Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DISC TURBINE ENGINE
Document Type and Number:
WIPO Patent Application WO/2019/045997
Kind Code:
A1
Abstract:
A disc turbine engine with a multi disc engine where each disc engine includes a turbine blade, a low-pressure compressor blade, a high-pressure compressor blade, and a bearing. Each disc engine runs freely and individually, counter-rotating directions from each other and around a fixed shaft. Each disc engine has its own cooling system. The compressor's blades act as cooling fins for the turbine blade. A coolant, such as liquid hydrogen is used to fill the hollow body of the high-pressure compressor, the hollow body of the lower pressure compressor, and the hollow body of the turbine blade with a connection chamber in between the hollow blades as a sealed system. The nozzle is filled with a coolant inside the hollow bodies of the nozzle and guide fan as a sealed system.

Inventors:
REZ, Mustafa (19512 E. Dexter Street, Covina, CA, 91724, US)
REZ, Bassel (19512 E. Dexter Street, Covina, CA, 91724, US)
Application Number:
US2018/046453
Publication Date:
March 07, 2019
Filing Date:
August 13, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
REZ, Mustafa (19512 E. Dexter Street, Covina, CA, 91724, US)
REZ, Bassel (19512 E. Dexter Street, Covina, CA, 91724, US)
International Classes:
F02C3/00; F02C3/16; F02C5/04; F02C7/00; F02C7/08; F02C7/10; F02K3/00
Foreign References:
US8726635B12014-05-20
US9670840B22017-06-06
US5472313A1995-12-05
Attorney, Agent or Firm:
BUHLER, Kirk, A. (Buhler & Associates, 1101 California AveSuite 20, Corona CA, 92881, US)
Download PDF:
Claims:
CLAIM OR CLAIMS

[Clai m l ] A disc turbine engine comprising:

a front fan, low-pressure compressor section containing at least one low-pressure compressor, a high- pressure compressor section containing at least one high-pressure compressor, a turbine section containing at least one turbine, a combustion chamber, a nozzle, an exhaust nozzle, a guide vane, and a multi-disc engine; said multi-disc engine is constructed with at least two-discs; each disc of the at least two discs comprising: a bearing surrounded by a high-pressure compressor of the at least one high-pressure compressor, said high-pressure compressor comprising at least one high-pressure compressor blade, said high-pressure compressor surrounded by a turbine of the at least one turbine, said turbine, comprising at least one turbine blade, said turbine is surrounded by a low-pressure compressor of the at least one-pressure compressor comprising of at least one low-pressure compressor blade; said bearing, said high-pressure compressor, said turbine and said low-pressure compressor of each disc of the at least two discs configured in a concentric planar disc; a fixed shaft that holds said multi-disc engine in a housing; a fan shaft that is located around said fixed shaft and is connected to a first disc of the at least two discs, said fan shaft being connected to said front fan with a gear, and a first air is bled from the high-pressure compressor section of the disc turbine engine of the at least two discs into the at least one turbine blade of the at least one disc of the at least two discs and into the at least one low-pressure compressor section of the at least one disc of the at least two discs.

[Clai m 2 ] The disc turbine engine according to claim 1, wherein said fixed shaft has a first channel and a second channel; said first channel is for oil feeding through said bearing, and said bearing of each disc engine of the at least two-disc engine and second channel is for a return of said oil from said bearing of each disc engine of the at least two-disc engines.

[Clai m 3 ] The disc turbine engine according to claim 2, wherein at least a portion of said first channel and said second channel is located in front of said fan to intercool said oil in said first and said second channel. [Clai m 4] The disc turbine engine according to claim 1, wherein said disc turbine engine does not include a stator between any consecutive disc engines of sad at least two-disc engines.

[Clai m 5 ] The disc turbine engine according to claim 1, wherein said nozzle is located in front of a first turbine of the respective turbine of the first disc of the at least two discs; said guide vane is located in front of the respective first low-pressure compressor of the first disc engine of the at least two-disc engine, and the nozzle is connected to the guide vane as one hollow body.

[Clai m 6] The disc turbine engine according to claim 5, wherein a first air which has passed through the high-pressure compressor section of the disc turbine engine is bled through the nozzle and into the guide vane.

[Clai m 7] The disc turbine engine according to claim 6, wherein said guide vane acts as a cooling fin to cool said nozzle.

