented oils and is not carcinogenic.

Summary of the Invention

[0003] The present invention is directed to a digital aroma system that provides aroma experiences that can be utilized in the market place, specifically, home, automotive, gamming and watching television and movies. The present invention is a digital aroma system that utilizes dry fragrance infused beads or other solid porous substrates that contain fragrance materials contained in a fragrance cartridge(s) that is removable mounted in an interchangeable cassette system that that connects to a manifold. The dry fragrances or dry fragrance materials can be dry fragrance molecules. The manifold has specific airway passages that are connected to fans or pumps that are controlled by a computer processor. In response to a fragrance control signal or a fragrance trigger, the processor can selectively direct air into the any individual target fragrance cartridge. More specifically the processor can cause the fan or pump to pull or push fresh unscented air through the target fragrance cartridge and the fresh air passes by the particles infused with a dry fragrance material. The aroma reaches the individual through one or several outlets.

[0004] The invention digital aroma system is designed to fit into a very small footprint while providing many aromas that enhance the user experience of the automobile, game or movie. In an embodiment the digital aroma system can simultaneously hold numerous (for example six) distinct fragrance cartridges. The digital aroma system can be coupled to or integrated into the automotive dashboard, a game controller or any other device that is used for control entertainment, such as a remote control or headset which may include a speaker for receiving audio signals and a microphone for transmitting sound commands. The digital aroma system can be configured in many different forms to match automotive or the entertainment remote control device including a handheld device.

[0005] The digital aroma system invention can include a processor that runs computer software that creates a visual, audio, and/or smell sensory experience. This computer processor of the digital aroma system can also communicate with remote computers in a cloud based system and/or a remote server. These remote computers can interact with the local digital aroma system software to provide live interactive experiences to the system users. In an embodiment, the digital aroma system can communicate wirelessly through Blue Tooth, Wi-Fi, RFID or similar technologies with other devices, which can provide control signals or triggers for releasing fragrances.

[0006] The digital aroma system can include a processor that can control and monitor the operation of the system components. The processor can be coupled to fans and/or valves to selectively direct air to the target fragrance cartridge. When a desired fragrance signal or trigger is detected, the processor can direct fresh air through the air inlet to the target fragrance cartridge. The dry fragrance can mix with the fresh air and be directed to a scent outlet to the system user. In some embodiments, the processor can direct fresh air through two or more target fragrance cartridges to provide a mixed fragrance to the user. The scent is provided as a limited predetermined period of time or volume of air. Once the scent is provided to the user, the processor can the stop the flow of air through the fragrance cartridge by stopping a Pump(s), fan(s) or closing a valve(s). In an embodiment, the processor can be programmed to flush the scent outlet of the manifold periodically with fresh air so that subsequent fragrances are not mixed or contaminated. For example, the processor may direct fresh air through the scent outlet after each fragrance output by the system.

[0007] The digital aroma system can release fragrances based upon control signals or triggers. The digital aroma system can include a receiver, which receives fragrance signals. In response to the fragrance signals, the processor can identify the corresponding target fragrance cartridge and direct air to the target fragrance cartridge, which can result in the dry fragrance device delivering a dry fragrance aroma to the user. In other embodiments, the digital aroma system can respond to triggers such as images or sounds.

[0008] It also relates to a gaming device and any remote control device that delivers aroma to an individual. It relates to a system that is uniform in nature and has consistent form for replacement of aromas similar to a cartridge laser printer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:

[0010] FIG. 1 illustrates a bottom view of an embodiment of a fragrance cartridge.

[0011] FIG. 2 illustrates a bottom perspective view of an embodiment of a fragrance cartridge.

[0012] FIG. 3 illustrates a side view of an embodiment of a fragrance cartridge.

[0013] FIG. 4 illustrates a bottom perspective view of an embodiment of a fragrance cartridge.

[0014] FIG. 5 illustrates a top view of an embodiment of a cassette that holds a plurality of fragrance cartridges.

[0015] FIG. 6 illustrates a top perspective view of an embodiment of a cassette.

[0016] FIG. 7 illustrates a side view of an embodiment of a cassette.

[0017] FIG. 8 illustrates a top perspective view of an embodiment of a cassette with a plurality of fragrance cartridges.

[0018] FIG. 9 illustrates a perspective view of an embodiment of a cassette with a plurality of fragrance cartridges.

[0019] FIG. 10 illustrates a top perspective view of an embodiment of a cassette with a plurality of fragrance cartridges. [0020] FIG. 11 illustrates a top view of an embodiment of a controller with a digital aroma system.

[0021] FIG. 12 illustrates a bottom view of an embodiment of a controller with a digital aroma system.

[0022] FIG. 13 illustrates the components of an embodiment of a digital aroma system.

[0023] FIGS. 14 and 15 illustrate bottom views of different embodiments of controllers with the cassettes removed.

[0024] FIG. 16 illustrates an embodiment of a headset that includes an integrated digital aroma system.

[0025] FIG. 17 illustrates an embodiment of digital aroma system components for a headset.

[0026] FIG. 18 illustrates a side view of a tablet computer with a digital aroma system attached to a back surface.

[0027] FIG. 19 illustrates a side view of a smart phone with a digital aroma system attached to a back surface.

[0028] FIG. 20 illustrates top cross section view of an embodiment of a fragrance cartridge.

[0029] FIG. 21 illustrates side cross-section view of an embodiment of a fragrance cartridge.

[0030] FIG. 22 illustrates top cross section view of an embodiment of a fragrance cartridge.

[0031] FIG. 23 illustrates side cross-section view of an embodiment of a fragrance cartridge.

[0032] FIG. 24 illustrates a top perspective view of an embodiment of a fragrance cartridge cassette.

[0033] FIG. 25 illustrates a top perspective view of an embodiment of a cassette and a manifold module.

[0034] FIG. 26 illustrates a perspective exploded view of an embodiment of a cassette and a manifold module.

[0035] FIG. 27 illustrates a top view of an embodiment of a manifold module.

[0036] FIG. 28 illustrates a top perspective view of an embodiment of a manifold assembly with cassettes. [0037] FIG. 29 illustrates a top perspective view of an embodiment of a digital aroma system.

[0038] FIG. 30 illustrates a top view of airflow through an embodiment of a digital aroma system.

[0039] FIG. 31 illustrates a block diagram of components for an embodiment of a digital aroma system.

[0040] FIG. 32 illustrates an embodiment of a diagram of a fragrance system network;

[0041] FIG. 33 illustrates a flowchart diagram of a process for fragrance cartridge production and recycling.

[0042] FIG. 34 illustrates diagram of an embodiment of light, scent and audio outputs of an in-vehicle sensory experience network system.

[0043] FIG. 35 illustrates a flowchart for the operation of an embodiment of a fragrance system.

[0044] FIG. 36 illustrates a computer system, which can be used with a fragrance dispersion system.

DETAILED DESCRIPTION

[0045] A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. While the invention is described in conjunction with such embodiment(s), it should be understood that the invention is not limited to any one embodiment. On the contrary, the scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications, and equivalents. For the purpose of example, numerous specific details are set forth in the following description in order to provide a thorough understanding of the present invention. These details are provided for the purpose of example, and the present invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the present invention is not unnecessarily obscured.

[0046] An embodiment of a fragrance cartridge is illustrated in FIGS. 1 - 4. FIG. 1 illustrates a bottom view of an embodiment of the fragrance cartridge 101 with a plurality of airflow slots 103 in the bottom surface 105. FIG. 2 illustrates a perspective view of the fragrance cartridge 101 in a disassembled state. In this embodiment the fragrance cartridge 101 includes an upper housing 107 which has an internal volume and a lower housing 109 which has a lower surface 105 and a center divider 106 having air flow slots 103. FIG. 3 illustrates a side view of a fragrance cartridge 101 that has a two piece housing that includes an upper housing 107 and a lower housing 109 that are secured together to form the complete housing for the fragrance cartridge 101. FIG. 4 illustrates a perspective view of the fragrance cartridge 101 in a disassembled state. The upper housing 107 can be filled with a plurality of substrates 113 that are infused with a dry fragrance. In an embodiment the substrates 113 can be spherical balls or other three-dimensional objects such as cubes, cylinders, particles or other geometric volumes. While the fragrance cartridge 101 is illustrated as a dome shape with slots 103 in the lower surface 105 and the lower surface 109, in other embodiments the fragrance cartridge can have any other geometric shape that can hold the plurality of substrates 113. When air flows through the cartridge 101, the dry fragrance can mix with the air and be removed from the substrates 113 resulting in scented air exiting the cartridge 101. In an embodiment, the fragrance cartridge 101 can have a cylindrical shape that can be placed into a corresponding cylindrical bore. In an embodiment tabs 108 can be mounted on the outer surface of the cartridge 101 which are used to secure the cartridge to a cassette.