[Clai m 8] The disc turbine engine according to claim 1, wherein a second air which has exited a low- pressure compressor section of the disc turbine engine runs through at least one pipe and into a hollow body of the exhaust nozzle and into said high-pressure compressor section.

[Clai m 9] The disc turbine engine according to claim 8, wherein the second air flowing inside said at least one pipe and into the hollow body of said exhaust nozzle absorbs energy from exhaust gas and increases a pressure of the third air flowing inside the at least one pipe.

[Clai m 1 0] The disc turbine engine according to claim 1, wherein the first air in the at least one low- pressure compressor blade of the at least one-disc engine of the at least two-disc engine is injected into a low-pressure compressor section of the disc turbine engine.

[Clai m 1 1 ] The disc turbine engine according to claim 1, wherein said disc turbine engine is a turbo jet engine.

[Clai m 1 2] The disc turbine engine according to claim 1, wherein said disc turbine engine is a

turbofan engine.

[Clai m 1 3] The disc turbine engine according to claim 1, wherein said disc turbine engine is a turbo shaft engine. [Clai m 1 4] The disc turbine engine according to claim 1, wherein the core bearing of each disc engine of the at least two-disc engine is connected to the fixed shaft.

[Clai m 1 5] The disc turbine engine according to claim 1, wherein each disc engine of the at least two disc engine runs freely and individually from the other disc engine of the at least two disc engine and each disc engine of the at least two disc engine is counter-rotating.

[Clai m 1 6] The disc turbine engine according to claim 1, further includes and annular combustion chamber that has at least one cooling fin.

[Clai m 1 7] A disc turbine engine comprising:

a front fan, low-pressure compressor section containing at least one low-pressure compressor, a high- pressure compressor section containing at least one high-pressure compressor, a turbine section containing at least one turbine, a combustion chamber, a nozzle, an exhaust nozzle, a guide vane, and a multi-disc engine;

said multi-disc engine is constructed with at least two-discs;

each disc of the at least two discs comprising:

a bearing surrounded by a high-pressure compressor of the at least one high-pressure compressor, said high-pressure compressor comprising at least one high-pressure compressor blade,

said high-pressure compressor surrounded by a turbine of the at least one turbine, said turbine, comprising at least one turbine blade,

said turbine is surrounded by a low-pressure compressor of the at least one-pressure compressor comprising of at least one low-pressure compressor blade;

said bearing, said high-pressure compressor, said turbine and said low-pressure compressor of each disc of the at least two discs configured in a concentric planar disc;

a fixed shaft that holds said multi-disc engine in a housing;

a fan shaft that is located around said fixed shaft and is connected to a first disc of the at least two discs, said fan shaft being connected to said front fan with a gear, and

said nozzle and said at least one turbine blade of each disc engine of the at least two-disc engine are cooled by a coolant.

[Clai m 1 8] The disc turbine engine according to claim 17, wherein said coolant fills an inside of a hollow body of said nozzle, said guide fan as one hollow body, and the coolant is contained in a sealed and closed system. [Clai m 1 9] The disc turbine engine according to claim 17, wherein a cooling of said at least turbine blade is using a coolant located inside a hollow body of said at least turbine blade, said low-pressure compressor blade, said high-pressure compressor blade of each disc engine of the at least two disc engine as one hollow body and wherein said coolant is contained within a sealed and closed system, wherein said coolant is located within said hollow body of said at least one turbine blade that is connected to a hollow body within said low-pressure compressor blade through a connection chamber in between two blades of each disc engine of the at least two disc engines.

[Clai m 20] The disc turbine engine according to claim 17, further includes and annular combustion chamber that has at least one cooling fin.

[Clai m 2 1 ] A disc turbine engine comprising:

a front fan, low-pressure compressor section containing at least one low-pressure compressor, a high- pressure compressor section containing at least one high-pressure compressor, a turbine section containing at least one turbine, a combustion chamber, a nozzle, an exhaust nozzle, a guide vane, and a multi-disc engine;

said multi-disc engine is constructed with at least two-discs is connected to a running shaft and said multi-disc engine is includes at least one fixed disc that is not connected to said running shaft;

said fixed disc acts as a stator for a running disc;

each disc of the at least two discs comprising:

said high-pressure compressor comprising at least one high-pressure compressor blade,

said high-pressure compressor surrounded by a turbine of the at least one turbine, said turbine, comprising at least one turbine blade,

said turbine is surrounded by a low-pressure compressor of the at least one-pressure compressor comprising of at least one low-pressure compressor blade;

said high-pressure compressor, said turbine and said low-pressure compressor of each disc of the at least two discs configured in a concentric planar disc;

said running shaft holds said multi-disc engine in a housing, and

said nozzle and said at least one turbine blade of each disc engine of the at least two-disc engine are cooled by a coolant.

[Clai m 2 2] The disc turbine engine according to claim 21, further includes and annular combustion chamber that has at least one cooling fin.

Description:
INVENTION TITLE

DISC TURBINE ENGINE

CROSS REFERENCE TO RELATED APPLICATIONS

[Para. 1 ] This application is a continuation-in-part of applicant's co-pending application Ser. No.

15/972,502 filed May 7, 2018 and Ser. No. 15/688,521 filed August 28, 2017 that issued on June 12, 2018 as S Patent 9,995,219 the contents of which is hereby expressly incorporated by reference herein.

TECHNICAL FIELD

[Para 2] This invention relates to improvements in a turbine engine. More particularly, to rearrange the compressor and turbine in different ways to reduce the size of the engine to change the thermal impact on the nozzle and the turbine blades.

BACKGROUND ART

[Para. 3] The evolution of the turbine engine has been utilized in aircraft to propel an airplane through the air with great speed and efficiency. Nearly all engines are constructed in a linear arrangement to use a single or two common shaft where airflow runs into a compressors that compresses an air and fuel mixture. The compressed mixture then is ignited and then expands through turbines where the hot exhaust gasses are expelled out of the turbine to provide propulsion. The elongated engine is extremely inefficient for size and further the high temperature of the exhaust requires expensive materials to resist damage from exposure of the heat. In old turbine engines, there is a front compressor (cold region) and a combustion chamber (hot region), and the turbines (hot regions). The front turbine and nozzles will be very hot and this can create a problem in a turbine engine and reduces the ability of the turbine to run at high temperatures with more efficiency.

[Para 4] In old turbine engines, there is a front compressor (cold region) and a combustion chamber (hot region), and the turbines (hot regions). The turbine and nozzles will be very hot, this can create a problem in a turbine engine. To increase the efficiency of the engine, the engine needs to run at higher temperatures. This is impossible, because of the temperature's impact on the nozzle and turbine blades. The disc engine has a unique design that allows the engine to run at higher temperatures.

[Para 5] Prior art compressors are limited from producing the pressure to run the engine at higher efficiency. The turbine engines become too large to accommodate bigger and faster aircrafts to the point where the turbine engines are an aerodynamic obstacle.

[Para 6] In other old technology turbine engines there is a limitation in the pressure of combustion needs to be equal or less than the pressure created by the compressor. This limits the power of thrust. In order to obtain more thrust, either the compressor needs to create more pressure or the size of the engine needs to be increased. As today's compressors are limited to the pressure produced, there is no way to increase the pressure with current compressor technology. All the turbine engines are consistently are being increased in size to accommodate bigger and faster aircraft to the point where the engines are so big that they become an aerodynamic and design obstruction.

[Para 7] Other limitations of the high temperature of the engine on the nozzle and turbine blade will be restricted to the increase of pressure in the system. The disc engine has a unique cooling system and good heat management.

[Para 8] Prior art turbine engines are engines Turbofan bypass jet engines where a turbo fan jet engine uses bypass flow that consists of the engine core (as described above) plus an added turbo fan blowing air through an added bypass cavity. In operation, the additional flow of air via the bypass cavity is mixed with the hot gases exiting the nozzle of the engine core thus boosting the thrust. Some design limitations of the turbofan bypass engine are the same as the jet engine previously identified plus the pressure of the bypass air jet is limited by the pressure produced by the fan.

[Para 9] Another prior art engine is a jet engine with an after-burner. Some military planes have jet engines with after-burners (fuel injector mounted into the bypass cavity). In operation gasoline is dispensed into the bypass cavity thereby increasing the temperature and the specific weight of the bypass flow to increase the thrust during emergency situations. This design has the limitations of the jet engine with after-burner are the same or similar to the jet engine above. The after-burners can be very efficient, and they also must be used sparingly during emergency situations. The additional mass that is added to the flow is used more efficiently if the speed of the gases exiting the nozzle could be increased because the thrust equals the mass of the gases multiplied by the speed of the gases. The pressure in the combustion chamber and the bypass ducts is limited to the pressure created by the fan and the compressor, thereby creating a limit to the speed of the exhaust gases.