[0047] In an embodiment with reference to FIGS. 5 - 8 an embodiment of a fragrance cassette matrix 115 is illustrated. FIG. 5 illustrates a top view of a fragrance cassette matrix 115 and FIG. 6 illustrates a perspective top view of the cassette matrix 115. The cassette matrix 115 can have cartridge openings 117 that each holds a fragrance cartridge. FIG. 7 illustrates a side view of the cassette matrix 115. The illustrated embodiment of the cassette matrix 115 can have five cartridge sockets 117 that securely hold five fragrance cartridges 101 in a single row configuration. The cartridge sockets 117 in the cassette matrix 115 can each have two air channels one inlet 114 and one outlet 116 and are keyed so that fragrance cartridges 101 can be easily placed in and removed from the sockets 117. The cartridge openings 117 can have tab slots 119, which can be aligned with the cartridge, tabs and provide a mechanism for securing the fragrance cartridges to the cartridge sockets 117. For example, when the fragrance cartridge is placed in the cartridge socket 117, the cartridge tabs can be placed in the tab slots 119. Once the fragrance cartridge is fully inserted into the cartridge socket 117, the fragrance cartridge can be axially rotated within the socket 117 so that the tabs are no longer aligned with the tab slots 119. By offsetting the tabs from the tab slots 119, the fragrance cartridge can be secured within the cassette matrix 115.

[0048] FIG. 8 illustrates a perspective top view of the cassette matrix 115 with the fragrance cartridges 101 positioned in the cartridge sockets 117. In the illustrated embodiment, the cartridges 101 have been inserted into the cartridge sockets 117 with the tabs aligned with the tab slots and then rotated any number of degrees after being fully inserted. FIG. 9 illustrates a perspective view top view of the cassette matrix 115 and with the cartridges 101 positioned over the sockets openings. The cartridges 101 are interchangeable within the cassette matrix 115.

[0049] As discussed each cartridge 101 can include identification information which identifies the fragrance so that the digital aroma system can properly direct air to the target fragrance cartridge 101 regardless of its position in the cassette matrix. For example, in an embodiment, each fragrance cartridge 101 can include a radio frequency identification (RFID) tag 241 and the cassette matrix 115 can include RFID readers. The RFID tag 241 can transmit fragrance identification and a number of fragrance dispersions and a cartridge identification code. The RFID reader 243 can read the identification information from the RFID tag 241 on the fragrance cartridge 101 and additional cartridge information, which can be used by the system. For example, the system display the fragrance on a system output and direct the air to the proper fragrance cartridge 101. In other embodiments, the cassette matrix can hold more fragrance cartridges 101 in different configurations such as a 2 x 6, 3 x 8 or any other one or two ore three dimensional array configuration including circular cassette matrix 120 configuration as illustrated in FIG 10.

[0050] The cassette 115 with fragrance cartridges 101 can be used with various digital aroma system assemblies. FIG. 11 illustrates a top view of an embodiment of a video game controller 121 and FIG. 12 illustrates a bottom view of the video game controller 121 which can communicate with a video game player. A video game player can use the video game controller 121 as a user interface with a video game. In the illustrated embodiment the digital aroma system 123 is mounted on the bottom of the controller 121 since most motion control buttons and joysticks can be mounted on the upper surface. The digital aroma system 123 can include a cassette slot 127 for the cassette 115 that holds a plurality of fragrance cartridges. The digital aroma system 123 can include an air inlet that can draw air from the front of the controller 121 and an air outlet that can direct scented air from the rear of the controller 121 towards the user. The controller 121 can be coupled to a video game player, which can provide triggers or signals for emitting fragrances to the digital aroma system 123 which can respond by emitting the corresponding designated fragrances, which can be smelled by the user.

[0051] FIG. 13 illustrates an embodiment of the digital aroma system 123 used with remote controls that shows the airflow paths through the system components. The cassette 115 with the fragrance cartridges 101 can be mounted adjacent to the air inlet 125. The fragrance cartridges 101 can each be filled with substrates 113 which are infused with dry fragrances. Micro fans 131 that are individually controlled can be mounted in the digital aroma system 123 adjacent to the cassette 115. The micro fans 131 can be coupled to a processor that selectively actuates the micro fans 131 and directs scented air into a manifold 133 which can include a separate air flow path or channel for each fragrance cartridge 115. By having separate air flow paths for each fragrance cartridge in the manifold 133, there is no contamination and/or mixing of the different scents from the fragrance cartridges 101. The scented air exits the air outlet 129 and is directed towards the user holder of the controller 121. In this configuration, the micro fans 131 create a low gas pressure, which pulls air through the fragrance cartridges 101. In an embodiment, the micro fans 131 can be placed at the scented air outlet 129 so that the manifold 133 is between the cassette and micro fans 131. In other embodiments the micro fans can be positioned before the cassettes to create higher gas pressure that push air through the fragrance cartridges 101. Thus, the micro fans 131 can be placed in various different positions that creates a vacuum and sucks the air through the cartridges 101 and then pushes the air through the manifold. In different embodiments the fans 131 can be replaced by micro pumps

[0052] FIG. 14 illustrates a back view of the bottom of an embodiment of the controller

121 with an integrated digital aroma system 123 that includes a cassette slot 127 and micro fans 131. To use the digital aroma system 123 the cassette 113 filled with fragrance cartridges 101 can be inserted into the cassette slot 127. The fans 131 are placed forward of the cassette 113 and the manifold. When the digital aroma system 123 is actuated to release a scent, one (or more) of the fans 131 is actuated that creates high pressure that pushes air through the cartridge 101 containing the designated fragrance. The airflow generated by the fans 131 blows scented air through the manifold towards the user of the controller 121.

[0053] FIG. 15 illustrates a back view of the bottom of another embodiment of the controller 121. In this embodiment, the micro fans 131 are mounted in a down stream position relative to the cassette slot 127. In this configuration, the cassette slot 127 can be adjacent to the air inlet 125. When the digital aroma system 123 is actuated to release a scent, one of the fans 131 is actuated creating a vacuum that pulls air through the cartridge 101 containing the designated fragrance to blow scented air through the manifold towards the user of the controller 121.

[0054] FIG 16 illustrates a headset 135 that includes an integrated digital aroma system

123. In this embodiment headset 135 that includes ear cups 137 which can include speakers that emit sound and a mouthpiece 143 that includes a microphone that is used for receiving voice commands. In the illustrated configuration, most of the digital aroma system 145 components including the cassette with replaceable fragrance cartridges, fans and check valves can be mounted in one of the ear cups 137. An air passageway 139 can be built into an arm, which extends from the ear cup 137 to the mouth. When the digital aroma system 145 is actuated to release a scent, one of the fans is actuated that directs air through the fragrance cartridge and blows the scented air through the air passageway towards the nose of the user wearing the headset 135.

[0055] Details of the configuration of an embodiment of the digital aroma system 145 used with the headset system are shown in FIG 17. In this embodiment, the digital aroma system 145 can include fragrance cartridges 101 which can be individually placed into cartridge holes 147 around the outer surface of the ear cups of the headset with the inlet sides of the cartridges 101 exposed to ambient air. Thus, in this embodiment the digital aroma system 145 may not include a cassette. The user can easily access and exchange each of the individual fragrance cartridges 101. Air passageways 139 can connect each of the fragrance cartridges 101 to a corresponding fan 131 which can blow the scented air from the outer edge of the ear cup 137 into an inner circle 149 and then through an air passageway 139 to the nozzle outlet 141. When a fragrance is to be delivered to a user, a micro fan 131 is actuated which draws air into the interior volume 153 of an ear cup 137 of the headset 135. This air movement pulls fresh ambient air through the fragrance cartridge 101. The scented air is then directed through the air passageway 139 and out an outlet nozzle adjacent to the face of the headset wearer. Also located with the within the passageways of the digital aroma system 145 are small check valves 151 that prevent the back flow of scented air into the other fragrance pathways and keeps the fragrance cartridges 101 and fragrance infused substrates pure and discreet from fragrance contamination.