[Para 1 0] U.S. Patent Number 762, 175 issued June 7, 1904 to H. T. Lees discloses an Explosive Turbine. The explosive turbine is a steam or vapor turbine where steam or vapor enters the center of the turbine and as the steam or vapor exits the turbine the turbine spins to create rotation. This patent does not disclose the use of the fuel entering the turbine that is then ignited where it expands to create thrust or lift to the turbine.

[Para 1 1 ] U.S. Patent Number 1, 186,950 issued June 13, 1916 to M. Seguin discloses a Gas Engine. The gas engine uses Air that enters the turbine is compressed as it is spun within the turbine. A series of small combustion chambers located on the outer edge of the turbine. This patent does not disclose a continuous combustion process and the gas engine creates rotational motion instead of thrust.

[Para 1 2] U.S. Patent Number 3,005,311 issued October 24, 1961 to F. W. Ross discloses a Gas Turbine Engine with Combustion inside Compressor. This engine includes multiple internal partitions where the compression, ignition and expansion take place in each of the different partitions. This patent does not provide a single chamber where the rotation of the engine provides compression, fuel is added to the compressed air and then ignited to drive the engine and create thrust.

[Para 1 3] U.S. Patent Number 4,024,705 issued May 24, 1977 to Lewis W. Hedrick discloses a Rotary Jet Reaction Turbine. This jet turbine air or an air fuel mixture enters the turbine where it is compressed and the ignited. The ignition continues the rotation of the turbine. The engine turns a shaft that creates rotational energy. This patent does not disclose using the engine for thrust or varying the amount of thrust by opening or closing the exhaust port. [Para 1 4] What is needed is an engine that can operate at higher temperatures by decreasing the thermal impact on the nozzle and turbine blades and by decreasing the size and the weight of the engine. The proposed design provides an engine with these characteristics.

DISCLOSURE OF THE INVENTION

[Para 1 5] It is an object of the disc turbine engine in this document to mix the cold region with the hot region and together this cools down the hot region. This design is the most efficient for heat management and as an energy recover system.

[Para 1 6] It is an object of the disc turbine engine to have its own cooling system, wherein the turbine blade is cooled by coolant and the coolant is cooled by the low-pressure pressure compressor blade and by the high-pressure compressor blade.

[Para 1 7] It is an object of the disc turbine engine for the blades to have a hollow body where coolant is used in the low-pressure compressor blade and the high-pressure compressor blade as a closed and sealed system.

[Para 1 8] It is an object of the disc turbine engine for the disc turbine engine to mix the cold region of the disc turbine engine with the hot region disc turbine engine to cool the hot region. Therefore, the disc turbine engine will have improved thermal management.

[Para 1 9] It is an object of the disc turbine engine to cool down the walls of combustion chamber by cold air.

[Para 20] It is another option of the disc turbine engine to cool down the nozzle with coolant within the hollow body of the nozzle and the guide fan using a sealed system.

[Para 21 ] It is another option of the disc turbine engine to cool down the turbine blade with coolant from inside the hollow body of the high-pressure of compressor blade, the hollow body of the turbine blade, and the hollow body of the low-pressure compressor blade as a sealed system. The compressor blade acts as cooling fins for the turbine blade.

[Para 22] It is an object of the disc turbine engine to include energy recovery, where air transfer from the low-pressure compressor section into a hollow exhaust nozzle and then into a high-pressure compressor section through pipes that will absorb heat from the exhaust gas and converted the heated air into higher pressure as energy recovery.

[Para 23] It is an object of the disc turbine engine for the disc turbine engine for to bend and rotate each compressor blade independently at its own optimum speed at each operating condition. There is no energy lost through the stators. [Para 24] It is an object of the disc turbine engine for each disc engine to individually turn freely in counter-rotating directions from each other without a stator in between each counter-rotating blade.

[Para 25] It is another object of the disc turbine engine for each disc engine to consume its own power. There is no power transferred through a shaft, and has a small fixed shaft that holds the discs in alignment within the engine.

[Para 26] It is another object of the disc turbine engine for the engine to be compact in size and with a reduction in weight because the turbine engine is less than other turbine engines at the same thrust output.

[Para 27] It is another object of the disc turbine engine for maintenance of the disc turbine engine to be performed faster and less-expensive than any other turbine engines

[Para 28] It is still another object of the disc turbine engine to operate as a jet engine, a turbofan engine, a turbo prop engine and a turboshaft engine.

[Para 29] It is another object of the disc turbine engine and as a second option to cool down the nozzle by using high pressure compressed air that is bleed into a hollow body of the nozzle and into a hollow body of a guide fan and then into the low-pressure compressor section of the engine.

[Para 30] It is another object of the disc turbine engine and as a second option to cool down the turbine blades by using air from the high-pressure compressor section where the air is bleed into the hollow body of turbine blade and into the low-pressure compressor section. In this embodiment the compressors blades act as cooling fins for the turbine blade.

[Para 31 ] Various objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.

BRIEF DESCRIPTION OF THE DRAWING(S)

[Para 32] FIG. 1 shows a sectional view of a prior art jet engine.

[Para 33] FIG. 2 shows a sectional view of a disc turbine engine, jet engine with a fixed shaft.

[Para 34] FIG. 3 shows a sectional view of a disc turbo engine, jet engine with a running shaft.

[Para 35] FIG. 4 shows a sectional view of a disc turbo engine, turbo fan engine.

[Para 36] FIG. 5 shows a sectional view of a disc turbo engine, high bypass ration turbo fan engine.

[Para 37] FIG. 6 shows a sectional view of a disc turbo engine, small turbojet engine.

[Para 38] FIG. 7 shows the compression and turbine blades without stators.

[Para 39] FIG. 8 shows a sectional view of the disc engine, cooling the turbo blade and lubricating the bearings.

[Para 40] FIG. 9 shows a sectional view of the cooling of the nozzle.

[Para 41 ] FIG. 10a and 10b show sectional views of the exhaust nozzle that is used to transfer air from the low compressor blade to the high compressor blade taken from figure 2.

[Para 42] FIG. 11 shows a section view of the disc engine with cooling of the turbo blade and nozzle using coolant such as liquid hydrogen.

[Para 43] FIG. 12A - 12C show section views of the connection chamber with coolant between the turbine blade and the compressor blade.

BEST MODE FOR CARRYING OUT THE INVENTION

[Para 44] FIG. l shows a sectional view of a prior art jet engine. In prior art jet engine, air 13 enters into the front of the engine. As the air passes into the engine, a series 14 of blades compress the air. The compressed air then is mixed with a fuel spray 16. In this section of the engine the fuel and air mixture is ignited in the burner 17 section of the engine. As the fuel and air burns, it expands and passes through a turbine and turns the shaft 15. The turning shaft 15 turns the blades of the air compressor 14 to keep the process as a continuous flow through the engine. After the turbine 18 the burned air and fuel is exhausted 19 out of the engine to provide thrust to push the engine forward. The shaft 15 transfers all of the load from the turbine 18 to the air compressor section 14.

[Para 45] FIG. 2 shows a sectional view of a disc turbine engine. The jet engine has a fixed shaft. As a general description, instead of the compressor and turbine being placed in an elongated arrangement in the engine, the compressor and turbine are placed in a concentric arrangement in the engine. Air initially enters 100 into the front of the disc turbine engine and initially passes through the structural support and guide 27 and then the fan 26 with gear 61. The air 92 then passes to the section of the low-pressure compressor 40 of the engine through guide fan 42. The guide fan 42 aligns the air stream and then passes through one or more low pressure compressors 40. The low-pressure compressors 40 provide an initial compression to the air. A dividing wall 24 separates the outer compressor(s) 40. After the first pass through the disc engine, the air 90 is directed through pipes 21 to inner exhaust nozzle 99 of the engine. Another guide fan 22 orients the air flow into the inner high- pressure compressors 41.

[Para 46] A guide 29 reduces the flow cross-section to increase the compression of the air. Fuel is then sprayed 49 into the compressed air stream. The fuel and air mixture is then ignited in the combustion chamber 31 and is directed 94 towards nozzle 25. The burnt fuel is then passed through a series of turbines 23. The rotated turbines are mechanically linked with to the compressors so they can turn together without requiring a shaft. One or more of the disc engines are required first disc engine 46 are connected with bearings 28 to the shaft 60 to provide power to the front fan 26. The exhaust 101 then passes out the end of the disc engine to provide thrust.