[0056] In other embodiments, the digital fragrance system can be attached to various other portable computing devices such as tablet and smart phones. FIG. 18 illustrates a side view of a digital aroma system 155 attached to a back surface of a tablet computer 157 and FIG. 19 illustrates a side view of a digital aroma system 155 attached to a back surface of a tablet computer 157. The digital aroma system 155 can include interchangeable fragrance cartridges that are removably attached to a cassette and a manifold that can include fans or pumps and check valves. The digital aroma system 155 can be configured to direct scented air to an air outlet adjacent to the bottom edge of the tablet computer 157 or smart phone 159. However, tablet computers 157 and smart phones 159 can detect the orientation of the screen with accelerometers and adjust the displayed images so that they are always upright. In some embodiments, the digital aroma system 155 can adjust the air output to always be at emitting scented air from the bottom edge of the computing device regardless of the orientation of the digital aroma system 155. In an embodiment the digital aroma system 155 may include fans that normally pull the fresh air through the fragrance cartridges and out the bottom edge of the tablet computer 157. However, the digital aroma system 155 can also detect when the tablet computer 157 or smart phone 159 has been turned upside down. When this orientation change is detected, the fans can be controlled to operate in reverse the airflow to push fresh air from the new top through to the new bottom of the table computer 157.

[0057] In different embodiments, the fragrance cartridges used with the digital aroma system can be configured with an air inlet and a scented air outlet on the same side of the fragrance cartridge. With reference to FIG. 20 is a top cross section view of a cube shaped housing 163 embodiment of a fragrance cartridge 162, which is at least partially filed with fragrance infused substrates. The fragrance cartridge 162 includes divider 167 that extends across a center the width of the housing 163. FIG. 21 illustrates a side cross section view of the cube shaped housing 163 embodiment of a fragrance cartridge 101 with a divider that is against the lower surface of the housing 163 but does not extend to the top of the housing 163. The arrows illustrating the flow path of air through air inlet holes in the bottom of the housing 163, over the divider and back through air outlet holes in the bottom of the housing 163.

[0058] In other embodiments with reference to FIGS. 22 and 23, the fragrance cartridge

164 can have a bullet shaped housing with a lower cylindrical shaped housing and an upper half spherical shaped housing. The divider 167 is positioned against the lower surface of the housing

165 and provides a passageway above the divider 167. The arrows illustrating the flow path of air through air inlet holes in the bottom of the housing 164, over the divider and back through air outlet holes in the bottom of the housing 164.

[0059] Because the cartridges have air inlets and scented air outlets on the same lower surface, the cartridges can be mounted in a cassette that holds the cartridges against a manifold that has both air inlets and scented air outlet paths. FIG. 24 illustrates a bottom perspective view of an embodiment of a cassette 169 that has open bottom slots 171 allow the individual fragrance cartridges 162. The fragrance cartridges 162 be inserted or replaced from the cassette 169. As discussed, the air inlet 173 and the scented air outlet 175 of the fragrance cartridge 162 can be on the same planar side surface of the cartridge 162. Thus, the top of the cartridge slot 171 can be closed since air does not flow through the cassette 169. [0060] A fragrance can include top notes, middle notes and base notes. Top notes can contain the smallest molecules, which can quickly dissipate. Middle notes can last longer than the top notes and may dissipate slower than the top note molecules. Base notes can dissipate the slowest and can contain larger molecules that can last for longer than the middle notes. Base molecules are larger than middle note molecules, which are larger than top note molecules. In an embodiment with reference to FIGS. 22 and 23, the fragrance cartridges 162 can have sealed housings 163, 164 that can contain dry fragrance beads and additional air space within the cartridge housing. These sealed cartridge designs have additional air space so that the base notes of the fragrance will infuse into the air molecules residing in the cartridges 162 before each diffusion so that the based notes will be deployed into the air when the airflow starts. Based on the larger mass of the base note molecules compared to the top and middle note molecules, it requires more time for the base note molecules to be infused into the air inside the cartridges 162. If the cartridges 162 are completely filled with dry fragrance beads 113, then the base note molecules s will not disperse properly into the cartridge airspace. The volume ratio of air space to dry fragrance beads for optimum base note molecule infusion can depend upon the type of fragrance. In an embodiment where the fragrance cartridges is a citrus scent, the bead to air ratio can be 75% of the volume and no more than 25% by volume air space. In contrast a denser or heavier fragrance such as tobacco may only require up to 75% volume of air and only up to 25% dry fragrance beads. These dry fragrance bead to air volume ratios can be required to ensure the deployment of based note molecules such as a tobacco scent are properly infused with air in the cartridges 162 before air flow is transmitted through the cartridges 162.

[0061] With reference to FIG. 25, a perspective view of an embodiment of the cassette

169 and a manifold module 177 is illustrated. The cassette 169 is in the upright position, which shows the solid upper surface. The air inlet and scented air outlets of fragrance cartridges are exposed on the lower surface of the cassette 169. The manifold module 177 can have a recess 183 that corresponds with the outer perimeter of the cassette 169. The manifold module 177 can also have internal air passageways that are connected to the fragrance cartridges. In this embodiment, the manifold module has a row of fresh air outlet holes 179 and a row of scented air inlet holes 181. The cassette 169 can be placed in the recess 183 and held against the manifold module 177 with a releasable coupling mechanism. A gas seal such as an airtight gasket can be placed between the fragrance cartridges and the manifold module 177 to separate the different fragrance cartridges and seal the fresh air outlet holes 179 and air inlet holes 181. The side surfaces of the manifold module 177 can have side holes 185, which can be connected to the internal passageways within the manifold modules 177 and the fresh air outlet holes 179 and air inlet holes 181.

[0062] With reference to FIG. 26, an exploded view of a different embodiment of a manifold module 177 and cassette assembly is illustrated. In this embodiment, the assembly can include a cassette chamber 199 that surrounds a plurality of different cassette bead retainers 201 which can each have a different fragrance. Different fragrance infused substrates can be placed in each of the cassette bead retainers 201 that are within the cassette chamber 199. A cassette gasket seal 197 is placed between the cassette 169 and the manifold module 177 to prevent air from flowing between the different cassette bead retainers 201 or out the top and sides of the cassette chamber 199. The cassette assembly is held to the manifold module 177 by tightening locking pins 207 that extend through the cassette assembly components. The locking pins 207 can compresses the gasket 197 between the cassette chamber 199 and the manifold module 177, which creates an airtight assembly. When the adjacent manifold modules 177 are attached to each other, a manifold gasket 209 can be placed between the manifold modules 177 to create an airtight seals for the aligned and coupled side air holes.

[0063] With reference to FIG. 27 a top view of an embodiment of a manifold module 177 which shows the internal passageways which include a length passageway 191 that is connected to the fresh air outlets 179 that extends along the length of the manifold module 177. The internal passageways also include parallel width passageways 189 that extend across the width of the manifold module 177 where each of the width passageways 189 are coupled to a scented air inlet 181. The length passageway 191 is offset vertically from the width passageways 189 so that they are not connected. The manifold module 177 can also include an inlet air passageway 215 that extends through the width of module 177 on one edge and an outlet scent passageway 217 that extends along the length of the module 177 on another edge. An inlet valves (not shown) can be coupled to the length passageway 191 and outlet valves can be coupled to the width passageways. When actuated to open the inlet valve can connect the length passageway 191 to the inlet air passageway 215 and the outlet valves can connect the width passageways to the outlet scent passageway 217. When multiple modules 177 are connected, the inlet air passageways 215 can be connected to form a longer inlet air passageway that extends across the entire width of the assembly. In contrast, when multiple modules 177 are connected, the system may only use the outlet scent passageway 217 of the end module 177 with the outlet scent passageways 217 of the other modules 177 being unused. [0064] With reference to FIG. 28, multiple manifold modules 177 can be coupled together with the side holes 185 aligned to form a larger digital fragrance system. By connecting and sealing the side holes 185 to the side holes 185 of the adjacent manifold module 177, the digital fragrance system can be expanded to include any number of fragrance cartridges. In the illustrated example, there are six manifold modules 177 with each of the manifold modules 177 containing five fragrance cartridges. In this example, the illustrated digital aroma system assembly 193 can include a total of thirty fragrance cartridges. With reference to FIG. 29, a plurality of inlet valves 211 can be coupled to the inlet air passageways on one end of each of the manifold modules 177. A plurality of outlet valves 213 can be coupled to the outlet scent passageways on one of the end manifold modules 177 and the opposite ends of the outlet scent passageways can be sealed to prevent air from escaping. Air can be directed through the digital fragrance system to any individual fragrance cartridge by controlling the open/closed positions of the inlet valves 211 and the outlet valves 213.

[0065] With reference to FIG. 30, the digital aroma system 193 formed from a plurality of manifold modules can have an array of internal passageways 161 which can be coupled to inlet valves 211 and outlet valves 213 which are opened and closed to control the scented air outlet path. By actuating (opening) one inlet valve 211 and one outlet valve 213 and keeping all other inlet valves 211 and outlet valves 213 closed, a passageway to a specific fragrance cartridge can be selected by the digital aroma system. FIG. 30 illustrates a top view of a simplified embodiment of a digital aroma system 193 configured with nine fragrance cartridges spaces for clarity. Each cartridge space includes a fresh air inlet 179 and a scented air outlet 181. In an embodiment pressurized air from a fan or pump can be applied to the inlet air passageway 215. When one of the inlet valves 211 is actuated pressurized air can flow through the corresponding length passageway on a selected row of fragrance cartridges on a single cassette. When one of the outlet valves 213 is open, air can flow through the fragrance cartridges and scented air can flow to the outlet passageway 217. From the simplified digital aroma system 193, the scented air can be directed towards the nose of the system user. In an alternative embodiment a vacuum or low pressure from a fan or pump can be applied to the outlet scent passageway 217. When one of the inlet valves 211 is open, air can be drawn or pulled through the corresponding length passageway on a manifold module 177. Air can then flow through one of the fragrance cartridges to the outlet passageway 217 through the fan or pump and be directed towards the nose of the system user. The valves can be actuated by a valve controller(s) that is controlled by a system processor in response to a scent release signal or trigger. Each individual fragrance stored in the digital aroma system 193 can be output by actuating a combination of one inlet valve and/or one outlet valve. In some embodiments, it can be desirable to mix a plurality of fragrances, which can be performed by opening valves to a plurality of fragrance cartridges.

[0066] FIG. 31 illustrates a block diagram of possible components of a digital aroma system which can include: an I/O 219, a trigger input 221, a sensor input 223, system monitor sensors 225, processor 227, a scent database 229, a system monitor sensor 225, a processor 227, a scent database 229, a system output 231, valve controllers 233, vales 237, fan/pump controllers 239 and fans/pumps 239. The I/O 219 can be a transceiver that allows communications between the digital aroma system and other media devices, servers, smartphones, servers, other digital aroma system and other computing devices. In an embodiment, the I/O 219 can provide system communications wirelessly through Blue Tooth, Wi-Fi, RFID or similar technologies with other devices, which can provide control signals for releasing fragrances. The trigger input 221 is an input for control signals from devices such as media players, video games, etc. In an

embodiment, the trigger input 221 can provide system communications wirelessly through Blue Tooth, Wi-Fi, RFID or similar technologies with other devices, which can provide control signals for releasing fragrances.

[0067] When the digital aroma system is used, it can go through a startup procedure, which identifies each fragrance cartridge stored in the system. As discussed, the fragrance cartridges can have an identification system, which are read by the system monitor sensors 225. For example, in an embodiment each of the plurality of fragrance cartridges includes an RFID tag that identifies a scent of the dry fragrance cartridge and an RFID reader reads the RFID tags of the fragrance cartridges. The RFID readers can be system monitor sensors 225. The digital aroma system includes a visual display, which can be a system output 231 for displaying the scent of the dry fragrance cartridge. The system can then match the different fragrance cartridges to the various fragrance triggers and store this information in the scent database 229. The system can emit the target fragrance when the corresponding trigger is detected by the trigger input 221 or other signals are detected by one of the sensor inputs 223.

[0068] In an embodiment, the digital aroma system can disperse different fragrances in different ways because with each different scent, there is a specific way in which the scent interacts with the air and within the olfactory senses in a human. An example of this difference in scents can be illustrated by comparing citrus and tobacco type fragrances. Citrus type scent molecules travels faster than a tobacco type of fragrance through air. [0069] Graham's Law can be used to compare the effusion rates of different odorous molecules such as lemon and tobacco. Graham's law states that the rate of diffusion or of effusion of a gas is inversely proportional to the square root of its molecular weight. Under ideal conditions, you would smell lemon first because it is composed of ten carbon atoms, eighteen hydrogen atoms, and a single oxygen atom, which gives it a molar mass of 154.25 grams per mole. (A mole is a unit equivalent to about 6* 10 A 23 individual molecules). Tobacco, one the other hand, has nine carbon atoms, nine hydrogen atoms, and one nitrogen atom, which adds up to a molar mass of 131.17 grams per mole. Graham's Law says that the rate of lemon effusion divided by the rate of tobacco effusion will equal the square root of the molar mass of tobacco divided by the molar mass of lemon. Thus, users of the digital fragrance system would smell a lemon scent before a tobacco scent due to the higher mass of the lemon scent molecules. In order to compensate for this scent detection difference, the digital fragrance system can adjust the flow rate of the air through the fragrance cartridges based upon the molecular weight. In an embodiment, the airflow rate through the fragrance cartridges can be inversely proportional to the molecular weights of the fragrance molecules. For example, in order to increase the speed of detection of lower molecular weight fragrances, a higher airflow rate can be used.

[0070] Citrus type scent molecules have accelerated scent timing within the human olfactory system. The human sense of smell, or olfaction, is a form of chemoreception, which means human noses transduce chemical signals into neural impulses. Human noses possess nearly four hundred olfactory receptors, and each of these bind with a specific molecular feature. Odorous molecules possess multiple features and will trigger different receptors to varying degrees. These stimuli are then transduced into electrical signals that the human brain can interpret the olfactory receptor signals. A lemon scent will trigger receptors that will get the olfactory receptor signals to brain faster as well than lower molecular weight scents.

[0071] In an embodiment, the duration of the airflow through the fragrance cartridges can be variable and based upon the strength or perceived strength of the fragrance. A fragrance that has a lower strength may require more airflow through the fragrance cartridge may require more airflow than a higher strength fragrance. In an embodiment, the fragrance system can determine and store the strength values for different fragrances. The fragrance system can be configured to adjust the duration of the airflow through the fragrance cartridges based upon the strength or perceived strength of the fragrance, with a longer duration airflows for weaker strength fragrances and shorter duration airflows for stronger strength fragrances. The fragrance strength can be determined experimentally or based upon measurable chemical characteristics of the fragrance molecules.

[0072] In an embodiment, the digital aroma system can include software algorithms that recognize the type of scent that is in the fragrance cartridge 101 based upon identification data on the RFID tag 241 read by the RFID reader 243. By knowing the molecular weight of the fragrance in the fragrance cartridge 101 the digital aroma dispersion system can deploy the proper right number of dry fragrance molecules to into the space required with the proper airflow. Applying identical air pump flow rates and durations to all fragrance cartridges can result in non-uniform fragrance delivery perception of the fragrance recipients. To create a uniform fragrance perception, the inventive digital aroma system can apply variable airflow controls based upon the fragrance being dispersed. The digital aroma system can use a lower airflow rate and can use shorter dispersion durations for higher molecular weight fragrances.

[0073] In an embodiment, an airflow rate and duration of airflow can be configured for each different fragrance cartridge so that the fragrances are uniformly sensed by system users. Imperial testing or dry fragrance analysis can determine these airflow rate and duration of airflow settings. Once the airflow rate and duration of airflow are determined, this information can be stored in a memory of the digital aroma system. When the fragrance cartridge is inserted into the digital aroma system, the system can recognize the fragrance from identification information such as an RFID tag and then apply the stored airflow rate and duration of airflow when the fragrance is requested.

[0074] In other embodiments, the fragrance cartridges can be configured for the number of dry fragrance particles emitted by the fragrance cartridges can be proportional to the number of dry fragrance beads in the fragrance cartridges since each fragrance bead can provide a uniform surface area. In an embodiment, the number of fragrance beads in the fragrance cartridge can be proportional to the molecular weight of the dry fragrance particle so that the perceived fragrance intensity will be uniform for all fragrance cartridges based upon the same uniform air flow and duration processing. A higher molecular weight fragrance can be recognized by the digital aroma system and when this fragrance is requested, the air flow rate and/or duration through the fragrance cartridge 101 can be lower than that of a lower molecular weight fragrance.

[0075] In an embodiment, the digital aroma system can be used with various spaces. The inventive In an embodiment, the system can recognizes the type of fragrance that is in the fragrance cartridge 101 based on the RFID tag 241 and adjusts the air flow speed and the intermittent adjustments for low, medium and high intensity of the fragrance desired in the space. A fragrance that has a lower molecular weight such as citrus can require more air flow to properly disperse the dry fragrance in the space than a higher molecular weight fragrance such as tobacco. If the space is large, the airflow speed and the duration of the fragrance dispersion can be increased. In contrast, for a smaller space, the airflow speed and the duration of the fragrance dispersion can be decreased.

[0076] The sensor input 223 can be a sensor that detects ambient signals such as a microphone that detects audio signal or a camera that can detect a video image. The system monitor sensor 225 can be coupled to the digital aroma system components and detect the operation of the components. The scent database 229 can include a list of fragrances

information, which can be used to match the fragrance based upon a fragrance identification code signal and then the identification with the valves 237 that must be open to actuate the release of the identified fragrance. The system output 231 can be a visual output, which can be used to inform the system user of system errors or cartridge replacement needs. The valve controllers 233 allow the processor 227 to control the operation of the valves 237. The fans/pumps controllers 235 can be used to allow the processor 227 to control the operation of the fans/pumps. The described digital aroma system components can operate in conjunction to perform various functional actions that can be performed with software running on the processor 227.