[Para 47] Each disc engine has its own cooling system. The blades of the high-pressure compressor blade 41 and the low-pressure compressor 40 acts as a cooling fin for the blade of the turbine 23. A series of air bleed holes 50 and 51 pass from the high-pressure compressor blade to the blade of the turbine to the blade of the low-pressure compressor 40 as shown in figure 8. [Para 48] The blades of the low -pressure compressor and the high-pressure compressor absorbs heat from the blade of turbine and converts the heat to high pressure as energy recovery.

[Para 49] The piping or channels 21 will transfer the air from the low-pressure compressor 40 section to the high pressure compressor 40 section through the exhaust nozzle 91. The air will be absorbed as heat in this section and will convert the heat to higher pressure for energy recovery.

[Para 50] Cooling and lubrication of all the bearings is through oil channels 95 and 97 through the fixed shaft 30. The oil is cooled by passing the oil through pipes 95 and 97 in front of the guide fan 27.

[Para 51 ] Cooling of the combustion chamber wall 31 is with cool air flowing around 92. Cooling the nozzle in front of the turbines by connecting the hollow body 25 with the hollow guide fin body 42 and by high- pressure air bleed 41 to the lower pressure section 92 as shown in figures 8 and 9. The fan 26 can run by a reduction gear 61 as needed for the design.

[Para 52] FIG. 3 shows another sectional view of the disc engine in an alternative embodiment as a disc turbo engine, jet engine with a running shaft. In this alternative variation, the same compressors 40 and 41 are used, but the shaft is a different configuration. The turbine 23 disc is connected together with the shaft 93 and some turbine discs are run independently over the shaft 93.

[Para 53] It is contemplated that as few as one or more than four-disc engines can be incorporated into the disc turbine engine based upon the requirement for the size of the engine. The front fan 26 can be run by a reducing gear 61 as needed based upon the design requirements.

[Para 54] FIG. 4 shows a sectional view of a disc turbo engine, turbo fan engine. This is the same as figure 2 with the difference of a bigger fan 26 with bypass 62.

[Para 55] FIG. 5 shows a sectional view of a disc turbo engine, high bypass ration turbo fan engine. This is the same as figure 2 with the difference of a bigger fan 26 and two larger compressors 40 that allow more air in bypass 62.

[Para 56] FIG. 6 shows a sectional view of a disc turbo engine, small turbo jet engine. This simplified figure shows just one-disc engine 46. This single disc 46 has a low-pressure compressor 40 on the outside of the disc and a high-pressure compressor 41 on the inner diameter of the disc and one turbine vane 23. Air flow into the disc engine passes through the fan 26 and is oriented with the guide 42 into an outer low-pressure compressor 40. Air is moved 90 to 91 from the low-pressure compressor 40 to the inner higher compress through pipes or channels 21. After the compressed air passes the last high pressure inner compressor 41, a fuel spray 49 is added into the air flow. An igniter 48 lights the air and fuel mixture and the air-fuel mixture burns in the combustion flow 94. The nozzle 25 then directs the expanded combustion flow towards the turbine 23 that turns the disc engine 47. The pipes 21 allow air flow from the turbine 23 through the engine and can exit the engine as thrust 101 or exhaust. The disc engine 46 turns the shaft 93 with the fan 26. The shaft 93 is small in size because some of the power from the turbine blades is consumed by the low-pressure compressor 40 and the high-pressure compressor 41.

[Para 57] FIG. Ί shows the compression and turbine blades without stators. This figure shows a four-disc engine with each disc engine having a low-pressure compressor 40, a turbine 23 and a high-pressure compressor 41. The low-pressure compressor 40 works in the top row and without a stator between the flow 92 from and flows from right to left. The flow is guided by guide vane 42. Flow from left to the right and is guided by guide vane 22 towards four inner high-pressure compressors 41 and without stators. The four blades of turbine 23 and the nozzle 25 is in front of the first turbine. The exhaust flow 98 from right to left is without stators m between. The rotational speed of each disc engine is independent and shows ul, u2, u3 and u4.

[Para 58] In this embodiment, there are a total of four discs, but more or less than four discs are

contemplated, based upon optimization for cost or performance. The figure shows that the blades in each row are arranges in alternating orientations to compress the flow or air expanding of air through the blade alternations.