[0077] In some embodiments, the digital aroma system can recognize video encoded fragrance markers in the video media. The encoded fragrance markers can identify a specific fragrance that is read by the video object recognition system resulting in the identified fragrance being delivered to the user. This feature can be useful in providing a smell before an image corresponding to the fragrance is displayed. For example, the camera point of view in a video may be approaching a fire. The smoke from the fire may be blowing towards the camera and a person at the camera position may smell the smoke before seeing the fire. In order to accurately recreate this scenario the video media may use an encoded fragrance marker for smoke, which is detected by the video object recognition system. The video object recognition system can then emit the smoke fragrance before the fire is shown on the video.

[0078] For example, a digital media can include aroma output signals, which can be a video encoded fragrance marker, and the media player can transmit the scent output signal(s) to the trigger input 221 which can be received by the processor 227. The aroma output signals can include aroma identification and the processor 227 can access the scent database 229 to identify the location of the corresponding fragrance cartridge and the valves that must be open to access the identified fragrance cartridge. The processor 227 can then transmit control signals to the valve controllers 233 which actuate the valves 237 to open an airflow path to the identified fragrance cartridge.

[0079] In an embodiment the trigger input can be transmitted within a short-range proximity through a device such as a Bluetooth receiver or other local communications device. The aroma system can be used with a mobile device such as a smart phone that is carried by the user. When the user walks within a museum to different exhibits, the trigger input 221 of the digital aroma system can detect trigger signals from different exhibits as the user walks and the aroma system can emit the scent as commanded by the detected trigger signals. In other embodiments, the present invention can be used in many different individual educational settings like museums to provide a cost effective sensory experience using media, software, maintenance and aroma.

[0080] In an embodiment, the digital aroma system can emit fragrances in response to a digital fragrance control signal from a video game. The digital aroma system may communicates with a computing device that is running video game software through the trigger input 221. The video game software can include one or more lines of code that identifies a fragrance and causes a trigger signal for the fragrance to be transmitted to the trigger input at the correct time during game play. The video game software can be local software running in the remote device, remote software running on a remote computing device such as a video game console and/or remote online software stored or running in a cloud based computing network system.

[0081] In an embodiment, the sensor input 223 can be a camera and the processor 227 can run a video object recognition software that receive video signals from the sensor input 223 camera and recognize objects and/or environments before these video images are displayed on a video output display. In an embodiment there maybe a known time delay between the actuation of the digital aroma system to output a target fragrance and the user smelling the fragrance. The video object recognition system can identify the fragrance video object and/or environment trigger and identify the fragrance that is associated with the trigger. The digital aroma system can then actuate the trigger associated fragrance delivery before the trigger object or

environment is displayed by the known time delay period so that the fragrance is delivered to the viewer at the moment when the trigger object or environment is being displayed.

[0082] In an embodiment the digital aroma system can use a microphone as a sensor input 223 that can be triggered the correct aroma with sound recognition software running on the processor 227 that recognizes the sounds in the game or movie and disperses the correct aroma based on sound. The audio recognition system can receive the audio signals and use the scent database 229 to identify the fragrance associated with the audio signals. The processor 227 running audio recognition software can then control the valves 237 and fans/pumps 239 to actuate the fragrance delivery.

[0083] The digital aroma system can couple the trigger input 221 to a media player to detect audio signals for playback in an audio or video media before the corresponding audio or video are output by the media player to the user. For example, a video media being played may include fireworks and the distinctive sounds of the firework explosions. The audio trigger recognition software running on the processor 227 may identify the fireworks sound and associate this sound with the fragrance of burning sulfur. In an embodiment, the audio recognition system may detect the fragrance associated audio signal through the scent database 229 and the audio recognition software on the processor 227 may actuate the delivery of the fragrance by actuating the correct set of valves 237 before the audio trigger is output through the speaker by the known time delay period so that the fragrance is delivered to the viewer at the moment when the audio trigger sound is being heard.

[0084] In another embodiment, the sensor input 223 can be a microphone can receive audio signals and the processor 227 can identify the audio signals and cause the valves 237 to output a fragrance that corresponds to the identified audio signals. For example, if an explosive audio signal is detected, the processor 227 can match the explosive audio signal with a burning smell and control the valves 237 to release this aroma.

[0085] In another embodiment the trigger input 221 can receive video image data before the media player displays it. For example, an image of flowers can be received by a trigger input 221 of the digital aroma system. The processor 227 running image identification software can identify the flower image and the system can be programmed to emit a floral fragrance by actuating the proper set of valves 237 in response to the image identification software detecting an image of flowers.

[0086] In other embodiments, the digital aroma system can be configured to emit a specific fragrance in response to identified video images with a sensor input 223 which can be a camera. For example, the image software can be configured to associate specific detected images with specific fragrances. A beach image, which can be part of a video game or a video playback, can result in the system emitting a corresponding beach fragrance. When a beach image is detected by the camera sensor input 223, the processor 227 can control the valves 237 to emit a beach fragrance. In other embodiments, various other images can result in corresponding fragrances, for example, a lawn image can have a corresponding grass fragrance, a Thanksgiving dinner image can have a roasted turkey fragrance, etc. When the grass image is detected the processor 227 can cause the valves 237 to emit a grass scent and when a Thanksgiving dinner is detected the processor 227 can emit a roasted turkey smell.

[0087] In an embodiment, the digital aroma system can include software running on the local processor that can communicate through the I/O 219 to the Internet to a cloud service. This communication capability can be used with the system monitor sensor 225 for remote monitoring of the cassettes and fragrance cartridges, the duration of the number of uses, and remotely monitors the health of the pump and/or fan and health in the digital aroma system to ensure the system components are working properly. If errors or end of life are detected in any of the system components, the processor 227 of the digital aroma system sends alerts to a user or system administrator identifying the errors through the system output 231 when something is not working properly. The system output 231 can be a visual display, an audio output device and/or a digital wireless communication output.

[0088] In another embodiment, the digital aroma system can be used with a fragrance sensor that can measure the intensity or concentration of the dry fragrance particles in the air space around the digital aroma system. With reference to FIG. 31, the sensor input 223 can be a fragrance sensor(s). By detecting the concentration of the fragrance, the system can be configured to maintain a fragrance concentration within a specific range. With reference to FIG. 32, the fragrance concentration sensor 303 can detect the fragrance concentration in a room 301 and the fragrance system can be configured to emit the dry fragrance from a fragrance emission unit 305 when the fragrance concentration drops below a predetermined threshold value. This type of active monitoring system can compensate for stagnant air by reducing the frequency of fragrance emissions or compensate for higher than normal airflow by increasing the fragrance emission rate. The fragrance concentration sensor(s) 223 can be placed in any location(s) in the room 301. When multiple sensors 303 are used, the sensor network can determine the fragrance emission pattern based upon the detected fragrance concentrations of the sensors. This fragrance information can be used to properly orient the fragrance output from the system to generate a uniform fragrance in the space. In an embodiment, the system detect the movement of people into the room 301 with a sensor such as a proximity sensor 307 which can be located by an entrance or a door. When people are not in the room 301, the system can stop the emission of fragrances from the fragrance emission unit 305. When a person enters the room 301, the system can detect the person or people and if the fragrance concentration is low, the fragrance emission unit 305 can emit a fragrance, which can be experienced by people in the room 301.

[0089] With reference to FIG. 33, the fragrance concentration sensors 303 and fragrance emission units 305 can be used with a larger room 311 arranged in an array distributed across the room 311. In these embodiments, the system can identify the fragrance concentration sensors 303 which have a lower than specified fragrance concentration which can cause the system to respond by emitting fragrances from the fragrance emission unit(s) 305 that are closest to the fragrance concentration sensors 303 which detected the lower than specified fragrance concentration. By controlling the emissions from multiple fragrance emission units 305 the desired fragrance levels can be maintained through the room 311.

[0090] In an embodiment, the fragrance concentration sensors 303 can be used to optimize the positions of the fragrance emission units 305 within a room 311 based upon the airflow pattern through the room 311. For example, when there is airflow through a room 311 due to heating, ventilation and air conditioning (HVAC) systems. Alternatively, the fragrance emission units 305 can be integrated into the HVAC systems. For example, if the fragrance concentration sensors 303 do not detect a uniform fragrance concentration level, the system can suggest moving the fragrance emission units 305 towards the fragrance concentration sensors 303 that have a lower fragrance level reading and away from the fragrance concentration sensors 303 that having a higher fragrance level reading. In an embodiment, the system can make suggestions for position locations for the fragrance emission units 305 within a room 311 for uniform fragrance dispersion.

[0091] The fragrance sensor 303 can be based upon sensor mechanisms such as chemo sensors or by gas chromatography, which provides information about volatile organic compounds. Electronic fragrance sensors 303 can include a detection system and a computing system. The detection system can consist of a sensor set, which can contact fragrance particles and react by producing a change of electrical properties. The fragrance sensor can be sensitive to all fragrance molecules but can be able to distinguish different fragrance particles. The fragrance sensor may use sensor arrays that react to volatile compounds on contact: the adsorption of volatile compounds on the sensor surface causes a physical change of the sensor. A specific response is recorded by the electronic interface transforming the signal into a digital value. Recorded data are then computed based on statistical models. In an embodiment, the fragrance sensors can be metal-oxide-semiconductor (MOSFET) devices - a transistor used for amplifying or switching electronic signals. Molecules can enter the fragrance sensor area and will be charged either positively or negatively, which should have a direct effect on the electric field inside the MOSFET. Thus, introducing each additional charged particle will directly affect the transistor in a unique way, producing a change in the MOSFET signal that can then be interpreted by pattern recognition computer systems.

[0092] The present invention addresses several issues that are currently found in gaming and movie environments. Some fragrance systems have been tried to use scented oils, which are cumbersome and messy. In contrast, the inventive digital aroma system uses fragrance cartridges, which have dry beaded sealed units, coupled to a cassette and manifold which provides a self-contained system. The fragrance is from dry particles, which are infused into substrates such as beads that remain enclosed in individual chambers that seal the aroma for freshness until the fragrance cartridge is installed in the digital aroma system and delivered through the scent outlet to the user. Because of the dry nature of the fragrance materials there is no lingering aroma effect and no volatile organic compounds (VOCs).

[0093] In the present digital aroma system invention, the user can easily change the fragrance cartridges and may only need to replace the cartridges every few months depending upon the scent use. In an embodiment, the digital aroma system can monitor the number of times each of the fragrance cartridges is used. When the life of the cartridge is reaching its end, the system can warn the user that the cartridge needs to be replaced. Thus, the cartridge only that needs to be replaced as needed. The longevity of each dry fragrance infused beaded cartridge is anywhere from 1,000 - 4,500 dispersions. In other embodiments, fragrance cartridges with larger chambers that hold more fragrance infused substrate materials can last longer and provide additional fragrance dispersions.

[0094] The present digital aroma system invention also addresses the issue of ease of replacement of the fragrance cartridges by the consumer. The digital aroma system allows the swapping out of several fragrances simultaneously by removing and replacing a single cassette of the digital aroma system. The cassette can contain six or more individual fragrance cartridges containing dry fragrance infused substrate materials. In other embodiments, the cassette is not limited to six fragrance cartridges. For example, the cassette can hold a single fragrance cartridge and in other embodiments the cassette can have couplings to hold ten to twenty or more fragrance cartridges and in a cassette system. In addition the consumer can also change each individual aroma cartridge within the cassette system be simply exchanging each aroma cartridge within the cassette or replacing the entire cassette. [0095] The digital aroma system invention may allow a gaming media team to change out a digital representation of the aroma completely with a simple content media change either locally or remotely. For example, the digital aroma system may have eight fragrance cartridges that are divided into two sets of four fragrances. The digital representation of the sets of fragrances can be change remotely or locally so that the sets of fragrances can be easily changed. This changing of fragrance sets can provide additional to the functionality of the digital aroma system. For example, in an embodiment the digital aroma system may have multiple fragrance intensity settings. In an embodiment, the digital aroma system can be configured to allow a user to change the intensity between high fragrance intensity and low fragrance intensity.

[0096] The digital aroma system can include a cassette having a manifold, which holds a plurality of fragrance cartridges. The manifold has air inlets and scent outlets that are coupled to the fragrance cartridges which can have hollow housings which are filled with dry fragrance infused particles such as balls or other loose objects. The cartridge housings can have couplings such as threads or tabs, which can provide a gas tight connection between the cartridges and the manifold. The couplings also allow users to replace or change the fragrance cartridges. The cartridges can also have identification mechanisms, which provide an identification signal output such as a radio frequency identification tag. The identification signal output can identify the fragrance in the cartridge and control the number of fragrance outputs that the cartridge can provide. The digital aroma system can have readers, which can read the identities of the fragrance in the cartridges and store this fragrance and cartridge location information so that desired fragrance can be controlled to emit by the digital aroma system.

[0097] In different embodiments, the described fragrance aroma dispersion system can be controlled and monitored by various different computer interfaces. For example, in an embodiment, an automotive interior can have integrated hardware components that emit multiple selected scents into the car's interior. The driver or a passenger can select fragrances, which are automatically infused into the air system, which emits the scent throughout the car's interior. In an embodiment, up to 5 selectable fragrances to personalize the driving experience. In other embodiments, any number of fragrances or combinations of fragrances can be selected. The Scent Cartridges provide ease of use for replacement by the car dealer or by the consumer.

[0098] In an embodiment, the fragrance system can be a component of a connected control platform, which can include one or more digital aroma dispersion systems in

communication with a system server that can monitor the operation of the systems. By monitoring the digital aroma dispersion systems, the control platform can perform intelligent inventory control for efficient fragrance cartridge efficiency. In an embodiment, the control platform monitors system usage by receiving fragrance cartridge usage information for each of the digital aroma dispersion systems. The system server can collect the operation and system usage data. By knowing the rated number of dispersions for each fragrance cartridge, the server can provide alerts to the individual system users for fragrance cartridges to replace individual cartridges. The warning messages can be transmitted to a mobile smart phone or a display on a vehicle.

[0099] In some embodiments, the server monitoring system may even make suggestions for improving the efficiency of any of the installed systems. For example, a first fragrance cartridge may be used at an average rate of 10 dispersions per day and a second fragrance cartridge may be used at an average rate of 5 dispersions per day in a single system by a specific user the total dispersion rating is 3,000, then the server can predict that the first fragrance cartridge will last 300 days and the second fragrance cartridge may last 600 days. The server can transmit electronic warning signals to the system user when the fragrance cartridge has approximately 1 month or 30 days of remaining dispersions. Because these warnings are time based, they are not indicative of a specific percentage dispersions remaining.

[00100] It can be inconvenient to replace single fragrance cartridges in a multi-cartridge system. In an embodiment, the server can determine that the user has a favorite fragrance that is used more often than the other fragrances based upon historical data and recommend to the user that multiple cartridges of the favorite fragrance be placed in the system. The system can then alternate dispersions between the two identical fragrance cartridges so that multiple fragrance cartridges can be depleted at the same or a similar rate and when fully depleted, the multiple fragrance cartridges can be replaced at the same time. Similarly, based upon infrequent use, the system may recommend using a lower capacity fragrance cartridge for less popular fragrances that has a history of lower rates of dispersion over time than the more popular fragrances, so multiple fragrance cartridges will needing replacement at the same time.

[00101] In an embodiment, the fragrance dispersion module can be installed in a vehicle with multiple fragrance cartridges. The fragrance dispersion module can receive control systems and transmit fragrance cartridge information to a smart phone and/or an in-dash mobile control unit. A driver or passenger of the vehicle can interact with the smart phone and/or an in-dash mobile control unit to control the operation of the fragrance dispersion module. The smart phone and/or an in-dash mobile control unit can communicate with other computing devices that are remote from the vehicle such as servers that receive information from many different fragrance dispersion modules, personal computers and mobile computing devices operated by the vehicle drivers or passengers, and other computing devices. These system components can share information so that the system functions optimally.

[00102] The system servers can also use the cumulative data measurements to collect data for a large number of installed fragrance dispersion systems. This data can be grouped by region, user information, season, temperature, country or any other distinguishing characteristic. By understanding the preferences of a large user group, the system servers can provide business intelligence for advanced planning, real time trending, geographic trending and dashboard reporting. For example, each fragrance dispersion system can transmit fragrance dispersion information to a central server(s) and this data can predict the rate of consumption for each type of fragrance cartridge. This information can then be used to order additional fragrance cartridges so that adequate quantities will be available when needed. This information can also be used to identify popular and unpopular fragrances. If a fragrance is not being consumed in reasonable quantities, the system may determine that a specific unpopular fragrance may have a quality control problem and the inventory may need to be replaced. Alternatively, the system may request that an unpopular fragrance be discontinued or modified to be more accepted by consumers. This information may also be used to determine fragrance trends so that new fragrances can be developed that are similar to the most popular existing fragrances.