[Para 59] FIG. 8 shows a sectional view of the disc engine, cooling lubrication of the bearings 28, cooling of the blade of the turbine 23 by air bleed from the section of the high -pressure compressor section 41 through air bleeding holes 51 to the hollow body of the blade of turbine 23 and through holes 50 to the hollow body of the low-pressure compression 40. The two blades of the low pressure and high-pressure compressor 40 act as fins for cooling the blades of turbine 23.

[Para 60] The blade of the low -pressure compressor 40 in the top of figure 8 shows that the blades in each disc are arranged in alternating orientations to compress the flow 92 of air through the blades of the low- pressure compressor 40 alternating. The orientation of the blades of the inner blade 41 is contoured to push and compress the air through the blades of high-pressure compressor 41. Arrow 98 shows air flow through the compressor while arrow 96 shows exhaust flow through the turbines. The flow of oil into 95 and out 97 of the bearing 28. The oil flow through paths in the shaft 30. The oil flow in the bearings 28 allows both lubrication and cooling to the bearings 28. [Ρ3Γ3 61 ] FIG. 9 shows a sectional view of the cooling of the nozzle cooling system where the nozzle 25 and the air guide fan 42 are one hollow body and the air bleed 53 from the high pressure compressed air to the hollow body of the nozzle 25 and guide fin 42.

[Para 62] FIG. 10a and 10b show sectional views of the exhaust nozzle 99 and the pipes 21 that are used to transfer air flow 92 that transfers through the pipes 21 and into the hollow exhaust nozzle 99. The transfer air flow 92 then enters into the guide vane 22 and into 98 the high-pressure compressed air flow 98 taken from figure 2. In this view, the pipes that move the air from the outer or low-pressure compressed air 90 to the inner or high-pressure compressed air 91. Cross-section 10a is near the inlet of the high -pressure compressor 41, and cross-section 10b is at the end of the nozzle of the exhaust 99 (as seen in figure 2). The air transfer 92 enters through pipes 21 as air flow 90 and exits the pipes 21 as air flow 91.

[Para 63] FIG. 11 shows a section view of the disc engine in an alternative embodiment for cooling the turbine blade 23 with coolant 71 such as liquid hydrogen inside of the hollow body of the turbine blade 23. The hollow body of the low-pressure compressor blade 40 and the hollow body of the high -pressure blade 41. A connection chamber 74 is located between the turbine blade 23, the low-pressure blade 40, a connection chamber 71 between the turbine blade 23 and the high -pressure blade 41. The heat is exchanged between the body of the turbine 23, the coolant 72 and heat is exchanges between the coolant 72, the coolant 74, the coolant 70 and the heat is exchanged between the coolant 74, the low-pressure compressor 40, the coolant 70 and the high-pressure compressor blade 41. The coolant inside of the turbine blade 23, the high-pressure blade 41, the low-pressure blade 40 is a closed system that is sealed by a cap 75.

[Para 64] FIG. 11 shows a section view of the disc engine. The cooling of the nozzle 25 is with coolant 76 that is located inside of the hollow body of the nozzle 25 and the heat is exchanges between the nozzle 25 and with coolant 76. The coolant 76 is connected to coolant 77 to allow heat to be exchanged between the coolant 77 and the guide fan body 42..

[Para 65] FIG. 12B shows a section view of the connection chamber 73 where the coolant 72 is connected to the coolant 74. Section 12A shows the cross section of the low-pressure compressor blade 40 and section 12C shows a cross section of a turbine blade 23.

[Para 66] FIG. 12A - 12C show section views of the connection chamber with coolant between the turbine blade 23 and the compressor blade with coolant 72 such as liquid hydrogen inside the hollow body of the turbine blade 23. Figure 12B shows a sectional view of the connection chamber 73 where the coolant 72 and the coolant 74 shown connected. Figure 12A shows the cross-section of the low-pressure compressor blade 40. Figure 12C shows a cross-section of turbine blade 23. [Para. 67] Thus, specific embodiments of a disc turbine jet engine have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims.

INDUSTRIAL APPLICABILITY

[Para 68] The industrial applicability relates to a disc turbine engine with a multi disc engine where each disc engine includes a turbine blade, a low-pressure compressor blade, a high-pressure compressor blade, and a bearing.