[00103] The data can also be used by the server to identify correlations between user demographics and preferred fragrances. For example, the system may detect differences in fragrance preferences between men and women and children where men prefer an outdoors forest fragrance, women prefer a floral fragrance and children may prefer a beach fragrance. By knowing the fragrance preferences based upon user demographics, the server can make fragrance preference predictions for future consumers based upon specific user, geography, vehicle type, season, etc. If an automobile buyer decides to purchase a vehicle with the fragrance dispersion, the user information can be provided and used to predict a set of fragrance cartridges that are most likely to be popular with the consumers. Alternatively, the consumer may be able to select the individual fragrances to be supplied with the vehicle.

[00104] The fragrance consumption information from the data can be displayed in various ways on system servers including: numerical data, graphical data showing fragrance

consumption trend lines in a vertical axis over time on a horizontal axis, bar or pie charts, current fragrance levels for a specific fragrance system, etc. In an embodiment, the fragrance consumption information can be transmitted to the integrated mobile control and/or smart phone so that the users will know their consumption rates, fragrance levels, fragrance cartridge refills needs and compare their personal use information to general user information.

[00105] With reference to FIG. 34 the fragrance systems can be part of an in-vehicle or a room network system used to create a mood scent experience that can coordinate lighting, scent and audio systems which are all integrated. Each of these experiences can be coordinated by a desired mood or activity. For example, a system may have a user interface with a plurality of moods and/or activities that can be selected by a system user such as: dinner party, Friday night, festival, workout, road trip, studying, game day, BBQ, family time, wake up, focused, raining day, in love, wind down, memory lane and any other mood/activity. When a mood/activity is selected by pressing a button 351, voice control or any other input, the system can cause the lighting, scent and music to produce outputs that are coordinated with the selected mood/activity. The lighting output can be blue for increased productivity, positive environment, reduce depression, less anxiety and peacefulness. The lighting output can be yellow for increased competence, happiness, light and joyfulness. The lighting output can be red for increased excitement, love, enthusiasm and passion. The lighting output can be green for increased rejuvenation, freshness and vigor.

[00106] The fragrance system used with the sensory experience network system can be used for specific purposes. For example, a cinnamon fragrance can be used for concentration and focus. Researchers from Wheeling Jesuit University found that those who smelled a cinnamon fragrance improved in cognitive functions like visual-motor response, working memory and attention span. A pine fragrance can be used to decrease anxiety, according to a Japanese study in which participants reported significantly lower depression and stress levels. The research also discovered that anxious subjects had a greater feeling of relaxation after indulging in the pine fragrance. Fresh-cut grass fragrances can make users more joyful. In a study (ISOT/JASTS 2004), researchers found that taking a vanilla bean fragrance elevated participants' feelings of joy and relaxation. A small study out of Wheeling Jesuit University found that smelling a peppermint fragrance could be linked to greater cognitive stamina, motivation and overall performance. A 2010 study, Nat. Prod. Commun. 2010 Jan;5(l): 157-62, "Stimulating effect of aromatherapy massage with jasmine oil" found that not only does the smell of jasmine create a sense of alertness, it can also serve as a way to help with depressive thoughts. Researchers found that the stimulating effect of jasmine fragrance can aid in the relief of depression and can lead to an uplifted mood. Research has suggested that the smell of apple fragrance may actually help ease a migraine. One 2008 study showed that those who found the scent appealing had a noticeable reduction in headache symptoms as well as shortened migraine episodes. Previous studies on a green apple fragrances have also found the scent may help control feelings of anxiety during stressful moments. In some embodiments, vehicle model specific or vehicle make specific fragrances can be developed and these special fragrances can be supplied with the vehicle model or all vehicles produced by a vehicle make.

[00107] The sensory experience network system can also coordinate audio signals within the vehicle with the lighting and scent. Music appropriate for each of the moods and activities can be played in a random sequence of songs or ambient background sounds. In some embodiments, the integrated mobile control and/or smart phone may have special fragrances for assisting with special physical conditions such as alertness and nausea. In an embodiment, the user interface of the integrated mobile control and/or smart phone may have an "alert" button that can result in a fragrance that can improve the alertness of the driver or passengers. For example, fragrances like lemon, orange, cinnamon, mint and rosemary can help boost energy and alertness. In another embodiment, the user interface of the integrated mobile control and/or smart phone may have a "nausea" button that can result in a fragrance that can reduce nausea for a driver or passenger who is not feeling well or is carsick. For example, fragrances like peppermint, ginger, lavender, chamomile, cardamom, coriander, fennel, nutmeg, aniseed, star anise, bergamot, lemon, spearmint, grapefruit and geranium can help reduce nausea.

[00108] Table 1 provides a listing of light colors and the physical reaction that can be improved by the light colors.

Color Reaction

Blue Increase Productivity, Positive environment,

Reduce Depression, Less Anxiety, Peaceful

Yellow Mellow, Competence, Happiness, Light, and Joyful

Red Excitement, Love, Enthusiasm, and Passionate

Green Rejuvenating, Freshness, and Vigor

TABLE 1

[00109] Table 2 provides a listing of fragrances and the physical reaction that can be improved by the fragrances.

Fragrance Reaction

Lemon Concentration, Calming, Clarifying, Joyful, and Happy Cinnamon Concentration, and Focus

Jasmine Calm Nerves, Uplifting, Confidence, Optimism, and Revitalized Energy

Rosemary Pick-Me-Up, Improves Memory Retention, and Stimulates Mental Activity

Lavender Calming Emotional Stress, Soothing Effect on Nerves,

and Relieves Nervous Tension

Peppermint Prevents Car Sickness, Energy Booster, Invigorates the Mind,

and Stimulates Clear Thinking

TABLE 2

[00110] With reference to FIG. 34, a flow chart of an embodiment of a fragrance system is illustrated. In an embodiment, a user can select access the fragrance system controls by pressing a fragrance icon 351 on a user interface of the integrated mobile control and/or smart phone. The system can respond by displaying a plurality of moods or activities 355. The user can then select a desired mood or activity 355. The system can choose or be pre-configured with fragrance(s) 359 that correspond to the different moods or activities 355. The system can then actuate and disperse a fragrance or fragrances 359 associated with the user selected mood 355. The user may need to adjust the controls and can adjust the dispersion intensity setting 363. In the illustrated example, the user can configure the dispersion output for the fragrance cartridge to low, high or normal 365. In other embodiments, the system can have any other variable settings. The fragrance system can keep track of the activations 361 and dispersions for each fragrance cartridge and determine the status of each fragrance and calculate the number of dispersions left and if there are more dispersions available for each cartridge 367 or if the cartridge needs to be replaced 369. The fragrance system may automatically order replacement fragrance cartridges 371 when the number of remaining fragrance dispersions is low. If the cartridges need to be replaced, the system can provide an alarm 373 to the user interface and may instruct the user on how to replace the fragrance cartridges when they are depleted. The process can be repeated after each fragrance dispersion.

[00111] The described software can be used to control cartridge efficiency, monitor usage, data collection and alerts for replenishment. The network system can be linked to supply chains for consistent usage, automated replenishment and billing based upon predicted and actual usage. System planning based upon real time trending, geographic trending, dashboard reporting. Web interface programming of devices (SDK), smart phone compatible. [00112] With reference to FIG. 35, in an embodiment, a specific process can be performed construct the fragrance cartridges and recycle the fragrance cartridges components. The fragrance oils are received and cataloged 321. The beads are placed in or near the fragrance materials and the fragrance materials are infused into beads 323. The bead fragrance infusion process can take up to four weeks. After the beads have been infused with a fragrance, the fragrance infused beads are placed in fragrance cartridges and the fragrance cartridges can be packed 325. The filled fragrance cartridges are shipped to distributors, dealers and/or directly to consumers 327. The fragrance cartridges are then inserted into the fragrance dispersion units and used by the end consumers 329. Air is blown through the fragrance cartridges and the dry fragrance particles are blown off of the fragrance beads. At the end of the dispersion cycle life, the fragrance cartridges are removed from the fragrance dispersion units and replaced with new fragrance cartridges. The depleted fragrance cartridges can then be recycled 331. In an embodiment, the fragrance cartridges are disassembled and the depleted beads are removed from the cartridges 333. The beads and cartridges can be recycled 335. The used beads are re-infused with the fragrances 323. Once re-infused, these fragrance beads can be placed in a fragrance cartridge 325 and the consumption process can be repeated.

[00113] FIG. 36 shows an example of a generic computer device 900 and a generic mobile computer device 950, which may be used to implement the processes described herein, including the mobile-side and server-side processes for installing a computer program from a mobile device to a computer. Computing device 900 is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other appropriate computers. Computing device 950 is intended to represent various forms of mobile devices, such as personal digital assistants, cellular telephones, smartphones, and other similar computing devices. The components shown here, their connections and relationships, and their functions, are meant to be exemplary only, and are not meant to limit implementations of the inventions described and/or claimed in this document.

[00114] Computing device 900 includes a processor 902, memory 904, a storage device

906, a high-speed interface 908 connecting to memory 904 and high-speed expansion ports 910, and a low speed interface 912 connecting to low speed bus 914 and storage device 906. Each of the components processor 902, memory 904, storage device 906, high-speed interface 908, highspeed expansion ports 910, and low speed interface 912 are interconnected using various busses, and may be mounted on a common motherboard or in other manners as appropriate. The processor 902 can process instructions for execution within the computing device 900, including instructions stored in the memory 904 or on the storage device 906 to display graphical information for a GUI on an external input/output device, such as display 916 coupled to high speed interface 908. In other implementations, multiple processors and/or multiple busses may be used, as appropriate, along with multiple memories and types of memory. Also, multiple computing devices 900 may be connected, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-processor system).

[00115] The memory 904 stores information within the computing device 900. In one implementation, the memory 904 is a volatile memory unit or units. In another implementation, the memory 904 is a non-volatile memory unit or units. The memory 904 may also be another form of computer-readable medium, such as a magnetic or optical disk.

[00116] The storage device 906 is capable of providing mass storage for the computing device 900. In one implementation, the storage device 906 may be or contain a computer- readable medium, such as a floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash memory or other similar solid state memory device, or an array of devices, including devices in a storage area network or other configurations. A computer program product can be tangibly embodied in an information carrier. The computer program product may also contain instructions that, when executed, perform one or more methods, such as those described above. The information carrier may be a non-transitory computer- or machine-readable storage medium, such as the memory 904, the storage device 906, or memory on processor 902.

[00117] The high speed controller 908 manages bandwidth-intensive operations for the computing device 900, while the low speed controller 912 manages lower bandwidth -intensive operations. Such allocation of functions is exemplary only. In one implementation, the highspeed controller 908 is coupled to memory 904, display 916 (e.g., through a graphics processor or accelerator), and to high-speed expansion ports 910, which may accept various expansion cards (not shown). In the implementation, low-speed controller 912 is coupled to storage device 906 and low-speed expansion port 914. The low-speed expansion port 914, which may include various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be coupled to one or more input/output devices, such as a keyboard 936 in communication with a computer 932, a pointing device 935, a scanner 931, or a networking device 933 such as a switch or router, e.g., through a network adapter.

[00118] The computing device 900 may be implemented in a number of different forms, as shown in the figure. For example, it may be implemented as a standard server 920, or multiple times in a group of such servers. It may also be implemented as part of a rack server system 924. In addition, it may be implemented in a personal computer such as a laptop computer 922.

Alternatively, components from computing device 900 may be combined with other components in a mobile device (not shown), such as device 950. Each of such devices may contain one or more of computing device 900, 950, and an entire system may be made up of multiple computing devices 900, 950 communicating with each other.

[00119] Computing device 950 includes a processor 952, memory 964, an input/output device such as a display 954, a communication interface 966, and a transceiver 968, among other components. The device 950 may also be provided with a storage device, such as a Microdrive, solid-state memory or other device, to provide additional storage. Each of the components computing device 950, processor 952, memory 964, display 954, communication interface 966, and transceiver 968 are interconnected using various busses, and several of the components may be mounted on a common motherboard or in other manners as appropriate.

[00120] The processor 952 can execute instructions within the computing device 950, including instructions stored in the memory 964. The processor may be implemented as a chipset of chips that include separate and multiple analog and digital processors. The processor may provide, for example, for coordination of the other components of the device 950, such as control of user interfaces, applications run by device 950, and wireless communication by device 950.

[00121] Processor 952 may communicate with a user through control interface 958 and display interface 956 coupled to a display 954. The display 954 may be, for example, a TFT LCD (Thin-Film-Transistor Liquid Crystal Display) or an OLED (Organic Light Emitting Diode) display, or other appropriate display technology. The display interface 956 may comprise appropriate circuitry for driving the display 954 to present graphical and other information to a user. The control interface 958 may receive commands from a user and convert them for submission to the processor 952. In addition, an external interface 962 may be provided in communication with processor 952, so as to enable near area communication of device 950 with other devices. External interface 962 may provide, for example, for wired communication in some implementations, or for wireless communication in other implementations, and multiple interfaces may also be used.

[00122] The memory 964 stores information within the computing device 950. The memory 964 can be implemented as one or more of a computer-readable medium or media, a volatile memory unit or units, or a non-volatile memory unit or units. Expansion memory 974 may also be provided and connected to device 950 through expansion interface 972, which may include, for example, a SEVIM (Single In Line Memory Module) card interface. Such expansion memory 974 may provide extra storage space for device 950, or may also store applications or other information for device 950. Specifically, expansion memory 974 may include instructions to carry out or supplement the processes described above, and may include secure information also. Thus, for example, expansion memory 974 may be provide as a security module for device 950, and may be programmed with instructions that permit secure use of device 950. In addition, secure applications may be provided via the SIMM cards, along with additional information, such as placing identifying information on the SIMM card in a non-hackable manner.

[00123] The memory may include, for example, flash memory and/or NVRAM memory, as discussed below. In one implementation, a computer program product is tangibly embodied in an information carrier. The computer program product contains instructions that, when executed, perform one or more methods, such as those described above. The information carrier is a computer- or machine-readable medium, such as the memory 964, expansion memory 974, memory on processor 952, or a propagated signal that may be received, for example, over transceiver 968 or external interface 962.

[00124] Device 950 may communicate wirelessly through communication interface 966, which may include digital signal processing circuitry where necessary. Communication interface 966 may provide for communications under various modes or protocols, such as GSM voice calls, SMS, EMS, or MMS messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000, or GPRS, among others. Such communication may occur, for example, through radio-frequency

transceiver 968. In addition, short-range communication may occur, such as using a Bluetooth, Wi-Fi, or other such transceiver (not shown). In addition, GPS (Global Positioning System) receiver module 970 may provide additional navigation- and location-related wireless data to device 950, which may be used as appropriate by applications running on device 950.

[00125] Device 950 may also communicate audibly using audio codec 960, which may receive spoken information from a user and convert it to usable digital information. Audio codec 960 may likewise generate audible sound for a user, such as through a speaker, e.g., in a handset of device 950. Such sound may include sound from voice telephone calls, may include recorded sound (e.g., voice messages, music files, etc.) and may also include sound generated by applications operating on device 950.

[00126] The computing device 950 may be implemented in a number of different forms, as shown in the figure. For example, it may be implemented as a cellular telephone 980. It may also be implemented as part of a smartphone 982, personal digital assistant, a tablet computer 983 or other similar mobile computing device. [00127] Various implementations of the systems and techniques described here can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.

[00128] These computer programs (also known as programs, software, software applications or code) include machine instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the terms "machine-readable medium" "computer- readable medium" refers to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term "machine- readable signal" refers to any signal used to provide machine instructions and/or data to a programmable processor.

[00129] To provide for interaction with a user, the systems and techniques described here can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user and a keyboard and a pointing device (e.g., a mouse or a trackball) by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form, including acoustic, speech, or tactile input.

[00130] The systems and techniques described here can be implemented in a computing system that includes a back end component (e.g., as a data server), or that includes a middleware component (e.g., an application server), or that includes a front end component (e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the systems and techniques described here), or any combination of such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), and the Internet.

[00131] The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.

[00132] For the sake of clarity, the processes and methods herein have been illustrated with a specific flow, but it should be understood that other sequences may be possible and that some may be performed in parallel, without departing from the spirit of the invention.

Additionally, steps may be subdivided or combined. As disclosed herein, software written in accordance with the present invention may be stored in some form of computer-readable medium, such as memory or CD-ROM, or transmitted over a network, and executed by a processor.

[00133] All references cited herein are intended to be incorporated by reference.

Although the present invention has been described above in terms of specific embodiments, it is anticipated that alterations and modifications to this invention will no doubt become apparent to those skilled in the art and may be practiced within the scope and equivalents of the appended claims. More than one computer may be used, such as by using multiple computers in a parallel or load-sharing arrangement or distributing tasks across multiple computers such that, as a whole, they perform the functions of the components identified herein; i.e. they take the place of a single computer. Various functions described above may be performed by a single process or groups of processes, on a single computer or distributed over several computers. Processes may invoke other processes to handle certain tasks. A single storage device may be used, or several may be used to take the place of a single storage device. The present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein. It is therefore intended that the disclosure and following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.